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SelInv – An Algorithm for Selected Inversion of a Sparse

Symmetric Matrix

Lin Lin ∗ Chao Yang † Juan C. Meza ‡ Jianfeng Lu § Lexing Ying ¶

Weinan E ‖

October 16, 2009

Abstract

We describe an efficient implementation of an algorithm for computing selected
elements of a general sparse symmetric matrix A that can be decomposed as A = LDLT ,
where L is lower triangular and D is diagonal. Our implementation, which is called
SelInv, is built on top of an efficient supernodal left-looking LDLT factorization of A.
We discuss how computational efficiency can be gained by making use of a relative index
array to handle indirect addressing. We report the performance of SelInv on a collection
of sparse matrices of various sizes and nonzero structures. We also demonstrate how
SelInv can be used in electronic structure calcuations.

1 Introduction

In some scientific applications, we need to calculate a subset of the entries of the inverse
of a given matrix. A particularly important example is in the electronic structure analysis
of materials using algorithms based on pole expansion [18, 20] where the diagonal and
sometimes sub-diagonals of the discrete Green’s function or resolvent matrices are needed
in order to compute the electron density. Other examples in which particular entries of the
Green’s functions are needed can also be found in the perturbation analysis of impurities
by solving Dyson’s equation in solid state physics [10], or the calculation of retarded and
less-than Green’s function in electronic transport [6]. We will call this type of calculations
a selected inversion of a matrix.
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From a computational viewpoint, it is natural to ask whether one can develop algorithms
for selected inversion that is faster than inverting the whole matrix. This is possible at least
in some cases, for example, when A is obtained from a finite difference discretization of
a Laplacian operator or from lattice models in statistical or quantum mechanics with a
local Hamiltonian. For such matrices, a fast sequential algorithm has been proposed to
extract the diagonal or sub-diagonal elements of their inverse matrices [19]. The complexity
of the fast algorithm is O(n1.5) for two dimensional (2D) problems and O(n2) for three
dimensional (3D) problems, with n being the dimension of A. This is lower than the O(n3)
complexity associated with a direct inversion of the full matrix. The algorithm presented in
[19] contains two steps. The first step produces an LDLT factorization of the input matrix
A. The second step uses L and D matrices to compute the selected components of A−1. In
the following, we will simply refer to the first step as factorization, and the second step as
selected inversion. The parallelization of this algorithm on a distributed memory machine is
described in the recent work [21]. We have used the parallel algorithm to perform a selected
inversion a 2D Laplacian of dimension 4.3 billion on 4,096 processors.

The design and implementation of the fast algorithm proposed in [19] and [21] depend
explicitly on the domain shape and discretization stencil for the Laplacian operator. This
leads to an efficient implementation, but restricts the application of the algorithm. On
the other hand, LDLT factorization is a general concept. Therefore, it is natural to ask
whether it is possible for the selected inversion algorithm to be generalized to any nonsin-
gular symmetric matrix. This question was investigated in [11], and discussed recently in
[17, 27, 21]. However, no efficient software package is currently available for computing a
selected inversion of a general sparse symmetric matrix that admits an LDLT factorization.
The present paper intends to fill such a gap by describing an efficient algorithm and its
implementation for such a task. The algorithm and its implementation described here will
be called SelInv.

Our paper is organized as follows. We begin with the description of some basic concepts
underlying a selected inversion algorithm in section 2, and discuss why the complexity of
the algorithm can be made lower than O(n3) when A is sparse. We discuss the use of
supernodes and block algorithms in section 3, which is key to achieving high performance.
The implementation details of SelInv are provided in section 4. In particular, we show
how a relative index array similar to that used in a sparse LDLT factorization is set up to
handle indirect addressing efficiently. In section 5, we report the performance of SelInv on
a collection of sparse matrices. We also demonstrate how SelInv can be used in electronic
structure calculations in section 6.

Standard linear algebra notation is used for vectors and matrices throughout the paper.
We use Ai,j to denote the (i, j)-th element of A. Block indices are denoted by uppercase
script letters I, J etc.. Occasionally, we use a MATLAB [25] script to describe a simple
algorithm. In particular, we use the MATLAB-style notation A(i:j,k:l) to denote a
submatrix of A that consists of rows i through j and columns k through l. Another notion
we use to denote such a submatrix is Ai:j,k:l. Furthermore, we use Ai,∗ and A∗,j to denote
the i-th row and the j-th column of A respectively. Similarly, AI,∗ and A∗,J are used to
denote the I-th block row and the J -th block column of A respectively.
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2 Selected Inversion: Basic Idea

An obvious way to obtain selected components of A−1 is to compute A−1 first and then
simply pull out the needed entries. The standard approach for computing A−1 is to first
decompose A as

A = LDLT , (1)

where L is a unit lower triangular matrix and D is a diagonal matrix. Equation (1) is
often known as the LDLT factorization of A. Given such a factorization, one can obtain
A−1 = (x1, x2, . . . , xn) by solving a number of triangular systems

Ly = ej , Dw = y, LTxj = w, (2)

for j = 1, 2, . . . , n, where ej is the jth column of the identity matrix I.
An alternative algorithm presented in [21] and summarized below also performs an

LDLT factorization of A first. However, the algorithm does not require solving (2) directly.
Before we present this algorithm, it will be helpful to first review the major operations
involved in the LDLT factorization of A.

Let

A =
(
α aT

a Â

)
, (3)

be a nonsingular symmetric matrix. The first step of an LDLT factorization produces a
decomposition of A that can be expressed by

A =
(

1
` I

)(
α

Â− aaT /α

)(
1 `T

I

)
,

where α is often referred to as a pivot, ` = a/α and S = Â− aaT /α is known as the Schur
complement. The same type of decomposition can be applied recursively to the Schur
complement S until its dimension becomes 1. The product of lower triangular matrices
produced from the recursive procedure, which all have the form I

1
`(i) I

 ,

where `(1) = ` = a/α, yields the final L factor. The (1, 1) entry of each Schur complement
together with α become the diagonal entries of the D matrix.

To simplify our discussion, we assume here that all pivots produced in the LDLT fac-
torization are sufficiently large so that no row or column permutation (pivoting) is needed
during the factorization.

The key observation made in [19] and [21] is that A−1 can be expressed by

A−1 =
(
α−1 + `TS−1` −`TS−1

−S−1` S−1

)
. (4)

This expression suggests that once α and ` are known, the task of computing A−1 can be
reduced to that of computing S−1.
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Because a sequence of Schur complements are produced recursively in the LDLT factor-
ization of A, the computation of A−1 can be organized in a recursive fashion also. Clearly,
the reciprocal of the last entry of D is the (n, n)-th entry of A−1. Starting from this entry,
which is also the 1× 1 Schur complement produced in the (n− 1)-th step of the LDLT fac-
torization procedure, we can construct the inverse of the 2× 2 Schur complement produced
at the (n−2)-th step of the factorization procedure, using the recipe given by (4). This 2×2
matrix is the trailing 2 × 2 block of A−1. As we proceed from the lower right corner of L
and D towards their upper left corner, more and more elements of A−1 are recovered. The
complete procedure can be easily described by a MATLAB script shown in Algorithm 1.

Algorithm 1 A MATLAB script for computing the inverse of a dense matrix A given its
LDLT factorization.

Ainv(n,n) = 1/D(n,n);
for j = n-1:-1:1

Ainv(j+1:n,j) = -Ainv(j+1:n,j+1:n)*L(j+1:n,j);
Ainv(j,j+1:n) = Ainv(j+1:n,j)’;
Ainv(j,j) = 1/D(j,j) - L(j+1:n,j)’*Ainv(j+1:n,j);

end;

For clarity purpose, we use a separate array Ainv in Algorithm 1 to store the computed
A−1. In practice, A−1 can be computed in place. That is, we can overwrite the array used
to store L and D with the lower triangular and diagonal part of A−1 incrementally.

It is not difficult to observe that if A is a dense matrix, the complexity of Algorithm 1 is
O(n3) because a matrix vector multiplication involving a j× j dense matrix is performed at
the jth iteration of this procedure, and (n− 1) iterations are required to fully recover A−1.
Therefore, when A is dense, this procedure does not offer any advantage over the standard
way of computing A−1. Furthermore, all elements of A−1 are needed and computed. No
computation cost can be saved if we just want to extract selected elements (e.g., the diagonal
elements) of A−1.

However, when A is sparse, a tremendous amount of saving can be achieved if we are
only interested in the diagonal components of A−1. If the vector ` in (4) is sparse, computing
`TS−1` does not require all elements of S−1 to be obtained in advance. Only those elements
that appear in the rows and columns corresponding to the nonzero rows of ` are required.

Therefore, to compute the diagonal elements of A−1, we can simply modify the procedure
shown in Algorithm 1 so that at each iteration we only compute selected elements of A−1

that will be needed by subsequent iterations of this procedure. It turns out that the elements
that need to be computed are completely determined by the nonzero structure of the lower
triangular factor L. To be more specific, at the jth step of the selected inversion process,
we compute A−1

i,j for all i such that Li,j 6= 0. Therefore, our algorithm for computing the
diagonal of A−1 can be easily described by a MATLAB script (which is not the most efficient
implementation) shown in Algorithm 2.

To see why this type of selected inversion is sufficient, we only need to examine the
nonzero structure of the kth column of L for all k < j since such a nonzero structure
tells us which rows and columns of the trailing sub-block of A−1 are needed to complete
the calculation of the (k, k) entry of A−1. In particular, we would like to find out which

4



Algorithm 2 A MATLAB script for computing selected matrix elements of A−1 for a
sparse symmetric matrix A.

for j = n-1:-1:1
% find the row indices of the nonzero elements in
% the j-th column of L
inz = j + find(L(j+1:n,j)~=0);
Ainv(inz,j) = -Ainv(inz,inz)*L(inz,j);
Ainv(j,inz) = Ainv(inz,j)’;
Ainv(j,j) = 1/d(j) - Ainv(j,inz)*L(inz,j);

end;

elements in the jth column of A−1 are required for computing A−1
i,k for any k < j and i ≥ j.

Clearly, when Lj,k = 0, the jth column of A−1 is not needed for computing the kth
column of A−1. Therefore, we only need to examine columns k of L such that Lj,k 6= 0.
A perhaps not so obvious but critical observation is that for these columns, Li,k 6= 0 and
Lj,k 6= 0 implies Li,j 6= 0 for all i > j. Hence computing the kth column of A−1 will not
require more matrix elements from the jth column of A−1 than those that have already
been computed (in previous iterations,) i.e. elements A−1

i,j such that Li,j 6= 0 for i ≥ j.
These observations are well known in the sparse matrix factorization literature [9, 12].

They can be made more precise by using the notion of elimination tree [23]. In such a tree,
each node or vertex of the tree corresponds to a column (or row) of A. Assuming A can be
factored as A = LDLT , a node p is the parent of a node j if and only if

p = min{i > j|Li,j 6= 0}.

L =



a
b

• c
d

• e
f

• • g
• • • • h

• • • i
• • • • • j


(a) The L factor.

j

i

h

g

c

a

f

e

b

d

(b) The elimina-
tion tree.

Figure 1: The lower triangular factor L of a sparse 10× 10 matrix A and the corresponding
elimination tree.

If Lj,k 6= 0 and k < j, then the node k is a descendant of j in the elimination tree. An
example of the elimination tree of a matrix A and its L factor are shown in Figure 1. Such
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a tree can be used to clearly describe the dependency among different columns in a sparse
LDLT factorization of A. In particular, it is not too difficult to show that constructing the
jth column of L requires contributions from descendants of j that have a nonzero matrix
element in the jth row.

Similarly, we may also use the elimination tree to describe which selected elements within
the trailing sub-block A−1 are required in order to obtain the (j, j)-th element of A−1. In
particular, it is not difficult to show that the selected elements must belong to the rows and
columns of A−1 that are among the ancestors of j.

3 Block Algorithms and Supernodes

The selected inversion procedure described in Algorithm 1 and its sparse version can be
modified to allow a block of rows and columns to be modified simultaneously. A block algo-
rithm can be described in terms a block factorization of A. For example, if A is partitioned
as

A =
(
A11 BT

21

B21 A22

)
,

its block LDLT factorization has the form

A =
(

I
L21 I

)(
A11

A22 −B21A
−1
11 B

T
21

)(
I LT21

I

)
, (5)

where L21 = B21A
−1
11 and S = A22−B21A

−1
11 B

T
21 is the Schur complement. The correspond-

ing block version of (4) can be expressed by

A−1 =
(
A−1

11 + LT21S
−1L21 −LT21S

−1

−S−1L21 S−1

)
.

There are at least two advantages of using a block algorithm:

1. It allows us to use level 3 BLAS (Basic Linear Algebra Subroutine) to develop an
efficient implementation by exploiting memory hierarchy in modern microprocessors;

2. When applied to sparse matrices, it tends to reduce the amount of indirect addressing
overhead.

When A is sparse, the columns of A and L can be partitioned into supernodes. A
supernode is a maximal set of contiguous columns {j, j + 1, ..., j + s} of L that have the
same nonzero structure below the (j+s)-th row, and the lower triangular part of Lj:j+s,j:j+s
is completely dense. An example of a supernode partition of the lower triangular factor
L associated with a 49 × 49 sparse matrix A is shown in Figure 2. The definition of a
supernode can be relaxed to include columns whose nonzero structures are nearly identical
with adjacent columns. However, we will not be concerned with such an extension in this
paper. We will use upper case script letters such as J to denote a supernode. Following
the convention introduced in [26], we will interpret J either as a supernode index or a set
of column indices contained in that supernode depending on the context.
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Figure 2: A supernode partition of L.

We denote the set of row indices associated with the nonzeros rows below the diagonal
block of the J th supernode by SJ . These row indices are further partitioned into nJ
disjoint subsets I1, I2, ..., InJ such that Ii contains a maximal set of contiguous row indices
and Ii ⊂ K for some supernode K > J . Here K > J means k > j for all k ∈ K and j ∈ J .
In Figure 3, we show how the nonzero rows associated with one of the supernodes (the 26-th
supernode which begins at column 27) are partitioned. The purpose of the partition is to
create dense submatrices of L that can be easily accessed and manipulated. The reason we
impose the constraint Ii ⊂ K, which is normally not required in the LDLT factorization of
A, will become clear in section 4. We should also note that, under this partitioning scheme,
it is possible that Ii and Ij belong to the same supernode even if i 6= j.

The use of supernodes leads to a necessary but straightforward modification of the
elimination tree. All nodes associated with columns within the same supernode are collapsed
into a single node. The modified elimination tree describes the dependency among different
supernodes in a supernode LDLT factorization of A (see [26, 28]). Such dependency also
defines the order by which selected blocks of A−1 are computed.

Using the notion of supernodes, we can modify the selected inversion process described
by the MATLAB script shown in Algorithm 2 to make it more efficient. If columns of L can
be partitioned into nsup supernodes, a supernode based block selected inversion algorithm
can be described by the pseudocode shown in Algorithm 3.

4 Implementation Details

We now describe some of the implementation details that allow the selected inversion process
described schematically in Algorithm 3 to be carried out in an efficient manner.
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Algorithm 3 A supernode-based algorithm for computing the selected elements of A−1.
Input: (1) The supernode partition of columns of A: {1, 2, ..., nsup};

(2) A supernode LDLT factorization of A;
Output: Selected elements of A−1, i.e. (A−1)i,j such that Li,j 6= 0.

1: Compute A−1
nsup,nsup

= D−1
nsup,nsup

;
2: for J = nsup − 1, nsup − 2, ..., 1 do
3: Identify the non-zero rows in the J th supernode SJ ;
4: Perform Y = A−1

SJ ,SJ
LSJ ,J ;

5: Calculate A−1
J ,J = D−1

J ,J + Y TLSJ ,J ;
6: Set A−1

SJ ,J ← −Y ;
7: end for

We assume a supernode LDLT factorization has been performed using, for example,
an efficient left-looking algorithm described in [26, 28]. Such an algorithm typically stores
the nonzero elements of L in a contiguous array using the compressed column format [8].
This array will be overwritten by the selected elements of A−1. The row indices associated
with the nonzero rows of each supernode are stored in a separate integer array. Several
additional integer arrays are used to mark the supernode partition and column offsets.

As we illustrated in Algorithm 2, the selected inversion process proceeds backwards from
the last supernode nsup towards the first supernode. For all supernodes J < nsup, we need
to perform a matrix-matrix multiplication of the form

Y = (A−1)SJ ,SJLSJ ,J , (6)

where J serves the dual purposes of being a supernode index and an index set that contains
all column indices belonging to the J th supernode, and SJ denotes the set of row indices
associated with nonzero rows within the J th supernode of L.

Recall that the row indices contained in SJ are partitioned into a number of disjoint
subsets I1, I2, ..., InJ such that Ii ⊂ K for some supernode K > J . Such a partition
corresponds to a row partition of the dense matrix block associated with the J th supernode
into nJ submatrices. The same partition is applied to the rows and columns of the submatrix
(A−1)SJ ,SJ except that this submatrix is not stored in a contiguous array. For example,
the nonzero row indices of the 26-th supernode in Figure 2, which consists of columns 27,
28 and 29, can be partitioned as

S26 = {30} ∪ {40, 41} ∪ {43, 44, 45}.

This partition as well as the corresponding partition of the blocks in the trailing A−1 that
are used in (6) is highlighted in Figure 3.

In order to carry out the matrix-matrix multiplication (6) we must identify the location
of each subblock of A−1

SJ ,SJ
(within the storage allocated for L) one by one as we accumulate

the products of these subblocks and the corresponding subblocks of LSJ ,J in a work array
which we denote by Y . Furthermore, because A−1 is symmetric, we store only the selected
nonzero elements in the lower triangular part of the matrix. Hence, our implementation
of (6), which is carefully described in Algorithm 4, makes uses of the transposes of the
subblocks in the lower triangular part of A−1

SJ ,SJ
(line 10).
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Figure 3: The partition of the nonzero rows in S26 and the matrix elements needed in
A−1

30:49,30:49 for the computation of A−1
30:49,30:49L30:39,27:29.

To identify the location of each subblock of A−1
SJ ,SJ

required in (6), we use an integer
array indmap with n entries to record the relative row positions of the first row of Ii in
Y , for i = 2, 3, ..., nJ . To be specific, the indmap array is initialized to have 0’s in all its
entries. If k is an element in Ii (all elements in Ii are sorted in an ascending order), then
indmap[k] is set to be the relative distance of row k from the last row of in the diagonal
block of the J th supernode in L. For example, S26 contains columns 27, 28, 29 and is shown
as the leftmost supernode in Figure 3. The nonzero entries of the indmap array for S26 are

indmap[30] = 1,
indmap[40] = 2,
indmap[41] = 3,
indmap[43] = 4,
indmap[44] = 5,
indmap[45] = 6.

A similar indirect addressing scheme is used in [26] for the gathering and scattering opera-
tions used in the LDLT factorization of A.

Once the indmap array is properly set up, the subblock searching process indicated in
line 7 of the pseudocode shown in Algorithm 4 goes through the row indices k of the nonzero
rows of the Kth supernode until a nonzero indmap[k] is found. A separate pointer p to
the floating point array allocated for L is incremented at the same time. When a nonzero
indmap[k] is found, the position in the floating point array pointed by p gives the location
of (A−1)Ij ,Ij required in line 9 of the special matrix-matrix multiplication procedure shown
in Algorithm 4. Meanwhile, the value of indmap[k] gives the location of the target work
array Y at which the product of (A−1)Ij ,Ij and LIj ,J is accumulated.
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Algorithm 4 Sparse matrix-matrix multiplication.
Input: (1) The J th supernode of L, LSJ ,J , where SJ contains the indices of

the nonzero rows in J . The index set SJ is partitioned into disjoint
nJ subsets of contiguous indices, i.e. SJ = {I1, I2, ..., InJ };

(2) The nonzero elements of A−1 that have been computed previously.
These elements are stored in LSK,K for all K > J ;

Output: Y = (A−1)SJ ,SJLSJ ,J ;

1: Construct an indmap array for nonzero rows in the J th supernode;
2: for j = 1, 2, ..., nJ do
3: Identify the supernode K that contains Ij ;
4: Let R1 = indmap(Ij);
5: Calculate YR1,∗ ← YR1,∗ + (A−1)Ij ,Ij

LIj ,J ;
6: for i = j + 1, j + 2, ...nJ do
7: Use indmap to find the first nonzero row in the Kth supernode that belongs

to Ii so that (A−1)Ii,Ij can be located;
8: Let R2 = indmap(Ii);
9: Calculate YR2,∗ ← YR2,∗ + (A−1)Ii,Ij

LIj ,J ;
10: Calculate YR1,∗ ← YR1,∗ + [(A−1)Ii,Ij

]TLIi,J ;
11: end for
12: end for
13: Reset the nonzero entries of indmap to zero;

Before we copy Y to the appropriate location in the array that stores the J th supernode
of L, we need to compute the diagonal block of A−1 within this supernode by the following
update:

(A−1)J ,J = (A−1)J ,J + Y TLSJ ,J ,

where (A−1)J ,J , which is stored in the diagonal block of the storage allocated for L, contains
the inverse of the diagonal block DJ ,J produced by the supernode LDLT factorization
before the update is performed.

5 Performance

In this section we report the performance of our selected inversion algorithm SelInv. Our
performance analysis is carried out on the Franklin cluster maintained at NERSC. Each
compute node consists of a 2.3 GHz single socket quad-core AMD Opteron processor (Bu-
dapest) with a theoretical peak performance of 9.2 GFlops/sec per core (4 flops/cycle if
using SSE128 instructions). Each core has 2 GB of memory. Our test problems are taken
from Harwell-Boeing Test Collection [8] and the University of Florida Matrix Collection[7].
These matrices are widely used benchmark problems for sparse direct methods. The names
of these matrices as well as some of their characteristics are listed in Table 1 and 2. All
matrices are real and symmetric. The multiple minimum degree (MMD) matrix reordering
strategy [22] is used to minimize the amount of nonzero fills in L. We used the supernodal
left-looking algorithm and code provided by the authors of [26] to perform the LDLT fac-
torization of A. Table 3 gives the performance result in terms of computational time as well

10



Problem Description
bcsstk14 Roof of the Omni Coliseum, Atlanta.
bcsstk24 Calgary Olympic Saddledome arena.
bcsstk28 Solid element model, linear statics.
bcsstk18 R.E. Ginna Nuclear Power Station.
bodyy6 NASA, Alex Pothen.

crystm03 FEM crystal free vibration mass matrix.
wathen120 Gould,Higham,Scott: matrix from Andy Wathen, Oxford Univ.
thermal1 Unstructured FEM, steady state thermal problem, Dani Schmid, Univ. Oslo.
shipsec1 DNV-Ex 4 : Ship section/detail from production run-1999-01-17.

pwtk Pressurized wind tunnel, stiffness matrix.
parabolic fem Diffusion-convection reaction, constant homogeneous diffusion.

tmt sym Symmetric electromagnetic problem, David Isaak, Computational EM Works.
ecology2 Circuitscape: circuit theory applied to animal/gene flow, B. McRae, UCSB.

G3 circuit Circuit simulation problem, Ufuk Okuyucu, AMD, Inc.

Table 1: Test problems

as floating point operations per second (flops) for both the factorization and the selected
inversion algorithms respectively. We also report the average flops.

The dimension of the matrices we tested ranges from problem size ranges from 2, 000
to 1.5 million, and the number of non-zero elements in the L factor ranges from 0.1 million
to 0.2 billion. For the largest problem G3 circuit, the overall computation takes only 350s.
Among these problems, the best performance is obtained with the problem pwtk. For
this particular problem, the factorization part attains 26% of the peak performance of the
machine, and the selected inversion part attains 68% of the peak flops. The average flops
ratio is 46%.

To demonstrate how much we can gain by using the selected inversion algorithm instead
of the naive approach of inverting A directly through (2), which we will refer to as the
direct inversion, we list the timing statistics for both approaches in Table 4 as well as the
speedup factor. The speedup factor is defined by the time for selected inversion divided by
the time for direct inversion. In this comparison selected inversion just refers to the second
part of SelInv. The time for factorization part is not counted, since factorization is shared
between both algorithms. Even for the smallest problem bcsstk14, the speedup factor is
108. For the largest problem, selected inversion uses 219s, while the direct inversion requires
an estimated 21.8 days. Among these problems, the largest speedup gain is achieved for
problem ecology2. In this case the selected inversion is 18, 000 times faster than the direct
full inversion.
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problem n |A| |L|
bcsstk14 1,806 32,630 112,267
bcsstk24 3,562 81,736 278,922
bcsstk28 4,410 111,717 346,864
bcsstk18 11,948 80,519 662,725
bodyy6 19,366 77,057 670,812

crystm03 24,696 304,233 3,762,633
wathen120 36,441 301,101 2,624,133
thermal1 82,654 328,556 2,690,654
shipsec1 140,874 3,977,139 40,019,943

pwtk 217,918 5,926,171 56,409,307
parabolic fem 525,825 2,100,225 34,923,113

tmt sym 726,713 2,903,837 41,296,329
ecology2 999,999 2,997,995 38,516,672

G3 circuit 1,585,478 4,623,152 197,137,253

Table 2: Characteristic of the test problems

problem factorization factorization selected inversion selected inversion average
time(sec) flops(G/sec) time(sec) flops(G/sec) flops(G/sec)

bcsstk14 0.007 1.43 0.010 2.12 1.85
bcsstk24 0.019 1.75 0.020 3.65 2.71
bcsstk28 0.023 1.63 0.024 3.46 2.54
bcsstk18 0.080 1.80 0.235 1.54 1.60
bodyy6 0.044 1.49 0.090 1.68 1.61

crystm03 0.452 2.26 0.779 2.95 2.70
wathen120 0.251 2.12 0.344 3.47 2.90
thermal1 0.205 1.53 0.443 1.66 1.62
shipsec1 18.48 2.38 17.66 5.45 3.88

pwtk 16.43 2.48 14.55 6.28 4.26
parabolic fem 6.649 2.34 20.06 1.91 2.02

tmt sym 10.64 2.35 13.98 4.02 3.30
ecology2 6.789 2.32 16.04 2.35 2.34

G3 circuit 136.5 2.24 218.7 3.27 2.88

Table 3: The time cost, and flops result for factorization and selected inversion process
respectively. The last column reports the average flops reached by SelInv.
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problem selected inversion direct inversion speedup
time time

bcsstk14 0.010 sec 1.080 sec 108
bcsstk24 0.020 sec 5.360 sec 268
bcsstk28 0.024 sec 8.930 sec 372
bcsstk18 0.235 sec 53.37 sec 227
bodyy6 0.090 sec 104.6 sec 1162

crystm03 0.779 sec 577.9 sec 742
wathen120 0.344 sec 655.9 sec 1906
thermal1 0.443 sec 0.539 hr 4308
shipsec1 17.66 sec 8.933 hr 1820

pwtk 14.55 sec 19.56 hr 4839
parabolic fem 20.06 sec 1.521 day 6551

tmt sym 13.98 sec 2.486 day 15364
ecology2 16.04 sec 3.374 day 18174

G3 circuit 218.7 sec 21.78 day 8604

Table 4: Time cost comparison between selected inversion and direct inversion. The speedup
factor is defined by the time cost of direct inversion divided by the time cost of selected
inversion.

6 Application to electronic structure calculation of Aluminum

In this section, we show how SelInv can be applied to electronic structure calculations within
the density functional theory (DFT) framework [15, 16]. The most time consuming part of
these calculations is the evaluation of the electron density

ρ = diag (fβ,µ(H)), (7)

where and fβ,µ(t) = 1/(1 + eβ(t−µ)) is the Fermi-Dirac distribution function with β being a
parameter that is proportional to the reciprocal of the temperature and µ being the chemical
potential. The symmetric matrix H in (7) is a discretized Kohn-Sham Hamiltonian [24]
defined as

H = −1
2

∆ + Vpse(r) + VH(r) + Vxc(r), (8)

where ∆ is the Laplacian, VH is the Hartree potential, Vxc is the exchange-correlation
potential constructed via the local density approximation (LDA) theory [24] and Vpse is the
real space Troullier-Martins ionic pseudopotential [5].

The standard approach for evaluating (7) is to compute the invariant subspace associated
with a few smallest eigenvalues of H. This approach is used in, for example, PARSEC [1],
which is a real space electronic structure calculation software package.

An alternative way to evaluate (7) is to use a recently developed pole expansion technique
[18, 20] to approximate fβ,µ. The pole expansion technique expresses electron density ρ as
a linear combination of the diagonal of (H − (µ+ zi)I)−1, i.e.

ρ ≈
P∑
i=1

Im
(

diag
ωi

H − (µ+ zi)I

)
. (9)

13



Here Im (H) stands for the imaginary part of H. The parameters zi and ωi are the complex
shift and weight associated to the i-th pole respectively. They can be chosen so that the total
number of poles P is minimized for a given accuracy requirement. At room temperature, the
number of poles required in (9) is relatively small (less than 80). In addition to temperature,
the pole expansion (9) also requires an explicit knowledge of the chemical potential µ, which
must be chosen so that the condition

trace(fβ,µ(H)) = ne (10)

is satisfied. This can be accomplished by solving (10) using the standard Newton’s method.
In order to use (9), we need to compute the diagonal of the inverse of a number of complex

symmetric (non-Hermitian) matrices H−(zi+µ)I (i = 1, 2, ..., P ). A fast implementation of
the SelInv algorithm described in section 4 can be used to perform this calculation efficiently,
as the following example shows.

The example we consider here is a quasi-2D aluminum system with a periodic boundary
condition. For simplicity, we only use a local pseudopotential in (8), i.e. Vpse(r) is a diagonal
matrix. The Laplacian operator ∆ is discretized using a second-order five-point stencil. A
room temperature of 300K (which defines the value of β) is used. The aluminum system
has a face centered cubic (FCC) crystal structure. We include 5 unit cells along both x and
y directions, and 1 unit cell along the z direction in our computational domain. Each unit
cell is cubic with a lattice constant of 4.05Å. Therefore, there are altogether 100 aluminum
atoms and 300 valence electrons in the experiment. The position of each aluminum atom
is perturbed from its original position in the crystal by a random displacement around
10−3Å so that no point group symmetry is assumed in our calculation. The grid size for
discretization is set to 0.21Å. The resulting Hamiltonian matrix size is 159, 048.

We compare the density evaluation (7) performed by both PARSEC and the pole ex-
pansion technique. In PARSEC, the invariant subspace associated with the smallest 310
eigenvalues are computed using ARPACK. This calculation takes 2, 490 seconds. In the
pole expansion approach, we use 60 poles in (9), which gives a comparable relative error in
electron density on the order of 10−5 (in L1 norm.) The MMD reordering scheme is used to
reduce the amount of fill in the LDLT factorization. In addition to using the selected inver-
sion algorithm to evaluate each term in (9), an extra level of coarse grained parallelism can
be utilized by assigning each pole to a different processor. The evaluation of each term in (9)
takes roughly 1, 950 seconds. Therefore, the total amount of time required to evaluate (7)
on a single core is 1, 950×60 seconds. As a result, the performance of the selected inversion
based pole expansion approach is only comparable to the invariant subspace computation
approach used in PARSEC if the extra level of coarse grained parallelism is used.

A 3D isosurface plot of the electron density as well as the electron density plot restricted
on the z = 0 plane are shown in Figure 4.

We also remark that the efficiency of selected inversion can be further improved. One of
the factors that have prevented the SelInv from achieving even higher performance is that
most of the supernodes produced from the MMD ordering of H contains only 1 column even
though many of these supernodes have similar (but not identical) nonzero structures. Con-
sequently, both the factorization and inversion are dominated by level-1 BLAS operations.
Further performance gain is likely to be achieved if we relax the definition of a supernode
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Figure 4: (a)3D isosurface plot of the electron density together with the electron density
restricted to z = 0 plane. (b) The electron density restricted to z = 0 plane.

and treat some of the zeros in L as non-zeros. This approach has been demonstrated to be
extremely helpful in [3].

7 Concluding Remarks

We presented an efficient sequential algorithm for computing selected components of the
inverse of a general sparse symmetric matrix A, and described its implementation SelInv.
Our algorithm consists of two steps. In the first step, we perform an LDLT factorization
of the matrix A using a supernodal left-looking LDLT factorization algorithm developed
in [26]. This step can also be implemented using other existing software packages such as
[26, 2, 29, 4, 14, 13]. In the second step, a selected inversion algorithm specifically designed
for the supernodal nonzero structure of L is used to compute the nonzero blocks of A−1

that have a corresponding nonzero block in L. The use of supernodes enables us to exploit
the memory hierarchy of modern microprocessors to achieve high performance.

We demonstrated the efficiency of our implementation of the selected inversion algorithm
by applying our code SelInv to a variety of benchmark problems with dimension as large as
1.5 million. We were able to achieve a relatively high percentage of the peak performance
on the high performance machine we we used to conduct our experiments. In one case, we
were able to achieve 68% of the peak performance.

We also demonstrated how SelInv can be applied to the electronic structure calculation
of an aluminum system using a pole expansion technique [18, 20]. We compared the effi-
ciency of our algorithm with the standard real space electronic structure calculation software
PARSEC. Our comparison showed that the performance of the pole expansion approach is
comparable to that of PARSEC if a coarse-grained parallelization of the poles expansion is
used.

To solve problems with more degrees of freedom, the selected inversion algorithm itself
must be parallelized on distributed memory parallel computers. This is a research direction
that we plan to pursue in the near future.
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