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Prediction of psychosis across protocols and risk cohorts using
automated language analysis

Cheryl M. Corcoran1,2, Facundo Carrillo3,4, Diego Fern�andez-Slezak3,4, Gillinder Bedi2,5,6, Casimir Klim2,5, Daniel C. Javitt2,5,
Carrie E. Bearden7, Guillermo A. Cecchi8

1Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 2New York State Psychiatric Institute, New York, NY, USA; 3Departamento de
Computaci�on, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; 4Instituto de Investigaci�on en Ciencias de la Computaci�on,

Universidad de Buenos Aires, Buenos Aires, Argentina; 5Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; 6Centre for Youth Mental

Health, University of Melbourne, and Orygen National Centre of Excellence in Youth Mental Health, Melbourne, Australia; 7Department of Psychiatry and Biobehavioral Sci-

ences and Psychology, University of California Los Angeles; Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA; 8Computational Biology Center - Neu-
roscience, IBM T.J. Watson Research Center, Ossining, NY, USA

Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of
language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle
disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer-based natural
language processing analyses, we previously showed that, among English-speaking clinical (e.g., ultra) high-risk youths, baseline reduction in
semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy.
Herein, we aimed to cross-validate these automated linguistic analytic methods in a second larger risk cohort, also English-speaking, and to dis-
criminate speech in psychosis from normal speech. We identified an automated machine-learning speech classifier – comprising decreased seman-
tic coherence, greater variance in that coherence, and reduced usage of possessive pronouns – that had an 83% accuracy in predicting psychosis
onset (intra-protocol), a cross-validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross-protocol), and a 72% accu-
racy in discriminating the speech of recent-onset psychosis patients from that of healthy individuals. The classifier was highly correlated with pre-
viously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods
to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger
risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the poten-
tial to improve prediction of psychosis outcome among at-risk youths and identify linguistic targets for remediation and preventive intervention.
More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry.
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Language offers a privileged view into the mind: it is the

basis by which we infer others’ thought processes, such that

disorganized language is considered to reflect disorder in

thought. Language disturbance is prevalent in schizophrenia

and is related to functional disability, given that an individual

needs to think and speak clearly in order to maintain friends

and a job1. In schizophrenia, the speaker “violates the syntacti-

cal and semantic conventions which govern language usage”,

yielding reduction in syntactic complexity (concrete speech,

poverty of content) and loss of semantic coherence, e.g. the

disruption in flow of meaning in language (derailment, tangen-

tiality)2. This language disturbance is an early core feature of

schizophrenia, evident in subtle form prior to initial psychosis

onset, in cohorts of both familial3 and clinical4-7 high-risk

youths, as assessed using clinical ratings.

Beyond clinical ratings, there has been an effort to charac-

terize early subtle language disturbances in clinical high-risk

(CHR) individuals using linguistic analysis, with the aim of

improving prediction. Bearden et al8 applied manually coded

linguistic analyses to brief speech transcripts in a CHR cohort,

finding that both semantic features (illogical thinking) and

reduction in syntactic complexity (poverty of speech) pre-

dicted psychosis onset with an accuracy of 71%, as compared

with 35% accuracy for clinical ratings. Psychosis onset was

also predicted by reduced referential cohesion, such that the

use of pronouns and comparatives (“this” or “that”) frequently

did not clearly indicate who or what was previously described.

While this manual linguistic approach appears to be superior

to clinical ratings in psychosis prediction, it depends on prede-

fined measures that may not capture other subtle language fea-

tures. Therefore, we have used automated natural language pro-

cessing methods to analyze speech in CHR cohorts. These are

probabilistic linguistic analyses based on the computer’s acquisi-

tion of vocabulary (semantics) and learning of grammar (syntax)

through machine-learning algorithms trained on very large bod-

ies of text, enabled by exponential increases in computing power,

and the flood of text that arrived with the Internet.

For semantics, a common approach is latent semantic anal-

ysis, in which a word’s meaning is learned based on its co-

occurrence with other words, inspired by theories of vocabu-

lary acquisition9,10. In this analysis, each word is assigned a

multi-dimensional semantic vector, such that the cosine be-

tween word-vectors represents the semantic similarity between

words. Grouping of successive word-vectors can be used to

estimate the semantic coherence of a narrative.

Latent semantic analysis has been applied to speech in schiz-

ophrenia, finding an association of decreased semantic coher-

ence with clinical ratings of thought disorder and functional

impairment, and with abnormal task-related activation in lan-

guage circuits11,12.
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For syntax, part-of-speech tagging is used to determine sen-

tence length and rates of usage of different parts of speech13,14.

In an earlier proof-of-principle study in a narrative-based

protocol with a small CHR cohort, we used both latent semantic

analysis and part-of-speech tagging, with machine learning, to

identify a classifier of psychosis that comprised minimum se-

mantic coherence, shortened sentence length, and a decrease in

the use of determiner pronouns (e.g., “that” or “which”) to in-

troduce dependent clauses15. These three features were corre-

lated with but outperformed clinical ratings in prediction of

psychosis.

In the present study, we applied the same automated natu-

ral language processing approach with machine learning,

including latent semantic analysis and part-of-speech tagging,

to the larger CHR prompt-based protocol speech dataset that

Bearden et al previously analyzed using manually coded lin-

guistic methods8.

We hypothesized that a classifier trained with the larger

prompt-based protocol dataset8 would be highly accurate

(�80%) in predicting psychosis onset when tested intra-

protocol as well as when retested in the narrative-based proto-

col15 (cross-protocol). We also hypothesized that the automated

and manual linguistic features derived from the training dataset

would be correlated with one another.

We further tested the ability of the classifier to discriminate

speech in adolescents with recent-onset psychosis from nor-

mal speech, as a putative early illness marker.

METHODS

Participants

Participants at the University of California Los Angeles

(UCLA) site included 59 CHR individuals. They were defined

by meeting criteria for one of three prodromal syndrome cate-

gories, as assessed by the Structured Interview for Prodromal

Syndromes/Scale of Prodromal Symptoms (SIPS/SOPS)16: a)

attenuated positive symptoms, b) brief intermittent psychotic

symptoms, or c) a substantial drop in social/role functioning

in conjunction with a schizotypal personality disorder diagno-

sis or a first-degree relative with a psychotic disorder. Of these

subjects, 19 developed a psychotic disorder within two years

(“converters”, CHR1) and 40 did not (CHR–). Transition to

psychosis was determined using the SIPS/SOPS “presence of

psychosis” criteria. Transcripts from UCLA were also available

for 16 recent-onset psychosis patients and 21 healthy individu-

als similar in demographics, recruited from local schools and

the community.

Participants at the New York City (NYC) site included 34 CHR

individuals, defined by meeting the above SIPS/SOPS criteria.

Of these subjects, five developed psychosis within 2.5 years

(CHR1) according to SIPS/SOPS criteria, and 29 did not (CHR–).

The demographic features of the two samples are presented

in Table 1. The institutional review boards at New York State Psy-

chiatric Institute/Columbia University and UCLA approved the

study, and informed consent was obtained from all participants

(parental consent with assent for minors).

Speech assay

UCLA (prompt-based protocol dataset)

Speech was elicited using Caplan’s “Story Game”, in which

participants retell and then answer questions about a story they

hear (“what do you like about it?”; “is it true?”), and then con-

struct and tell a new story17. Speech samples were transcribed

and de-identified, which means that proper nouns such as

names were substituted.

Manual linguistic analyses included administration of the

Kiddie Formal Thought Disorder Rating Scale (K-FTDS) and the

Caplan modification of the Halliday and Hassan approach to

analysis of cohesion17. The K-FTDS scores included frequency

counts of illogical thinking, loose associations, and poverty of

content. Cohesion categories included referential (pronomial,

demonstrative and comparative – “this”, “that”), conjunction

Table 1 Demographic features of the two samples

UCLA site NYC site

CHR1

(N519)

CHR–

(N540)

CTR

(N521)

FEP

(N516)

CHR1

(N55)

CHR–

(N529)

Age at baseline (years, mean6SD) 17.3 6 3.7 16.4 6 3.0 18.0 6 2.8 15.8 6 1.7a 22.2 6 3.4 21.2 6 3.6

Gender (% male) 89.5 55.0b 61.9b 68.7 80.0 65.5

Ethnicity (% Caucasian) 63.1 50.0 66.7 62.5 40.0 37.9

Parental socio-economic status

(Hollingshead index, mean6SD)

4.4 6 2.1a 4.4 6 1.7a 5.7 6 1.4 4.9 6 1.8 NA NA

Significant differences at p<0.05 level: avs. CTR, bvs. CHR1

UCLA – University of California Los Angeles, NYC – New York City, CHR1 – clinical high-risk subjects who converted to psychosis during follow-up, CHR– –

clinical high-risk subjects who did not convert to psychosis during follow-up, CTR – healthy controls, FEP – subjects with first-episode psychosis, NA – not

available
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(“and”, “but”, “because”) and unclear/ambiguous17. This data-

set was used to analyze intra-protocol prediction accuracy.

NYC (narrative-based protocol dataset)

Open-ended narrative interviews of about one hour were

obtained by interviewers trained by an expert in qualitative

research methods. Prompts queried impact of life changes

experienced, and expectations for the future18. This dataset

was used to study cross-protocol prediction accuracy.

Speech analyses

Speech pre-processing

The speech transcripts were pre-processed and prepared

for computer-based analyses. We used the Natural Language

Toolkit, which is an open source program available on the

Internet (NLTK; http://www.nltk.org). First, punctuation (e.g.,

commas, periods) was discarded, words were tokenized (iden-

tified as parts of speech), and then each transcript was parsed

into phrases, using rules of grammar in English. Words were

then converted to the roots from which they are inflected, or

lemmatized, using the NLTK WordNet lemmatizer.

The resulting pre-processed speech data yielded for each

transcript a series of lemmatized words, maintaining the origi-

nal order in which they were spoken, without punctuation and

in lower case.

Latent semantic analysis

Latent semantic analysis9,10 was used to convert each tran-

script from a series of words into a series of semantic vectors,

maintaining the original order of the transcribed text. In this

analysis, a high-dimensional semantic vector is assigned to

each word in the lexicon based on its co-occurrence with other

words in a very large corpus of text, specifically the Touch-

stone Applied Science Associates (TASA) corpus, a collection

of educational materials.

Automated analysis provides a construction of meaning in

language that resembles what the human mind does, i.e. to learn

the meaning of words in terms of prior experience with those

words in different contexts. The computer “learns” the meaning

of words computationally, by scanning a very large corpus of text

and determining the frequency of co-occurrence of each word

with every other word in the lexicon. Words that co-occur more

frequently are considered to have greater semantic similarity

(e.g., “cat”/“dog” vs. “cat”/“pencil”), and the direction of their

vectors will be more aligned. Aggregates of words (e.g., senten-

ces) have semantic vectors that are the sum of semantic vectors

for all the words they contain. Semantic coherence between

words, or between aggregates (e.g., successive sentences), can be

indexed by calculating the cosine between successive semantic

vectors (from 21.0 for incoherence to 1.0 for coherence).

As the narrative-based protocol in NYC was open-ended,

yielding mean uninterrupted responses of 130 words for CHR–

and 182 words for CHR1, there had been sufficient free speech

for analysis of semantic coherence at the sentence level in our

prior study15. However, the prompt-based study at UCLA8 led to

much briefer responses (mean uninterrupted response<20 words;

insufficient number of sentences for analysis), such that a k-

level measure of semantic coherence was used instead, which

computes word-to-word variability at “k” inter-word distances,

with k ranging from 5 to 819. As in our prior study15, we calcu-

lated typical statistical measures for each of the k-level measures

of coherence, such as mean, standard deviation, minimum,

maximum, and 90th percentile (less sensitive to outliers than the

maximum), also “normalized” or adjusted for sentence length.

Part-of-speech tagging analyses

Just as each word in every transcript was assigned a seman-

tic vector, each word was also tagged in respect to its gram-

matical function, using the POS-Tag procedures in the open-

access Natural Language Toolkit (www.nltk.org) in reference to

a hand-tagged corpus called the Penn Treebank13. For exam-

ple, the sentence “The dog is near the fence” would be tagged

as (“The”, “DT”), (“dog”, “NN”), (“is”, “VBZ”), (“near”, “IN”),

(“the”, “DT”), (“fence”, “NN”), where DT is the tag for deter-

miners, NN for nouns, VBZ for verbs, and IN for prepositions.

The Penn Treebank has thirty-six part-of-speech tags, which

include types of nouns, verbs, adjectives, adverbs, determin-

ers, prepositions and pronouns. For each transcript, we calcu-

lated the frequency of use for each grammatical function.

Machine learning classification

The machine learning algorithm classifies speech by wheth-

er it is characteristic of individuals who will develop psychosis,

as opposed to those who will not. It does this by learning the

underlying patterns in a subset of transcripts and then in an

iterative fashion, predicting the classification (psychosis or no)

in new transcripts not used during the learning phase.

The machine learning analysis was circumscribed to the

eleven speech variables that were significantly different between

CHR1 and CHR– in the UCLA cohort (nine semantic coherence

features and two syntactic elements – frequencies of compara-

tive adjectives and possessive pronouns), plus three variables

that predicted psychosis in our prior study15, including WH-

family (“which”, “what”, “whom”) determiners, pronouns and

adjectives. The list of these fourteen features used for analyses is

provided in Table 2. Each transcript had a vector comprised of

these fourteen variables.

We then performed singular value decomposition (which is

a type of factor analysis based on linear algebra) on the four-

teen features in these transcript vectors, adding the UCLA

healthy control sample data to have a better understanding of

the intrinsic structure of the speech data. We chose the top

four factors that best discriminated transcripts from CHR1 vs.

CHR–. A logistic regression model was then trained on the four

World Psychiatry 17:1 - February 2018 69

http://www.nltk.org
http://www.nltk.org


factors to classify CHR1 vs. CHR–, using an iteration of learn-

ing on a subset and prediction in left-out samples.

Cross-site validation

The same fourteen features were extracted from the NYC

data, and aligned to the UCLA features using a simple global

coordinate “Procrustean” transformation20,21, similar to spa-

tial registration in brain imaging22, that includes scaling (in

size), rotation and translation in Euclidean space. This mini-

mized the difference in covariance of the two datasets, while

maintaining the relative position among data points.

We further implemented a convex hull embedding method

used in our prior study15 to create a three-dimensional space

(the top three factors) to model the accuracy of the classifier

derived from the UCLA cohort in discriminating CHR1 from

CHR– in the transformed NYC cohort. A convex hull of a set of

points is the minimal convex polyhedron that contains them.

Correlations of text features with demographics, clinical
ratings and manual features

We tested whether the fourteen identified text features were

associated with age, gender, ethnicity (Caucasian/non-Cau-

casian) and parental socio-economic status23. We then assessed

whether these text features were correlated with clinical ratings

or with the three manually-coded linguistic measures (illogical

thought, poverty of content and referential cohesion) that pre-

dicted psychosis onset in the UCLA cohort in the earlier study8.

We calculated the canonical correlation between automated and

manual text variables, which is the correlation between two sets

of variables obtained from the same individuals.

Utility of the classifier in discriminating psychosis from
normal speech

As an independent validation, we determined the accuracy

of the CHR speech classifier in discriminating speech from the

21 healthy volunteers and 16 recent-onset psychosis patients

ascertained at UCLA, who were also administered the same

prompt-based protocol to elicit speech samples. The idea was

that healthy controls should have a speech similar to that of

CHR–, while recent-onset psychosis patients should have a

speech similar to CHR1.

RESULTS

Machine learning classification

Of the four factors in the machine learning classifier, the

first three highlighted semantic features, respectively weighted

for maximum semantic coherence, variance in semantic coher-

ence, and minimum semantic coherence, while the fourth fac-

tor was weighted for frequency of use of possessive pronouns

(Figure 1).

The accuracy of the ensemble of these four factors in classi-

fying psychosis outcome in the UCLA cohort was 83% using

the logistic regression classifier. The post-hoc analysis yielded

an area under the curve (AUC) of 0.87 in the receiver operating

characteristic (ROC) curve (Figure 2).

So, a classifier comprising decreased semantic coherence,

greater variance in that coherence, and reduced usage of pos-

sessive pronouns (“her”, “his”, “mine”, “my”, “our”, “ours”,

“their”, “your”) was highly accurate in predicting subsequent

psychosis onset.

Cross-site validation

When this UCLA machine-learning classifier was applied to

the original NYC speech data, after Procrustean transforma-

tion20,21,24, it significantly discriminated CHR with respect to

psychosis onset (p<0.05 upon label randomization), with a

true negative ratio of 0.82 (24/29) and a true positive ratio of

0.60 (3/5), that is, an overall accuracy of 0.79. With logistic

regression, the UCLA classifier yielded an AUC of 0.72 for the

transformed NYC cohort speech data (Figure 2).

In order to compare with our previous study15, we created a

three-dimensional projection of data using the top three factors

Table 2 Syntactic and semantic features used for predictive
modeling

Description Example

a. Adjective, comparative “braver”, “closer”, “cuter”

b. Possessive pronoun “her”, “his”, “mine”, “my”, “our”,

“ours”, “their”, “your”

c. WH-determiner “that”, “which”, “what”

d. WH-pronoun “that”, “what”, “which”,

“who”, “whom”

e. WH-adverb “how”, “however”, “whenever”,

“why”

f. Minimum coherence at

5-level, normalized

g. Minimum coherence at 5-level

h. 90th percentile coherence at 5-level

i. Maximum coherence at 6-level

j. Mean coherence at 7-level,

normalized

k. Standard deviation coherence

at 7-level, normalized

l. 90th percentile at 7-level

m. Standard deviation

coherence at 7-level

n. 90th percentile at 8-level

A k-level measure of semantic coherence was used, which computes word-to-

word variability at “k” inter-word distances, with k ranging from 5 to 8
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identified from the UCLA CHR speech dataset. This yielded

convex hulls that excluded 11 of 19 CHR1 in the UCLA cohort

(i.e., 8/19 false negatives) (Figure 3A), indicating that the logistic

regression classifier (with all four factors) was more accurate.

Using the same three factors from the UCLA classifier, the con-

vex hull of CHR– in NYC excluded three of five CHR1 (Figure

3B). Of note, there was substantial overlap in the convex hulls of

CHR– individuals for both the UCLA and NYC speech datasets

(Figure 3C).

Correlations with demographics, clinical ratings and
manual linguistic features

Among demographic features, age was significantly associ-

ated with three of the semantic coherence variables, specifically

the 90% order variables for 5-level (p50.002), 7-level (p50.01)

and 8-level (p50.004), suggesting increasing semantic coher-

ence with age. By contrast, there were no associations of auto-

mated text variables with gender, ethnicity, or parental socio-

economic status23.

There was no significant association between automated

analysis text features and SIPS/SOPS clinical ratings (total pos-

itive and total negative). However, the canonical correlation

between the fourteen text features identified here, and the

three manual linguistic features (illogical thought content,

poverty of content and referential cohesion) that predicted

psychosis onset in the earlier study8, was large and highly sig-

nificant, with r50.71, p<1026.

Figure 1 The four-factor University of California Los Angeles (UCLA) machine learning classifier of psychosis outcome. Factors are aggregates of
weighted syntactic (a-e) and semantic coherence (f-n) features, as listed in Table 2. The first three factors are weighted toward semantic features (max-
imum, variance and minimum), and the fourth factor is weighted toward a syntactic feature (possessive pronouns). Y axes show factor weights.

Figure 2 Receiver operating characteristics (ROC) for the University of
California Los Angeles (UCLA) clinical high-risk (CHR) classifier of
psychosis outcome as applied to the UCLA dataset (solid line) and to
the realigned New York City (NYC) dataset (dotted line). AUC – area
under the curve.
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Utility of the classifier in discriminating psychosis from
normal speech

A 72% accuracy was obtained with the logistic regression

classifier when applied to the speech dataset of healthy con-

trols and recent-onset psychosis patients at UCLA.

Singular value decomposition three-factor representation

excluded 11 of 16 recent-onset psychosis patients from the

convex hull defined by the data points of healthy volunteers,

yielding a true positive rate of 0.69 (Figure 4A). There was spa-

tial overlap between the convex hulls that contained healthy

controls and CHR– individuals (Figure 4B).

DISCUSSION

Using automated natural language processing methods with

machine learning to analyze speech in a CHR cohort, we gener-

ated a classifier comprising decreased semantic coherence, great-

er variance in that coherence, and reduced usage of possessive

pronouns which was highly accurate in predicting subsequent

psychosis onset.

This classifier had an intra-protocol accuracy of 83% in the

training dataset, and a cross-protocol accuracy of 79% when

applied to transcripts from a second independent CHR cohort

(test dataset)15, demonstrating significant transfer of predict-

ability, despite disparate methods of speech elicitation8,15. Fur-

ther, this same classifier discriminated the speech of recent-

onset psychosis patients from that of healthy individuals with

72% accuracy, suggesting that its discriminatory power was

relatively robust across illness stages, as has been found for

clinical ratings of thought disorder1,6. Finally, the predictive

automated and manual linguistic features were highly corre-

lated in the cohort, providing evidence of concurrent validity.

It has long been observed that language in schizophrenia is

characterized by a disturbance in semantic coherence, with

Kraepelin describing Sprachverwirrtheit (e.g., confused speech)25,

and Bleuler highlighting a “loosening of associations” in language

as a primary feature of schizophrenia26. Later, Andreasen opera-

tionalized decreased semantic coherence as positive thought dis-

Figure 3 Projection of the top three factors for the University of California Los Angeles (UCLA) and New York City (NYC) clinical high-risk
(CHR) cohorts. These factors were weighted for semantic coherence features. A. Convex hull of non-converters (CHR–) in UCLA, with 11 of 19
converters (CHR1) outside of the hull. B. Convex hull of CHR– in NYC, with 3 of 5 CHR1 outside the hull. C. Data in A and B (all CHR)
shown together to demonstrate extent of overlap in language properties.
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order27. Hoffman applied manual discourse analysis to tran-

scribed speech from schizophrenia patients, finding a reduction

in semantic coherence28, a finding replicated later using com-

puter-assisted discourse analysis29.

It has only been in the last decade that natural language

processing linguistic corpus-based analyses, specifically latent

semantic analysis, have been applied to language production

in schizophrenia, finding decreases in semantic coherence

that correlate with clinical ratings, functional impairment, and

task-related activation in language circuits11,12. Now, in the

two CHR studies to date, latent semantic analysis with ma-

chine learning has shown decreased semantic coherence to

predict subsequent psychosis onset.

Disturbance in syntax is also well-documented in schizo-

phrenia. Errors of pronomial reference in schizophrenia speech

were described three decades ago by Hoffman30, a finding since

replicated by other investigators using word classification/count

strategies29,31. In the present study, using part-of-speech tag-

ging, we identified decreased use of possessive pronouns as pro-

gnostic for psychosis onset, accounting for most of the weight of

the fourth factor in the classifier. This is consistent with prior

manual linguistic analysis in this same cohort, which identified

decreased referential cohesion as predictive of psychosis8, such

that the use of pronouns and comparatives (“this” or “that”) fre-

quently did not clearly indicate who or what was previously

described.

More commonly found in schizophrenia speech is a reduc-

tion in syntactic complexity27,32, typically operationalized as

shorter sentences, and most evident when open-ended narra-

tive is elicited12,30,31,33. In our prior small natural language

processing study15, we found two measures of syntactic com-

plexity – shorter sentences and reduced use of determiner pro-

nouns that introduce dependent clauses – to be both predic-

tive of psychosis and highly correlated with negative symp-

toms. In the present study, the failure of sentence length to

predict psychosis in the training dataset may be a consequence

of the brief and structured responses that were elicited (<20

mean words per response)12, as compared with prior studies

(>120 mean words/response15, �800 words/response12 and

>10 sentences/response30).

In both of our CHR studies, we have created convex hull clas-

sifications in which speech datapoints for non-converters (CHR–)

were inside the hull, while those with emergent psychosis

(CHR1) were outside. A similar convex hull was generated for

healthy controls using the CHR classifier, with recent-onset

psychosis patients largely outside the hull. Together, these find-

ings suggest that pre-psychotic and psychotic language is de-

viant from a constrained hull of relatively normal language in

respect to semantics and syntax.

As yet, this normal pattern of language, as characterized by

automated natural language processing methods, remains poor-

ly understood, including in a developmental context, as both

semantic and syntactic complexity increase in adolescence and

young adulthood34. Of note, the premise that processes underly-

ing normal language production and comprehension are rela-

tively homogeneous is supported by a body of work by Hasson,

showing alignment of brain activation time courses across nor-

mal individuals (intersubject coherence) during both listening

and speaking35.

Our finding of strong correlations between automated and

manual linguistic variables provides evidence of concurrent

validity for the natural language processing approach. Auto-

mated natural language processing methods are far more rap-

id and less expensive than manual linguistic approaches, and

Figure 4 Projection of the top three factors for University of California Los Angeles (UCLA) first-episode psychosis (FEP) patients and healthy
controls (CTR). A. Convex hull of healthy controls (CTR) with 11 of 16 FEP patients outside the hull. B. Overlap of convex hulls for FEP vs.
CTR, and converters (CHR1) vs. non-converters (CHR–).
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can be more readily adapted for research and ultimately in the

clinic.

Beyond language semantic analysis and part-of-speech tag-

ging, speech and language can also be evaluated in respect

to speech graphs36, prosody, pragmatics, metaphoricity37,

and for discourse or conversations among interlocutors. Auto-

mated natural language processing analyses have also been

used to characterize other disturbances in behavior, including

intoxication from drugs of abuse38 and Parkinson’s disease39,

such that this technology holds promise for medicine more

broadly. Finally, automated approaches can be extended to

other behavior, such as facial expressions of emotion40. Over-

all, automated speech analysis is a powerful but inexpensive

technology that can be used in psychiatry for diagnosis, prog-

nosis and estimates of treatment response.

The main limitations in the present study include sample

size, and remaining gaps in our knowledge in respect to what is

normal across development for automated linguistic variables,

and how normal and deviant language can be mapped to under-

lying neural circuits. Further, different methods of speech elici-

tation were used in the two cohorts, such that sentence-level

coherence could not be estimated for the training dataset due to

brevity of responses, requiring the use of “k-level” methods to

characterize semantic coherence, and an alignment transforma-

tion of data for cross-protocol validation. In ongoing studies, we

are using open-ended interviews to elicit free natural speech

for analysis, so that we can measure semantic coherence at the

sentence level, and better capture measures of syntactic com-

plexity.

Overall, we demonstrate the utility and validity of using

automated natural language processing methods to character-

ize subtle disturbances in semantics and syntax across stages

of psychotic disorder. This technology has the potential to

improve prediction of psychosis outcome among adolescents

and young adults at clinical high risk, and may have broader

implications for medical research and practice at large.
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