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ABSTRACT Humicola grisea var. thermoidea is a thermophilic ascomycete and impor-
tant enzyme producer that has an efficient enzymatic system with a broad spectrum of
thermostable carbohydrate-active (CAZy) enzymes. These enzymes can be employed in
lignocellulose biomass deconstruction and other industrial applications. In this work, the
genome of H. grisea var. thermoidea was sequenced. The acquired sequence reads were
assembled into a total length of 28.75 Mbp. Genome features correlate with what was
expected for thermophilic Sordariomycetes. The transcriptomic data showed that sugar-
cane bagasse significantly upregulated genes related to primary metabolism and poly-
saccharide deconstruction, especially hydrolases, at both pH 5 and pH 8. However, a
number of exclusive and shared genes between the pH values were found, especially at
pH 8. H. grisea expresses an average of 211 CAZy enzymes (CAZymes), which are capa-
ble of acting in different substrates. The top upregulated genes at both pH values rep-
resent CAZyme-encoding genes from different classes, including acetylxylan esterase,
endo-1,4-b-mannosidase, exoglucanase, and endoglucanase genes. For the first time,
the arsenal that the thermophilic fungus H. grisea var. thermoidea possesses to de-
grade the lignocellulosic biomass is shown. Carbon source and pH are of pivotal
importance in regulating gene expression in this organism, and alkaline pH is a key
regulatory factor for sugarcane bagasse hydrolysis. This work paves the way for the
genetic manipulation and robust biotechnological applications of this fungus.

IMPORTANCE Most studies regarding the use of fungi as enzyme producers for bio-
mass deconstruction have focused on mesophile species, whereas the potential of
thermophiles has been evaluated less. This study revealed, through genome and
transcriptome analyses, the genetic repertoire of the biotechnological relevant ther-
mophile fungus Humicola grisea. Comparative genomics helped us to further under-
stand the biology and biotechnological potential of H. grisea. The results demonstrate
that this fungus possesses an arsenal of carbohydrate-active (CAZy) enzymes to degrade
the lignocellulosic biomass. Indeed, it expresses more than 200 genes encoding CAZy
enzymes when cultivated in sugarcane bagasse. Carbon source and pH are key factors
for regulating the gene expression in this organism. This work shows, for the first time,
the great potential of H. grisea as an enzyme producer and a gene donor for biotechno-
logical applications and provides the base for the genetic manipulation and robust bio-
technological applications of this fungus.

KEYWORDS Humicola grisea, genome sequencing, transcriptome, sugarcane bagasse,
pH regulation, CAZy enzymes
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The microbial production of a variety of fuels and chemicals from the lignocellulose
biomass sugars has been evaluated extensively as an alternative to fossil fuels

(1–3). In this conversion process, the fermentable sugars need to be released from cel-
lulose and hemicellulose present in the biomass cell wall by pretreatment and hydroly-
sis (4). In the enzymatic hydrolysis, lignocellulolytic enzymes from filamentous fungi
have received great attention, as these microorganisms are highly efficient in biomass hy-
drolysis for the production capacity of both specific enzymes and enzymatic cocktails (5).

A few industrially relevant fungi species have been well characterized in terms of genet-
ics and physiology, especially mesophilic species, such as Trichoderma spp., Penicillium spp.,
Aspergillus spp., Neurospora spp., Phanerochaete spp., and Trametes spp. (6). A great extent
of thermophilic filamentous fungi (more than 50 species) is capable of producing enzymes
that act synergistically for the degradation of lignocellulosic biomass; however, relatively
few studies aiming to characterize and unveil their enzymatic potential have been reported
so far (6). Enzymes from thermophilic fungi, like Humicola grisea, Thielavia terrestris,
Myceliophthora thermophila, and Malbranchea cinnamomea, are of interest because
they tend to be more thermostable than enzymes from mesophilic fungi (7–10).

Several carbohydrate-active (CAZy) enzymes, i.e., enzymes that can degrade, mod-
ify, or create glycosidic bonds (11), from thermophilic microorganisms have been iden-
tified, purified, and characterized in recent years. Genomic studies have allowed the
prospection of a diversity of enzymes used to deconstruct the plant cell wall in T. ter-
restris, M. thermophila, and M. cinnamomea (12, 13). Furthermore, transcriptome and
secretome analyses demonstrated the differential regulation and secretion of
CAZymes produced by the different species, which will vary according to the substrate
employed (14, 15).

In general, biomass deconstruction requires the expression of different classes of
putative CAZymes. The expression of glycoside hydrolases, including cellulases, hemi-
cellulases, pectinases, and others, is broadly regulated by the carbon source (14). For
instance, M. thermophila is capable of secreting 95 glycoside hydrolases (GH), but the
production of each protein depends on the carbon source employed in the cultivation
(15). Also, the CAZymes expression can be influenced by the medium pH that is closely
regulated by the PacC transcription factor. Several studies have demonstrated that
PacC modulates lignocellulolytic enzyme production in species such as Aspergillus
nidulans, Trichoderma reesei, and H. grisea var. thermoidea (16, 17).

The ascomycete Humicola grisea var. thermoidea was isolated from Brazilian soil (18),
and it belongs to the Sordariomycetes class and the Sordariales order. The genus
Humicola was described in 1914 by Traaen for the species Humicola fuscoatra and H. gri-
sea. The Humicola species are capable of growing in a diverse set of substrates, such as
soil, decomposing plant biomass, and agriculture residues (19). Recently, the genus
Humicola was revised through a thorough phylogenetic analysis and H. grisea was
renamed Trichocladium griseum. This fungus is considered thermophilic because it can
grow in moderate to high temperatures, with optimal growth of around 40 to 42°C (20).

Several studies reported that H. grisea var. thermoidea produces a wide range of
thermostable CAZymes, such as cellulases (21), glucoamylase (22), beta-glucosidases
(23), xylanases (24), feruloyl esterases (25), and chitinases (26). In this view, H. grisea
var. thermoidea represents a promising microorganism for application in different
industrial processes, such as plant biomass deconstruction (27); recycled paper (28),
detergents (29), and food processing (25). Additionally, there are extensive reports
about the potential of H. grisea var. thermoidea as an efficient hydrolase gene donor
that can be cloned and expressed in diverse heterologous hosts (7, 30, 31).

To unveil the global hydrolytic potential of H. grisea var. thermoidea, its genome
was sequenced and annotated for the first time in this work. Transcriptome analysis
was also performed after H. grisea growth on an inducing (sugarcane bagasse) and a
repressing (glucose) carbon source at pH 5 or pH 8. The results allowed the determina-
tion of the genetic repertoire of this fungus and the comparison with other fungi from
the Sordariomycetes class.
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RESULTS
Humicola grisea genome features. The genome of H. grisea var. thermoidea was

sequenced in an Illumina-based whole-genome shotgun sequencing approach. This
resulted in 9,460,608 paired reads of 2 by 150 bp, with an approximate insert size of
350 bp combined with 6,837,917 mate-paired reads of about 3,000 bp long. The
acquired sequence reads were assembled into 33 scaffolds with a total length of 28.75 Mb
(Table 1). This size is smaller than that described for the thermophilic neighborsM. thermo-
phila (38.74 Mb) and T. terrestris (36.91 Mb) and the mesophilic Chaetomium globosum
(34.9 Mb) and Neurospora crassa (39.9 Mb) (Table 1; Fig. 1A). Despite the small size, the ge-
nome seems close to its finishing size, showing 98.2% of completeness (accessed with
BUSCO v2.0.1 analysis).

Genome structural and functional annotation was performed using ab initio predic-
tors and homology to proteins and transcripts from Sordariomyceta, as well as data
from the RNA-seq experiment realized in this study (see Materials and Methods). Gene
modeling yielded 8,736 coding sequences, a smaller number than that of other fungi
from the Sordariales. Indeed, this number is relatively close to that of M. thermophila,
9,110, but around 20% lower than the number of predicted genes in N. crassa (10,620)
and Chaetomium globosum (11,124) (Fig. 1C). The important cellulose-degrading enzyme
producer T. reesei, Hypocreales, presents a slightly superior number of predicted genes
(Fig. 1C).

The protein domains encoded by H. grisea genome were compared with those of
other fungi using InterProScan and SignalP4.1. Like other Sordariales, H. grisea showed
a Pfam domain in approximately 67% of the putative carried genes (Fig. 1D). A total of
781 proteins are potentially secreted, including CAZymes and proteases (Table 1).
These comparisons must be made with caution due to the different approaches used
to generate gene/protein models in different projects. The GC content is the highest
among the related fungi (Fig. 1B). This could be related to thermophilism and the high
gene density of the genome (303.9 genes/Mb) (13).

Humicola grisea CAZyme genes. To have a better insight into the H. grisea biomass
degradation potential, the genes encoding CAZymes of fungi from Sordariales, Hypocreales,
and Eurotiales were compared (Fig. 1D) (Supplemental File 1). In the CAZy database classifi-
cation (32, 33), proteins are grouped based on their similarity in amino acid sequences, cata-
lytic mechanisms, and structural characteristics. Those families are auxiliary activities (AA),
carbohydrate-binding module (CBM), carbohydrate esterases (CE), glycoside hydrolases (GH),
glycosyl transferases (GT), and polysaccharide lyases (PL) (34).

H. grisea possesses a vast number of genes encoding carbohydrate-active enzymes
(a total of 435), comparable in number with those of M. thermophila and T. reesei
(Fig. 1D). The fungi that primarily consume monosaccharides, like Saccharomyces cere-
visiae, Kluyveromyces lactis, and Yarrowia lipolytica, have around 120 CAZymes (14).
Among cell wall degraders, this number varies considerably. For instance, compared to
the other members of Sordariales, H. grisea has only 159 genes encoding GH. In con-
trast, T. reesei is capable of producing 200 GHs, whereas N. crassa (produces 171 GHs),
Aspergillus niger, and Aspergillus fumigatus (Eurotiales) are among the bigger pro-
ducers, reaching almost 300 GHs (Fig. 1D) (35).

TABLE 1 Genome features of H. grisea var. thermoidea and genome comparison with other filamentous fungi

Feature H. grisea var. thermoidea T. terrestris C. globosum N. crassa T. reesei A. nidulans T. lanuginosus
Genome size 28.75 Mb 36.91 Mb 34.9 Mb 39.9 Mb 34.1 Mb 31.67 Mb 23.3 Mb
Scaffolds 33 6 37 21 89 91 6
N50 1.805 Mb 9.477 Mb 4.721 Mb 6.00 Mb 2.44 Mb 4.00 Mb
GC content 55.9% 54.8% 55.4% 48.6% 51.0% 50.3% 52.2%
Genes 8,736 9,813 11,232 10,812 9,143 9,541 5,105
Secreted proteins 781 789 862a 592a 704a

Completeness 98.20% 97% 99% 95% 98%
References This work 13 59 38 35 60 61
aData from Lum and Min, 2011 (62).
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The importance of complex carbohydrates as nutrients for H. grisea is demonstrated
by the number of GH (159), CE (66), AA (71), CBM (54), and PL (4) (Fig. 1D), as well as
the number of genes specifically related to degradation of plant-based polysaccharides
(Table 2), found in its genome. In general, these numbers are close to those of other
members of the Sordariales family, like N. crassa, M. thermophila, and T. terrestris, but
slightly lower than those of C. globosum, a fungus that showed the higher number of
CAZymes in this order (Fig. 1D; Table 2). However, significant differences among the
enzyme families can be found among the fungi. While T. reesei showed a higher num-
ber of GH and GT than did H. grisea, it possessed fewer AA (61), CBM (45), and CE (61)
enzymes. These observations corroborate with previous reports of the relatively lower
number of hemicellulases produced by T. reesei, which does not produce tannase and
feruloyl esterase (35). On the other hand, H. grisea is an efficient hemicellulose
degrader (7, 25, 36, 37).

Differential gene expression during H. grisea growth on sugar cane bagasse in
different pH values. The genome sequencing and annotation of H. grisea demon-
strated the fungus’s genetic repertoire of cell wall-degrading enzymes. To identify the
genes involved in H. grisea early growth in lignocellulosic biomass, a genome-wide
RNA-seq transcriptional profiling was used. Cultivations were carried out using milled
sugarcane bagasse as an inducing carbon source and glucose as a repressing one, at
both pH 5 and pH 8. A total of 323,849,916 sequence reads were obtained after quality

FIG 1 Genome features of 13 Ascomycetes genomes. (A) The RAxML maximum-likelihood phylogenetic tree using 200 single-copy genes shows the three
orders Sordariales, Hypocreales, and Eurotiales. All nodes have maximum support value. Thermophile genomes are shown in red. (B) Genome size and
percentage of GC of each genome. (C) Gene count and percentage of genes with the presence of at least one Pfam domain. (D) Distribution of CAZyme
families among the genomes. CAZymes: auxiliary activities (AA), carbohydrate-binding module (CBM), carbohydrate esterases (CE), glycoside hydrolases
(GH), glycosyl transferases (GT), and polysaccharide lyases (PL).
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trimming and then aligned onto the reference genome. The principal-component anal-
ysis (PCA) of samples and replicates based on expression patterns using the DESeq2
package reveals the discrimination between samples (three biological replicates for
each condition) and the good quality and reproducibility of the data (Supplemental
File 2).

To map the differentially expressed genes, the data on sugarcane were normalized
with the data using glucose as the sole carbon source. The MAplots in Fig. 2 show the
distribution of H. grisea transcripts at pH 5 and pH 8. Growth at pH 8 resulted in a num-
ber of differentially expressed genes higher than that of growth at pH 5 (4,438 and
1,376, respectively). At pH 5, 838 genes were upregulated and 539 were downregulated.
On the other hand, at pH 8, 2,032 genes were upregulated and 2,405 were downregulated.
Figure 3A shows that 350 genes were exclusively differentially expressed at pH 5, whereas
3,410 genes were exclusively expressed at pH 8. A total of 1,027 genes were differentially
expressed at both pH values. These genes show the highest fold change in expression,
and some of them are related to carbohydrate metabolic and catabolic processes (Fig. 3).

Functional categories were assigned to the differentially expressed genes according
to Gene Ontology (GO). To enrich the category analysis for up- and downregulated
genes at each pH, a Fisher exact test (P , 0.05) was performed (Fig. 3B). Categories
related to the oxidation-reduction process and carbohydrate metabolic process and
others related to the primary metabolism were significantly upregulated at both pH 5
and pH 8. Any category was exclusively upregulated at pH 5, whereas categories’ cellu-
lar response to stress and DNA metabolic process were upregulated at pH 8 (Fig. 3B).
On the other hand, downregulated categories showed a larger diversity of functions:
RNA metabolism, transmembrane transporter, and electron carrier.

The top 10 upregulated genes at both pH values represent genes encoding CAZymes:
cellulases, xylanases, mannanases, AA9 enzymes, and esterases (Table 3). Furthermore, the
expression of these transcripts was further increased at pH 8. For instance, for the endo-
b-1,4-glucanase (EGLD) gene, the log2FC for pH 8 was 9.11 compared with the log2FC of
5.16 at pH 5. Among these classes of enzymes, the expression of acetylxylan esterase-,
endo-1,4-b-mannosidase-, exoglucanase-, and endoglucanase-encoding genes can be
observed at both pH values. Indeed, most of the transcripts in Table 3 correspond to CAZy
GH and AA families.

CAZy enzymes expression. To better understand the transcriptional regulation of
genes encoding cell wall-degrading enzymes, we evaluated the differential expression
of the CAZy family’s genes during growth in sugarcane bagasse presence. Fig. 4 shows
the expression of glycoside hydrolases according to the predicted enzyme-substrate,

TABLE 2 Number of genes related to degradation of plant-based polysaccharidesa

Genome Cellulose Xylan Galactomanan Xyloglucan Pectin Starch Inulin
T. lanuginosus 4 8 1 4 5 12 1
Penicillum chrisogenum 12 9 11 5 28 28 6
A. fumigatus 18 15 11 8 50 24 5
A. niger 14 10 9 8 48 19 5
Fusarium graminearum 21 29 6 9 39 18 6
Beauvaria bassiana 3 16 3 5 3 12 1
T. reesei 9 10 11 7 6 10 0
N. crassa 24 15 3 3 15 15 2
Podospora anserina 49 54 5 4 12 14 0
H. grisea 39 36 2 4 7 12 0
T. terrestris 33 28 3 5 20 14 1
M. thermophila 34 31 4 4 16 14 0
C. globosum 59 47 5 7 22 14 1
aGene numbers related to degradation of different plant-based polysaccharides detected in the selected
genomes according to De Vries et al., 2017 (63). Cellulose: GH5_4, GH5_5, GH5_22, GH6, GH7, GH45; xylan:
GH10, GH11, GH62, GH67, GH115, CE1, CE15; galactomannan: GH5_7, GH26, GH27, GH36, GH134; xyloglucan:
GH12, GH29, GH74, GH95; pectin: GH28, GH53, GH78, GH88, GH93, GH105, PL1, PL3, PL4, PL9, PL11, PL22, CE8,
CE12; starch: GH13_1, GH13_5, GH13_40, GH15, GH31, GH133; inulin: GH32.
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whereas Supplemental File 3 shows the expression data set for all CAZy families. For
cellulose, six of GH’s families were expressed by H. grisea (1, 3, 5, 6, 7, and 12). However,
the genes in these families exhibited different expression patterns (up- and downregulated
at different pHs) (Fig. 4). Families GH3 and GH7 are the biggest ones, represented by seven
and five enzymes, respectively. Family GH7 encompasses key enzymes for biomass degra-
dation, such as endo-b-1,4-glucanases, endo-b-1,3-glucanases, and reducing end cellobio-
hydrolases. The GH3 family comprises enzymes like b-glucosidase, xylan 1,4-b-xylosidase,
and a-L-arabinofuranosidase. Only two transcripts from the GH12 family, including an
endoglucanase, were shown as differentially expressed (Fig. 4).

For the degradation of b-glucan, most of the enzyme-encoding genes did not
show differential expression. Only few genes from the GH16 and GH55 families were
upregulated at pH 8 (Fig. 4). Specifically, the genes 4196 and 4368, which encode glu-
can endo-1,3-beta-glucosidase A1 and glucan 1,3-beta-glucosidase, showed the high-
est fold change in expression, 6.11 and 5.04, respectively, for the families associated
with degradation of b-glucan (Fig. 4; Supplemental File 3). A similar pattern of nonsigni-
ficant differential expression was verified for genes related to a-glucan and a-mannan
degradation (Fig. 4). For a-glucan as the substrate, one transcript for the GH13 family
(ID1245), encoding an alpha-amylase A, was upregulated at both pH values, whereas ID
3551, encoding an alpha-glucosidase, was upregulated only at pH 8 (Fig. 4). Families GH31
and GH71 each presented one gene downregulated at pH 8. For a-mannan as the sub-
strate, one sequence (ID 1366), corresponding to the GH47 family (a-mannosidase), was
also downregulated at pH 8. The GH92 family, composed of different types of mannosyl
and mannosidases, presented the upregulation of one transcript (ID 4350) at pH 8.

For the xylan and xyloglucan substrates, four GH families (10, 11, 30, and 74) pre-
sented down- or upregulated transcripts upon H. grisea growth on sugarcane bagasse
(Fig. 4). Five genes from the GH10 family, comprising endoxylanases and xylan endo-
transglycosylases, were differentially regulated. The GH11 family genes (endo-b-1,3-xyla-
nase and endo-b-1,4-xylanase) were upregulated. For arabinofuranosidase and b-xylosi-
dase as the substrates, genes encoding four enzyme families were expressed, with GH43
(b-xylosidase and a-L-arabinofuranosidase) demonstrating the four most expressed tran-
scripts but also the less expressed one (ID 8513) (Fig. 4). As with other substrates, some
genes from the same family presented different expression patterns. These results

FIG 2 Distribution of gene expression of H. grisea grown in sugarcane bagasse normalized with growth on glucose as the sole
carbon source. The two pH values, pH 5 (A) and pH 8 (B), exhibited differentially expressed genes (P value adjusted of ,0.05)
showed in red when normalized with glucose.
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corroborate previous reports that demonstrate the H. grisea efficiency in hemicellulose
degradation (7, 24, 25, 36). Comparatively, the genome annotations of T. reesei and N.
crassa indicate that they can produce 16 and 19 hemicelluloses (GH families 10, 11, 26, 29,
43, 51, 53, 54, 62, 67, 74, and 95), compared with the 24 of H. grisea (35, 38).

Additionally, to evaluate the pH-dependence expression of lignocellulolytic enzymes in
H. grisea var. thermoideamore broadly, the expression profiles of CAZymes in pH 5 and pH
8 were compared, and the genes potentially under the control of the transcription factor
pacC were identified by searching the pacC-binding consensus 59-GCCARG-39 within the
upstream region in each corresponding gene. From the 387 genes putatively encoding
CAZymes identified in the transcriptome of H. grisea, 191 present a domain to pacC
(Supplemental File 3) (Fig. 4). The potential broad regulation of PacC on putative glycoside
hydrolase-encoding genes in H. grisea var. thermoidea is shown in Fig. 4, which is in good
agreement with the increased number of genes upregulated at pH 8 (Fig. 3). The pH sig-
naling cascade in A. nidulans has at least six members (palA, palB, palC, palF, palH, and
palI), which are also present in the H. grisea genome (17). However, the expression pattern
of this signaling cascade is not clear in the transcriptome data, with only palI being differ-
entially expressed in bagasse normalized with glucose at pH 8. The palF gene is found in
the genome, but no transcriptome reads were mapped to this region.

DISCUSSION

This study brings for the first time insights into the genome of the fungus H. grisea
var. thermoidea and reveals its enzymatic potential for the degradation of plant bio-
mass through the analysis of its transcriptome. Regarding the genome, the size is
smaller than that described for the thermophilic neighbors, and a high GC content is
similar to that of other fungi within the family. The reduction of the genome size is a

FIG 3 Differentially expressed genes at pH 5, pH 8, or both values. (A) Scatterplot of differentially expressed genes at pH 5 or pH 8. The colors denote
genes expressed at pH 5 (red), pH 8 (green), and both conditions (blue). The Venn diagram shows the number of exclusive and shared genes between the
pH values. (B) Fisher enrichment analysis of GO terms on each condition compared to the whole genome as background. No category exclusively enriched
at pH 5 was found.
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characteristic strongly associated with thermostability in fungi, as well as a high GC
content (13, 39). The genomic and transcriptomic analysis demonstrated that H. grisea
var. thermoidea represents a promising microorganism for application in plant biomass
deconstruction. It possesses a wide range of putative CAZymes, several of which are
related to plant-based polysaccharides degradation. Indeed, several thermostable
enzymes of H. grisea targeting biomass deconstruction (mainly cellulose and hemicel-
lulose) have been expressed and characterized (7, 21–26, 30, 31).

Among the 211 putative genes encoding CAZy enzymes identified in the transcrip-
tome analysis of H. grisea, the most expressed transcripts were cellulases (endogluca-
nases and cellobiohydrolases) and hemicellulases (especially xylanases), which corre-
late well with the enzyme activities required for growth on sugarcane bagasse as the
sole carbon source. When the secretome of T. reesei and A. niger was analyzed upon
growth on sugarcane biomass, the GH families involved in the deconstruction of cellu-
loses 3, 5, 6, 7, and 12 were found in A. niger, whereas GH 3, 5, 6, and 7 were secreted
by T. reesei (40). In comparison, all of these GH’s families were expressed by H. grisea. A
higher variety of enzymes is necessary for the degradation of the hemicellulose
because it contains different types of sugar chains, such as arabinoxylan, b-glucan,
and xyloglucan. In the secretome of A. niger and T. reesei, the families GH10 and GH11
(endoxylanases), GH3 (b-xylosidase), GH43, GH51, and GH54 (arabinofuranosidases),
and GH35 (galactosidases) were found (40, 41). In comparison, in H. grisea, GH10, 11,
43, and 51 were also expressed. However, these comparisons should be made with
caution because the CAZy response can be different because of the experimental con-
ditions (i.e., different compositions of sugarcane biomass), and the expression data
may not correlate with the number of enzymes secreted.

In addition, the transcriptome analysis of H. grisea revealed a consistent upregula-
tion of AA9 proteins when the fungus was cultivated in sugarcane bagasse in both pH
5 and pH 8. This could suggest a synergism between AA9 and GHs families expressed
differentially since these proteins enhance the activity from one another. The transcrip-
tome of the T. terrestris LPH172 showed abundantly expressed AA9 lytic polysaccharide
monooxygenase (LPMO) genes in Avicel, rice straw, and beechwood xylan. The pres-
ence of LPMO-encoding genes in thermophilic fungus confirms the importance of
(AA9) LPMOs for plant biomass decomposition (39). Currently, several studies have

TABLE 3 Expression of top 10 genes differentially expressed and upregulated at pH 5 and pH 8

Putative genes (blast best-hit) log2FC pH 5 log2FC pH 8 CAZy annotation
Top 10 genes upregulated at pH 5
axe1 acetylxylan esterase 7.39 9.22 CE5-CBM1
manA endo-1,4-beta-mannosidase 6.97 10.27 GH26-CBM35
cel1 cellulose-growth-specific protein 6.57 6.63 AA9
bxlB exo-1,4-beta-xylosidase 6.40 5.46 GH3
eglD endo-beta-1,4-glucanase D 6.29 7.32 CBM1-AA9
Pectin lyase-like protein 6.15 6.28
gux1 exoglucanase 1 6.10 8.32 GH7
pme pectinesterase 6.06 5.58 CE8
Hypothetical protein 5.97 1.19
FSH1 serine hydrolase 5.90 3.46

Top 10 genes upregulated at pH 8
manA endo-1,4-beta-mannosidase 6.97 10.27 GH26-CBM35
axe1 acetylxylan esterase 7.39 9.22 CE5-CBM1
eglD endo-beta-1,4-glucanase D 5.16 9.11 AA9
CUTI cutinase 4.65 8.55 CE5
Hypothetical protein 2.64 8.35 AA9
gux1 exoglucanase 1 6.10 8.32 GH7
LIP3 secreted lipase 5.37 8.19 CE10
xyn2 endo-1,4-beta-xylanase 2 4.73 8.14 GH11
ganA arabinogalactan endo-beta-1,4-galactanase 2.78 8.08 GH53
manCmannan endo-1,4-beta-mannosidase C 4.93 8.05 GH5
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demonstrated the action of oxidative enzymes, such as lytic polysaccharide monooxy-
genases (LPMOs) classified as AA, capable of degrading cellulose together with cellu-
lases (42–44). Moreover, a recent study demonstrated the boosting effect of recombi-
nant hemicellulases (endoxylanase-HXYN2 and b-xylosidase-HXYLA) from H. grisea
together with an a-L-arabinofuranosidase (AFB3) from Penicillium purpurogenum in the
hydrolysis of sugarcane bagasse, exhibiting the potential of these enzymes from H. gri-
sea to compose enzymatic consortiums for biomass hydrolysis (45).

The expression of several glycoside hydrolases (Table 3; Fig. 4) of H. grisea var. ther-
moidea was further increased at pH 8. These results corroborate the refined time
course expression profile established for H. grisea var. thermoidea glycoside hydrolase-
encoding genes when the fungus was grown at different pH values and distinct carbon
sources performed by Mello-de-Sousa and collaborators (46). These authors described
an early parallel increase in mRNA accumulation for cbh1.1, cbh1.2, egl1, egl2, egl3 (endo-
glucanase), bgl4 (beta-glucosidase), and xyn1 (xylanase) genes at alkaline milieu (pH 8.0)
with sugarcane bagasse as the sole carbon source. A distinct profile was observed for the
endoglucanase egl4 transcripts, which preferably accumulated in acidic conditions (46). In
addition, electrophoretic mobility shift assays (EMSAs) indicated that the CreA and PacC
transcription factors are involved in the carbon source and pH regulation, respectively, of
H. grisea var. thermoidea cellulase genes (46). Similar to what happens in H. grisea, a vari-
able number of genes encoding cellulases and hemicellulases are affected not only by
available carbon source but also by the pH of the culture medium due to regulation at the
transcriptional level of PacC in T. reesei, A. fumigatus, A. nidulans, and N. crassa (17, 47, 48).
These findings of genome and transcriptome information enable comparative studies to
better understand the molecular mechanisms, the metabolic changes, and the evolution
of different species within this group of fungi.

Conclusions. This is the first description of important aspects of the biology, physi-
ology, and evolution of the thermophilic fungus H. grisea var. thermoidea using ge-
nome sequencing and genome-wide transcriptome analysis. The 28.75 Mb genome
contains 8,736 putative genes and is smaller than others from Sordariomycetes. The
GC content is similar to that of the other species within the Chaetomiaceae family,

FIG 4 Expression of putative genes encoding glycoside hydrolases (GH) separated by the likely substrate. The asterisk (*) means the gene is potentially
regulated by the PacC regulator.
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suggesting a correlation with thermophilism. The transcriptome analysis revealed that
alkaline pH is a key regulatory factor for glycoside hydrolases. The expression of 211
different genes for CAZy enzymes when cultivated in sugarcane bagasse demonstrates
the great arsenal that H. grisea possesses to degrade the lignocellulosic biomass. This
work paves the way for the genetic manipulation and robust biotechnological applica-
tions of this fungus.

MATERIALS ANDMETHODS
Fungal strain. The fungus Humicola grisea var. thermoidea isolated from Brazilian soil (18) was main-

tained at 42°C on 4.0% (wt/vol) oatmeal (Quaker) solid medium. For mycelium obtainment, 106 spores/
ml were inoculated in 50 ml of Pontecorvo’s minimal medium (MM) (49), at pH 6.8 (nonbuffered),
enriched with 0.25% (wt/vol) yeast extract and 0.1% (wt/vol) peptone and supplemented with 1% (wt/
vol) glucose. Incubation proceeded for 24 h (42°C/120 rpm).

Cultivation. The conditions employed were similar to those described in Mello-de-Souza et al. (46).
Briefly, H. grisea var. thermoidea was cultivated at 42°C on 4.0% (wt/vol) oatmeal (Quaker) solid medium
without photoperiod. For mycelial growth, 106 conidia/ml were inoculated in 50 ml of Pontecorvo’s min-
imal medium (MM), enriched with 0.25% (wt/vol) yeast extract and 0.1% (wt/vol) bacterial peptone, and
supplemented with 1% (wt/vol) glucose at pH 6.8 (nonbuffered). The incubation occurred at 42°C,
120 rpm, for 24 h. The mycelium produced was used for DNA extraction and to initiate transcriptome
experiments.

For the transcriptome experiment, pregrown mycelium from 12 flasks was filtered, washed with sterile
water, and transferred to fresh 50 ml MM, supplemented with 1% (wt/vol) glucose (GLU) or 0.1% (wt/vol)
ball-milled, steam-exploded sugarcane bagasse (SCB) as the sole carbon sources. The culture medium pH
was adjusted to 5.0 or 8.0 (buffered with 100 mM sodium citrate). Based on a previous report (46) that dem-
onstrated the early induction of cellulases and xylanases of H. grisea grown in SCB, cultures were incubated
for 6 h at 42°C, 120 rpm. Then, mycelia were harvested, washed with cold sterile water, drained, frozen in
liquid nitrogen, and stocked at 280°C. In total, 12 independent samples were collected, three biological
samples for each culture condition (GLU pH 5, GLU pH 8, SCB pH 5, and SCB pH 8).

DNA and RNA isolation. The mycelia obtained from the cultivation in MM were immediately ground
in liquid nitrogen into a fine powder. DNA was isolated using the DNAzol reagent (Invitrogen), according
to the manufacturer’s instructions. For RNA extraction, the mycelia from the 12 samples (3 biological
replicates) were grounded in liquid nitrogen into a fine powder and RNA was isolated using the TRIzol
reagent (Invitrogen) following the manufacturer’s instructions.

RNAs were quantified by spectrophotometry and the integrity was evaluated by electrophoresis in
1.0% agarose gel stained with 0.5 mg ml21 ethidium bromide. The RNA samples were then treated with
DNase I (RQ1 RNase-free DNase-Promega).

Genome assembly and annotation. H. grisea var. thermoidea genomic DNA (gDNA) was sequenced
by two strategies: short inserts (Illumina Hiseq2000 paired-end 2 by 150 bp) and mate pairs (Illumina
Hiseq2000 paired-end 2 by 100 bp with an average insert size of 3,000 bp). FastQC (https://www
.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to evaluate the libraries quality before and af-
ter trimming. For quality trimming and sequence filtering, the tophat NGS QC Toolkit was employed to
remove sequencing adapters’ residues and low-quality reads.

The assembly was performed with AllPaths-LG (https://software.broadinstitute.org/allpaths-lg/blog/)
using a maximum coverage of 100� for each library. Genome structural and functional annotation was per-
formed with the MAKER pipeline (50) using three ab initio predictors: Augustus (51), SNAP (52), and
GeneMark-ES (53). Two data sets of proteins and transcripts from Sordariomycetes retrieved from the
RefSeq/GenBank were used as structural support, as well as Trinity-assembled transcripts derived from the
RNA-seq experiment described in “Transcriptome analysis.” Functional annotation of the predicted genes
was made using InterProScan v.5.21.60 with embedded PFAM v29, Gene Ontology, InterProScan, and
SignalP4.1 programs/databases.

CAZymes were predicted based on the dbCAN v6.0 HMMs pipeline. Transporters were predicted
based on Transporter Classification Database – TCDB (http://www.tcdb.org/) and transcription factors
based on DBD - Transcription factor prediction database (54), both using minimum criteria of an E value
of ,1e210 and identity of .35% on blastp analysis. Genome completeness was accessed with BUSCO
v2.0.1 using the Sordariomycetes core data set (55). Complete genome assembly and annotation were de-
posited at DDBJ/EMBL/GenBank under accession QQBE00000000.

Analysis of protein family evolution. The evolution of CAZymes family size variation (expansion or
contraction) was analyzed by CAFE (56) using as input an ortholog table generated by OrthoFinder (57)
and CAZy annotation, with a P value of 0.01 and applying a stochastic model of gene death and birth.

Transcriptome analysis. Illumina Hiseq2000 100 bp paired-end reads were used for transcript quan-
tification. Quality-filtered reads were mapped to the H. grisea assembled in this work using the TopHat2
v2.0.4 aligner (http://ccb.jhu.edu/software/tophat), and HTSeq version 0.6.0 was used to count reads
mapped to H. grisea genome. The R package DESeq2 version 1.6.3 was used to perform the differential
expression analysis, using the raw number of reads mapped to each gene in each sample to perform sta-
tistical tests, based on the negative binomial distribution, which indicates whether a gene is differen-
tially expressed in a condition relative to another gene. Therefore, the DESeq2 package was utilized for
normalization, using the median log deviation, and for the differential expression analysis, applying an
adjusted P value of #0.05 as the threshold. Functional enrichment analysis of differentially expressed
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genes based on Gene Ontology (GO) terms was performed using the R package GO_MWU (https://
github.com/z0on/GO_MWU). The RNA data set was deposited at DDBJ/EMBL/GenBank under accession
PRJNA717364.

Genes under pacC regulation. In order to detect genes potentially under the transcription factor
pacC control, we generated a FASTA file with 1,500 bp upstream (59 UTR) from each gene and then the
detection of pacC-binding consensus 59-GCCARG-39 within the region (58). A one-sided enrichment test
(Fisher exact test) was performed, and after false-discovery rate correction, none of the samples were
significantly enriched in bagasse and not pH.

Data analysis. The genome and transcriptome data sets generated and analyzed during the current
study are available in the GenBank (https://www.ncbi.nlm.nih.gov/) under accession numbers QQBE00000000
and PRJNA717364.
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