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Summary 

Automatic identification of sub-structures in multi-aligned sequences is of great importance for effective and 

objective structural/functional domain annotation, phylogenetic treeing and other molecular analyses. We present a 

segmentation algorithm that optimally partitions a given multi-alignment into a set of potentially biologically 

significant blocks, or segments. This algorithm applies dynamic programming and progre~sive optimization to the 

statistical profile of a multi-alignment in order to optimally demarcate relatively homogenous sub-regions. Using 

this algorithm, a large multi-alignment of eukaryotic 16S rRNA was analyzed. Three types of sequence patterns 

were identified automatically and efficiently: shared conserved domain; shared variable motif; and rare signature 

sequence. Results were consistent with the patterns identified through independent phylogenetic and structural 

approaches. This algorithm facilitates the automation of sequence-based molecular structural and evolutionary 

analyses through statistical modeling and high performance computation. 

1. Introduction 

The coding sequences of macromolecules with complex biological functions usually contain alternating invariant 

and variable regions (Ludwig and Schleifer, 1994). The identification and characterization of these sub-molecular 

regions is important for many types of sequence-based molecular analyses, such as comparative structural 

prediction, supervised multiple sequence alignment and phylogenetic tree construction (Felsenstein, 1982; Koonin et 

al., 1998; States and Boguski, 1991). 

Pattern extraction in biologically related sequences is traditionally done by manual inspection and curation of a 

multiple alignment of these sequences, with some empirical expert knowledge or comparison heuristics. Usually, 

this process is not only time-consuming, but also often lacks strict, consistent, and formal criteria for knowledge 

discovery. Some computer tools, such as Prettybox (Westerman, 1998) and Genome Channel (Mural et al., 1999), 

have been developed to assist in such a process. However, most of the tools in fact only serve annotation or 
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visualization roles rather than doing active and globally optimized pattern recognition based on solid statistical 

reasoning (Stojanovic et al., 1999). Multiple alignment remains a major technique to unveil hidden structural details 

in the orthologous gene sequences of different species. In recent years, multiple alignments in publicly available 

databases (e.g. RDP, release 7.0 (Maidak et al., 1999)) have grown dramatically in size and complexity, which 

makes empirical pattern extraction from the entire alignment difficult and not even appropriate given the diversity of 

sequences. More sensitive, consistent and efficient methods, based on formal information retrieval rules and feature 

definitions, are needed to meet this challenge. 

To develop a formal description of sub-molecular regions potentially having unique and stable property in a gene 

sequence, we hypothesized the following: a sub-molecular entity with distinguishable structural, functional or 

evolutionary properties may possess unique statistical features in a multi-alignment. Since a gene usually contains 

multiple well preserved domains and is interspersed with less stable or even random sequences, domain specific 

statistical features are expected to exhibit discontinuities at the boundaries between different regions and be 

relatively more uniform within a region. Here, we present a segmentation algorithm, based on dynamic 

programming and progressive optimization, that identifies such discontinuities and automatically partitions a multi­

alignment into a set of segments strictly characterized by the statistical profile of its sequence composition. Based 

on two simple profile measurements: the degree of homogeneity of character composition at each site, and the gap 

frequency therein, our algorithm successfully found from an eukaryotic 16S rRNA multi-alignment, a segmentation 

pattern consistent with the positions of evolutionarily conserved and heterogeneous regions independently 

determined through other approaches (Gutell, 1993). Quantitative analysis of the resulting segments based on the 

distribution of hamming distances of each sequence to the consensus, and associated entropies (randomness), 

supports the assumption underlying our segmentation algorithm of a nonrandom, near-quantum distribution of 

statistical features in the multi-alignment. Although still in prototype stage, we believe our algorithm to be a 

promising step toward the automation of sequence-based sub-molecular structural and evolutionary analyses. 

2. Methods and algorithms 
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A multi-alignment can be viewed as a character table that resembles the pixel matrix of a graphical image except 

that the numerical pixels are replaced by characters from a predefined vocabulary set X= {A, G, C, T (or U), -

(gap)} (we can easily generalize this setting to protein sequences by replacing the vocabulary set with an amino acid 

species set). Each column in this table represents a virtual (in case it corresponds to a gap) or an actual nucleotide 

site within the sequences being aligned. Each row represents a sequence hosted by a particular species. Analogous to 

the concepts used in image processing (Kittler and Foglein, 1984), we define a segmentS; of the multi-alignment to 

be an ordered set of consecutive columns within the multi-alignment table. The image processing based 

segmentation technique presented below, described in part in (Xing et al, 1999), combines column-wise statistical 

profile information like that used in (Gribskov et al., 1987) with a dynamic programming approach often employed 

in alignment and model-fitting algorithms (Auger and Lawrence, 1989; Gorodkin et al., 1997). 

2.1 General dynamic programming procedure for optimal segmentation 

For a given multi-alignment A and a predefined parameter k which specifies the total number of segments to be 

produced after the segmentation, associate any k-segmentation S = < S 1, ••• , Sk > on A with a segmentation score 

function: 

k 

l(S) = LFa (2.1.1) 
a=l 

where Fa is a segment-specific score function of segment a (i.e. proportion of gaps, or other measures of 

heterogeneity associated with the segment). An optimal segmentationS* can be obtained by minimizing /(S): 

s* = argminl(S) 
ISI=k 

(2.1.2) 

Since Fa is dependent on the choice of the segment a and its delimitation, we can rewrite it as F(SJ or F(la, ra), 

where Sa is the segment delimited by la as its left boundary and ra as the right one, aE <1, ... , k>. For any definition 

ofF a {>n subinterval indexed by integer 1 through N), the minimum of J(S) can be found through a dynamic 

programming procedure (Bellman, 1957) (Mottl and Muchnik, 1998) which progressively (from right to left) 

establishes the optimum right boundary profiles j 1*(i) of the segment I for each possible left boundary i, together 

with their associated partial segmentation score: 
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(2.1.3) 

This procedure will terminate when the leftmost possible boundary i=l is reached. Following is the outline of this 

procedure: 

Forl=k-1 to 1, 

Define 4 =<l,l+l, ... ,N-(k-l)-1> 

as a set of left boundaries of segment I. 

For ViE Lp~ 

Define Rf =< i + l,i + 2, ... ,N- (k -l) >as a set of right boundaries of segment I whose left boundary is i. 

For Vj E Rf.~ 

Qf(j) = F;(i,j) + <1>{+1 (2.1.4) 

<~>: ~ min(t,F.) ~ ~R(O:U>) (2.1.5) 

j 1 * (i) = ar~ IJ!\9( Ql (j))) (2.1.6) 

The prodedure terminates when /(S*) =<I>: is obtained. The time complexity of the procedure is O(kn2 G), where 

G is the cost for the calculation of Q in equation (2.1.4). To further reduce the time cost, one can spend n2 units of 

memory to store all pre-calculated F(i, j) values rather than calculating them for each cycle. Once the optimal right 

boundary profile j 1*(i) of segment I for each possible left boundary i is produced, it is easy to delimit the multi­

aligned sequences such that they form an optimal segmentation. Starting from the leftmost segment, after assigning 

its left boundary as 1, one can systematically look up in the profile to retrieve the boundaries of all the segments 

from left to right according to the following functions: 



The resulting final segmentation is: 

s· =(s~ 4,j;(1)) S 2 0;o)+t,j;{j;(l)+1)) 
... , sk0;-l +I,j;u;_l +1))). 

2.2 Objective functions for dynamic optimization 

6 

Depending on the desired features to be captured from segmentation, various types of segment-specific score 

functions F can be chosen (based on the concept of profile analysis (Gribskov et al., 1987)). We used a set of 

objective functions that measure the square error of several column-wise alignment features: 

'a 2 
F (l r ) = ~ (n gap - if gap) 

G a• a £.J 1 a ' (2.2.1) 
j=la 

1 '· where nJ"P =frequency of'-' at/" column of the multi-alignment, ngap = Lngap. 
a ra -la + 1 j=l, J 

(2.2.2) 

L - 1 '• 
wheree]. = { }nl. IIog(n]. l),n.,=frequencyof/at/"column, ea = ~e.• 

. IE -,A, G, C, U • • J, · r. -J + 1 L.J J 
a a J=la 

(2.2.3) 

2 ·lh - 1 '• 
whereh. = ~ (n.

1
) ,n.,=frequencyof/at} column, ha = ~h .. 

J L..J/e{-, A, G, C, U} ;, J, -J + 1 L.J J 
Ya a ;=Ia 

Score functions Fa, FE and FH measure the level of non-uniformity of (1) the column-wise gap frequency, (2) the 

column-wise entropy of the character distribution, and (3) the degree of character heterogeneity in each column (as 

explained in the appendix), respectively, across segment a. Using one of the score functions F as an objective 



7 

function, the dynamic programming procedure described in Section 2.1 leads to a segmentation of the multi­

alignment such that the property of interest (column-wise gap frequency, entropy, etc) is as uniform as possible 

within each segment. 

3. Hardware, software and dataset 

The segmentation prog.ram was written in C and implemented on Sun Ultra30 workstation. Statistical analyses and 

plots were done using Splus on PC. The multi-alignment used in this paper was obtained from Ribosomal Database 

Project (RDP, release 7.0) (Maidak et aL, 1999) by choosing a subset of 417 sequences out of the complete multi­

alignment of 2055 eukaryotic small subunit 16s ribosomal RNA sequences (in order to facilitate comparison with a 

smaller earlier release). The 'sub-alignment' is 6197 base-pair long. The rRNA multi-alignment provided by RDP is 

achieved by a joint effort of computer optimization and manual validation/modification. 

4. Experiments, Results and Discussions 

4.1 Segmentation 

As shown in Figure 1, a multi-alignment of 6197bp x417species, typical of a modern sequence database, is 

extremely complex and irregular. Even with a plot of the complete profile of a measure of interest, say, the gap 

frequency at each column, it is still hard to accurately identify structural details therefrom, let alone by directly 

inspecting an alignment table of this size. We performed a segmentation on this alignment using the objective 

function Fa (setting k=lOO), and superimposed the result on the gap profile plot in Figure l. Segmentation using Fa 

minimizes the sum of square errors of column-wise gap frequencies in each segment; in each resulting segment, the 

frequencies of gap occurrence in the columns therein are relatively uniform. Thus, the gap-rich and gap-rare regions 

in the multi-alignment are separated in an optimal way for a given prespecified total number of segments. 

However, Fa only captures the distribution of gaps in the multi-alignment. It is often more desirable to also 

consider the degree of homogeneity of the aligned sequences. A~ immediate alternative is to replace Fa with FE, 
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which traces the entropy change of nucleotide occurrence at columns along the multi-alignment. A segment with 

low entropy across all columns corresponds to a homogeneous fragment, and vice versa. Another choice is to use 

F H, which, as briefly explained in the appendix, also reflects the degree of sequence homogeneity (in here high 

homogeneity corresponds to high h value), but has a convenient 0-1 value range, and offers a more easily seem 

connection to the underlining gap or nucleotide frequency (see Eq. A.3). We performed segmentation using both FE 

and FH and got consistent results. For brevity, in this paper, we present and discuss only the FH and FG results (Fig. 

2). 

Since segmentation using FH (H-segmentation) reflects the fluctuation of the level of homogeneity of nucleotides 

at each site of the aligned sequences, it naturally reveals regional conservation or variation of a particular gene in 

different organisms. As - for the sake of simplicity - we did not explicitly encode the biological difference between 

gap and other nucleotide characters in FH, the resulting segments with high 7i (which implies the existence of a 

dominant character type across all rows at each column) correspond to either a segment with a predominant, rarely 

interrupted, sequence pattern, or to one unanimously dominated by gaps in all columns. We combined the results 

from cost functions F H and F G to distinguish these two cases. Thus, the average gap frequency (g) of each segment 

resulting from the H-segmentation was calculated (Fig. 2) as an auxiliary measurement in addition to h. 

4.2 Classification of segments 

For a character set of size 5 ({A, U, G, C, -}),if all types of characters occur at random in each column, g within 

a segment would be -0.2, as would h. We define three types of segments as being of particular interest: 1) highly 

homogeneous and gap-rare segment (fi ~0.8, g ::;o.2); 2) gap stretches (h ~0.8, g ~0.8); 3) heterogeneous but still 

gap-rare segment (h ::;;0.4, g ::;o.2). Notice that "heterogeneous gap stretch" is not a segment pattern existing in 

practice. In the 100 segments generated by H-segmentation on the rRNA multiple alignment, 11 belong to type 1, 31 

are type 2 and 8 type 3 (Table 1). 
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Most type 1 segments have a length of 50-1 OObp. High h suggests that different organisms share a similar 

sequence in the segment (i.e. h = 0.81 corresponds to a distribution of at least 90% of the sequences in the same 

pattern, see A.3). Low g means that the pattern is not a gap stretch but a continuous nucleotide sequence. Together 

these are strong indications of a conserved domain shared among multiple organisms. Type 2 segments cover about 

60% of the total length of the multi-alignment and range from 5 to over 500bp long. An overabundance of gaps in 

some regions of a multi-alignment is usually due to the introduction of stretches of gaps into the sequences of the 

majority species devoid of some rare patterns possessed· by a few co-aligned species in the corresponding region. 

Therefore, such segments may harbor an uncommon sequence pattern (i.e. signature pattern of some species) or 

sequences that are 'shared' in a highly interrupted fashion among species represented in the alignment. Type 3 

segments are generally very short, and their biological meaning is unclear. They may merely be the result of 

suboptimal alignment, but may also represent a novel class of sequence motifs whose exact contexts vary from 

species to species and reside at specific locations in the gene of all species. It is possible that these short and 

heterogeneous motifs may encode some special structural or functional entities present in different organisms, but 

have a lesser degree of conservation at the sequence level (probably due to alternative implementations of a common 

function in different organisms). 

Altogether, 50 of the 100 segments fall into these three types, and they cover 75.9% of the total length ofthe multi­

alignment. These are the regions that are unambiguously aligned in the multi-alignment, and do not tend to contain a 

mixture of gaps and nucleotides across different species. The remaining 50 segments have intermediate h and g 

values, and only cover a small portion of the multi-alignment. These are the regions where gaps are mixed with 

broken sequences and somehow have a uniform degree of randomness across columns. They are likely to be the 

heterogeneous regions, only present in some species, and in different forms, which makes them difficult to match 

across species in both context and position. 

4.3 Effect of granularity of segmentation 
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The granularity of the segmentation can be changed by choosing different values of k in Eq. 2.1.1-2.1.3. We 

segmented with k=25, 50, 75 and 100. The CPU time increased linearly with k as expected, at a modest rate (t = 

3.35k + 173 sec.). In general, changes in granularity did not perturb the overall pattern of segmentation on a 

significant scale. Type 2 segments are especially stable. Some rearrangements, such as split or boundary adjustment, 

did occur in a few segments as the granularity increased. These segments tended to have high n but intermediate g 

values in the coarse-grain segmentation. We found that long homogenous sequence stretches interleaved with some 

short heterogeneous fragments can be further dissected under finer granularity. The successive unfolding of finer 

structures of multi-alignment with increasing segmentation granularity suggests that finer-grain segmentation 

produces a higher resolution of the details of the sequences and is preferred if the linear increase of time-cost and 

memory demand (to store internal states in the loop) is tolerable. Nevertheless, once identified, a good portion of the 

type I and 2 segments were well preserved with changing granularity, and nearly. no type 3 segments changed their 

boundaries during further fine-grained segmentation. Therefore, with a reasonable choice of k, our segmentation can 

identity segments with potentially biologically meaningful properties with a high degree of robustness and 

consistency. 

4.4 Segmentation of a different version of multi-alignment of the same set of sequence 

Our segmentation software has undergone several upgrades after its initial development, and so has the multi­

alignment we analyzed. In addition to any changes of alignment technique implemented and applied to a given 

multi-alignment, the continuous addition of new sequences into the database also results in frequent updates of the 

multi-alignment of the same set of sequences over time. The trend is to put all available sequences of a gene into a 

single huge alignment (although the validity of such a practice is arguable). 

When we first applied our software to analysing rRNA sequences, the entire collection in RDP of eukaryotic 16s 

rRNA contained 437 sequences in a multi-alignment 4036bp long (release 6.0). The release 7.0 used in this paper 

contained 417 of the 437 sequences (others are missing for unknown reasons) plus a few thousands more (which we 

did not include), in a new multi-alignment of 6197bp for this subset (chunked from the originally ~8000bp-long 

multiple alignment of the entire sequence set, and with columns consisting entirely of gaps removed). We compared 
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the segmentation patterns of these two different versions of multi-alignment in Figure 3 (k=70 for release 6 and 

k=100 for release 7 to ensure comparable granularity). For direct comparison, segments were mapped onto the 

original rRNA sequence of the Cryptococcus neoformans ( 1805 bp ). The position and length of type 1 segments 

were consistent in both multi-alignments, except for two of the marginal type 1 segments (2nd and 7th) in version 6, 

which were either unrecognized or split into smaller strict type 1 segments in the later version. A few new type 1 

segments showed up in the later version as well. This suggests that the conserved sequence domains are stably 

captured through alignment upgrades. Although most of the type 2 segments in release 6 remain in release 7, the 

later version has significantly more/longer type 2 segments, meaning that the new multi-alignment contains more 

gap stretches. This is consistent with our previous speculation that type 2 segments are created to accommodate rare 

sequence patterns, more likely in the new release containing a much greater total number of sequences. We observed 

fewer type 3 segments in the version 7, which seems to imply that some of them were alignment artifacts in the 

older version, eliminated in the later (presumably improved) version of the multi-alignment. But this does not. 

exclude the possibility that some of them may still be special unconserved motifs, as will be discussed later. 

4.5 A close look at degree of sequence homology within a segment 

To verify that type 1 and 3 segments represent homogeneous and heterogeneous sequence segments, respectively, 

we studied the distributions of the sequence patterns within segments. To avoid the undesirable over-determination 

(and thus lack of statistical abstraction) often encountered in brute force classification of a limited number of 

samples using a high dimensional descriptor (i.e. sequence context), we performed a simple classification of 

sequences within each segment according to their hamming distances to the consensus sequence. The physical 

meaning of this distance regarding the difference between two sequences is as following: for any pair of sequences 

having distance d1 and d2, respectively, to the consensus, the number of nucleotide sites (D) they could differ 

satisfies, the following inequality: 

I d1- d2 I :5 D :51 d1 + d2 I ( 4.5.1) 

Therefore, all sequences with hamming distanced to the consensus can differ at most by min(2d, L) nucleotides, 

where L is the length of the sequences. To quantitatively measure the impurity of sequence patterns in terms of this 



I2 

distance, the entropy associated with the partition of sequences incurred by the distance is calculated, and 

normalized with the maximal possible entropy of the segment, log2L, for easy comparison of different length 

segments. 

The distributions of d of the 4I7 sequences aligned in a type I and a type 3 segment are shown in Figure 4. For 

the type I segment, the distance distribution peaks at a small d (compared to the length of the segment), and as a 

result of peaked distribution, has a relatively small normalized entropy (Table I). This suggests that a majority of the 

multi-aligned sequences differ very little within the segment, consistent with the prediction based on the h value. 

On the other hand, for a type 3 segment, either the distribution is scattered (resulting larger normalized entropy) 

or/and the peak shifts toward L, the maximal possible hamming distance for a sequence within the segment. This 

distribution revealed that most of the sequences are grossly different from one another in a type 3 segment, agreeing 

with our inference that they cover either unconserved or poorly aligned regions. 

4.6 Mapping of segments on secondary structure 

To further explore the biological implication of the three types of segments, we mapped them onto the secondary 

structure of the Cryptococcus neoformans small subunit rRNA (Gutell, I993) (Fig. 5a). Ten of the II type 1 

segments corresponded well to phylogenetically and structurally conserved regions independently identified using 

comparative analysis for higher order structures conserved among species (Gutell, 1994; Gutell eta!., I994), many 

of which are core domains forming the backbone of the molecule or involved in important secondary and tertiary 

structure interactions (Fig. 5b). Many of the most conserved nucleotide sites labeled by Gutell et. a/. were covered in 

the type 1 segments. However, some regions, such as the 5' and 3' ends of the molecule, although also labeled with 

many conserved sites, did not match type I segments. Close inspection of the original multi-alignment showed that 

the 5' end region contains frequently alternating (short) runs of gaps and sequences, which suggest that as the 

sequence collection grows bigger, more variations were revealed. Interestingly, one of the type I segments (i.d. 1.5), 

corresponds to a region labeled highly variable (Fig 5b). It is possible that this is a 'new' conserved domain that will 

be increasingly apparent as more sequence entries are considered for comparison. In contrast to type 1 segments, 

type 3 segments all correspond to short sequence patches residing at the periphery or within the variable regions. 

However, some ofthese segments are involved in the formation of the most stable thermodynamic foldings (Fig 5a, 
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indicated by thick tick marks) (Konings and Gutell, 1995), suggesting that they may be indeed functionally essential 

to the RNA molecule although contextually heterogeneous. Type 2 segments (gap stretches) mostly fall into the 

most variable regions, except at both ends of the molecule. The two runs of gaps near the 3'end of the molecule are 

about 540bp and 400bp long (notice that entire length of the molecule is 1805bp), suggesting that some species may 

contain unique signature motifs near this location that could not be aligned against each other (and thus are 

juxtaposed together to cause the long gap runs). 

In summary, although no manual mapping/cross-validation, secondary structure comparison and expert 

knowledge of phylogenetic property was involved, the information obtained through a pure statistical segmentation 

approach about the domain location and degree of conservation, was remarkably consistent with that obtained by 

human analysis. 

5. Biological applications 

The statistical-profile-based segmentation technique presented in this paper can serve as a robust, general purpose 

automatic knowledge discovery tool to analyze the structure of large, unwieldy multi-alignments containing a large 

number of sequences. Such alignments are difficult, if possible, to inspect manually. 

Unlike a simple alignment display tool such as PrettyBox (Westerman, 1998), which marks out the 'conserved 

box' simply by highlighting the nucleotides in the aligned sequences that agree with the consensus, this method 

infers all the conserved segments along with other segments using statistical properties of character composition and 

distribution based on global optimization. This process involves little artificial modeling and arbitrary 

parameterization and is extremely efficient. As updates of multi-alignments of various genes are becoming more 

frequently available and ever bigger, our method provides an important alternative to the manual approach as a fast 

and reliable domain identifier. 

One of the most important applications of the segmentation algorithm presented herein is to identify different 

types of sequence motifs (i.e. orthologous functional domains, signature motifs and non-orthologous functional 
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motifs) from aligned gene sequences. Such an application is useful for functional annotation and the design of 

organism-specific gene amplifiers. Furthermore, the results of segmentation of multi-aligned sequences can be fed 

back to the aligner for auto-readjustment of the alignment. At present, multi-alignment is best done using a hybrid 

approach involving both machine calculation and manual local readjustment (Schuler et al., 1991; States and 

Boguski, 1991 ). Algorithms can be designed to mimic such a process by iteratively incorporating segmentation 

knowledge to readjust and optimize local alignment (i.e. locally re-align all sequences in the gap-rare segments to 

improve homogeneity, or selectively adjust poorly aligned sequences in such segments using adjacent gap-rich 

segments as relaxation buffer). Another potential application of segmentation is in phylogenetic treeing. Sequence 

regions with different degrees of variability reflect evolutionary history at different scales and stages (Ludwig and 

Schleifer, 1994). It would be informative to distinguish different regions through segmentation, and use them during· 

different stages of tree construction, or constitute a proper weighting scheme for the distance measurement (Indeed, 

one of the main pitfalls of current treeing techniques is that the selection of qualified alignment sections and the 

removal of ambiguous or noisy segments are routinely done manually via eye inspection). It might be useful to 

construct multiple trees based on sequences in individual segments, and then to aggregate these trees, derived from 

different parts of the molecule. 

Before proceeding to the conclusion, we address some of the pitfalls in our algorithm. 1) Some segments may 

slightly suffer a 'boundary effect' (i.e. a long type 1 segment may contain a short patch of heterogeneous sequence 

at the boundary), which arises due to the buffering effect of the long segment with uniform target statistical measure 

that can absorb the perturbation of small variations at the boundary. 2) Some special alignment patterns, such as a 

juxtaposition of very short and alternating gap-rich (gap-rare) segments with comparable gap (nucleotide) 

frequencies, may confuse the segmentor. This pattern could be falsely determined as a single long segment because 

in term of character homogeneity, it is 'uniform' (gap is taken as one of the characters). As a result, some small 

motifs may be missed. However, these problems did not seems to seriously affect the performance of the segmentor 

and can be cured by cross-validation between results from different objective functions and by using greater 

granularity to improve resolution. 
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6. Conclusion 

We described a segmentation algorithm that can efficiently partition a multiple alignment into a set of biologically 

sensible segments based on its statistical profile using dynamic programming and progressive optimization. Using 

this algorithm, a multiple alignment can be segmented into sub-regions each with a uniform level of statistical 

measurement (i.e. gap frequency or character-homogeneity). In the performance test on a large eukaryotic I6S rRNA 

multiple alignment, our algorithm enabled automatic discovery of the following structures from the aligned 

sequences with good accuracy: I) Highly conserved motifs with a shared context among a large number of species. 

2) Unique signature motif present only in the sequences of a small number of species. 3) Motifs adapted by a large 

number of species in the same region of the molecule but displaying variable sequence context among species. This 

algorithm potentially leads to an efficient and fully automated way of extracting structural details from large 

datasets, thus facilitating faster and better signature discovery, domain annotation, multiple alignment optimization 

and high resolution phylogenetic treeing. 

Appendix: homogeneity measurement 

We used h as a homogeneity measurement of each column in equation 4.2.2 .. Here is an empirical explanation 

through a simple geometric approach: 

Regarding h, we have the following equalities: 

h = Ltex n1 

2
, where X = { -, A, G, C, U} (A .I) 

Ltexn1 =I, where n1 ~ 0 for \:fl (A.2) 

Suppose C = IXJ, A.2 defines a convex polygon in C-dimensional Euclidean space, and h corresponds to the distance 

from origin to any point in it (Fig 6). Obviously, the distance to the geometrical center {n1 = !;, V/} of the polygon 

gives hmin· In terms of character distribution in a column of multiple alignment, this means that each type of 

character contributes equally, causing maximal heterogeneity. As the point moves away from the center to any of the 
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axis, h increases monotonically until reaching an extreme point {n; = 1, n1 = 0, \fl * i}of the convex polygon, 

where h is maximized. This situation corresponds to the minimal possible heterogeneity of characters in a column: 

all character belongs to the same type 'i'. In reality, if there exist a predominant character 'i' in a column, hand n; 

has the following relationship: 

h = Lnlz = n;z + Lnzz 
IE? le?-i 

~ n;z + ( Lnz)z 
le?-i 

= n/ + (1 - n;)2 = 2n/ - 2n; + 1 

(A.3) 

As an intuitive exemplification, this means, an h score of 0.8 roughly corresponds to the case in which a 

predominant character type 'i' occurs in at least 90% of the rows for a column. 
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Table 1. Summary of three types of segments resulted from H-segmentation °. 

Segment Boundary Average Average Adjusted Peak HIL ratioc Normalized Reference 
number homogeneity gap consensus Hamming entropy id 

(a) (ha) frequency lengthb distance 

(ga) (L) 
Type 1 
2 39 .. 83 0.843 0.246 36 0 0.000 0.583 1.1 
27 988 .. 1053 0.829 0.17 55 3 0.055 0.666 1.2 
29 1060 .. 1167 0.918 0.125 95 2 0.021 0.561 1.3 
31 1326 .. 1430 0.925 0.154 90 1 0.011 0.500 1.4 
49 2063 .. 2101 0.836 0.131 34 1 0.029 0.604 1.5 
59 2596 .. 2620 0.909 0.12 22 0 0.000 0.515 1.6 
61 2627 .. 2782 0.868 0.216 122 5 0.041 0.641 1.7 
69 3557 .. 3668 0.85 0.136 99 2 0.020 0.690 1.8 
71 4081.. 4158 0.863 0.163 66 3 0.045 0.596 1.9 
80 4609 .. 4672 0.911 0.105 58 0 0.000 0.538 1.10 
86 4887 .. 4983 0.87 0.087 90 2 0.022 0.597 1.11 
Type2 
17 531.. 767 0.983 0.991 237 2.1 
33- 1444 .. 1542 0.879 0.936 

245 2.2 d 
-34" 1543 .. 1688 0.988 0.994 
55 2317 .. 2523 0.944 0.971 207 2.3 
68 3115 .. 3556 0.987 0.994 442 2.4 
70 3669 .. 4080 0.994 0.959 412 2.5 
73 4180 .. 4399 0.964 0.981 220 2.6 
94- 5193 .. 5593 0.987 0.993 

538 2.7 d 
-95 5594 .. 5730 0.992 0.996 
97 5739 .. 6157 0.995 0.998 419 2.8 
Other 21 segments 5~128 

Type3 
6 199 .. 207 0.35 0.08 9 7 0.778 0.664 3.1 
16 522 .. 530 0.325 0.206 8 7 0.875 0.324 3.2 
47 1976 .. 1993 0.345 0.215 17 14 0.824 0.531 3.3 
58 2591.. 2595 0.376 0.002 5 2&3 0.500 0.883 3.4 
60 2621 .. 2626 0.426 0.001 6 4 0.667 0.902 3.5 
64 2816 .. 2823 0.33 0.19 7 5 0.714 0.734 3.7 
81 4673 .. 4678 0.361 0.022 6 5 0.833 0.802 3.8 
92 5119 .. 5129 0.35 0.27 8 7 0.875 0.521 3.9 

a Shaded row marks the marginal segments, those that are close to the respective thresholds of ha and g a· 

b For type 1 and 3 segment, the consensus excludes the gaps and thus has a shorter length compared to the 
segment originally from the multi-alignment. This is to avoid including gap counts in the calculation of 
hamming distance from each sequence to the consensus. L of types 2 segments is the original length. 

c The ratio between the peak hamming distance and L. 
d The two adjacent gap segments (with slightly different statistics) are fused together. 
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Figure 1. Segmentation of the rRNA multi-alignment using F c as objective function. The gray plot at the 
background is the actual gap frequency profile of the multi-alignment. The black plot represents the g 
(average gap frequency) of each of the resulting I 00 segments. 
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Figure 2. Segmentation result using FH as objective function (k=IOO). The red line is the h(average degree 
of homogeneity) of consecutive segments along the multi-alignment, black line is the g (average gap 
frequency) in these segments. 
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Figure 3. Comparison of H-segmentation results for two different versions of multi-alignments of a same 
set of rRNA sequences. Three types of segments, type 1 (red bar for strict and magenta bar for marginal 
segment), type 2 (blue down triangle for major gaps segments (>200bp) and blue I for short ones (<150bp)), 
and type 3 (green up triangle), were marked on the sequence of Cryptococcus neoformans small subunit 
rRNA (1806bp, a member of the aligned sequence set) at the original locations where they reside. 
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Figure 4. The distribution of the hamming distances of each sequence to the consensus in two types of 
segments. Upper: Distance distribution for a type 3 segment; lower: Distance distribution for a type 1 
segment. 
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Figure 5. The mapping of the type I (red and magenta shade), type 2 (blue arrows, only for major 
segmens) and type 3 (greed shade) segments identified by H-segmentation to the secondary structure of the 
Cryptococcus neoformans small subunit rRNA. a. Full structure, with the most stable thermodynamic 
foldings indicated by thick tick marks. b. A structure diagram with phylogenetically conserved and variable 
structure labeled out. Both structure diagrams were originally from (Gutell, 1993). 

Figure 6. Geometric illustration of the character homogeneity function A. I in a 3-dimemtional EuClidean 
space, in which each dimension represent a character type 'n/. The shaded area corresponds to the convex 
polygon defined by function A.2. The lengths of the red arrows correspond to specific values of h defined 
in A.l. 
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