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Abstract

Constructing a broken Lefschetz fibration of S4 with a spun or twist-spun torus knot fiber

by

Ka Lun Choi

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Robion Kirby, Chair

Much work has been done on the existence and uniqueness of broken Lefschetz fibrations
such as those by Auroux et al., Gay and Kirby, Lekili, Akbulut and Karakurt, Baykur,
and Williams, but there has been a lack of explicit examples. A theorem of Gay and Kirby
suggests the existence of a broken Lefschetz fibration of S4 over S2 with a 2-knot fiber. In the
case of a spun or twist-spun torus knot, we present a procedure to construct such fibrations
explicitly. The fibrations constructed have no cusps nor Lefschetz singularities.
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Chapter 1

Introduction

1.1 Broken Lefschetz fibrations

The definition of a broken Lefschetz fibration (BLF) generalizes that of a Lefschetz fibration.
Besides Lefschetz singularities, a BLF can admit round singularities. Let X be a closed 4-
manifold and f be a map from X to S2 (or D2). Then, f is said to have a Lefschetz singularity
at a point p ∈ X if it is locally modeled by a map C2 → C given by (z, w) 7→ zw. And f
is said to have a round singularity (or a round handle) along a 1-submanifold S1 ⊂ X if it
is locally modeled by a map S1 × R3 → S1 × R given by (θ, x, y, z) 7→ (θ, x2 + y2 − z2). A
round singularity is often referred to as a fold with no cusps.

Using approximately holomorphic techniques, Auroux, Donaldson and Katzarkov [3]
showed that a closed near-symplectic 4-manifold has a singular Lefschetz pencil structure,
which provides a broken Lefschetz fibration after blowing up at the base locus of the pencil.
In [6], Gay and Kirby found that every smooth closed oriented 4-manifold is a broken achiral
Lefschetz fibration (BALF). Their 4-manifold is constructed by gluing along the open book
boundaries of some 2-handlebodies that have a BALF structure. The gluing relies on Eliash-
berg’s classification of overtwisted contact structures, and Giroux’s correspondence between
contact structures and open books. The achirality, which allows Lefschetz singularities of
nonstandard orientation, was needed to match the open books. However, Lekili [10] discov-
ered that the achiral condition is unnecessary by studying local models of a fibration via
singularity theory. In the meantime, a topological proof of the existence is given by Akbulut
and Karakurt [1]. Another existence proof is given by Baykur [4] employing Saeki’s work
[12] in the elimination of definite folds. The uniqueness of a broken Lefschetz fibration of
a 4-manifold to the 2-sphere is done by Williams [13]. More recently, Gay and Kirby [7]
[8] generalized the study of Morse functions to generic maps from a smooth manifold to
a smooth surface, known as Morse 2-functions. The existence and uniqueness of BLFs for
closed 4-manifolds is then a special case of their work. Theorem 1.1 in [6] implies that if L is
a closed surface in X with L ·L = 0, then there is a broken Lefschetz fibration from S4 to S2
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with L as a fiber. In this thesis, we explore the situation where L is a spun or a twist-spun
knot to obtain the following.

Theorem 1. A broken Lefschetz fibration of S4 over S2 with a spun or twist-spun torus knot
fiber can be constructed explicitly.

1.2 Spun knots and twist-spun knots

The definition of a spun knot was first introduced by Artin [2] where a nontrivial arc of a
1-knot is spun into a 2-knot. Let K be a knot in S3 and KS be the complement of a small
neighborhood of a point on K. Choose a smooth proper embedding f : D1 → D3 with
KS = f(D1) so that f(∂D1) ⊂ ∂D3 and f(int(D1)) ⊂ intD3. The spun knot (S4, S2

K) is
obtained by spinning (D3, f(D1)) as follows.

S4 = (S1 ×D3)
⋃

S1×S2

(D2 × S2)

S2
K = (S1 × f(D1))

⋃
S1×f(∂D1)

(D2 × f(∂D1))

In words, the spun knot S2
K is formed by first spinning KS into a cylinder and then capping

the cylinder off with two disks.
The definition of a twist-spun knot is introduced by Zeeman [14]. Here the 3-ball with the

embedded nontrivial arc rotates k times as the arc spun into a cylinder. The k-twist-spun
knot can be written as

S̃4 = (S1 ×D3) ∪ϕ (D2 × S2)

S̃2
K = (S1 × f(D1)) ∪ϕ (D2 × f(∂D1))

where ϕ : S1 × S2 → S1 × S2 is given by sending (t, (θ, x)) to (t, (θ − kt, x)) and x rep-
resents a coordinate chart on the longitude θ. Note that the map ϕ can be extended to a
diffeomorphism of S1×D3 by twisting the interior of D3 along with its boundary. Therefore,

(S1×D3)∪id (D3×S2)
1∪ϕ′−−→ (S1×D3)∪ϕ (D3×S2) gives a diffeomorphism from the standard

S4 to S̃4.

Lemma 2 (Zeeman [14]). The complement of a spun fibered knot in S4 is a bundle over S1

with fiber a 3-manifold.

We will give a brief account of how the bundle structure appears. A more detailed proof
is in section 2.1. Following the discussion earlier, we can express the complement X of S2

K

in S4 as

X = S4 \ S2
K = S1 × (D3 \KS)

⋃
D2 × (S2 \KS)
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If the knot K is fibered, there is a map σ from D3 \KS → S1 with fiber a surface F 2 whose
closure is a Seifert surface of K. Note that the boundary of F 2 is a trivial arc on ∂D3. Let
h be the monodromy of this bundle. Therefore,

X = S1 × (S1 ×h F 2)
⋃

D2 × (S1 ×h ∂F 2) = S1 ×h̃ (S1 × F 2
⋃

D2 × ∂F 2)

where h̃ is the map h extended as identity over the first S1 factor in S1× (S1×h F 2) and as
identity over the D2 factor in D2× (S1×h ∂F 2). Therefore, the 3-manifold M in the lemma

is (S1 × F 2)
⋃

(D2 × ∂F 2), and the monodromy of the bundle is h̃.
A similar statement is true for the complement of a twist-spun knot.

Lemma 3 (Zeeman [14]). The complement of a twist-spun fibered knot in S4 is a bundle
over S1 with fiber a 3-manifold.

1.3 Overview of the construction

By Lemma 2, a 4-sphere can be given an open book structure with a spun fibered knot S2
K

as its binding. Following a line of reasoning in [7], we first define a map p : S4 → S2 sending
S2
K to the north pole of the base S2. Let t ∈ S1 be a chart on the equator and x ∈ [0, 1] be

a chart on a longitude with 0 at the south pole. The complement X of S2
K is a bundle over

S1 with fiber some 3-manifold M and monodromy h̃. We can represent X as a mapping
torus S1 ×h̃ M . Choose a Morse function f on M mapping into [0, 1] with boundary fiber

∂M = S2
K at 1 and with no critical values at 0. Note that f ◦ h̃ is homotopic to f . So,

there is a Cerf diagram representing the homotopy. Define the map p on X = S1 ×h̃ M by
p(t, y) = (t, f(y)) for t ∈ [0, 2π − δ] and fit in the Cerf diagram for t ∈ [2π − δ, 2π] sending
the lower edge of the diagram to the south pole and the upper edge to the north pole.

In the case of torus knot, it turns out that we can find a Morse function f so that the
monodromy only permutes critical points within the same index class, and a Cerf diagram
consists of only folds (definite or indefinite) joining critical points of the same index at the
two sides according to the monodromy.

Then, an index 1-or 2-handle of the 3-manifold M gives rise to an indefinite fold in
[0, 2π − δ] ×M ⊂ X. The two ends match up to some critical points at the two sides of
the Cerf diagram. The monodromy determines how they are joined up inside the diagram.
Similarly, an index 0-handle gives rise to a definite fold. Since the definition of a broken
Lefschetz fibration does not allow definite folds, isotopy moves in section 3.2 are used to get
rid of them.

Note that there are two ways to glue the 2-knot to its complement because π1(Diff(S2)) ∼=
Z/2 whose non-trivial element corresponds to the Glück’s construction. But Gordon [9]
showed that for a spun or twist-spun knot, the result is still the standard 4-sphere.
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Chapter 2

The structure of the complement of a
spun 2-knot

2.1 The structure of a spun knot complement

Let K be a fibered knot in S3. There exists a fibration S3\K → S1 whose fiber is the interior
of a Seifert surface of K. Let ϕ be the monodromy of this fibration. We can think of the
embedding KS = f(D1) ⊂ D3 discussed earlier as the complement of a small enough open
ball neighborhood of a point of K in S3. By deleting this open ball from S3, we obtain a
fibration σ : D3 \KS → S1, with fiber a half-open surface F 2 whose closure is diffeomorphic
to a Seifert surface of K, and with monodromy h isotopic to ϕ when restricted to F 2. See
figure2.1 for an example of a trefoil knot K where F 2 is a half-open surface which contains
the thickened arc but not the thinner arc.

D3 F2

Figure 2.1: A nontrivial arc of the trefoil K embedded in D3
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Lemma 2 (Zeeman [14]). The spun knot complement X4 = S4 \ S2
K is a bundle over S1

with fiber
(S1 × F 2)

⋃
id

(D2 × ∂F 2),

where the gluing map id is the identity map on the boundary S1× ∂F 2, and its monodromy
h̃ is given by

h̃|S1×F 2 : (t, y) 7→ (t, h(y))

h̃|D2×∂F 2 : ((r, t), y) 7→ ((r, t), h(y)).

Proof. The complement X4 = S4 − S2
K of the spun knot S2

K in the 4-sphere is

X4 = S1 × (D3 − f(D1))
⋃
ĩd

D2 × (S2 − f(∂D1))

where the gluing map ĩd is the identity map on the boundary S1 × (S2 − f(∂D1)).
Let σ̃ : X4 → S1 be defined as follow.

σ̃|S1
t×(D3−f(D1)) : (t, y) 7→ σ(y)

σ̃|D2
(r,t)
×(S2−f(∂D1)) : ((r, t), y) 7→ σ(y).

Recall that σ : D3 − f(D1) → S1 is a fiber bundle with page F 2 and monodromy h. Then,

it follows that σ̃ is also a fiber bundle over S1. A regular fiber F̃ 2
σ0

= σ̃−1(σ0) is given by

(σ̃|S1
t×(D3−f(D1)))

−1(σ0) = S1 × (σ|D3−f(D1))
−1(σ0) ∼= S1 × F 2

(σ̃|D2
(r,t)
×(S2−f(∂D1)))

−1(σ0) = D2 × (σ|S2−f(∂D1))
−1(σ0) ∼= D2 × ∂F 2

which are glued together via g as F̃ 2
σ0
∼= (S1 × F 2) ∪g (D2 × ∂F 2).

The fiber bundle σ : D3 − f(D1) → S1 also gives us an isotopy ρs : D3 − f(D1) →
D3 − f(D1) such that σ ◦ ρs = σ + s. So it maps a page to another page as s varies. Then
its monodromy is h = ρ2π|σ−1(0). Let ρ̃s : X4 → X4 be an isotopy on X4 defined by

ρ̃s|S1×(D3−f(D1)) : (t, y) 7→ (t, ρs(y))

ρ̃s|D2×(S2−f(∂D1)) : ((r, t), y) 7→ ((r, t), ρs(y)).

And we have σ̃ ◦ ρ̃s = σ̃ + s. Therefore, the monodromy of σ̃ is

h̃ = ρ̃2π|σ̃−1(0)

h̃|S1×F 2
0
(t, y) = (t, ρ2π|F 2

0
(y)) = (t, h(y))

h̃|D2×∂F 2
0
(t, y) = ((r, t), ρ2π|∂F 2

0
(y)) = ((r, t), h(y)).
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2.2 The structure of a twist-spun knot complement

Lemma 3 (Zeeman [14]). For k 6= 0, the k-twist-spun knot complement X4 = S̃4 \ S̃2
K is a

bundle over S1 with fiber a punctured k-fold cyclic branched covering of K. Its 3-manifold
fiber can be identified as ( k−1⋃

j=0

M3
j

/
∼
)⋃

(D2 × ∂F 2)

where M3
j = [j, j + 1]× F 2, and ∼ represents the gluing data M3

j 3 (j + 1, y) ∼ (j, h(y)) ∈
M3

j+1 for j ∈ Z/kZ, and F 2 is the half-open Seifert surface of the knot K as in section 2.1.
The monodromy of the bundle sends M3

j to M3
j−1. As a remark, for k = 0, it is the case in

lemma 2 since a 0-twist-spun-knot is a spun-knot. For k = 1, the 3-manifold fiber is a 1-fold
cyclic branded covering of K, and so its boundary is an unknotted 2-sphere.

Proof. The complement of a k-twist-spun knot is

X = S̃4 \ S̃2
K

= S1 × (D3 \ f(D1) ∪ϕ D2 × (S2 \ f(∂D1))

= S1
t × (S1

θ ×h F 2
t,θ) ∪ϕ D2

(r,t) × (S1
θ ×h ∂F 2

t,θ)

where ϕ : S1× S2 → S1× S2 is given by (t, (θ, x)) 7→ (t, (θ− kt, x)), and x is the coordinate
on a longitude.

Let σ̃ : X → S1 be defined by

σ̃|S1×(D3\f(D1)) : (t, y) 7→ σ(y)− kt
σ̃|D2×(S2\f(∂D1)) : ((r, t), (θ, x))) 7→ θ

This is a fiber bundle because it agrees with the gluing map and is locally trivial. Its fiber
above σ0 is given by

σ̃−1|S1×(D3\f(D1))(σ0) =
⋃
t∈S1

σ−1(σ0 + kt) =
⋃
t∈S1

F 2
t,σ0+kt

σ̃−1|D2×(S2\f(∂D1))(σ0) = D2
(r,t) × ∂F 2

t,σ0
.

We can define an isotopy ρ̃s : X → X by

ρ̃s|S1×(D3\f(D1)) : (t, y) 7→ (t− s, y)

ρ̃s|D2×(S2\f(∂D1) : ((r, t), (θ, x)) 7→ ((r, t− s), (θ + ks, x))

Then we have the following commutative diagram

X
ρ̃s //

σ̃
��

X

σ̃
��

S1 ψs // S1
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where ψs(θ) = θ + ks. It is because, on S1 × (D3 \ f(D1)), we have

ψs ◦ σ̃(t, y) = ψs(σ(y)− kt) = σ(y)− kt+ ks

σ̃ ◦ ρ̃s(t, y) = σ̃(t− s, y) = σ(y)− kt+ ks

and, on D2 × (S2 \ f(∂D1)), we have

ψs ◦ σ̃((r, t), (θ, x)) = ψ̃s(θ) = θ + ks

σ̃ ◦ ρ̃s((r, t), (θ, x)) = σ̃((r, t− s), (θ + ks, x)) = θ + ks

Therefore, the monodromy of this bundle is h̃ = ρ̃2π/k. That is

ρ̃2π/k|S1×(D3\f(D1))(t, y) = (t− 2π/k, y)

ρ̃2π/k|D2×(S2\f(∂D1))((r, t), (θ, x)) = ((r, t− 2π/k), (θ, x))

Now consider
⋃
t∈S1 F 2

t,σ0+kt
which is part of the fiber above σ0. Let q :

⋃
t∈S1 F 2

t,σ0+kt
→

S1
t ×h F 2

0,σ0+t
be defined by (t, y) 7→ (kt, ρ̃t(y)). It follows that

⋃
t∈S1 F 2

t,σ0+kt
is a k-fold

unbranched covering of the knot complement S1 ×h F 2 ∼= D3 \ f(D1). After gluing in
D2 × ∂F 2, the fiber is a punctured k-fold cyclic branched covering of K.

Note that we can express

⋃
t∈S1

F 2
t,σ0+kt

=
k−1⋃
j=0

⋃
t∈[2πj/k,2π(j+1)/k]

F 2
t,σ0+kt

.

Let M3
j =

⋃
t∈[2πj/k,2π(j+1)/k] F

2
t,σ0+kt

. Then the monodromy h̃ sends M3
j to M3

j−1 because

h̃(t, y) = (t− 2π/k, y). The unbranched covering can be expressed as

k−1⋃
j=0

M3
j

/
∼ ∼=

k−1⋃
j=0

[2πj/k, 2π(j + 1)/k]× F 2
/
∼

where ∼ represents the gluing data M3
j 3 (2π(j + 1)/k, y) ∼ (2πj/k, h(y)) ∈ M3

j+1 for
j ∈ Z/kZ.
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Chapter 3

Singularities

3.1 Cerf theory

Cerf [5] showed that if ft : M → I is a 1-parameter family of smooth functions such that
f0, f1 are Morse functions, then ft is Morse for all but finitely many points of t ∈ [0, 1]. A
Cerf diagram represents a map from M × I to I2 given by (t, ft) ∈ I2. On the two vertical
sides of the diagram, we label a critical value by its index. A typical Cerf diagram consists
of folds or cusps. A fold represents a 1-parameter family of critical values. A cusp occurs at
some t0 where ft0 fails to be Morse.

We will often represent an indefinite fold by a solid arc together with an arrow joining a
vanishing cycle on a regular fiber to the fold; similarly, we will often represent a definite fold
by a dotted arc together with an arrow joining a vanishing sphere to the fold, see figure 3.1.

0-h

3-h

1-h

2-h

Figure 3.1: Regular fibers above and below a fold
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A cusp may involve definite or indefinite folds. An indefinite cusp singularity has local
model R4 → R2 given by (t, x, y, z) 7→ (t, x3 − 3xt + y2 − z2) =: (t, s). The critical points
of this map form an arc x2 = t, y = 0, z = 0 in R4. The critical values form a cusp curve
4t3 = s2 in R2. It involves two indefinite folds coming together at a cusp point, see the left
diagram of figure 3.2. The other kind of cusp involves a definite and indefinite fold, see the
right diagram of figure 3.2.

1-hs

t

1-h

Figure 3.2: Cusps

Via singularity theory [7], there are three kind of homotopies that can be made to a Cerf
diagram. They are local modifications/moves, see figure 3.3:

a. (Swallowtail) For a fold, we can add to it a swallowtail.

b. (Birth) A pair of canceling folds with two cusps can be introduced.

c. (Merge) Two cusps can be merged to form two separate folds.

d. (Unmerge) A pair of canceling folds can be unmerged into two cusps.

3.2 Round handles

A round singularity in a BLF has local model S1 × R3 → S1 × R given by (θ, x, y, z) 7→
(θ, x2 + y2 − z2) =: (θ, µ) where (θ, µ) are coordinates on S1 × R. In other words, it is an
indefinite folds with two ends connected. Clearly, µ(x, y, z) = x2+y2−z2 is a Morse function
of index 1. Let Mε = µ−1((−∞, ε]) for some ε > 0. It follows that Mε is diffeomorphic to M−ε
with a 3-dimensional 1-handle attached. Therefore, a round singularity can be considered as
an addition of a round 1-handle (a S1-family of 1-handle) to the side with µ < 0. If we turn
it upside down, we can think of it as an addition of a round 2-handle to the side with µ > 0.

A round 0-handle S1×D3 can be realized as a BLF over a disk D2 as observed by David
Gay. Let us recall the construction. We first realize it as a fibration over a disk with one
definite circle as depicted at the top left corner of figure 3.4. To get rid of this, we use
the moves in section 3.1. We start by introducing two swallowtails. Then, we pass the
two definite folds over each other, which corresponds to switching the locations of the two
extrema of some Morse function. Next, we pass the two indefinite folds over each other,
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∅

1-h

0-h

2-h

1-h

(b)

(a)

0-h

1-h

1-h

2-h

0-h

2-h

1-h

2-h

1-h

(c),(d)

1-h

0-h

1-h

0-h

1-h

0-h

2-h

1-h

(c)

(d)

(c)
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Figure 3.3: Local moves in a Cerf diagram
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which corresponds to sliding the index 1 handle over the index 2 handle. Finally, we get rid
of the two swallowtails, leaving us a BLF.

0-h

∅ ∅

0-h

1-h

1-h

1-h

Figure 3.4: S1 ×D as a fibration with a definite fold

In the next section, we will need a BLF of a round 0-handle that goes around the base
n times. The case with n = 3 is shown in figure 3.5. First we introduce a swallowtail in the
innermost arc. Then we pass the two definite folds over each other. Next, we merge the two
beaks giving an indefinite circle with a sphere fiber inside. Note that the vanishing cycle here
splits the sphere fiber into two spheres at the indefinite fold, and there is a Z/2 monodromy
inherited before the merging of the peaks. Now, we can move the indefinite circle outside
picking up an extra sphere fiber. Repeating the same procedure to the definite fold with one
less turns, we arrive at a fibration with one definite fold and two indefinite circles. Finally,
we use Gay’s move to get rid of the definite circle and arrive at a BLF. The general case is
similar.
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Figure 3.5: A round 0-handle that goes around the base 3 times
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Chapter 4

BLFs of S4 with certain 2-knot fiber

4.1 A BLF of S4 with a spun trefoil knot fiber

With the same notations in section 2.1, let K be a right handed trefoil knot. By Lemma 2,
the complement X4 of the spun knot S2

K is a bundle over S1 with fiber M3 = (S1 × F 2) ∪id
(D2×∂F 2) and monodromy h̃. First we will get a handle decomposition of M3 such that the

monodromy h̃ sends an index n-th handle to another index n-th handle via a permutation.
Therefore, h̃ acts on the set of index n-th handles of M3. The handle decomposition will give
us a Morse function f on M3, and the monodromy provides a Cerf diagram which consists of
folds joining the index n-th critical points of f to that of f ◦ h̃ according to the permutation.
Since a permutation is of finite order, a fold corresponding to a critical point will run through
an orbit of the action h̃ and form a round handle. Each distinct orbit corresponds to a round
handle. To get a genuine BLF, we can get rid of the definite folds with the construction
shown in section 3.2.

Recall that F 2 is diffeomorphic to a Seifert surface of K in S3, and that the monodromy
h of the fibration S3 − K → S1 is the composition of two right-handed Dehn twists along
the two curves γ1, γ2 as depicted in figure 4.1. After an isotopy, we arrive at the surface on
the right hand side.

γ
1

γ
2

γ
1

γ
2

γ
1

γ
2

Figure 4.1: An isotopy of the Seifert surface of a right handed trefoil
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The last diagram provides a handle decomposition of F 2 where we consider the vertical
and horizontal flaps as 0-handles and the connecting bands as 1-handles. Let H,V be
diffeomorphisms of F 2 induced by the ambient isotopies σH , σV respectively, see figure 4.2.
The diffeomorphism H is generated by the isotopy σH that slides all vertical flaps along
the boundaries of the horizontal flaps counterclockwise until each vertical flap arrives at
its adjacent flap, and similarly for V but for the horizontal flaps. Let G = 〈H, V 〉. By
inspection, we see that HV = V H, and so G is abelian. The action of HV on the co-cores
of the 1-handles is shown in figure 4.2.

HV

HV(α)

αβγ

μ λ κ HV(γ) (β)

(κ) (μ) (λ)HV HV HV

HV

Hσ

Vσ

Figure 4.2: The action of HV on F 2

Lemma 4. The monodromy h is isotopic to HV .

Proof. We will see first how the two Dehn twists τγ1 , τγ2 acts on the co-core α. Divide the
boundary of F 2 at the endpoints of the co-cores of the 1-handles to form twelve arcs. Let r be
an isotopy of F 2 that moves a small neighborhood of the boundary sending counterclockwise
a boundary arc to its adjacent arc. Then, as shown in figure 4.3, on a neighborhood of α,
the diffeomorphism φ := ρ ◦ h is isotopic to HV where ρ = r2. By a similar diagram, on a
neighborhood of κ, the diffeomorphism φ := ρ ◦ h is isotopic to HV .

Let γ3 = τγ2(γ1). In the theory of mapping class group, we know that τg(γ) = gτγg
−1

for an element g in the mapping class group of the surface F 2. Observe that ττγ2 (γ1)τγ2 =
τγ2τγ1τ

−1
γ2
τγ2 =⇒ τγ3τγ2 = τγ2τγ1 . Therefore,

H−1τγ2τγ1H = H−1τγ2HH
−1τγ1H = τH−1(γ2)τH−1(γ1) = τγ3τγ2 = τγ2τγ1 .

That is H commutes with h = τγ2τγ1 .
Let η be one of the co-cores, we can use a diffeomorphism D ∈ 〈H〉 to move it to the

location of α or κ where the action of φ is known from above. Since the monodromy h = τγ2τγ1
commutes with D, on a neighborhood of η, we see that ρh = ρD−1hD = D−1ρDD−1hD =
D−1ρhD = D−1φD is isotopic to D−1HVD = HV . Note that D−1ρD = ρ because away
from a neighborhood of the boundary, ρ acts as the identity, and on a neighborhood of the
boundary, ρ and D commute. Thus, ρ ◦ h acts as HV on the 1-handles of F 2.
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γ
1

γ
2

α

τγ
1
(α)

τγ
1

τγ
2

ρ

ϕ

τγ
1
(α)τγ

2

o

ϕ(α)

Figure 4.3: The action of two Dehn twists on α

Note that the action of ρ ◦ h on the 1-handles determines the action of ρ ◦ h on the 0-
handles. Since a row of 1-handles are mapped cyclically to the next row via V , and 1-handles
in the same row are all connected to the same horizontal 0-handle, it follows that the map
ρ ◦ h acts on the horizontal 0-handles via V . A similar statement is true for the vertical
0-handles which are mapped cyclically via H.

Since h̃ acts as id×h on S1 × F 2, we want a handle decomposition of F 2 so that the
map h acts on handles of the same index by permutation. In the decomposition above, F 2

consists of five 0-handles and six 1-handles. The map φ := HV permutes the handles within
the same index class as shown diagrammatically in figure 4.4 where the 0-and 1-handles are
labeled. Table 4.1 shows the orbit of the action of φ on F 2.

ϕ

ϕ(α) ϕ(γ) ϕ(β)

ϕ(κ) ϕ(μ) ϕ(λ)

A

B

C D E

αβγ

μ λ κ

ϕ(B)

ϕ(A)

ϕ(E) ϕ(C) ϕ(D)

Figure 4.4: The monodromy of a trefoil knot
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0-handles {A→ B}, {C → D → E}
1-handles {α→ µ→ β → κ→ γ → λ}

Table 4.1: The orbits of the action of φ on F 2

Next, we will get a handle decomposition of the 3-manifold fiber M3 = (S1 × F 2) ∪id
(D2 × ∂F 2). Note that ∂F 2 is actually a trivial open arc, so D2 × ∂F 2 can be considered as
a 3-dimensional 2-handle.

Let us focus on the piece S1 × F 2. For a k-handle of F 2, we call (S1× k-handle) a
spun-k-handle of F 2.

Lemma 5. A spun-0-handle of F 2 can be represented as a solid torus. A spun-1-handle of F 2

can be represented as a (3-dimensional) 1-handle together with a (3-dimensional) 2-handle
that goes over the 1-handle twice and algebraically zero times.

Proof. It is clear that a spun-0-handle is a solid torus. For a spun-1-handle, consider fig-
ure 4.5. Since S1× 1-handle is equivalent to (S1 × I) × I which is a thickened annulus, we
can split the annulus into two pieces as shown in the diagram. Then, the piece with solid
line boundaries at the two ends becomes a 1-handle while the other piece becomes a 2-handle
which goes over the 1-handle twice.

✕ I = +✕ I ✕ I

2-handle 1-handle

Figure 4.5: A spun-1-handle as a 3-dimensional 1-handle together with a 2-handle

In our construction, we may look at this in a slightly different way. In our handle
decomposition of F 2, a 1-handle always connects to some 0-handles. Let us consider how
the spun version of this looks like. This is shown in figure 4.6. The diagram on the left is
a thickened strip with its front and back identified. It represents a spun-1-handle, and the
two thickened disks represents the two spun-0-handles. Note that the 2-handle goes over the
1-handle twice; once on the front side and once on the back. It is not hard to see that the
diagram in the middle is equivalent to the one on the left. We may also represent this by
the diagram on the right where the surface is thickened, and the labeled ends are identified.

From this and by figure 4.4, we can construct S1 × F 2 as shown in figure 4.7. Note that
there are two horizontal and three vertical solid tori, and that each 2-handle goes around a
horizontal and a vertical tori.
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✕ I

(x,0)~(x,1)

= =

X

X Y

Y

Figure 4.6: Equivalent views of a spun-1-handle

Figure 4.7: A handlebody diagram of S1 × F 2

Now we can give an explicit description of the BLF of X4 → S2. Its base diagram is
shown in figure 4.8 with the south pole at the center of the round 0-handles. Recall that
the monodromy h̃ of the bundle X4 → S1 is id×h on S1 × F 2 ⊂ M3. So the action on a
k-handle of F 2 carries through to the corresponding spun-k-handle of F 2. From table 4.1,
since there are two orbits for the action on the spun-0-handles of F 2, we will have two round
0-and 1-handle pairs going around the south pole two and three times respectively. The
round 0-handles can be replaced by the construction in section 3.2. For the spun-1-handles
of F 2, each gives rise to a round 1-and 2-handle pair going around the base six times. The
remaining piece D2 × ∂F 2 ⊂ M3 gives rise to a round 2-handle going around once because
the monodromy φ on ∂F 2 is isotopic to the identity. The diagrams in figure 4.9 show the
fibers above some regions of the BLF where a subscript k indicates the k-th turn of a round
handle.
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round 0-handles

1-h

1-h

1-h
6

2-h

2-h

6

RH

RV

RI

RII

Figure 4.8: A base diagram of a BLF of X4
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RH2 1-h

1-hRI1 1-hRI61-hRI2

RV1 1-h RV2 1-h RV3 1-h

RH1 1-h

2-hRII1 2-hRII2 2-hRII6

Figure 4.9: Regular fibers between various turns of the round handles RH,RV,RI,RII
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4.2 A BLF of S4 with a twist-spun trefoil knot fiber

By Lemma 3, the complement X4 of the twist-spun knot S̃2
K is a bundle over S1 with fiber

a 3-manifold ( k−1⋃
j=0

M3
j

/
∼
)⋃

(D2 × ∂F 2)

where M3
j = [j, j + 1]× F 2, and ∼ represents the gluing data M3

j 3 (j + 1, y) ∼ (j, h(y)) ∈
M3

j+1 for j ∈ Z/kZ
Using the handle decomposition of F 2 in section 4.1, M3

j can be given a handle decom-
position as shown in figure 4.10. Note that the labels in the diagram indicate how M3

j is
connected to M3

j±1, and how the two handles run between M3
j and M3

j±1. The labels with
subscripts j in M3

j = [j, j+1]×F 2 correspond the the side j×F 2. Note also that if we made
the identifications Aj ∼ Bj+1, Bj ∼ Aj+1, Cj ∼ Dj+1, Dj ∼ Ej+1, Ej ∼ Cj+1, this would be
exactly the handlebody of S1 × F 2 in figure 4.7.

Bj+1

Aj+1

Aj

Bj

Cj Dj E j

Dj+1 E j+1 Cj+1

Figure 4.10: A handle decomposition of M3
j

Now, suppose we are constructing a k-twist-spun trefoil knot. Since the monodromy
sends M3

j to M3
j−1 and has order k, it follows that each index n-th handle of M3

1 gives rise
to a round n-handle that goes around the base k-times. Finally, we add the piece D2× ∂F 2

which corresponds to adding a round 2-handle going around the base once.
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4.3 A BLF of S4 with a spun or twist-spun torus knot

fiber

Definition 6. For relatively prime positive integers p, q, we define a (p, q)-torus knot to be
the boundary of an embedded surface Lp,q in S3 with monodromy h, and they are determined
inductively by the following procedure.

Start with a positive Hopf band (or a negative Hopf band throughout for the opposite
chirality) and plumb it with another one to obtain L2,3 as in figure 4.11. The horizontal
flaps should be understood to be above the page, and the vertical flaps to be below the page
so that the horizontal ones are perpendicular to the vertical ones. Here, plumbing means
that we choose an arc on each Hopf band and identify a small neighborhood of one to the
other one transversely. The second row of the diagram shows an intermediate step of the
plumbing procedure. To get L2,3, we slide the band connected at b to a passing c along the
boundary of the surface. Note that L2,3 is a Seifert surface of the right handed trefoil. To
obtain the monodromy, we first extend the monodromy of each plumbed Hopf band to its
complement by identity and compose them. So, the monodromy of L2,3 is the composition
of the two positive Dehn twists. Since plumbing a Hopf band amounts to connect-summing
a 3-sphere, it follows that the boundary of the resulting surface is still a fiber knot in S3.
Now plumb a Hopf band to the leftmost vertical band of L2,3 to obtain L2,4. Repeat this
process to get L2,q.

+ =

+ =

= =

b

a

c

Figure 4.11: Plumbing two positive Hopf bands

To obtain L3,q, we first plumb a Hopf band to L2,q along an arc on the lower-right vertical
band of L2,q. Then, plumb another Hopf band to it along an arc on the next vertical band.
Repeat that until we obtain a new complete row of bands. And each plumbed Hopf band
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changes the monodromy by composing it with an extra Dehn twist. An example of (3, 4)-
torus knot is shown in figure 4.12.

To obtain Lp,q, we repeat the above procedure to add as many rows as necessary. By a
theorem in [11], Lp,q is indeed a Seifert surface of a (p, q)-torus knot.

4.4 Main construction

Theorem 1. A broken Lefschetz fibration of S4 over S2 with a spun or twist-spun torus
knot fiber can be constructed explicitly.

Proof. From our definition, it is clear that the monodromy h of a (p, q)-torus knot Kp,q is a
product of (p − 1)(q − 1) non-separating Dehn twists. To build a BLF of its complement,
we want to understand how the monodromy h acts on the Seifert surface Lp,q. Follow the
notations for the case of a trefoil knot in lemma 4, we have the following.

Lemma 7. The monodromy h is isotopic to HV .

Proof of Lemma 7. We will see first how the Dehn twists act on the arc α0,0, see figure 4.13
where τ1st row = τγ0,q−1 . . . τγ0,0 and τ2nd row = τγ1,q−1 . . . τγ1,0 . Note that the other curves γi,j
with i > 1 are disjoint from τ2nd rowτ1st row(α0,0). Therefore, φ := ρ ◦ h is isotopic to HV on
a neighborhood of α0,0. A similar diagram shows that φ := ρ ◦ h is isotopic to HV on αi,0
for i ∈ Zp.

Let β0 := τγ0,q−1 . . . τγ0,1(γ0,0) and ξ = τγ0,q−1 . . . τγ0,1 . Observe that

τβ0τγ0,q−1 . . . τγ0,1 = τξ(γ0,0)τξ

= τξτγ0,0τ
−1
ξ τξ

= τξτγ0,0 .

= τ1st row

Therefore,

H−1τ1st rowH = H−1τγ0,q−1 . . . τγ0,0H

= H−1τγ0,q−1H . . .H−1τγ0,0H

= τH−1(γ0,q−1)τH−1(γ0,q−2) . . . τH−1(γ0,0)

= τβ0τγ0,q−1 . . . τγ0,1
= τ1st row.

That is H commutes with τ1st row. A similar computation shows that H commutes with
τk-th row. Therefore, H commutes with τ(k+1)-th rowτk-th row. The rest of the argument follows
as in lemma 4.
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+ =

+ =

+ =

= =

+ =

Figure 4.12: Constructing a Seifert surface of a (3,4)-torus knot
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γ
0,0

q

p

τ
1st row

γ
1,0

τ
2nd row

ϕ
ϕ(α)

ρ

α0,0

Figure 4.13: The action of τ2nd rowτ1st row on the arc α0,0
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We can consider the horizontal and vertical flaps as the 0-handles and the connecting
bands as 1-handles. Then the action of φ := HV permutes the handles within the same
the index class. The graphs in figure 4.14 show how the map φ sends the 0-and 1-handles.

ϕ

q

p ϕ(0,0) 

(0,0)

Figure 4.14: The monodromy of a (p, q)-torus knot

If we label the 1-handles by (m,n) ∈ Zp × Zq, then φ(m,n) = (m + 1, n − 1) which has
order pq since p, q are coprime. Also φ sends the m-th row to the (m + 1)-th row because
φ({(m,n) | n ∈ Zq}) = {(m + 1, n) | n ∈ Zq}; similarly, φ sends the n-th column to the
(n − 1)-th column. So, there are an orbit of length p for the horizontal 0-handles and an
orbit of length q for the vertical 0-handles under the action φ.

With this information, we can construct a BLF of the complement Xp,q of Kp,q. The orbits
of the spun-0-handles gives rise to two round 0-and 1-handle pairs going around the south
pole p and q times respectively. The round 0-handles can be replaced by the construction
in section 3.2. The orbit of the spun-1-handles gives rise to a round 1-and 2-handle pair
RI,RII going around the base pq times. Finally, we add a round 2-handle corresponding
to the piece D2 × ∂F 2

p,q where F 2
p,q is the half-open Seifert surface of Kp,q as discussed in

section 2.1.
Let us describe a regular fiber after each turn of a round-handle as we go from the south

pole to the north. After adding the round 0-handles around the south pole, the fibers are
p + q disjoint spheres. The k-th turn of RH corresponds to changing the k-th “horizontal”
sphere into a torus. Therefore, a regular fiber after adding RH and RV consists of p + q
disjoint tori. The k-th turn of RI corresponds to joining the π1 ◦ φk(0, 0) horizontal torus
with the π2 ◦φk(0, 0) vertical torus. A regular fiber after adding RII is shown in figure 4.15.

For a k-twist-spun torus knot, the construction is a similar extension to the case for a
twist-spun trefoil knot. Each index n-th handle of M3

1 gives rise to a round n-handle that
goes around the base k times.
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The k-th turn of Modification to the fiber at each turn

RH Turning the “horizontal” k-th sphere into a torus
RV Turning the “vertical” k-th sphere into a torus
RI Joining the π1 ◦ φk(0, 0) horizontal torus

with the π2 ◦ φk(0, 0) vertical torus
RII Collapsing along the vanishing cycle

that goes over the 1-handle φk(0, 0)

Table 4.2: Modification to a regular fiber after each turn

Figure 4.15: A regular fiber after adding RH,RV,RI,RII
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Chapter 5

Further questions

The construction in this thesis relies on the fiber bundle structure of a spun or twist-
spun knot and the symmetry of the Seifert surface of a torus knot. It leads to some obvious
questions.

1. How can we construct explicitly a BLF of S4 for other spun or twist-spun knot, or
other 2-knot fiber?

2. Can similar techniques be used in the construction of a BLF of S4 with a spun link
fiber?



28

Bibliography
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