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Abstract

Auxin responses have been arbitrarily divided into two categories: genomic and non-genomic 

effects. Genomic effects are largely mediated by SCFTIR1/AFB-Aux/IAA auxin receptor complexes 

whereas it has been postulated that AUXIN BINDING PROTEIN 1 (ABP1) controls the non-

genomic effects. However, the roles of ABP1 in auxin signaling and plant development were 

recently called into question. In this paper, we present recent progress in understanding the 

SCFTIR1/AFB-Aux/IAA pathway. In more detail, we discuss the current understanding of ABP1 

research and provide an updated view of ABP1-related genetic materials. Further, we propose a 

model in which auxin efflux carriers may play a role in auxin perception and we briefly describe 

recent insight on processes downstream of auxin perception.

Introduction

Auxin plays essential roles in many developmental processes. Much effort has been directed 

toward understanding the precise molecular mechanisms by which auxin regulates diverse 

aspects of plant growth and development. A key aspect of the effort is to understand auxin 

perception. There are two well-studied auxin perception systems: SCFTIR1/AFB-Aux/IAA 

auxin receptor complexes (SCF [(SKP, CULLIN, F-BOX), TIR1/AFB (TRANSPORT 

INHIBITOR RESPONSE 1/AUXIN-RELATED F-BOX PROTEINS), AUX/IAA (AUXIN/

INDOLE-3-ACETIC ACID)] and the AUXIN BINDING PROTEIN 1 (ABP1) system, 

which were proposed to control auxin-mediated transcription and non-genomic effects, 

respectively [1,2]. In this paper, we review the recent progress in our understanding of the 

regulation of the stability and assembly of the SCFTIR1/AFB-Aux/IAA auxin receptor 

complexes. We will also address the controversies surrounding ABP1, which was accepted 

as a plasma-membrane-associated auxin receptor that forms an auxin receptor complex with 

a small family of receptor-like kinases (TMKs) to regulate many developmental processes 

including pavement cell development, cytoskeleton re-organization, and polar auxin 

transport [1–5]. However, a recent study showed that ABP1 is not required for auxin 

signaling and plant development [6], prompting re-analyses of the previous abp1 genetic 
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materials that formed the basis for assigning ABP1 functions. We detail the experimental 

results that have adequately resolved the underlying causes of the conflicting results 

regarding the roles of ABP1 in auxin signaling and plant development. Finally, we present 

several recent studies of auxin signaling events downstream of the SCFTIR1/AFB-Aux/IAA 

auxin receptor complexes.

AUXIN BINDING PROTEIN 1 (ABP1)

Since the discovery of ABP1 in 1972, research into this proposed auxin receptor has been 

surrounded with controversy [7–9]. ABP1 is a 22 kDa protein with a C-terminal KDEL ER-

retention signal [10,11]; over 90% of ABP1 is ER-localized [12]. Yet nearly all ABP1 

functional studies focused on the small fraction of plasma-membrane-bound ABP1 [1]. 

ABP1 has been suggested to have essential roles in almost every aspect of plant growth and 

development including embryogenesis [13], root growth and maintenance of the root 

meristem [14], hypocotyl elongation [15], pavement cell development [4], vascular 

patterning [16], cytoskeleton re-organization and polar auxin transport [3,5], control of 

flowering time [17], and flower development [16].

Many resources have been dedicated to study ABP1 and more than 100 ABP1 papers have 

been published. During the era of Arabidopsis genetics, researchers generated various 

knockdown lines and mutants for determining ABP1 functions and the action mechanisms: 

1) T-DNA insertion mutants abp1-1 and abp1-1s [13,18,19]; 2) abp1-5, carrying a point 

mutation in the auxin-binding pocket [4]; 3) Three knockdown lines (abp1-AS, SS12K, 
SS12S) [16]; 4) ABP1 overexpression lines [3,4,20,21]. All of these lines were reported to 

have obvious phenotypes and were the basis for all functional studies of ABP1 since 2000. 

Therefore, it was shocking when ABP1 was reported not to be required for either auxin 

signaling or Arabidopsis development [6]. Making use of the CRISPR/Cas9 (Clustered 

regularly-interspaced short palindromic repeats/CRISPR associated protein 9) technology 

[22], Gao et al. generated a true abp1 null allele (abp1-c1), consisting of a 5-bp deletion in 

the first exon of the ABP1 gene [6]. This abp1-c1 allele did not produce detectable full 

length or truncated ABP1 protein [6]. Both the abp1-c1 mutant and the abp1-TD1 mutant, 

carrying a T-DNA insertion in the first exon of ABP1, are indistinguishable from WT in 

overall morphology, development, and auxin responses [6]. The results presented in the Gao 

et al. paper were unequivocal whereas previous results appeared solid as well. It has been a 

difficult task for the plant biology community to reconcile the apparent contradictory 

findings regarding the roles of ABP1 in auxin signaling and plant development [9,23,24]. 

Fortunately, the discrepancies between the Gao et al. paper [6] and previous ABP1 papers 

appeared to have been largely resolved.

The first genetic evidence revealing ABP1 importance in plant development was the embryo 

lethality of the abp1-1 T-DNA insertion mutant [13]. Indeed, abp1-1 was a cornerstone of 

ABP1 research. Prior to the abp1-1 description, skepticism about ABP1 as an auxin receptor 

was pervasive, and ABP1 was even called a red herring [7,8]. The abp1-1 mutant contains a 

T-DNA insertion 51 bp downstream of the ATG start codon and a 35S:ABP1 cDNA 
construct was reported to have complemented the abp1-1 embryo lethal phenotypes [13]. 

Further, the abp1-1s allele harbors a T-DNA in the promoter region of ABP1 [18] and was 
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endorsed as a second abp1 null allele. A cross between abp1-1 and abp1-1s failed to 

complement the embryo lethal phenotype, suggesting that these two mutants were disrupted 

in the same gene, although there are no reports on complementation of abp1-1s using WT 

ABP1 genomic DNA or cDNA. Although both abp1-1s and abp1-1 were cited as null 

mutants, analyses of ABP1 mRNA and ABP1 protein levels were precluded by the 

homozygous lethality of the two mutations [9,19,25]. Recent re-analyses of abp1-1 and 

abp1-1s have uncovered the underlying basis of their embryo lethality [25,26], which is not 

from disruption of ABP1. The T-DNA insertion in abp1-1 not only disrupted the ABP1 
gene, but also deleted the entire neighboring BSM gene [26], which is an essential gene [27]. 

In fact, abp1-1 embryo phenotypes closely resembled to those observed in bsm mutants [27]. 

Introduction of the BSM gene under the control of the CaMV 35S promoter into the abp1-1 
mutant plants completely rescued the embryo lethal phenotype [26]. Furthermore, abp1-1 
failed to accumulated detectable ABP1 protein, but the abp1-1−/− CaMV 35S:BSM plants 

did not display obvious developmental defects [26]. These results unequivocally 

demonstrated that the abp1-1 embryo lethal phenotype is not caused by the ABP1 
disruption, but rather by the deletion of the neighboring BSM gene [26]. Analyses of 

reciprocal crosses between abp1-1, abp1-1s, abp1-c1, abp1-TD1, and bsm-1 [25] further 

support the conclusion that the embryo lethality observed in abp1-1 and abp1-1s is caused 

by disruption of the BSM gene. A caveat to the latter study is the possibility that ABP1 
function may have been compromised in the bsm-1 mutant, which was not examined. This 

point is significant because T-DNA insertions can profoundly affect expression levels of 

adjacent genes [28]. Nevertheless, the data in Gao et al. paper [6], combined with results 

from the re-analyses of the abp1-1 and abp1-1s [25,26], allow for the confident conclusion 

that Arabidopsis plants do not require ABP1 for normal growth and development under 

laboratory conditions.

The abp1-5 mutant also played a major role in a series of ABP1 studies. It was reported that 

the development of pavement cell and polar auxin transport were affected in abp1-5 [1,3–5]. 

Moreover, exogenous auxin failed to rescue abp1-5 developmental defects [1,3–5]. However, 

recent whole genome sequencing of the abp1-5 mutant revealed that there are more than 

8000 polymorphisms between abp1-5 and the parental line Arabidopsis Col-0 [29], 

suggesting that the mutant has not been properly backcrossed as previously reported [4]. 

Some of the phenotypes associated with abp1-5 are likely not caused by the abp1 lesion. For 

example, the longer hypocotyl phenotype observed in light-grown abp1-5 seedlings [15] is 

linked to a secondary mutation in the PHYTOCHROME B gene present in the abp1-5 
background, and is not linked to the abp1-5 mutation itself [29]. Because abp1-5 contains 

numerous background mutations, conclusions derived from this allele should be treated with 

caution.

Three abp1 knockdown lines (SS12K, SS12S, abp1-AS) played instrumental roles in 

connecting ABP1 to many developmental processes [16]. The SS12K and SS12S lines, often 

referred as ABP1 antibody lines, were generated by expressing the single chain fragment 

variable regions (scFv12) of ABP1 monoclonal antibody under the control of an ethanol-

inducible promoter [16]. The SS12K contains the KDEL ER retention signal whereas SS12S 

lacks the KDEL motif [16]. The SS12K and SS12S lines behaved very similarly, even 

though one was targeted to the ER and the other was targeted to the apoplast region [16]. 
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Another knockdown line is abp1-AS, which expresses an ABP1 antisense RNA under the 

control of the aforementioned ethanol inducible promoter [16]. Although the initial study 

using the ABP1 knockdown lines reported that multiple lines from each construct produced 

similar phenotypes [16], subsequent studies almost exclusively used SS12K6, SS12S9, and 

abp1-AS [1,3–5,14,30,31]. Recently, the three knockdown lines were crossed to abp1-c1 and 

abp1-TD1 null alleles [32]. Analysis of the segregation patterns resulting from the crosses 

clearly demonstrated that the phenotypes observed in these lines are not caused by affecting 

ABP1 and are likely caused by off-target effects [32].

Results from overexpressing ABP1 in various systems including tobacco leaves, BY2 cells, 

and Arabidopsis have been used to support that ABP1 plays roles in cell expansion and other 

developmental processes [3,33]. Results from ABP1 overexpression should be treated with 

caution as the different lines did not always produce consistent results. For example, 

overexpression of full length ABP1 in Arabidopsis did not result in obvious developmental 

phenotypes, but overexpression of ABP1 lacking the KDEL ER-retention signal led to 

auxin-related phenotypes including three cotyledons, shorter roots, reduced apical 

dominance, sterility, and seedling lethality [3]. Interestingly, the ABP1ΔKDEL overexpression 

phenotypes are consistent with a decrease in auxin signaling in plants. The shorter roots and 

three cotyledon phenotypes were also observed in abp1-5 and the antibody lines [1,3,16].

A key argument supporting the importance and requirement of ABP1 is the presence of 

homologues in all plant species [32,34]. This argument was based on available genomic 

sequences at that time, and recently has been refuted by the absence of ABP1 in Marchantia 
polymorpha, a liverwort species [35], indicating that ABP1 is dispensable, at least in some 

plant species.

The contradictory results between Gao et al paper and the previous studies have been 

reasonably resolved; however, the physiological functions of ABP1 remain unknown 

because all of the available abp1 knockouts display no aberrant phenotypes under normal 

laboratory conditions. The simplest explanation is that ABP1 is not required for normal 

plant development. However, two competing hypotheses addressing the lack of phenotypes 

in the known abp1 null mutants are worth discussing: 1) The abp1-c1, abp1-TD1, and 

abp1-1 may not be null [9]; 2) Proteins with functions overlapping/redundant with ABP1 

compensate for the loss of ABP1 [32,36,37]. All of the available abp1 null alleles (abp1-1, 

abp1-c1, and abp1-TD1) have the mutations in the first exon of ABP1 [6,26]. Although 

ABP1 protein was undetectable by Western analysis in these mutants, it remains possible 

that the ABP1 antibody used in these experiments might be specific to the ABP1 N-terminal 

region and thus might have failed to detect potentially functional truncated ABP1 proteins. 

No full-length or partial ABP1 mRNAs could be identified in abp1-TD1 [6]. However, 

transcript coverage by the primer pairs used for the RT-PCR reactions might have been 

insufficient or mRNA quantities may have been below the detection limit in these assays [9]. 

Therefore, it is still possible that the reported abp1 null mutants make functional truncated 

ABP1 proteins. The only unequivocal means of guaranteeing an abp1 null mutant is to 

delete the entire ABP1 coding region from the genome. Advancements in CRISPR/Cas9 

gene editing technology have made it feasible to obtain such mutants [22]. Indeed, we 

successfully generated two new abp1 alleles, which contained 1141 bp and 711 bp deletions 
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in the ABP1 gene, respectively (Zhao, unpublished results). These two new abp1 mutants 

conclusively demonstrated that ABP1 is not required for normal Arabidopsis development.

The hypothesis that proteins with functions overlapping/redundant with ABP1 compensate 

for the loss of ABP1 has been raised repeatedly [32,36,37]. ABP1 is a single copy gene in 

Arabidopsis, and there are no cryptic copies of ABP1 in the Arabidopsis genome [25]. Using 

ABP1 protein sequence as a query to BLASTP the Arabidopsis proteins failed to yield any 

significant hits other than ABP1 itself (using an E-value ≤ 1 as the cutoff). Therefore, there 

are no detectable ABP1 homologs in the Arabidopsis genome. ABP1 is a member of the 

Cupin superfamily, which is a functionally diverse protein superfamily with little homology 

amongst family members [38,39]. Further, GLP4, a Golgi-located Cupin family protein, has 

been reported to bind auxin [40]. Thus, it was proposed that a lack of phenotypes in abp1 
null mutants might be due to redundant functions of Cupin proteins such as GLP4 

[32,36,37]. However, the lack of homology between GLP4 and ABP1 beyond the two short 

Cupin motifs and their distinct sub-cellular locations suggest that it is very unlikely that 

ABP1 and Cupin family proteins have overlapping or redundant functions.

In conclusion, it appears that ABP1 research field has to be reset back to the 20th century. 

This is based on the Gao et al. findings showing no observable phenotypes in the abp1 null 

mutants, the recent re-analysis showing problems of the previously used genetic materials, 

and that ABP1 is dispensable in some plant species.

Auxin efflux carriers as auxin receptors

Because ABP1 is likely not the auxin receptor for auxin-mediated non-genomic effects, it is 

worth revisiting the hypothesis that auxin efflux carriers may serve as auxin receptors. Such 

a hypothesis was first proposed in the 1960s, modified in the 1980s, and re-proposed in the 

1990s, but it failed to gain traction [7]. PIN (PIN-FORMED) proteins are well-characterized 

auxin efflux carriers, playing essential roles in many developmental processes [41,42]. Can 

the PIN proteins also serve as auxin receptors? PIN proteins binds auxins and therefore meet 

one of the key criteria as auxin receptors. More importantly, genetic studies suggest that 

members of several gene families such as PID (PINOID), NPY (NAKED PINS IN YUC 
MUTANTS), and ARF (AUXIN RESPONSE FACTOR) can potentially function 

downstream of PIN1. Disruption of PIN1 in Arabidopsis leads to the development of pin-

like inflorescences [41]. The same pin-like phenotypes have been observed in pid [43], npy1 
npy3 npy5 triple mutants [44,45], and arf5/mp (auxin response factor 5/monopteros) [46]. 

Genetic studies clearly place PID and NPY genes in the same pathway regulating auxin-

mediated organogenesis [44,45]. Furthermore, the PID/NPY-mediated signaling pathway is 

strikingly analogous to the blue-light mediated phototropic pathway (Figure 1). In 

phototropic response, the phototropins have the N-terminal light-perception LOV domains 

and the C-terminal Ser/Thr protein kinase domain [47]. Upon receiving light signals by the 

LOV domains, the phototropin kinase is activated, which leads to a change in 

phosphorylation status of NPH3 (NONPHOTOTROPIC HYPOCOTYL 3) and phototropic 

responses [47,48]. The phototropin kinase domain is similar to the protein kinase PID. 

Further, NPH3 is homologous to the NPYs whereas ARF5/MP is very similar to ARF7/

NPH4 (Figure 1). These two pathways differ in that phototropins contain both light-
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perceiving LOV domains and a kinase domain while PID only has a kinase domain (Figure 

1). PID may have a partner that perceives a signal such that PID combined with its partner is 

analogous to the phototropins.

PIN proteins serve as good candidates as PID partners. First, both pid and pin1 develop the 

same pin-like inflorescences, suggesting that they participate in the same pathway [41,43]. 

Second, PID interacts and phosphorylates PIN1 [49]. Third, the genetic interactions among 

pin1, pid, and npy suggest that they participate in the same pathway [44,45,50,51]. The 

hypothesis that PIN proteins partner with PID to form auxin perception complexes can be 

tested experimentally. For example, determining whether NPYs are phosphorylated in a 

PIN1 or PID-dependent manner will strengthen or weaken this hypothesis. Previous studies 

focused on the capacity and directionality of PIN-mediated auxin transport. This new model 

suggests that auxin transport may be coupled with a signal transduction pathway, which can 

reasonably account for the observed pin-like phenotypes in various Arabidopsis mutants.

SCFTIR1/AFB-Aux/IAA auxin receptor complexes

Auxin perception by SCFTIR1/AFB-Aux/IAA complexes and their essential roles in auxin-

mediated transcription regulation and plant development have been well established [2]. The 

SCFTIR1/AFB-mediated auxin signaling pathway requires a TIR1/AFB F-box protein, an 

Aux/IAA transcriptional repressor, and an ARF transcription factor. Auxin-binding brings 

Aux/IAA proteins to the SCFTIR1/AFB ubiquitin E3-ligase complex and results in 

degradation of the Aux/IAA repressors and activation of the ARFs. Recent progress in auxin 

perception and transcription regulation by SCFTIR1/AFB have been reviewed elsewhere [2]. 

Here we focus on several recent studies on mechanisms by which SCFTIR1/AFB-Aux/IAA 

auxin receptor complexes may be regulated.

TIR1 protein abundance appeared to be controlled by an autocatalytic mechanism. Yu et al. 

uncovered a series of mutations in the first helix of TIR1 that disrupt TIR1 association with 

CULLIN 1 [52]. Consequently, the mutated proteins were stabilized, indicating that un-

tethering TIR1 from the SCF complex affects the TIR1 stability and that TIR1 itself is likely 

a substrate for the SCFTIR1 ubiquitin E3 ligase.

Aux/IAA recruitment to the SCFTIR1/AFB ubiquitin E3 ligase is a key step in auxin signaling 

and is dependent on the presence of auxin and the domain II degron [2]. Recently, it was 

shown that the configuration of a conserved proline residue in the degron dictates Aux/IAA 

recruitment to the SCFTIR1/AFB complex, adding another layer of complexity to auxin 

signaling [53]. Mutations in rice LATERAL ROOTLESS2 (LRT2), which encodes a 

cyclophilin-type peptidyl-prolyl cis/trans isomerase, result in auxin resistance and lateral 

root development defects [53]. LRT2 catalyzes the cis/trans isomerization of the Trp104–

Pro105 peptide bond of OsIAA11, promoting the formation of the Pro105-cis configuration, 

which is preferred during the assembly of a SCFTIR1/AFBAux/IAA auxin receptor complex 

[53]. These new insights into SCFTIR1/AFB regulation may provide additional mechanisms 

for auxin response regulation.
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Auxin signaling downstream of auxin perception

ARF proteins activate or repress gene expression by binding cis-regulatory auxin response 

elements (AuxREs) in the promoters of auxin-responsive genes and serve as key mediators 

of auxin transcriptional outputs [54,55]. Recent advances in understanding ARF function 

and regulation include insights provided by ARF recruitment of chromatin remodeling 

factors and roles for tasiRNA regulation of ARFs to make the auxin-regulated gene 

expression network robust.

Chromatin remodeling as a mechanism of auxin-responsive gene regulation is only 

beginning to be understood [56]. Aux/IAA repressors are recruited to specific chromosome 

regions by interaction with ARF proteins, and in turn recruit TOPLESS and TOPLESS-

related co-repressors (Figure 2) [57,58]. These corepressors recruit histone deacetylases that 

act to condense DNA to prevent gene transcription. A long-standing model of auxin 

signaling involves de-repression of ARF proteins by Aux/IAA proteolysis. After Aux/IAA 

disappearance, how then, is transcription to occur if the chromatin is still in a condensed 

state? An answer to this question may come from a recent study that identified roles for the 

SWI/SNF nucleosome-remodeling complex in promoting transcription of ARF targets 

(Figure 2) [59]. The BRAHMA and SPLAYED subunits of the SWI/SNF complex directly 

interact with ARF5 in a manner dependent on Aux/IAA removal [59]; because SWI/SNF 

complexes act to de-condense DNA, its recruitment likely acts to reverse the gene repression 

previously imposed by Aux/IAAs (Figure 2). Although this has yet to be demonstrated as a 

widespread mechanism of promoting auxin-regulated transcriptional responses, it provides 

an attractive mechanism to counteract the effects of Aux/IAA proteins and to allow for 

recruitment of the transcriptional machinery.

In addition to protein regulation by interaction with repressors and chromatin remodeling 

factors, ARFs can be regulated posttranscriptionally. Several repressing ARFs have been 

shown to be regulated by miRNAs [60]. In addition, tasiRNAs have been demonstrated as 

important regulators of repressing ARFs that serve to increase the robustness of auxin 

response. Working with the bryophyte model plant Physcomitrella patens, Plavskin et al. 

[61] showed that loss of the tasiRNA system in Physcomitrella resulted not only in a 

decreased auxin response, caused by an increased accumulation of repressor ARF, but also 

resulted in greater stochasticity in auxin responses. With the use of an elegant combination 

of experimental data and modeling [61], the authors created a model in which tasiRNAs act 

to buffer the noise in the auxin gene response network; this role may explain why tasiRNAs 

have been co-opted frequently into various gene response networks.
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Highlights

• Genetic evidence supporting the proposed roles for ABP1 in auxin 

signaling has been invalidated

• The PIN auxin efflux carriers may be the missing auxin receptors for 

non-genomic auxin responses

• Several mechanisms control SCFTIR1/AFB-Aux/IAA auxin receptor 

complex assembly and stability

• Chromatin-remodeling and small RNAs participate in regulating auxin-

mediated transcription
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Figure 1. A schematic presentation of the hypothesis that PIN and PID may form a plasma-
membrane localized auxin receptor complex important for auxin-mediated Arabidopsis 
organogenesis
The organogenesis pathway is strikingly analogous to the blue light-mediated phototropic 

response. Arabidopsis plants with compromised PIN1 or PID or NPY or ARF5/MP fail to 

produce flowers whereas mutations in PHOT1 or NPH3 or ARF7/NPH4 cause defects in 

normal phototropic responses to blue light. PID is homologous to PHOT1 and NPYs are 

homologous to NPH3. Moreover, ARF5/MP is very similar to ARF7/NPH4. The starting 

point for phototropic response is the perception of light by the LOV domains in PHOT1. 

Light activates the kinase activity in PHOT1 and consequently phosphorylation status of 

NPH3 is altered. The role of ARF7/NPH4 in phototropism is not understood because 

phototropic response is generally believed to be non-genomic. PID lacks a receptor domain 

and we hypothesize that PIN proteins may function as an auxin receptor based on genetic 

evidences. The function of PIN/PID complex in the auxin-mediated organogenesis pathway 

is equivalent to PHOT1 in the phototropism pathway.
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Figure 2. Roles for chromatin packing in auxin-mediated transcriptional response
Under low auxin conditions, Aux/IAA proteins are abundant and interact with ARF proteins. 

Aux/IAAs recruit the TOPLESS (TPL) family of corepressors, which in turn recruit Histone 

deacetylases (HDACs), resulting in tightly packed chromatin. Furthermore, Aux/IAA 

proteins likely block the interaction between ARF and SWI/SNF chromatin remodeling 

complexes. When auxin levels are elevated, Aux/IAA proteins are targeted for proteasomal 

degradation, allowing for SWI/SNF interaction with ARF proteins. SWI/SNF-enabled 

chromatin remodeling, through histone acetyltransferase (HAT) activity, results in chromatin 

unpacking to allow gene target access by additional transcription factors.
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