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Some remarks on the statistical model of heavy ion collisions

V. Kocha

aNuclear Science Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road,
Berkeley, CA 94720, USA

This contribution is an attempt to assess what can be learnedfrom the remarkable success
of the statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion
collisions.

1. INTRODUCTION

As already pointed out in the contribution by A. Bialas [ 1] the statistical model (see e.g. [
2]) works very well in describing/predicting measured ratios of particle abundances in ultra-
relativistic heavy ion collisions. But even more remarkably, it works also for particle ratios
measured in high energy proton-proton and evene+e− collisions. In this contribution we will
take the success of the statistical model as given and ratherask ourselves what can be learned
from that. A critical discussion of possible shortcomings of the statistical model is given in the
contribution of J. Rafelski [ 4].

In general a statistical description of a physical system isappropriate if the system has many
degrees of freedom but is characterized only by few observables/measurements. This is e.g.
the case in a thermal system, which is characterized only by the constants of motion, namely
the energy (and momentum), volume and all the conserved particle numbers. (Of course in a
canonical or grand canonical formulation, the energy and/or particles number are replaced by
the conjugate variables temperature and chemical potential).

But not only a thermal system meets the requirements for a statistical description. Let us
consider a high energy collision which produces many particles in the final state. If we are
only interested in the number of pions produced, we constrain the final state very little, and
thus statistical methods should be applicable. This is the idea of the statistical theory of particle
production first invented by Fermi [ 5].

Now suppose the statistical model of Fermi applies for particle production in high energy
collisions. Does that mean that we are dealing with a thermalsystem in the sense of Boltzmann,
where particle collisions keep the system in a state of equilibrium? This is very unlikely in
case ofe+e− collisions, where the produced particles hardly have a chance to re-interact. And
actually explicit measurements [ 6] show no indication for interaction among the partons from
different jets ine+e− collisions (see also contribution by H. Satz [ 7]). Therefore, “statistical”
does not always mean “thermodynamic” in the sense that one isdealing with matter in thermal
equilibrium, and that one can define a pressure and an equation of state. Statistical may simply
mean phase-space dominance and the ”temperatures” and ”chemical” potentials are nothing but
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Lagrange multipliers characterizing the phase-space integral [ 8, 9, 10]
This, however, may be different in a heavy ion collision. There one would naively expect (this

is actually the main motivation for such complicated experiments) that the initially produced
particles do re-interact on the partonic and/or hadronic level. The question then is, how to
experimentally establish that a sufficient amount of re-interaction has taken place and that matter
in the Boltzmann sense has been formed.

This contribution is organized as follows. In the first section, we will discuss the phase-
space (or statistical model) for elementary collisions such ase+e−. Then we will proceed with
nucleus-nucleus collisions. Finally we will try to assess to which extent a case for thermal
matter can be made in nucleus-nucleus collisions. We will conclude with a discussion on what
the statistical variables extracted from particle ratios can tell us about the phase structure of
QCD.

2. PHASE-SPACE DOMINANCE

Let us consider a high energy collision of elementary particles such ase+e− or proton proton.
The probability to producen particles of a given species, such as pions, is given by

Pn = ∑
x

Pn,x (1)

wherePn,x denotes the probability to findn particles of interest andx other particles in the final
state,

Pn,x ∼

∫ m

∏
i=1

d3qi

Ei
|M(q1, . . .qm; p1, p2)|

2δ(E− (
m

∑
i=1

Ei)δ(3)(
m

∑
i=1

~qi). (2)

HereE is the total energy of the system, which we consider in the center of momentum frame.
The total multiplicitym is given by

m= n+x. (3)

In case of many particles in the final state,m≫ 1, one integrates over a large phase-space
volume. As a result the details of the matrix elementM(q1, . . . ,qm; p1, p2) become less relevant.
Instead one is sensitive to a phase-space average of the matrix element. Thus we can rewrite eq.
(2) as

Pn,x ∼

[

1
Vm

〈

|M(q1, . . . ,qm; p1, p2)|
2

∏m
i=1Ei

〉]

Vm
∫

(

m

∏
i=1

d3qi

)

δ(E−
m

∑
i=1

Ei)δ(3)(
m

∑
i=1

~qi)

= S̄mΦm(E) (4)

where

Φm(E) =Vm
∫

(

m

∏
i=1

d3qi

)

δ(E−
m

∑
i=1

Ei)δ(3)(
m

∑
i=1

~qi)

(5)
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is the micro-canonical m-particle phase-space volume known from statistical physics, and

S̄m =

[

1
Vm

〈

|M(q1, . . . ,qm; p1, p2)|
2

∏m
i=1Ei

〉]

=
1

Φm(E)

∫ m

∏
i=1

d3qi

Ei
|M(q1, . . . ,qm; p1, p2)|

2 δ(E−
m

∑
i=1

Ei)δ(3)(
m

∑
i=1

~qi) (6)

denotes the phase-space averaged m-particle matrix element.
Obviously, if S̄m is simply a constant, independent ofm, and thus independent onn andx,

the relative probability to find a given number of particles is simply given by the ratio of the
phase-space volumes,

Pn

Pn′
=

Φn(E)
Φn′(E)

, (7)

or in other words, it is given by statistics only.
Similarly, the mean number of particles in this case is, up toa constant, given by statistics

〈N〉= ∑
n

nPn ≃ S̄∑
n,x

nΦn+x(E), (8)

whereS̄denotes the constant averaged matrix element. Obviously, in this case particle ratios are
given only by statistics, as the constantS̄drops out. Note, that for a large average multiplicity
〈m〉 = 〈n+x〉, the sum in eq. (8) will be dominated by a few terms withn+x ≃ 〈m〉. This is
analogous to the the grand-canonical approximation in statistical physics.

If the mean multiplicity is large,〈m〉 ≫ 1, then the micro-canonical phase-space volume
Φm(E) may be evaluated in the canonical or grand-canonical approximation [ 8, 9, 10] leading
to Lagrange multipliers, which in the thermodynamic framework are the temperature and the
chemical potential. In the situation at hand, however, these Lagrange multipliers do not have a
physical meaning. They simply characterize the phase-space integral. Their actual magnitude
depends on the available energy as well as on the density of states, i.e., the hadronic mass
spectrum. They, however, do not reflect exchange of energy with a heat-bath, as is the case for
the temperature in the canonical ensemble of thermal physics. Thus, in order to avoid confusion,
we will denote the application of statistical physics in thenon thermodynamics context by
”phase-space dominance”.

2.1. Conditions on the matrix elements
As discussed above, the essential assumption for phase-space dominance to work is that the

phase-space averaged matrix elements (6) are constant, independent ofm. What requirements
does this impose on the matrix elements? Obviously, if the matrix elements simply scale with
the multiplicitym like

|Mm|
2 =C (Vm

m

∏
i=1

Ei) (9)

with C being a constant, the condition is fulfilled. The scaling with ∏m
i=1Ei is simply due to

the normalization of the states, and thus is not a dynamical constraint. The scaling withVm on
the other hand is not trivial and implies that there is only one relevant length/mass scale in the
problem. Before we discuss this in more detail let us list other conditions, which the matrix
element has to satisfy.
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• Absence of strong correlations. Correlations imply that the matrix element provides more
support in localized regions of phase space. Consequently it is far from being constant.
Or in other words, the integral in eq. (6) will only have support in a limited region leading
to a decrease of̄Sm with increasingm.

• Absence of strong energy dependence in the matrix element. This is similar to the pre-
vious condition and actually related. Strong energy dependence (other than the trivial
one from the normalization factors of the states) obviouslyimplies a non-constant matrix
element.

• Absence of strong interference effects, which lead to both correlations and energy depen-
dencies.

Hadronic resonances, such asρ mesons give rise to correlations and energy dependencies.
And indeed, the statistical model fails to reproduce the data if only true final state particles such
as pions, kaons etc. are taken into account [ 11]. Instead, the successful fits of the particle
ratios are obtained only if the hadronic resonances are partof the statistical ensemble. This
way, the correlations are removed from the matrix elements and put into the ”final” states, in
the spirit of [ 12]. This is schematically depicted in Fig.1.Thus, the relevant phase-space to be

Figure 1. Resonances in the final state.

considered is a phase-space of all hadronic resonances and the matrix element is reduced to one
with resonances in the final state

Φn(E) ⇒ ΦR
n′(E)

M(E;q1, . . . ,qm) ⇒ MR(E; pR
1, . . . , p

R
m′) (10)

As a result the reduced matrix elementMR is free of all the correlations introduced by the
resonances and, therefore, it is more likely that it meets the requirements stated above.

Let us return to the issue of the volume dependence of the matrix element. Only if the matrix
element scales with the volume as given by eq. (9), the statistical approach is justified. From
dimensional arguments an m-particle matrix element has thecorrect scaling behavior.

|Mm|
2

Em ∼ [mass]−(3m+4). (11)
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In general there may be several length/mass scales contributing to the matrix element, such
as e.g. the hadronic resonances. In this case the statistical approach should not work. If, on
the other hand, all the dynamical mass scales of QCD aside from ΛQCD are the masses of the
resonances, then the reduced matrix elementMR (10) contains onlyΛQCD, and the statistical
approach will work as long as the volume is of the size of 1/Λ3

QCD. This would be about the
size of the proton, which appears to be a reasonable size for avolume in an elementary particle
collision. We should note, however, that the fits to proton-proton collisions [ 13] lead to volumes
of the order of 20fm3, which is somewhat on the large side of what one would expect from our
considerations here.

The constraints on the intrinsic mass scales, however, are not as severe as it might appear
from the previous considerations. If the mean multiplicity〈m〉 is large, the particle production
is dominated by events with final state multiplicities near〈m〉, i.e. m= n+x is approximately
constant for all n. And, therefore, the condition (9) is fulfilled trivially.

Finally, the matrix element is responsible for conservation laws due to intrinsic symmetries,
such as strangeness, charge and baryon number. This, however, is already accommodated in
the statistical approach. If the amount of conserved quantais small, one may have to use a
canonical description instead of a grand canonical one. Butthis is all within the framework of
statistical physics, which actually is based on conservation laws.

Figure 2. Fit of statistical model to particle ratio in proton-proton collisions (from [ 13]).

The success of the statistical fits to the particle ratios fore+e− as well as proton proton is
demonstrated in Fig. (2). As already pointed out, these fits are based on a statistical ensemble of
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hadronic resonances. Following the above arguments, we mayconclude from the success of the
statistical model that the relevant dynamical correlations and mass scales of QCD are contained
in the hadronic resonances. In order to see more subtle dynamic effects, one probably has
to resort to higher order correlations. The alternative conclusion would be that even ine+e−

collisions, re-scattering leads to a true thermodynamic system. This, however, is difficult to
imagine and there is no experimental evidence for any re-scattering [ 6, 7].

Finally, let us point out that the statistical model also seems to work for correlation measure-
ments of strange particles [ 13], such asKsKs. In the statistical approach, these correlations are
mostly due to strangeness conservation and the agreement with the data indicates the absence
of strong dynamical correlations.

3. NUCLEUS-NUCLEUS COLLISIONS

As we have discussed above, the success of the statistical model in describing particle yields
in proton-proton collisions can be understood as a result ofphase-space dominance. The goal
of nucleus nucleus collisions, however, is to create matter, i.e., a thermal system in the sense
of Boltzmann, where particle collisions lead to and maintain thermal equilibrium. It is only in
this situation, where we can give the Lagrange multipliers ”T” and ”µ” the physical meaning of
temperature and chemical potential.

Obviously, if each individual nucleon-nucleon collision can be described by a statistical ap-
proach, we expect the statistical model to work even better in a nucleus-nucleus collision. And
indeed it does, as can be seen from Fig.3. But how do we know that the statistical behavior of a
nucleus-nucleus collision is again not simply phase-spacedominance?
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Braun-Munzinger et al., PLB 518 (2001) 41                         D. Magestro (updated July 22, 2002)

STAR
PHENIX
PHOBOS
BRAHMS

Model prediction for
 = 29 MeVbµT = 177 MeV,   

Model re-fit with all data
 = 41 MeVbµT = 176 MeV,   
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/hφ -/hΛ -/hΞ *10-π/Ω /pp +/K-K -π/-K -π/p *50-/hΩ

Figure 3. Fit of statistical model to particle ratio in Au+Aucollisions at RHIC energies [ 14].

To illustrate this point, let us assume for a moment that a nucleus-nucleus collision is a simple
superposition of “N” nucleon-nucleon collisions. Let us also assume that nucleon-nucleon col-
lisions can be described by statistics as a result of phase-space dominance. If we were dealing
with a simple classical ideal gas without additional constraints from conservation laws, the par-
tition function of the nucleus-nucleus systemZAA is simply the product of the partition functions
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of the nucleon-nucleon collisionsZnn

Z(a)
AA =

N

∏
i=1

Znn. (12)

This situation is sketched in Fig.4a. There isno cross talk between the individual systems. On

(a) (b)

Figure 4. Individual nucleon-nucleon collisions (a) and nucleus-nucleus collision (b).

the other handZ(a)
AA also represents the partition function of a system of volume

VAA= NVnn (13)

which would correspond to the system depicted in Fig.4b, andthus to “matter”, or in other
words

Z(a)
AA = Z(b)

AA (14)

So in this case there would be simply no way to distinguish between situation (a) and (b) in
Fig.4 within a statistical framework.

So how can we find out if indeed thermalized matter has been created in a heavy ion colli-
sions?

Obviously the factorization condition (14) will break down, once we probe the boundaries
of phase-space available for a nucleon-nucleon collision,where the statistical model will not
work. This could for example be achieved by studyingn-particle correlations, withn larger
than the average multiplicity of a nucleon-nucleon collision, n ≫ 〈N〉nn. If, such a n-particle
correlation would still look ”thermal” in an AA collision, then the vastly bigger phase space of
anAA-system has been populated by scattering processes, and we may talk about “matter”.

The sensitivity of this approach can be improved by looking at conserved quantum numbers.
If additional conservation laws, such as strangeness, are at work, phase space is even more
restricted and factorization may break down already on the single particle level. Consider for
example strangeness conservation. In scenario (a), strangeness has to be conserved for each
nucleon-nucleon collision separately, whereas in (b) conservation applies only to the entire
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system. This additional constraint is most relevant if the number of strange particles produced in
a nucleon-nucleon collision is small,Ns≤ 1. If Ns≫ 1 a grand-canonical treatment is adequate
and factorization (14) works again at least on the single particle level. Consequently, in this
case multi-particle correlations need to be investigated.

In nucleon-nucleon collisions a canonical treatment, where strangeness as well as baryon
number are conserved explicitely, is required to explain the particle abundances [ 13, 16]. Also
for lower energy and peripheral heavy ion collisions, the explicit treatment of strangeness con-
servation seems to required [ 17].

In [ 16] the centrality dependence of the strange baryon yields was studied based on the
above concepts. The authors found, that the centrality dependence of theΩ enhancement should
flatten out, once the volume over which strangeness is conserved exceeds that of about 20 time
the volume of a nucleon. Therefore, if a flat centrality dependence of theΩ enhancement is
observed, one can conclude that strangeness has ”percolated” at least over a volume 20 times as
large as in a nucleon-nucleon collision. This would be a necessary but not sufficient condition
for the existence of matter. Unfortunately the results reported by the NA57 collaboration [ 18]
show a steep increase of theΩ enhancement up to the highest centralities.

However, even if the centrality dependence of theΩ-enhancement is not completely un-
derstood, the fact that thereis an Ω-enhancement clearly shows that a nucleus-nucleus colli-
sion is more than simply a superposition of nucleon-nucleoncollisions. And there is evidence
from other observables that a certain amount of re-scattering is taking place in heavy ion col-
lisions. Flow, radial or elliptic, would be difficult to understand without re-scattering on the
partonic/hadronic level. To which extent they are sufficient to form matter in the Boltzmann
sense is, however, not clear.

So have we formed matter in these collisions? A definitive answer to this question requires
additional measurements such as multi-particle correlations of conserved quantities. At lower
energy (1−2AGeV) collisions, the measurement of kaon pairs for example provides a sensitive
measurement on the degree of equilibrium reached [ 19]. At higher energies one might think
about multipleΩ production, in order to really probe the boundaries of phase-space.

But we also have no evidenceagainstthe hypothesis of thermal equilibrium. Quite to the
contrary, there is evidence for the necessary re-scattering from flow and dilepton production
as well asΩ-enhancement. Therefore, let us assume that we indeed have been able to create
matter in these collision. In this case, we may interpret theLagrange multipliersT andµ as
temperature and chemical potential. The result of fits to system at different collision energies [
15, 17] is shown in Fig.5.

Does Fig.5 reflect a measurement of the phase-separation line in the QCD phase diagram?
Certainly not! All it shows are the thermal parameters at which the systems fall out of chemical
equilibrium under the assumption of unchanged particle properties. Does it tell us about a
limiting temperature? Maybe! Suppose that LHC experimentslead to the same temperature of
T ≃ 170MeV. If at the same time radial flow increases considerably above the values observed
at RHIC, then we can conclude that indeed much more energy hasbeen deposited into the
initial partonic system than reflected by the final temperature. Otherwise, one could argue that
the constant temperature simply reflects the decreasing efficiency of depositing energy in the
central rapidity region. Actually the radial flow from RHIC seems to be slightly larger than that
extracted at the SPS [ 20, 21].



9

Figure 5. Results of thermal fits to particle ratios for different beam energies. Figure adapted
from [ 17].

4. CONCLUSIONS

We have discussed the phase-space dominance assumption in the context of particle pro-
duction in nucleon-nucleon,e+e− and nucleus-nucleus collisions. The fact that the statistical
model is able to explain observed particle ratios in these experiments may simply be a result of
this assumption. We also have attempted to assess the difference between nucleus-nucleus and
nucleon-nucleon collisions, and to which extent matter is produced in the former. While there is
evidence for re-scattering processes to take place, we havenot yet definitively established that a
thermal system has been created in these collisions. A detailed study of multi-particle correla-
tions of conserved quanta is one possible way to address thisissue. Finally, we have argued that
even if we consider the parameters extracted from the fits to the statistical model as temperature
and chemical potential, the energy dependence of these parameters isnota measurement of the
phase separation line of QCD.
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