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The dissertation presents results on control and state estimation for a physics-based

“Stefan” model of phase change. Design procedures, theoretical analysis, applications to industrial

processes, and experimental validation are addressed. The Stefan model describes a time-

evolution of a material’s temperature profile during melting/solidification phenomena along with

the dynamics of the liquid-solid interface position. The mathematical description comprises a

parabolic Partial Differential Equation (PDE), defined on a time-varying spatial domain, whose

boundary position dynamics are governed by an Ordinary Differential Equation (ODE) driven

by the PDE’s state. None of the existing systematic and theoretical control are applicable to this
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problem due to the system’s geometric nonlinearity as well as the infinite dimensionality. We

design a boundary heat control to promote the melting so that the liquid-solid interface position

is driven to a desired setpoint position. Our design is an extension of the “PDE backstepping”

method to the Stefan system. The closed-loop stability is proven by Lyapunov analysis. The

constraints of the temperature state and the heat input are guaranteed by virtue of the maximum

principle. Analogous results for the state estimation are also developed to estimate the entire

temperature profile from available measurements of the surface temperature and the liquid-solid

interface position.

The latter half of the dissertation is devoted to the application of the designed method to

several practical problems. First, we introduce a Stefan model of “sea ice”, which has been studied

intensively due to the recent rapid melting of sea ice. We verify the desired robust performance

of the designed estimator in a numerical simulation, which incorporates further complexity in

the model and uncertainties. Second, we focus on “lithium-ion batteries”, which have become

ubiquitous in electronic devices, such as laptops and smartphones, and in electric vehicles. The

model is described by a Stefan system of the lithium-ion concentration due to a solid-solid phase

change in the electrodes during the charging and discharging cycles. Our estimator achieves

accurate State-of-Charge estimation in simulation. Third, we apply the designed control method

to “polymer 3D-printing” via screw extrusion for the sake of stabilizing the filament production

under a fast printing, by extending the design to deal with the convection and heat loss. Fourth,

we focus on “metal 3D-printing” which has a high impact on products and supply chains in

industries. The proposed control method is applied for generating the desired shape of the melt

pool, which shows the robust performance with respect to a radiation effect and sensor noise in

numerical study. Finally, we conduct experiments of melting paraffin wax as an energy storage

material, which shows the successful performance of our PDE-based control algorithm.
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Chapter 1

Phase Change Model–Stefan Problem

1.1 Introduction and Brief History

The Stefan problem is a well-known moving boundary problem modelling the thermody-

namic liquid-solid phase change phenomena. It is named after an Austrian physicist Josef Stefan,

who is one of the most distinguished and influential physicist in 19th century for his numerous

contributions to thermodynamics and heat transfer from the experimental perspective. Perhaps

the name is more recognized for Stefan-Bolzman’s law, which revealed that the materials with

its temperature T in absolute unit emits a radiative heat transfer which is proportional to T 4,

through Stefan’s experimental work and his student Ludwig Boltzman’s work on the theoretical

foundation.

After the publication of the thermal radiations law, Stefan started to focus on the thickness

evolution of polar ice caps motivated by observed data of ice growth and air temperature acquired

by British and German explorers during their expeditions. A long time before that, the phase

change model by moving boundaries has been studied by Joseph Black in 1762, and Franz

Neumann developed the solution in his lectures around 1860. However, Neumann’s result has not

been published until Weber’s paper in 1901. Stefan developed his analysis on the solution of ice
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growth and studied the correspondence with the empirical data, which was published in 1891.

Since then, the model has been known as ”Stefan problem”, and has been studied widely by later

researchers from middle of 1900s [33].

While there are several extended models on the phase change by incorporating additional

factors, throughout this chapter we introduce the one-dimensional one-phase Stefan problem by

assuming

• the temperature profile is uniformly distributed along a cross-sectional area

• the solid phase temperature is uniformly distributed at the melting temperature

• there is no material’s convection

• the pressure field around the material is static and uniform

• the focused material is completely pure

In later chapters, we start to relax the first three assumptions one by one.

1.2 Physical Modelling

Consider a pure one-component material of length L in one dimension as depicted in

Fig. 1.1. The dynamics of the process depends strongly on the evolution in time of the moving

interface (here reduced to a point) at which phase transition from liquid to solid (or equivalently,

in the reverse direction) occurs. Therefore, the melting or solidification mechanism that takes

place in the physical domain [0,L] induces the existence of two complementary time-varying

sub-domains, namely, [0,s(t)] occupied by the liquid phase, and [s(t),L] by the solid phase.

Assuming a temperature profile uniformly equivalent to the melting temperature in the solid

phase, a dynamical model associated with the melting phenomenon (see Fig. 1.1) involves only
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Figure 1.1: Schematic of one-dimensional one-phase Stefan problem. The temperature profile
in the solid phase is assumed to be a uniform melting temperature.

the thermal behavior of the liquid phase. Considering a melting material with a density ρ and

heat capacity Cp, the local energy conservation law is given by

ρCpTt(x, t) =−qx(x, t), x ∈ (0,s(t)) (1.1)

where q(x, t) is a heat flux profile and T (x, t) is a temperature profile. Moreover, the local energy

balance at the position of the liquid-solid interface x = s(t) involved with the latent heat leads to

the dynamics of the moving boundary

ρ∆H∗ṡ(t) = q(s(t), t). (1.2)
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At a fundamental level, the thermal conduction for a melting component obeys the well known

Fourier’s Law

q(x, t) =−kTx(x, t), x ∈ [0,s(t)] (1.3)

where k is the thermal conductivity. Therefore, the time evolution of the temperature profile in the

material’s domain can be obtained by combining the energy conservation (1.1) and the thermal

condition (1.3), which leads to the following heat equation of the liquid phase

Tt(x, t) =αTxx(x, t), x ∈ (0,s(t)), (1.4)

where α := k
ρCp

. At the boundary x = 0, there are two cases of how to impose the boundary

condition. One is that a heat flux enters as an external source which can be manipulated as a

controlled variable, denoted as qc(t) and the boundary condition is derived using the thermal

conduction law (1.3). The other case is that the boundary temperature can be directly controlled

as Tc(t). Hence, the boundary condition at x = 0 is either

−kTx(0, t) =qc(t), (1.5)

or

T (0, t) = Tc(t). (1.6)

The boundary condition prescribed at x = s(t) is involved with the melting temperature which

is the constant threshold level to cause the phase change from the solid to liquid under a static
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pressure, i.e.,

T (s(t), t) =Tm. (1.7)

Other than the spacial boundary conditions, the time initial conditions needs to be defined as an

arbitral spatial function for the temperature profile and a positive valued interface position as

T (x,0) = T0(x), s(0) = s0. (1.8)

If we don’t care about the dynamics of the moving boundary s(t), PDE model (1.4)–(1.8) are

somewhat simple linear system. However, the tricky property of the Stefan problem lies in the

dynamics of the moving boundary s(t). By combining the latent heat energy balance (1.2) and the

thermal conduction (1.3), one can derive the so called ”Stefan condition” defined as the following

nonlinear ODE

ṡ(t) =−βTx(s(t), t), (1.9)

where β := k
ρ∆H∗ and ∆H∗ denotes the latent heat of fusion. Equation (1.9) expresses the velocity

of the liquid-solid moving interface.

As we have presented, there are two problems to describe the one phase Stefan problem

as a nonlinearly coupled PDE-ODE system depending on how to impose the boundary condition

at x = 0. Hereafter, we name each problem as PI (Problem I) and PII (Problem II) as follows.
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PI : Neumann Boundary Actuation

Tt(x, t) =αTxx(x, t), x ∈ (0,s(t)), (1.10)

−kTx(0, t) =qc(t), (1.11)

T (s(t), t) =Tm, (1.12)

ṡ(t) =−βTx(s(t), t), (1.13)

PII : Dirichlet Boundary Actuation

Tt =αTxx(x, t), x ∈ (0,s(t)), (1.14)

T (0, t) =Tc(t), (1.15)

T (s(t), t) =Tm, (1.16)

ṡ(t) =−βTx(s(t), t) (1.17)

In addition, for each problem setup, there are two types of mathematical problem of how

to obtain the pair of solution as follows.

Direct Stefan Problem : Given qc(t) in PI (or Tc(t) in PII) as a prescribed function in

time, solve (T (x, t),s(t)).

Inverse Stefan Problem : Given s(t) as a prescribed function in time, solve T (x, t) and

qc(t) in PI (or Tc(t) in PII).

Since we have established the model (1.10)–(1.13) in PI (or (1.14)–(1.17) in PII) based on

the situation that the domain x ∈ [0,s(t)] is occupied by the liquid phase, to maintain a physical

validity of the homogeneous melting material, the Stefan problem exhibits a important property
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that is discussed in the following remark.

Remark 1 The formulation of the Stefan problem is a reasonable model only if the following

condition holds:

T (x, t)≥Tm, ∀x ∈ [0,s(t)], ∀t ≥ 0, (1.18)

0 < s(t)<L, ∀t ≥ 0. (1.19)

Hence, the model is valid if and only if the liquid temperature is greater than the melting

temperature, and the liquid-solid interface remains inside the material’s domain. One of the

conditions yields the following monotonicity of the moving interface.

Lemma 1 If the model validity condition (1.18) holds, then the moving interface is monotonically

nondecreasing, i.e.,

ṡ(t)≥0, for all t ≥ 0. (1.20)

Lemma 1 is established using Hopf’s Lemma and a detailed proof can be found in [60].

To satisfy the conditions (1.18) and (1.19), it is plausible to impose the following assumption on

the initial values.

Assumption 1 The initial interface position satisfies s0 > 0 and the Lipschitz continuity of T0(x)

holds, i.e.,

0≤ T0(x)−Tm ≤ H(s0− x). (1.21)

Assumption 1 is physically reasonable and consistent with Remark 1. Hereafter, we

always impose Assumption 1 without explicitly stating.
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1.3 Explicit Solutions

Neumann solution by a constant boundary temperature

A well known analytical solution of the Stefan problem is so called ”Neumann solution”,

named after the discovery of the solution by F. Neumann around 1860 [33]. The name might

be a kind of misleading because the solution is equivalent to the one under a constant Dirichlet

boundary condition (not Neumann boundary condition) at x = 0 as a direct Stefan problem in PII.

Thus, the condition is prescribed as

Tc(t) = Tb, (1.22)

in PII. The Neumann solution to the equations (1.14)–(1.17) with the above condition is given by

T (x, t) =Tb−
Tb−Tm

erf(λ)
erf
(

x
2
√

αt

)
, (1.23)

s(t) =2λ
√

αt, (1.24)

where erf(·) is the error function defined by

erf(x) =
2√
π

∫ x

0
e−t2

dt. (1.25)

We can see that the pair of the solution (1.23) and (1.24) satisfy the model equation (1.14)–(1.17)

with the implicit parameter λ which is a solution to the following nonlinear algebraic equation

√
πλerf(λ)eλ2

= Ste, (1.26)
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where Ste is so called ”Stefan number” defined by

Ste =
Cp

∆H∗
(Tb−Tm). (1.27)

Since the boundary temperature condition (1.22) is reasonable and simple, this pair of solution

(1.23) and (1.24) have been very popular among thermal and chemical engineers. Once we

consider the inverse Stefan problem of PI by prescribing the interface solution as (1.24), the

boundary heat flux is obtained as

qc(t) =
k(Tb−Tm)

erf(λ)
√

πα

1√
t
. (1.28)

In other words, for the boundary temperature T (0, t) to maintain a constant value, the boundary

heat flux qc(t) must be a decaying function in time which is proportional to 1√
t .

Case 2 : Linear growth of the interface

Another known analytical solution can be obtain by the inverse Stefan problem of both PI

and PII. There, the interface dynamics is set as growing linearly in time, which can be described

as

s(t) =At, (1.29)

where A > 0 is a positive parameter. Then, one can see that the following solution of the

temperature profile

T (x, t) =
α

β

(
e

A
α
(At−x)−1

)
+Tm (1.30)
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satisfies the governing equations (1.10)–(1.13) (or (1.14)–(1.17)). Thus, the associated boundary

condition in PI is given by

qc(t) =
kA
β

e
A2
α

t , (1.31)

in PI, or

Tc(t) =
α

β

(
e

A2
α

t−1
)
+Tm (1.32)

in PII.

1.4 Mathematical Analysis

This section is devoted to a rigorous analysis which is especially of interest to mathemati-

cians, that is, the existence and uniqueness of the classical solution. To begin, referring to [55],

the definition of the classical solution is defined as follows:

Definition 1 Under Assumption 1, a pair (T (x, t),s(t)) is the classical solution of the one-phase

Stefan problem (1.10)–(1.13) with qc(t) ≥ 0 in PI (or (1.14)–(1.17) with Tc(t) ≥ Tm in PII) for

all t < σ, where 0 < σ≤ ∞ if

(i) Txx and Tt are continuous for 0 < x < s(t), 0 < t < σ;

(ii) T and Tx are continuous for 0≤ x≤ s(t), 0 < t < σ;

(iii) T is also continuous for t = 0, 0 < x ≤ s0 and 0 ≤ liminfT (x, t) ≤ limsupT (x, t) < ∞ as

t→ 0, x→ 0;

(iv) s(t) is continuously differentiable for 0≤ t < σ;

(v) the equations (1.10)–(1.13) are satisfied.

Thus, the explicit solutions introduced in Section 1.3 are the classical solution. Again by

10



referring to [55], the existence and uniqueness of the classical solution can be guaranteed by the

following lemma.

Lemma 2 Assume that qc(t) in PI (or Tc(t) in PII) and T0(x) are continuously differentiable

functions for ∀t > 0 and ∀x ∈ [0,s0]. Then there exists a unique classical solution (T (x, t),s(t))

of the system (1.10)–(1.13) provided that qc(t)≥ 0 in PI (or the system (1.14)–(1.17) provided

that Tc(t)≥ Tm in PII) and Assumption 1 for all t > 0.

Once the existence and uniqueness of the solution is established, the validity of the model

is ensured by the following lemma.

Lemma 3 If there is a unique classical solution of (1.10)–(1.13), then for any qc(t)≥ 0 in PI

(or Tc(t) ≥ Tm in PII) for all t < σ where 0 < σ ≤ ∞, the condition (1.18) holds, and (1.20) is

also satisfied by Lemma 1. In addition, if qc(t) > 0 in PI (or Tc(t) > Tm in PII) holds then the

strong inequality of (1.18) and (1.20) holds.

The proof of Lemma 3 is based on Maximum principle as shown in [60]. Furthermore,

both Definition 1 and Lemma 2 can be extended to the generalized parabolic PDE

Tt = α(x, t)Txx +b(x, t)Tx +h(x, t)T, (1.33)

provided that h(x, t) ≤ 0 and the functions αx, αxx, αt , b, bx, and h are Hölder continuous for

0≤ x < ∞, t ≥ 0.

1.5 Macroscopic Energy Balance

This section provides a physical perspective of the system. The conventional thermody-

namics gives the heat balance in macroscopic scale, known as the first law of the thermodynamics.

For the Stefan problem, the first law of the thermodynamics is obtained by taking the integration
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of the local energy balance on the whole domain as

ρCp

∫ s(t)

0
Tt(x, t)dx =−(q(s(t), t)−q(0, t)). (1.34)

Combining the specific heat with the latent heat, the internal energy is defined as

E(t) = ρCp

∫ s(t)

0
(T (x, t)−Tm)dx+ρ∆H∗s(t). (1.35)

Taking the time derivative of (1.35) along the solution of (1.10)–(1.13), we can see that

dE
dt

(t) = qc(t). (1.36)

Taking the time integration of (1.36) yields the following description of the macroscopic energy

conservation law

E(t)−E(0) =
∫ t

0
qc(τ)dτ. (1.37)

The left-hand side of (1.37) denotes the growth of internal energy, and its right-hand side denotes

the external work provided by the injected heat flux. This form directly captures the classical first

law of thermodynamics without heat dissipation.

1.6 Numerical Methods

This section presents the numerical method of 1D one-phase Stefan problem by referring

to [102]. While there are several methods, in this book we introduce a boundary immobilization

method (BIM) technique which shows an enough accurate data for 1D Stefan problem in cartesian

coordinate. The idea of BIM is to scale the original coordinate on time-varying domain to the new

coordinate on fixed domain. The resulting system through the scaling leads to a nonlinear coupled

12



PDE-ODE system. Then, we utilize some approximations for the spatial and time derivatives by

finite difference and Euler method, that yields a set of nonlinear difference equations.

Algorithm development by BIM

Let us introduce the following scaling of the spatial coordinate and the associated state

variable as

ξ :=
x

s(t)
, v(ξ, t) := T (x, t). (1.38)

Then, the relations of the spatial and time derivatives are given by

Tx(x, t) =
∂ξ

∂x
vξ(ξ, t) =

1
s(t)

vξ(ξ, t), (1.39)

Txx(x, t) =
(

∂ξ

∂x

)2

vξξ(ξ, t) =
1

s(t)2 vξξ(ξ, t), (1.40)

Tt(x, t) =
∂ξ

∂t
vξ(ξ, t)+ vt(ξ, t) =−

xṡ(t)
s(t)2 vξ(ξ, t)+ vt(ξ, t)

=− ξṡ(t)
s(t)

vξ(ξ, t)+ vt(ξ, t) (1.41)

First, we derive the numerical algorithm for Neumann boundary actuation setup in PI. Substituting

the above derivatives in (1.10)–(1.13), we obtain

vt(ξ, t) =
α

s(t)2 vξξ(ξ, t)+
ξṡ(t)
s(t)

vξ(ξ, t), 0 < ξ < 1 (1.42)

vξ(0, t) =− k−1s(t)qc(t), (1.43)

v(1, t) =Tm, (1.44)

ṡ(t) =− β

s(t)
vξ(1, t), (1.45)
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The PDE state is evaluated at points ξ = ih for i = 0,1, · · · ,N where N is the discretization number

and Nh = 1. Then, the number of the elements is N +1. Thus, the following state variables are

defined

v(i)(t) = v(ih, t), for i = 0,1,2, · · · ,N (1.46)

To approximate the spatial derivatives, we use the finite difference method. The first and second

spacial derivatives in second-order accurate scheme are obtained by

vξ(ih, t) =
v(i+1)(t)− v(i−1)(t)

2h
+O(h2), (1.47)

vξξ(ih, t) =
v(i+1)(t)−2v(i)(t)+ v(i−1)(t)

h2 +O(h2). (1.48)

By evaluating the fixed domain PDE (1.42) at ξ = ih for i = 0,1, · · · ,N−1, the following N-th

ODEs are derived

d
dt

v(i)(t) =
α

h2s(t)2 (v
(i+1)(t)−2v(i)(t)+ v(i−1)(t))+

iṡ(t)
2s(t)

(v(i+1)(t)− v(i−1)(t)), (1.49)

A reader might notice that the above equation at i = 0 includes an undefined value, that is, v(−1)(t).

This is called ”fictitious value”, and it is obtained by applying (1.47) to the boundary condition at

ξ = 0 in (1.43), which yields

v(−1)(t) = v(1)(t)+2hk−1s(t)qc(t). (1.50)

Also, the boundary condition at ξ = 1 is

v(N)(t) = Tm. (1.51)
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To describe the spatial derivative of the temperature at the moving interface position, we cannot

use the central approximation since there is no position one step forward than the moving

boundary. Instead, the finite difference approximation of the first derivative in second-order

accurate is given as in [102];

ṡ(t) =− β

s(t)
3v(N)(t)−4v(N−1)(t)+ v(N−2)(t)

2h
. (1.52)

In addition, the time discretization is implemented by defining the discrete time states as

v(i)j = v(i)( j∆t), sk = s( j∆t), j = 0,1, · · · ,M (1.53)

where M = bt f /∆tc with the final time t f . The well-known approximation is explicit Euler method

(a.k.a. forward Euler method) which has a first order accuracy. Applying Euler method to (1.49)

and (1.49), the numerical solution of the Stefan problem is obtained by employing the following

algorithm:

Algorithm 1: Time Update for Temperature Profile and Phase Interface

Input: s0, {vi
0}N

i=0
for j = 0 to M, do

v(−1)
j ← v(1)j +2hk−1s jqc( j∆t)

v(N)
j ← Tm

ṡ j←−
β

(
3v(N)

j −4v(N−1)
j +v(N−2)

j

)

2hs j

s j+1← s j +∆tṡ j
for i = 0 to N−1, do

v(i)j+1← v(i)j +∆t
(

α

h2s2
j
(v(i+1)

j −2v(i)j + v(i−1)
j )+

iṡ j
2s j

(v(i+1)
j − v(i−1)

j )

)

end for
end for
Output: {s j}M

j=1, {vi
j}

N,M
i=0, j=1

By defining the state vector v(t) = [v(0)(t),v(1)(t), · · · ,v(N−1)(t)] and substituting the
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Table 1.1: Physical properties of zinc

Description Symbol Value
Density ρ 6570 kg ·m−3

Latent heat of fusion ∆H∗ 112000 J ·kg−1

Heat capacity Cp 390 J ·kg−1 ·K−1

Thermal conductivity k 116 w ·m−1

Melting temperature Tm 419.5 ◦ C

boundary conditions, we obtain the nonlinear ODEs for the state vector [φ,s] as

d
dt




v

s


=




1
s(t)2 (Av+g(v))

β

2hs(t)(−4v(N−1)(t)+ v(N−2)(t))


+ 2α

hks(t)
Bqc(t) (1.54)

where

A =
α

h2




−2 2 0 · · · · · · · · · · · · · · · 0

1 −2 1 0 · · · · · · · · · · · · 0

0 1 −2 1 0 · · · · · · · · · 0
... . . . ...

0 · · · · · · · · · · · · 0 1 −2 1

0 · · · · · · · · · · · · · · · 0 1 −2




(1.55)

In the case of Dirichlet boundary actuation given in PII, the fictitious variable v(−1)
j is not

needed since v(0)j directly captures the boundary temperature Tc( j∆t). Hence, the algorithm is

replaced by v(0j = Tc( j∆t) and i starts from 1.

Simulation result

The numerical simulation of BMI is performed using the physical parameters of zinc

given in Table 1.1. We apply the Dirichelt boundary actuation setup with the constant boundary
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(a) Interface position dynamics of the analytical solution in (1.24) (black) and the numerical solution
(red).
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(b) Temperature profile dynamics of analytical solution in (1.23) (black) and the numerical solution at
t = 0 (red), t = 0.01 (blue), t = 0.1 (green)

Figure 1.2: Comparison of the analytical solution and the numerical solution by Algorithm 1.
The numerical solution converges to the analytical solution very quickly from an initial error.

temperature Tb = Tm +10 [◦C] with Tm = 419.5 [◦C]. As explained in Section 1.3, the explicit

solution under the constant boundary temperature is given by Neumann solution. Moreover, the
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solution in the scaled fixed domain is given by

v(ξ, t) = Tb−
Tb−Tm

erf(λ)
erf(λξ) , (1.56)

which is independent on time t. Hence, the numerical solution should approaches to the solution

(1.56). The initial data are set as s0 = 3 [mm] and T0(x) = (Tb−Tm)(1− x/s0)
2 +Tm, which

satisfies the boundary conditions. Fig. 1.2 (a) depicts the interface position dynamics of the

simulation result of the numerical model and the analytical solution, which shows the good

correspondence as time goes. Also, Fig. 1.2 (b) depicts the temperature profile of the numerical

simulation at t = 0, t =0.01 [sec], t = 0.1[min], and the analytic solution, which illustrates that

the numerical solution converges to the analytic solution as time goes.

18



Chapter 2

State Feedback Control Design

This chapter presents the design procedure of the control algorithm for the one-phase

Stefan problem. Due to the recent advancement of software performance, a sophisticated control

algorithm which is involved with highly complex computations has attained strong possibilities

for practical implementations. In addition, the phase changes appear in a variety of scientific

phenomena and industrial processes. Therefore, the design procedure of the control algorithm

for the Stefan problem is significant for numerous applications in science and engineering (we

introduce some examples in Part II).

2.1 Control Objective of Stefan Problem

This section states how the control problem is posed in the Stefan problem. Especially,

we focus on PI given in Chapter 1, i.e., we consider the design of boundary heat flux qc(t)> 0
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ŝ
(t
)

 

 

s(t), state
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Figure 2.1: Control objective of the Stefan problem. We aim to design a heat flux input qc(t)
such that the interface position s(t) is driven to the setpoint position sr.

for the state variables (T (x, t),s(t)) governed by the following coupled PDE-ODE system

Tt(x, t) =αTxx(x, t), x ∈ (0,s(t)), (2.1)

−kTx(0, t) =qc(t), (2.2)

T (s(t), t) =Tm, (2.3)

ṡ(t) =−βTx(s(t), t). (2.4)

How to achieve a desired size

In some engineering process, achieving a desired shape of the material is an important

task. For instance, in manufacturing industries, the desired shape is given based on the required

quality of the product. In 1D one phase Stefan problem, such a desired shape is equivalent to the

desired length of the liquid material. Therefore, it is significant to consider the design of boundary

heat flux to drive the liquid-solid interface position s(t) to a given desired setpoint position sr.

At the desired state, both of the temperature profile and the interface position needs to be static.

Such a ”steady-state” solution (Teq(x),seq) of the system (2.1)–(2.4) is given by setting Tt = 0

and ṡ(t) = 0 in (2.1) and (2.4) and imposing the boundary condition (2.3). Thus, the steady-state
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solution satisfies

T ′′eq(x) = 0, Teq(seq) = Tm, T ′eq(seq) = 0, (2.5)

which yields the steady-state temperature profile as a uniform melting temperature, i.e.,

Teq(x) = Tm (2.6)

for any given sr. Thus, the objective of the control design is to achieve the following asymptotic

convergence,

lim
t→∞

s(t) = sr, (2.7)

lim
t→∞

T (x, t) = Tm. (2.8)

Setpoint restriction by an energy conservation

Clearly, the setpoint sr must be chosen to satisfy 0 < sr < L, as addressed in the condition

(1.19). In addition, the positivity of the manipulated heat flux in Lemma 3 imposes a restriction

on the setpoint given that system (2.1)–(2.4) satisfies the following energy conservation

d
dt

(
k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β

s(t)
)
= qc(t). (2.9)

Integrating (2.9) in t from 0 to ∞ and substituting (2.7) and (2.8), one can deduce that the heat

flux qc(t) that drives the system (2.1)–(2.4) to the desired setpoint satisfies the following relation

k
β
(sr− s0)−

k
α

∫ s0

0
(T0(x)−Tm)dx =

∫
∞

0
qc(t)dt. (2.10)
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From relation (2.10), one can deduce that for any positive heat flux control qc(t)> 0, the internal

energy for a given setpoint must be greater than the initial internal energy. Thus, the following

assumption is required.

Assumption 2 The setpoint sr is chosen to satisfy

s0 +
β

α

∫ s0

0
(T0(x)−Tm)dx < sr < L. (2.11)

Therefore, Assumption 2 stands as the least restrictive condition for the choice of setpoint

and can be consequently viewed as a setpoint restriction.

Open-loop setpoint control law by energy shaping perspective

For any given open-loop control law qc(t) satisfying (2.10), the asymptotical stability of

the system (2.1)–(2.4) at sr can be established and the following lemma holds.

Lemma 4 Consider an open-loop setpoint control law q?c(t) which satisfies (2.10). Then, the

interface converges asymptotically to the prescribed setpoint sr and consequently, conditions (2.7)

and (2.8) hold.

The proof of Lemma 4 can be derived straightforwardly from (2.10). To illustrate the introduced

concept of open-loop “energy shaping control” action, we define ∆E as the left-hand side of

(2.10), i.e.,

∆E =
k
β
(sr− s0)−

k
α

∫ s0

0
(T0(x)−Tm)dx. (2.12)

For instance, the rectangular pulse control law given by

q?c(t) =





q̄ for t ∈ [0,∆E/q̄]

0 for t > ∆E/q̄





(2.13)
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satisfies (2.12) for any choice of the boundary heat flux q̄ and thereby, ensures the asymptotical

stability of (2.1)–(2.4) to the setpoint (Tm,sr).

Towards closed-loop feedback control

It is remarkable that adopting an open-loop control strategy such as the rectangular pulse

(2.13), does not allow to improve the convergence speed. Moreover, the physical parameters of

the model need to be known accurately. In engineering process, the practical implementation of

an open-loop control is limited by performance and robustness issues, thus closed-loop control

laws have to be designed to deal with such limitations.

In the following sections, we aim the design of closed-loop backstepping control law for

the one-phase Stefan problem in order to achieve faster exponential convergence to the desired

setpoint (Tm,sr) while ensuring the robustness of the closed-loop system to the uncertainty of

the physical parameters. In detail, for a given reference setpoint (Tm,sr), we define the reference

error states (u,X) as

u(x, t) = T (x, t)−Tm, X(t) = s(t)− sr, (2.14)

respectively. Then, the reference error system associated to the coupled system (2.1)–(2.4) is

written as

ut(x, t) =αuxx(x, t), 0≤ x≤ s(t), (2.15)

ux(0, t) =− k−1qc(t), (2.16)

u(s(t), t) =0, (2.17)

Ẋ(t) =−βux(s(t), t). (2.18)

Hence, from the perspective of the reference error system (u,X), the objective is to design qc(t)

23



to stabilize the state variables (u,X) at (0,0), which is a standard description in control theory.

2.2 Basic Idea of PDE Control on Fixed Boundary

Overview

In this section, we introduce a well-known method of the control design for systems

described by PDEs. The method is ”backstepping” which was firstly developed for nonlinear and

adaptive systems [92], and successfully extended to PDE of parabolic [141, 143], hyperbolic [94,

5], delays [97, 11], and adaptive systems [100, 144, 145]. Further advances on the backstepping

control of diffusion equations defined on a multidimensional space or involving in-domain coupled

systems can be found in [8, 43, 160, 161]. PDE backstepping design has been utilized for the

applications to oil drilling [134, 62, 167, 169], multi-agent system [59, 130], traffic control [179],

battery management [118, 117], mining cables [166, 168, 170], etc. The fundamental idea of the

backstepping is to introduce a ”state transformation” to convert the original system to an ideal

stable system, and derive the control design to be consistent with the transformation.

Results devoted to the backstepping stabilization of coupled systems described by a

diffusion PDE in cascade with a linear ODE has been primarily presented in [95] with Dirichlet

type of boundary interconnection and extended to Neumann boundary interconnection in [153,

156]. For systems relevant with Stefan problem, [65] designed a backstepping output feedback

controller that ensures the exponential stability of an unstable parabolic PDE on a priori known

dynamics of moving interface which is assumed to be an analytic function in time. Moreover,

for PDE-ODE cascaded systems under a state-dependent moving boundary, [22] derived a local

stability result for nonlinear ODEs with actuator dynamics governed by a wave PDE defined on

a time- and state-dependent moving domain. Such a technique is based on the input delay and

wave compensation for nonlinear ODEs designed in [98, 10] and its extension to state-dependent

input delay compensation for nonlinear ODEs provided by [9]. While the results in [22] and
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[9] that cover state-dependence problems do not ensure global stabilization due to a so-called

feasibility condition that needs to be satisfied a priori, such a restriction was recently unlocked in

[37] which provides a global stability result. However, the result in [37] is limited to the case of

hyperbolic PDE in cascade with a nonlinear ODE.

Unstable reaction-diffusion PDE

As an introductory example of diffusion type systems of which the solution diverges in

time, let us consider the following diffusion reaction PDE

ut =uxx(x, t)+λu(x, t), 0 < x < 1, (2.19)

u(0, t) =0, (2.20)

u(1, t) =0, (2.21)

u(x,0) =u0(x). (2.22)

The solution to (2.19)–(2.21) is uniquely given by (see Section 3.1 in [99] for detail)

u(x, t) =
∞

∑
n=1

Cne(λ−π2n2)t sin(πnx) . (2.23)

where Cn = 2
∫ 1

0 u0(y)sin(πny)dy. The important characteristic of the solution (2.23) is the

time dependency, namely, the exponential term e(λ−π2n2)t . For the solution not to diverge, the

coefficient in the exponent λ−π2n2 needs not to be positive for all n = 1,2, · · · . Clearly, this

condition holds if λ≤ π2 by considering the case n = 1. Moreover, if λ < π2 then the solution

converges to zero as t→ ∞.

In order for the solution to converge to zero under λ ≥ π2, some actuation needs to be

manipulated. There are two distinct types of control problems for PDEs. One is ”in-domain

control”, which renders actuators to be located inside the domain of the PDE, resulting in the
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control term to appear in PDE as a mathematical structure. The other is ”boundary control”, in

which the actuator is located only in the boundary of the PDE. Then, the control term only appears

in the boundary condition of the PDE. In general, the boundary control is more challenging to

design compared to the in-domain control, and even somewhat practical setup.

Referring to [99], we consider the boundary control at x = 1, with defining U(t) as a

control input. Thus, the resulting problem we consider is

ut =uxx(x, t)+λu(x, t), 0 < x < 1, (2.24)

u(0, t) =0, (2.25)

u(1, t) =U(t). (2.26)

The ”backstepping design” is one of the most systematic method for the boundary control of

PDEs, which have been studied widely since the first work in [141]. The method introduces

a state transformation (called ”backstepping transformation”) from the original state u(x, t) to

newly defined state w(x, t) in the following form

w(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy, (2.27)

where k(x,y) is so called ”gain kernel” function which is solved later. The idea of the backstepping

is to design a stable ”target system”. Mostly, the target system is chosen to have a similar structure

as the original system with canceling some undesired (or adding some desired) terms for the

stabilization. For instance, in the reaction-diffusion PDE (2.24)–(2.26), the undesired term is

λu(x, t) in (2.24) as we have seen in the analytical solution (2.23). Hence, a natural choice of the
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target system is

wt =wxx(x, t), 0 < x < 1, (2.28)

w(0, t) =0, (2.29)

w(1, t) =0. (2.30)

The solution of the target system (2.28)–(2.28) converges to zero as we can see by substituting

λ = 0 in the analytic solution (2.23). Next task is to find the gain kernel solution k(x,y) in the

transformation (2.27) to sustain the consistency between the original u-system (2.24)–(2.26) and

the target w-system (2.28)–(2.30). Taking the first and second spacial derivatives of (2.27), we

obtain

wx(x, t) =ux(x, t)− k(x,x)u(x, t)−
∫ x

0
kx(x,y)u(y, t)dy, (2.31)

wxx(x, t) =uxx(x, t)− k(x,x)ux(x, t)

−
(

kx(x,x)+
d
dx

k(x,x)
)

u(x, t)−
∫ x

0
kxx(x,y)u(y, t)dy (2.32)

Taking the time derivative of (2.27) along the solution of (2.24)–(2.26) leads to

wt(x, t) = uxx(x, t)+λu(x, t)−
∫ x

0
k(x,y)(uyy(y, t)+λu(y, t))dy (2.33)

Using the integration by parts twice and the boundary condition (2.25),

∫ x

0
k(x,y)uyy(y, t)dy =k(x,x)ux(x, t)− k(x,0)ux(0, t)−

∫ x

0
ky(x,y)uy(y, t)dy

=k(x,x)ux(x, t)− k(x,0)ux(0, t)

− ky(x,x)u(x, t)+
∫ x

0
kyy(x,y)u(y, t)dy (2.34)
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Substituting (2.34) into (2.33), we have

wt(x, t) =uxx(x, t)− k(x,x)ux(x, t)+(ky(x,x)+λ)u(x, t)

+ k(x,0)ux(0, t)−
∫ x

0
(kyy(x,y)+λk(x,y))u(y, t)dy (2.35)

Subtracting (2.32) from (2.35), we have

wt(x, t)−wxx(x, t) =
(

2
d
dx

k(x,x)+λ

)
u(x, t)+ k(x,0)ux(0, t)

+
∫ x

0
(kxx(x,y)− kyy(x,y)−λk(x,y))u(y, t)dy (2.36)

To satisfy target PDE (2.28), the right hand side of (2.36) must be zero for any u(x, t), and thus

the following conditions of the gain kernel function must be satisfied:

kxx(x,y)− kyy(x,y) =λk(x,y), (2.37)

k(x,0) =0, (2.38)

d
dx

k(x,x) =− λ

2
, (2.39)

The solution to the PDE (2.37)–(2.39) is given by

k(x,y) =−λy
I1(z)

z
, z :=

√
λ(x2− y2). (2.40)

where I1(z) is a modified Bessel function of the first kind defined by

I1(z) =
∞

∑
m=0

1
m!(m+1)!

( z
2

)2m+1
(2.41)

Evaluating (2.27) at x = 1 together with the boundary conditions of the original system (2.26)
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and the target system (2.30), the control law is designed by

U(t) =
∫ 1

0
k(1,y)u(y, t)dy

=−λ

∫ 1

0
y

I1(
√

λ(1− y2))√
λ(1− y2)

u(y, t)dy. (2.42)

The conclusion here is that, the designed backstepping feedback controller (2.42) stabilizes the

unstable reaction diffusion PDE (2.24)–(2.26). This is how the design problem of PDE control is

solved via backstepping. For the mathematical analysis to conclude the closed-loop stability, we

need more analysis by guaranteeing the invertibility of the transformation and equivalence of the

norm, but we omit it here. We refer [99] to readers for more detailed procedure.

Unstable ODE cascaded with diffusion PDE

For an example of an unstable ODE cascaded with a diffusion PDE as in Stefan problem,

we consider the following system

ut =uxx(x, t), 0 < x < 1, (2.43)

ux(0, t) =0, (2.44)

u(1, t) =U(t), (2.45)

Ẋ(t) =AX(t)+Bu(0, t). (2.46)

where X ∈Rn is an ODE state, A∈Rn×n and B∈Rn×1 are time invariant matrices of a controllable

pair. If there exists an eigenvalue of the matrix A which has a strictly positive value on its real

part, then there exists at least one element in the state vector X which diverges in time. In such a

case, the system becomes unstable, and some actuation is needed to stabilize. If the control input

can directly affect the ODE state, u(0, t) in the right hand side of (2.46) is replaced by the control

input U(t). In such a case, a simple choice of a control input is U(t) = KX(t), where K ∈ R1×n

29



is a control gain to be chosen. Then, the closed-loop system becomes Ẋ(t) = (A+BK)X(t).

Hence, by choosing K such that the closed-loop matrix A+BK is ”Hurwitz” matrix (i.e. all the

eigenvalues have a strictly negative real part), all of the elements in the state X converge to zero,

and hence the system is stabilized.

However, if the effect of the input is propagated through the heat equation, the cascaded

PDE-ODE system (2.43)–(2.46) needs to be considered. The backstepping method can be applied

for the control design of such systems as well. Let us introduce the following backstepping

transformation

w(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy−φ(x)T X(t), (2.47)

which maps to

wt =wxx(x, t), 0 < x < 1, (2.48)

wx(0, t) =0, (2.49)

w(1, t) =0, (2.50)

Ẋ(t) =(A+BK)X(t)+Bw(0, t). (2.51)

where K ∈R1×n is a control gain. The difference between u-system and w-system is on the system

matrix of ODE, namely, A and A+BK. Since A+BK is chosen to be Hurwitz matrix, ODE

(2.51) is a stable system under the setting w(0, t)≡ 0. In addition, the heat equation (2.48) with

the boundary conditions (2.49) and (2.50) is stable system as we have discussed in (2.28)–(2.30).

Hence, we can see that the target system (2.48)–(2.51) is stable. (see [95] for its strict proof using

Lyapunov analysis).
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Taking the derivatives of (2.47) along the solution of (2.43)–(2.46), we obtain

wx(x, t) =ux(x, t)− k(x,x)u(x, t)−
∫ x

0
kx(x,y)u(y, t)dy−φ

′(x)T X(t), (2.52)

wxx(x, t) =uxx(x, t)− k(x,x)ux(x, t)−
(

kx(x,x)+
d
dx

k(x,x)
)

u(x, t)

−
∫ x

0
kxx(x,y)u(y, t)dy−φ

′′(x)T X(t), (2.53)

wt(x, t) =uxx(x, t)− k(x,x)ux(x, t)+ ky(x,x)u(x, t)− (ky(x,0)+φ(x)T B)u(0, t)

−
∫ x

0
kyy(x,y)u(y, t)dy−φ(x)T AX(t) (2.54)

Therefore,

wt(x, t)−wxx(x, t)

=

(
2

d
dx

k(x,x)
)

u(x, t)− (ky(x,0)+φ(x)T B)u(0, t)

+
∫ x

0
(kxx(x,y)− kyy(x,y))u(y, t)dy+(φ′′(x)T −φ(x)T A)X(t) (2.55)

Substituting x = 0 in (2.47) and (2.52), we have

w(0, t) =u(0, t)−φ(0)T X(t), (2.56)

wx(0, t) =− k(0,0)u(0, t)−φ
′(0)T X(t), (2.57)

On the other hand, by the boundary condition (2.49), we need wx(0, t) = 0. Also, by comparing
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ODEs of (2.46) and (2.51), we require u(0, t) = KX(t)+w(0, t). Therefore, (2.55)–(2.57) yields

kxx(x,y) =kyy(x,y), (2.58)

k(x,x) =0, ky(x,0)+φ(x)T B = 0, (2.59)

φ
′′(x)T =φ(x)T A, (2.60)

φ(0)T =K, φ
′(0)T = 0, (2.61)

The solution to (2.58)–(2.61) is given by

φ(x)T =

[
K 01,n

]
eAx




I

0n,n


 , (2.62)

k(x,y) =
∫ x−y

0
φ(z)T Bdz. (2.63)

where 0i, j ∈ Ri× j is a zero matrix, I ∈ Rn×n is an identity matrix, and A ∈ R2n×2n is a matrix

defined by

A =




0n,n A

I 0n,n


 . (2.64)

Evaluating (2.47) at x = 1, the controller design is derived as

U(t) =
∫ 1

0
k(1,y)u(y, t)dy+φ(1)T X(t)

=

[
K 01,n

]




∫ 1

0



∫ 1−y

0
eAz




I

0n,n


Bdz


u(y, t)dy+ eA




I

0n,n


X(t)




. (2.65)

Hence, the designed controller (2.65) stabilizes PDE-ODE cascades given in (2.43)–(2.46)
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Stefan-like cascaded diffusion PDE-ODE on fixed domain

Finally, we introduce PDE-ODE cascades which has a similar structure to the Stefan

problem given in (2.15)–(2.18) but on fixed domain. Let us replace the moving boundary terms

s(t) in (2.15)–(2.18) with a constant domain length D, and consider the following system

ut =αuxx(x, t), 0 < x < D, (2.66)

ux(0, t) =− k−1qc(t), (2.67)

u(D, t) =0, (2.68)

Ẋ(t) =−βux(D, t). (2.69)

Next, we introduce the following backstepping transformation

w(x, t) = u(x, t)−
∫ D

x
k(x,y)u(y, t)dy−φ(x−D)T X(t) (2.70)

which transforms onto

wt =αwxx(x, t), 0 < x < D, (2.71)

wx(0, t) =0, (2.72)

w(D, t) =0, (2.73)

Ẋ(t) =− cX(t)−βwx(D, t). (2.74)

Since ODE state X ∈ R is a scaler variable in this system, Hurwitz matrix discussed in the

previous PDE-ODE system can be described by the coefficient −c in (2.74) with a control gain
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c > 0. Taking the derivatives of (2.70) along the solution of (2.66)–(2.69), we obtain

wx(x, t) =ux(x, t)+ k(x,x)u(x, t)−
∫ D

x
kx(x,y)u(y, t)dy−φ

′(x−D)T X(t), (2.75)

wxx(x, t) =uxx(x, t)+ k(x,x)ux(x, t)+
(

kx(x,x)+
d
dx

k(x,x)
)

u(x, t)

−
∫ D

x
kxx(x,y)u(y, t)dy−φ

′′(x−D)T X(t), (2.76)

wt(x, t) =αuxx(x, t)+αk(x,x)ux(x, t)−αky(x,x)u(x, t)

− (αk(x,D)−φ(x−D)β)ux(D, t)−α

∫ x

0
kyy(x,y)u(y, t)dy. (2.77)

By (2.76) and (2.77),

wt(x, t)−αwxx(x, t)

=−α

(
2

d
dx

k(x,x)
)

u(x, t)− (αk(x,D)−φ(x−D)T
β)ux(D, t)

+α

∫ x

0
(kxx(x,y)− kyy(x,y))u(y, t)dy+αφ

′′(x−D)X(t). (2.78)

Substituting x = D in (2.70) and (2.75), we have

w(D, t) =−φ(0)X(t), (2.79)

wx(D, t) =ux(D, t)−φ
′(0)X(t). (2.80)

Applying the boundary condition (2.73) to (2.79), and comparing ODE of (2.69) with (2.74) with

using (2.80), the following conditions are obtained

φ
′′(x) = 0, φ(0) = 0, φ

′(0) =
c
β

(2.81)
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Figure 2.2: Block diagram of the state feedback closed-loop control. Both the temperature
profile and the interface position are assumed to be available for the control input.

The solutions are given by

φ(x) =
c
β

x, (2.82)

k(x,y) =
β

α
φ(x− y) =

c
α
(x− y) (2.83)

Substituting (2.82) and (2.83) into (2.70), the backstepping transformation is derived as

w(x, t) = u(x, t)− c
α

∫ D

x
(x− y)u(y, t)dy− c

β
(x−D)X(t). (2.84)

Evaluating the spatial derivative of (2.84) at x = 0 and using (2.67) and (2.72), the control law is

obtained by

qc(t) =−c
(

k
α

∫ D

0
u(y, t)dy+

k
β

X(t)
)
. (2.85)

Motivated by the transformation (2.84) and the control law (2.85), in the following sections we

develop the control design and its closed-loop analysis of the Stefan problem.
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2.3 Backstepping Control of Stefan Problem

This section presents the main theorem of this book. We provide how the backstepping

method for PDEs can be extended from fixed boundary PDE to the moving boundary PDE. Let

us see the theorem first, stated in the following:

Theorem 1 Consider a closed-loop system consisting of the plant (2.1)–(2.4) and the control

law

qc(t) =−c
(

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β
(s(t)− sr)

)
, (2.86)

where c > 0 is an arbitrary controller gain. Let Assumption 1 and Assumption 2 hold, and assume

that the initial conditions (T0(x),s0) are compatible with the control law. Then, the closed-loop

system has a unique classical solution which satisfies the model validity conditions

T (x, t)>Tm, ṡ(t)> 0, ∀x ∈ (0,s(t)), ∀t > 0, (2.87)

s0 < s(t)<sr, ∀t > 0, (2.88)

and is exponentially stable in the sense of the norm

||T −Tm||2H1
+(s(t)− sr)

2. (2.89)

The proof is established by the following steps.
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Direct transformation

Recall the reference error (u,X)-system for the Stefan problem given by

ut(x, t) =αuxx(x, t), 0≤ x≤ s(t), (2.90)

−kux(0, t) =qc(t), (2.91)

u(s(t), t) =0, (2.92)

Ẋ(t) =−βux(s(t), t). (2.93)

The extension of the bacsktepping method for fixed boundary PDEs given by (2.84) to that for

moving boundary PDE we developed is somewhat simple. We switch the constant boundary D in

the transformation (2.84) to s(t), namely, we introduce the following backstepping transformation

w(x, t) =u(x, t)− c
α

∫ s(t)

x
(x− y)u(y, t)dy− c

β
(x− s(t))X(t). (2.94)

Since what differs (2.94) from (2.84) is only the time dependency of the boundary, the additional

terms on the target (w,X)-system through (2.94) appears in the time derivative of w, that is

wt(x, t) = · · ·−
c
α

ṡ(t)(x− s(t))u(s(t), t)+
c
β

ṡ(t)X(t)

= · · ·+ c
β

ṡ(t)X(t) (2.95)
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in which we used (2.92). Therefore, the target w-system is given by

wt(x, t) =αwxx(x, t)+
c
β

ṡ(t)X(t), (2.96)

wx(0, t) =0, (2.97)

w(s(t), t) =0, (2.98)

Ẋ(t) =− cX(t)−βwx(s(t), t). (2.99)

The additional term c
β

ṡ(t)X(t) in (2.96) poses a nontrivial question whether the target (w,X)-

system is stable or not. We will show it later in stability analysis.

Inverse transformation

One of the benefits to use backstepping method is that the target system has easier structure

to prove its stability property than the original system under the closed-loop system. To ensure

the equivalent stability property between the target (w,X)-system and the original (u,X)-system,

the invertibility of the transformation (2.94) needs to be guaranteed, which is nontrivial especially

for nonlinear systems like Stefan problem. Suppose that the inverse transformation that maps

(2.96)–(2.99) into (2.90)–(2.93) is given by the following form

u(x, t) =w(x, t)+
∫ s(t)

x
l(x− y)w(y, t)dy+ψ(x− s(t))X(t), (2.100)
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where l(x− y), ψ(x− s(t)) are the kernel functions. Taking derivative of (2.100) with respect to t

and x, respectively, along the solution of (2.96)–(2.99), the following relations are derived

ut(x, t)−αuxx(x, t) =
{

c
β

(
1+

∫ s(t)

x
l(x− y)dy

)
−ψ

′(x− s(t))
}

ṡ(t)X(t)

+(αl(x− s(t))−βψ(x− s(t)))wx(s(t), t)

−
(
cψ(x− s(t))+αψ

′′(x− s(t))
)

X(t). (2.101)

In addition, by the boundary conditions, we need

u(s(t), t) =ψ(0)X(t), (2.102)

ux(s(t), t) =wx(s(t), t)+ψ
′(0)X(t). (2.103)

From (2.101)–(2.103), one can deduce that in order to recover the original system(2.90)–(2.93)

for any continuous functions (w(x, t),X(t)), ψ(x) and l(x− y) must satisfy

ψ
′′(x) =− c

α
ψ(x), ψ(0) = 0, ψ

′(0) =
c
β
, (2.104)

l(x− s(t)) =
β

α
ψ(x− s(t)), (2.105)

ψ
′(x− s(t)) =

c
β

(
1+

∫ s(t)

x
l(x− y)dy

)
. (2.106)

The solution to (2.104) is given by

ψ(x) =
c
β

√
α

c
sin
(√

c
α

x
)
. (2.107)

from which l(x− y) can be deduced using (2.105) as

l(x− y) =
β

α
ψ(x− y). (2.108)
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Fortunately, the solutions (2.110) and (2.108) satisfy the condition (2.106) as well. Hence, the

inverse transformation of (2.94) is uniquely given by

u(x, t) =w(x, t)+
β

α

∫ s(t)

x
ψ(x− y)w(y, t)dy+ψ(x− s(t))X(t), (2.109)

ψ(x) =
c
β

√
α

c
sin
(√

c
α

x
)
. (2.110)

Remark 2 Substituting s(t) by X(t)+sr in the transformations (2.94) and (2.109), one can easily

see that the transformations (2.94) and (2.109) are nonlinear.

The nonlinearity of the direct and inverse transformations implies that the stability proper-

ties of (u,X)-system and (w,X)-system are equivalent only if both transformations are bounded,

which is shown later.

Guaranteeing the conditions of model validity

As stated in Remark 1 and Lemma 3, we should verify qc(t)> 0. Motivated by the energy

conservation (2.9), we take the time derivative of (2.86) along the solution of (2.1)–(2.4), that

yields

q̇c(t) =
d
dt

(
−c
(

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β
(s(t)− sr)

))
,

=− ck
(

1
α

ṡ(t)(T (s(t), t)−Tm)+
1
α

∫ s(t)

0
Tt(x, t)dx+

1
β

ṡ(t)
)
,

=− ck
(∫ s(t)

0
Txx(x, t)dx−Tx(s(t), t)

)
,

=ckTx(0, t),

=− cqc(t). (2.111)
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Solving (2.111) leads to

qc(t) = qc(0)e−ct . (2.112)

Since the setpoint restriction (2.11) implies qc(0)> 0, we have

qc(t)> 0, ∀t ≥ 0. (2.113)

Hence, one can deduce that the closed-loop system has a unique classical solution. Then, using

Lemma 3, the conditions in (2.87) are satisfied. By the control law (2.86), we have

k
β
(s(t)− sr) =−

qc(t)
c
− k

α

∫ s(t)

0
(T (x, t)−Tm)dx (2.114)

Applying (2.113) and (2.87) to (2.114), we obtain s(t)< sr for all t > 0. In addition, the second

condition in (2.87) implies that s0 < s(t). Combining these two later inequalities leads to (2.88).

In the next section, the inequalities (2.87) and (2.88) are used to establish the Lyapunov

stability of the target system (2.96)–(2.99).

Convergence of liquid length to a desired value

In the following, we prove the exponential stability of the closed-loop system based on

the analysis of the target system (2.96)–(2.99). We consider a functional V1 defined by

V1 =
1
2

∫ s(t)

0
w(x, t)2dx. (2.115)
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Taking the time derivative of (2.115), we have

V̇1 =
∫ s(t)

0
w(x, t)wt(x, t)dx+

1
2

ṡ(t)w(s(t), t)2

= α

∫ s(t)

0
w(x, t)wxx(x, t)dx+

c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx

= αw(x, t)wx(x, t)|y=s(t)
y=0 −α

∫ s(t)

0
wx(x, t)2dx+

c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx

=−α

∫ s(t)

0
wx(x, t)2dx+

c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx. (2.116)

Next, we consider V2 defined by

V2 =
1
2

∫ s(t)

0
wx(x, t)2dx. (2.117)

Taking the time derivative of (2.117), we get

V̇2 =
∫ s(t)

0
wx(x, t)wxt(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2

=wx(x, t)wt(x, t)|x=s(t)
x=0 −

∫ s(t)

0
wxx(x, t)wt(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2

=wx(s(t), t)wt(s(t), t)−α

∫ s(t)

0
wxx(x, t)2dx

− c
β

ṡ(t)X(t)
∫ s(t)

0
wxx(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2 (2.118)

Recall the boundary condition (2.98), i.e., w(s(t), t) = 0. Taking the total time derivative on both

sides, we obtain the following

d
dt

w(s(t), t) = wt(s(t), t)+ ṡ(t)wx(s(t), t) = 0, (2.119)
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which yields

wt(s(t), t) =−ṡ(t)wx(s(t), t). (2.120)

Moreover, the integration in first term in the last line in (2.118) is given by

∫ s(t)

0
wxx(x, t)dx = wx(s(t), t). (2.121)

Therefore, plugging (2.120) and (2.121) into (2.118), we arrive at

V̇2 =−α

∫ s(t)

0
wxx(x, t)2dx− c

β
ṡ(t)X(t)wx(s(t), t)−

1
2

ṡ(t)wx(s(t), t)2. (2.122)

Next, we consider V3 defined by

V3 =
1
2

X(t)2. (2.123)

Using (2.99), the time derivative of (2.123) is given by

V̇3 =X(t)Ẋ(t)

=− cX(t)2−βX(t)wx(s(t), t). (2.124)

Let V be the functional defined by

V =V1 +V2 + pV3. (2.125)
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By (2.116), (2.122), and (2.124), the time derivative of (2.125) is given by

V̇ =−α

∫ s(t)

0
wxx(x, t)2dx−α

∫ s(t)

0
wx(x, t)2dx− pcX(t)2− pβX(t)wx(s(t), t)

+
c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx− ṡ(t)

c
β

X(t)wx(s(t), t)−
ṡ(t)
2

wx(s(t), t)2. (2.126)

Using the fact that ṡ(t)> 0 and applying Young’s inequality yields

−pβX(t)wx(s(t), t)≤
p
2

(
cX(t)2 +

β2

c
wx(s(t), t)2

)
, (2.127)

c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx≤ ṡ(t)

2

((
c
β

X(t)
)2

+

(∫ s(t)

0
w(x, t)dx

)2
)
, (2.128)

−ṡ(t)
c
β

X(t)wx(s(t), t)≤
ṡ(t)
2

((
c
β

X(t)
)2

+wx(s(t), t)2

)
. (2.129)

Also, by Cauchy-Schwarz inequality, we have

(∫ s(t)

0
w(x, t)dx

)2

≤ sr

∫ s(t)

0
w(x, t)2dx. (2.130)

Applying (2.127)–(2.130) to (2.126), the following inequality on V is derived

V̇ ≤−α

∫ s(t)

0
wxx(x, t)2dx−α

∫ s(t)

0
wx(x, t)2dx− pc

2
X(t)2 +

pβ2

2c
wx(s(t), t)2

+ ṡ(t)
(

sr

2

∫ s(t)

0
w(x, t)2dx+

c2

β2 X(t)2
)

(2.131)

Applying Pointcare’s and Agmon’s inequality which give
∫ s(t)

0 w(x, t)2dx≤ 4s2
r
∫ s(t)

0 wx(x, t)2dx

and wx(s(t), t)2 ≤ 4sr
∫ s(t)

0 wxx(x, t)2dx, the inequality (2.131) becomes

V̇ ≤−
(

α− 2pβ2sr

c

)∫ s(t)

0
wxx(x, t)2dx−α

∫ s(t)

0
wx(x, t)2dx− pc

2
X(t)2

+ ṡ(t)
(

sr

2

∫ s(t)

0
w(x, t)2dx+

c2

β2 X(t)2
)
. (2.132)
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Therefore, by choosing p = cα

4β2sr
, we arrive at

V̇ ≤− α

8s2
r

∫ s(t)

0
wx(x, t)2dx− α

4s2
r

∫ s(t)

0
w(x, t)2dx− pc

2
X(t)2

+ ṡ(t)
(

sr

2

∫ s(t)

0
w(x, t)2dx+

c2

β2 X(t)2
)

≤−bV +aṡ(t)V (2.133)

where a = max
{

1, 8src
α

}
, b = min

{
α

4s2
r
,c
}

.

However, the second term of the right-hand side of (2.133) does not enable to directly

conclude the exponential stability. To deal with it, we introduce a new Lyapunov function W

defined by

W =Ve−as(t). (2.134)

The time derivative of (2.134) is written as

Ẇ =
(
V̇ −aṡ(t)V

)
e−as(t), (2.135)

and using (2.133) the following estimate can be deduced

Ẇ ≤−bW. (2.136)

Hence, W (t)≤W (0)e−bt , and using (2.88) and (2.134), we obtain

V (t)≤ easrV (0)e−bt . (2.137)
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From the definition of V in (2.125) the following holds

||w||2H1
+ pX(t)2 ≤ easr

(
||w0||2H1

+ pX(0)2
)

e−bt . (2.138)

Finally, with the help of (2.88), the direct transformation (2.94) and its associated inverse trans-

formation (2.109)–(2.110) combined with Young’s and Cauchy-Schwarz inequalities, enable to

state the existence of a positive constant D > 0 such that

||u||2H1
+X(t)2 ≤ D

(
||u0||2H1

+X(0)2
)

e−bt , (2.139)

which completes the proof of Theorem 1.

2.4 Gain Tuning to Avoid Input Saturation and Evaporation

In practical control systems, the capability of the actuator is often limited in a certain

range, which is widely known as ”input saturation” [64]. Particularity in Stefan problem as a

melting process, the heat input should not go beyond a given upper bound, while it is feasible to

assume that the lower bound is zero, i.e., the actuator does not work as a cooler. Furthermore, the

liquid temperature must be lower than the boiling temperature to avoid an evaporation which is

another phase transition from liquid to gas. Such an overall input and state constraint problem

from control algorithm perspective can be treated by restricting the control gain. First, we state

the following well known lemma for Stefan problem.

Lemma 5 If Tm ≤ T0(x)≤ T̄0(1− x/s0)+Tm and 0≤ qc(t)≤ q̄ for ∀t ≥ 0, then

Tm ≤ T (x, t)≤ T̄ (x, t) := K(s(t)− x)+Tm, (2.140)

where K = max{q̄/k, T̄0/s0} for ∀x ∈ (0,s(t)), ∀t ≥ 0.
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Proof:

Let v(x, t) := T̄ (x, t)−T (x, t). Taking the time and second spatial derivatives yields

vt = Kṡ(t)−Tt(x, t), vxx =−Txx(x, t), (2.141)

Since 0≤ qc(t), we have ṡ(t)≥ 0. Thus, we obtain

vt ≥αvxx, (2.142)

vx(0, t)≤0, v(s(t), t) = 0. (2.143)

Applying maximum principle to (2.142)–(2.143), we can state that if v(x,0)≥ 0 for all x ∈ (0,s0)

then v(x, t)≥ 0 for all x ∈ (0,s(t)) and all t ≥ 0, which concludes Lemma 5.

Next, we state the following theorem on the input and state constraint on the closed-loop

analysis of the designed control law.

Theorem 2 Assume T̄0 ≤ s0
sr
(Tb− Tm), where Tb is the boiling temperature. By choosing the

control gain c > 0 as

0 < c≤ 1
∆E

min
{

q̄,
k(Tb−Tm)

sr

}
(2.144)

where ∆E is defined by (2.12), then the designed controller satisfies the input constraint

0≤ qc(t)≤ q̄ (2.145)

and the liquid temperature profile satisfies the state constraint

Tm ≤ T (x, t)≤ Tb. (2.146)
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Proof:

As presented in the last section, the closed-loop control is equivalent to the explicit function

qc(t) = qc(0)e−ct . Hence, qc(t) ≤ qc(0) = c∆E ≤ q̄ by the control gain (2.144). Moreover,

applying qc(t) ≤ qc(0) = c∆E to Lemma 5, it holds that T (x, t) ≤ T̄ (x, t) := K(s(t)− x)+Tm

with K =max{c∆E/k, T̄0/s0}. Since s(t)≤ sr is ensured, T̄ (x, t) is bounded by T̄ (x, t)≤Ksr+Tm.

Thus, by the control gain (2.144), the state is bounded by T (x, t)≤ Tb.

2.5 Robustness to Diffusivity and Latent Heat Mismatch

The proposed control law (2.86) requires the plant’s parameters α and β. In practice, such

parameters are identified prior to the control implementation by conducting an open-loop experi-

ments and statistical learning methods. However, the parameters are essentially not accurate value,

and hence the robustness analysis of the closed-loop systems under the parameters’ uncertainties

is significant to study. In other words, we account for perturbations caused by uncertainties of the

thermal diffusivity and the latent heat of fusion. Thus, we consider the following closed-loop

system

Tt(x, t) =α(1+ ε1)Txx(x, t), 0≤ x≤ s(t), (2.147)

−kTx(0, t) =qc(t), (2.148)

T (s(t), t) =Tm, (2.149)

ṡ(t) =−β(1+ ε2)Tx(s(t), t), (2.150)

with the control law (2.86), where ε1 and ε2 are parameters’ perturbation such that ε1 >−1 and

ε2 >−1.

Theorem 3 Consider a closed-loop system (2.147)–(2.150) and the control law (2.86) under

Assumption 1 and 2. Then, for any pair of perturbation (ε1,ε2) such that ε1 ≥ ε2 and for any
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control gain c satisfying 0 < c≤ c∗ where

c∗ =
(

3
10

)1/4
α

8s2
r

1+ ε1

ε1− ε2
,

the closed-loop system is exponentially stable in the sense of the H1 the norm (2.89).

Proof:

The reference error system on (u,X) to the perturbed system is given by

ut(x, t) =α(1+ ε1)uxx(x, t), 0≤ x≤ s(t), (2.151)

−kux(0, t) =qc(t), (2.152)

u(s(t), t) =0, (2.153)

ṡ(t) =−β(1+ ε2)ux(s(t), t), (2.154)

Taking the spatial and time derivatives of the backstepping transformation (2.94) along the

solution to the ”perturbed system” (2.151)–(2.154), we obtain

wx(x, t) =ux(x, t)−
c
α

∫ s(t)

x
u(y, t)dy− c

β
X(t) (2.155)

wxx(x, t) =uxx(x, t)+
c
α

u(x, t), (2.156)

wt(x, t) =α(1+ ε1)uxx(x, t)+ c(1+ ε1)u(x, t)

+
c(ε1− ε2)

β(1+ ε2)
ṡ(t)(x− s(t))+

c
β

ṡ(t)X(t) (2.157)
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Hence, the associated target systems is derived as

wt(x, t) =α(1+ ε1)wxx(x, t)+
c
β

ṡ(t)X(t)+
c
β

ε1− ε2

1+ ε2
ṡ(t)(x− s(t)), (2.158)

wx(0, t) =0, (2.159)

w(s(t), t) =0, (2.160)

Ẋ(t) =− c(1+ ε2)X(t)−β(1+ ε2)wx(s(t), t). (2.161)

Next, we prove that the control law (2.86) applied to the perturbed system (2.147)–(2.150),

satisfies (2.113) and (2.88). Taking the time derivative of (2.86) along with (2.147)–(2.150), we

arrive at

q̇c(t) =−c(1+ ε1)qc(t)− ck (ε1− ε2)ux(s(t), t). (2.162)

The positivity of the control law (2.86) applied to the perturbed system (2.147)–(2.150) can

be shown using a contradiction argument. Assume that there exists t1 > 0 such that qc(t) > 0,

∀t ∈ (0, t1) and qc(t1) = 0. Then, Lemma 3 leads to ux(s(t), t) < 0, ∀t ∈ (0, t1). Since ε1 ≥ ε2,

(2.162) implies that

q̇c(t)≥−c(1+ ε1)qc(t), ∀t ∈ (0, t1). (2.163)

Using comparison principle, (2.163) and Assumption 2 leads to

qc(t1)≥ qc(0)e−c(1+ε1)t1 > 0. (2.164)

Thus qc(t1) 6= 0 which is in contradiction with the assumption qc(t1) = 0. Consequently, (2.113)

holds by this contradiction argument. Accordingly, (2.88) is established using (2.113) and the

control law (2.86).
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Now, consider V1 defined by

V1 =
1
2
||w||2L2

. (2.165)

The time derivative is obtained by

V̇1 =−α(1+ ε1)||wx||2L2
− cē

(
c
β

X(t)+wx(s(t), t)
)∫ s(t)

0
(x− s(t))w(x, t)dx

+
c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx. (2.166)

where ē = ε1− ε2. By Young’s and Causchy inequalities, we have

− cē
(

c
β

X(t)+wx(s(t), t)
)∫ s(t)

0
(x− s(t))w(x, t)dx

≤c2ē2

γ1

((
c
β

X(t)
)2

+wx(s(t), t)2

)
+

γ1

2

∫ s(t)

0
(x− s(t))2dx||w||2

≤c2ē2

γ1

((
c
β

X(t)
)2

+wx(s(t), t)2

)
+

γ1s3
r

6
||w||2

≤2γ1s5
r

3
||wx||2L2

+
c2ē2

γ1

((
c
β

X(t)
)2

+wx(s(t), t)2

)
. (2.167)

Choosing γ1 =
3α(1+ε1)

4s5
r

and applying to (2.166), we get

V̇1 ≤−
α(1+ ε1)

2
||wx||2L2

+
4s5

r c2ē2

3α(1+ ε1)

((
c
β

X(t)
)2

+4sr||wxx||2
)

+
c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx. (2.168)

Consider V2 defined by

V2 =
1
2

∫ s(t)

0
wx(x, t)2dx. (2.169)
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The time derivative is obtained by

V̇2 =−α(1+ ε1)||wxx||2L2
+

c
β

ēcX(t)w(0, t)+ cēwx(s(t), t)w(0, t)

+ ṡ(t)
(
− c

β
X(t)wx(s(t), t)−

1
2

wx(s(t), t)2
)
. (2.170)

Applying Young’s and Agmon’s inequality leads to

V̇2 ≤−α(1+ e1)||wxx||2L2
+

γ1

2
X(t)2 +

1
2γ1

(
c
β

ēcw(0, t)
)2

+2γ2sr||wxx||2L2
+

1
2γ2

(cēw(0, t))2 +
ṡ(t)
2

(
c
β

X(t)
)2

. (2.171)

Thus, choosing γ2 = α(1+ e1)/4sr, it follows that

V̇2 ≤−
α(1+ e1)

2
||wxx||2L2

+
γ1

2
X(t)2 +

1
2γ1

(
c
β

ēcw(0, t)
)2

+
2src2ē2

α(1+ e1)
w(0, t)2 + ṡ(t)

c2

2β2 X(t)2. (2.172)

Consider Y defined by

Y =
1
2

X(t)2. (2.173)

The time derivative is obtained and bounded by

Ẏ =− (1+ ε2)cX(t)2− (1+ ε2)βX(t)wx(s(t), t)

≤− (1+ ε2)c
2

X(t)2 +
2sr(1+ ε2)β

2

c
||wxx||2 (2.174)

where Young’s inequality and Agmon’s inequality are used from the first line to the second line.
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Thus, choosing V4 =V2 + pY , with setting p as p = cα(1+ε1)
8sr(1+ε2)β2 , we have

V̇4 ≤−
α(1+ ε1)

4
||wxx||2L2

− p
(1+ ε2)c

2
X(t)2 +

γ1

2
X(t)2

+
1

2γ1

(
c
β

ēcw(0, t)
)2

+
2src2ē2

α(1+ ε1)
w(0, t)2 + ṡ(t)

c2

2β2 X(t)2. (2.175)

Choosing γ1 = p (1+e2)c
2 , we get

V̇4 ≤−
α(1+ e1)

4
||wxx||2L2

− p
(1+ e2)c

4
X(t)2

+
10c2ē2sr

α(1+ e1)
w(0, t)2 + ṡ(t)

c2

2β2 X(t)2. (2.176)

Let V be the overall Lyapunov functional defined by

V = dV1 +V4. (2.177)

The time derivative satisfies the following inequality

V̇ ≤−d
(

α(1+ e1)

2
− 40c2ē2s2

r
dα(1+ e1)

)
||wx||2L2

+d
{

c
β

ṡ(t)X(t)
∫ s(t)

0
w(x, t)dx

}

− α(1+ e1)

4

(
1− 16dsr f (ē)

α(1+ e1)

)
||wxx||2L2

− c2α(1+ e1)

32β2sr

(
1− 32dsr f (ē)

α(1+ e1)

)
X(t)2 + ṡ(t)

c2

2β2 X(t)2, (2.178)

where f (ē) = 4s5
r c2ē2

3α(1+e1)
. Setting d = 160c2ē2s2

r
α2(1+e1)2 leads to

V̇ ≤−d
(

α(1+ ε1)

4

)
||wx||2L2

− α(1+ ε1)

12

(
4−
( c

c∗

)4
)
||wxx||2L2

− c2

β2
α(1+ ε1)

64sr

(
2−
( c

c∗

)4
)

X(t)2 + ṡ(t)
{

d2s2
r ||w||2L2

+
c2

β2 X(t)2
}
. (2.179)
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From (2.179) we deduce that for all 0 < c < c∗, there exists positive parameters a and b such that

V̇ ≤−bV +aṡ(t)V. (2.180)

The exponential stability of the target system (2.158)–(2.161) can be straightforwardly established

following the proof procedure used in (2.134)–(2.138), which completes the proof of Theorem 3.

2.6 Numerical Simulation

Following the numerical method presented in Section 1.6, the simulation of the closed-

loop system is obtained by rendering the feedback control law to the boundary heat input at every

time sequence. The initial values are set to s0 = 1 [cm], T0(x) = T̄ (1− x/s0)+Tm with T̄ = 100

[C◦], and the setpoint is chosen as sr = 35 [cm] which satisfies the setpoint restriction (2.11).

Comparison of the pulse input and the backstepping control law

Fig. 2.3 shows the responses of the plant (2.147)–(2.150) with the open-loop pulse input

(2.13) (dashed line) and the backstepping control law (2.86) (solid line). The time window of

the open-loop pulse input is set to 50 [min]. The gain of the backstepping control law is chosen

sufficiently small, c=0.001, to avoid numerical instabilities. Fig. 2.3 (a) shows the response of

s(t) without the parameters perturbations, i.e. (ε1,ε2) = (0,0) and clearly demonstrates that s(t)

converges to sr applying both rectangular pulse input and backstepping control law. However,

the convergence speed is faster with the backstepping control. Moreover, from the dynamics

of s(t) under parameters’ perturbations (ε1,ε2) = (0.3,−0.2) shown in Fig. 2.3 (b), it can be

seen that the convergence of s(t) to sr is only achieved with the backstepping control law. On

both Fig. 2.3 (a) and Fig. 2.3 (b), the responses with the backstepping control law show that the

interface position converges faster without the overshoot beyond the setpoint, i.e., ṡ(t)> 0 and
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s0 < s(t)< sr, ∀t > 0.

Closed-loop system’s validity with respect to the physical constraints

The dynamics of the controller qc(t) and the temperature at the initial interface T (s0, t)

with the backstepping control law (2.86) are described in Fig. 2.4 (a) and Fig. 2.4 (b), respectively,

for the system without parameter’s uncertainties, i.e., (ε1,ε2) = (0,0) (red) and the system with

parameters’ mismatch (ε1,ε2) = (0.3,−0.2) (blue). As presented in Fig. 2.4 (a), the boundary

heat controller qc(t) remains positive, i.e. qc(t)> 0 in both cases. Moreover, Fig. 2.4 (b) shows

that T (s0, t) converges to Tm with T (s0, t)> Tm for the system with accurate parameters and the

system with uncertainties on the parameters. Physically, Fig. 2.4 (b) means that the temperature

at the initial interface’s location increases away above the melting temperature Tm, which enables

the melting of the solid-phase to the setpoint sr. After this significant transient dynamics, T (s0, t)

settles back to Tm. An identical behavior is observed when the system is subject to parameters’

uncertainty. Therefore, the numerical results are consistent with our theoretical result.
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(a) The plots with accurate parameters (ε1,ε2) = (0,0). Our backstepping control achieves the faster
convergence of the interface position.
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(b) The plots under parameters perturbation (ε1,ε2) = (0.3,−0.2). Our backstepping control is robust to
uncertainties of the system parameters.

Figure 2.3: The moving interface responses of the plant (2.147)–(2.150) with the open-loop
pulse input (2.13) (dashed line) and the backstepping control law (2.86) (solid line) in Neumann

boundary actuation.

2.7 Boundary Temperature Actuation

Some actuators such as a thermo-electric cooler require the direct controlling of the

temperature at the boundary, which corresponds to a Dirichlet boundary control problem [16],
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(a) Positivity of the controller remains, i.e., qc(t)> 0.
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(b) T (s0, t) warms up from Tm and returns to it.

Figure 2.4: The closed-loop responses with accurate parameters (red) and parameters perturba-
tion (blue) under the backstepping control in Neumann boundary actuation.

noted as PII in Section 1.2. In this section, backstepping feedback control for PII is developed.

We define the control problem consisting of the following system:
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Tt(x, t) =αTxx(x, t), 0≤ x≤ s(t), (2.181)

T (0, t) =Tc(t)+Tm, (2.182)

T (s(t), t) =Tm, (2.183)

ṡ(t) =−βTx(s(t), t), (2.184)

where Tc(t) is a controlled temperature relative to the melting temperature. As shown in Lemma

3, the designed temperature controller needs to ensure the positivity, i.e., the following conditions

are required to hold as physical constraints

Tc(t)>0, (2.185)

s0 < s(t)<sr, (2.186)

Setpoint restriction

For boundary temperature control, the conservation law obeys the following

d
dt

(
1
α

∫ s(t)

0
x(T (x, t)−Tm)dx+

1
2β

s(t)2
)
= Tc(t). (2.187)

Considering the same control objective

s(t)→ sr, T (x, t)→ Tm, (2.188)

taking the limit of (2.187) from 0 to ∞ yields

∆E =
∫

∞

0
Tc(t)dt, (2.189)
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where ∆E := 1
2β
(s2

r − s2
0)− 1

α

∫ s0
0 x(T0(x)−Tm)dx. Hence, by imposing the physical constraint

(2.185), the least restrictive condition for the choice of setpoint is derived, and the open-loop

stabilization is presented in the following.

Lemma 6 Consider an open-loop setpoint control law T ?
c (t) which satisfies (2.189). Then, for

any setpoint sr satisfying

sr >

√
s2

0 +
2β

α

∫ s0

0
x(T0(x)−Tm)dx, (2.190)

the control objective (2.188) is satisfied.

As in Section 2.1, a simple rectangular pulse input achieves (2.188). Such a control action

given by

T ?
c (t) =





T̄ for t ∈ [0,∆E/T̄ ]

0 for t > ∆E/T̄




, (2.191)

stands as an open-loop “energy shaping” approach.

State feedback controller design

Firstly, we suppose that the physical parameters are accurately known and state the

following theorem.

Theorem 4 Consider a closed-loop system consisting of the plant (2.181)–(2.184) and the control

law

Tc(t) =−c
(

1
α

∫ s(t)

0
x(T (x, t)−Tm)dx+

1
β

s(t)(s(t)− sr)

)
, (2.192)

where c > 0 is the controller gain under Assumption 1. Then, for any reference setpoint sr and
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control gain c which satisfy

sr >s0 +
β

α

∫ s0

0

x
s0
(T0(x)−Tm)dx, (2.193)

c≤ α

2
√

2sr
, (2.194)

respectively, the closed-loop system is exponentially stable in the sense of the norm (2.89).

Proof:

We use the same backstepping transformation as in (2.94), which leads to the following target

system

wt(x, t) =αwxx(x, t)+
c
β

ṡ(t)X(t), (2.195)

w(0, t) =0, (2.196)

w(s(t), t) =0, (2.197)

Ẋ(t) =− cX(t)−βwx(s(t), t) (2.198)

and the control law (2.192).

Next, we show that the physical constraints (2.185) and (2.186) are insured if (2.193)

holds. Taking the time derivative of (2.192), we have

Ṫc(t) =−cTc(t)−
c
β

ṡ(t)X(t). (2.199)

Assume that ∃t2 such that Tc(t) > 0, ∀t ∈ (0, t2) and Tc(t2) = 0. Then, by Lemma 3, we get

u(x, t) > 0 and ṡ(t) > 0 for ∀t ∈ (0, t2). Hence, s(t) > s0 > 0. Applying these inequalities to

(2.192), we deduce X(t) < 0, ∀t ∈ (0, t2). Hence, (2.199) verifies the differential inequality

Ṫc(t)>−cTc(t), ∀t ∈ (0, t2). Comparison principle and (2.193) yield Tc(t2)> Tc(0)e−ct2 > 0

in contradiction to Tc(t2) = 0. Therefore, @t2 such that Tc(t)> 0 for ∀t ∈ (0, t2) and Tc(t2) = 0,
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which implies Tc(t)> 0, ∀t > 0 assuming (2.193).

Finally, we consider a functional

V =
d
2
||w||2L2

+
1
2
||wx||2L2

+
p
2

X(t)2. (2.200)

With an appropriate choice of the positive parameters d and p, the time derivative of (2.200)

yields

V̇ ≤−
(

α

2
−
√

2csr

)
||wxx||2−

dα

2(4s2
r +1)

||w||2H1

− αc2

4β2 X(t)2 + ṡ(t)
(

c2

β2 X(t)2 +
d2s2

r
2
||w||2

)
. (2.201)

Thus, choosing the controller gain to satisfy (2.194), it can be verified that there exist positive

constants b and a such that

V̇ ≤−bV +aṡ(t)V. (2.202)

Similarly in the Neumann boundary actuation case, under the physical constraint (2.185), the

exponential stability of the target system (2.195)–(2.198) can be established from the inequality

(2.202), which completes the proof of Theorem 4.
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Robustness to parameters’ uncertainty

Next, we investigate the controller (2.192) to perturbations on the plant’s physical param-

eters α and β, considering the following perturbed system

Tt(x, t) =α(1+ ε1)Txx(x, t), 0≤ x≤ s(t), (2.203)

T (0, t) =Tc(t)+Tm, (2.204)

T (s(t), t) =Tm, (2.205)

ṡ(t) =−β(1+ ε2)Tx(s(t), t) (2.206)

where ε1 and ε2 are perturbation parameters such that ε1 >−1 and ε2 >−1.

Theorem 5 Consider the closed-loop system consisting of the plant (2.203)–(2.206) and the

control law (2.192) under the assumption on (2.193) to hold. Then, for any perturbations (ε1,ε2)

which satisfy ε1 ≥ ε2, there exists c̄∗ > 0 such that for all controller gain c satisfying 0 < c≤ c̄∗,

the closed-loop system is exponentially stable in the sense of the norm (2.89).

Proof:

By the same transformation (2.94), the target w-system is given by

wt(x, t) =α(1+ ε1)wxx(x, t)+
c
β

ṡ(t)X(t)+
c
β

ε1− ε2

1+ ε2
ṡ(t)(x− s(t)), (2.207)

w(0, t) =0, (2.208)

w(s(t), t) =0, (2.209)

Ẋ(t) =− c(1+ ε2)X(t)−β(1+ ε2)wx(s(t), t). (2.210)

To prove the physical constraints (2.185) and (2.186), taking the time derivative of (2.192)
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along the system (2.203)–(2.206), we obtain

Ṫc(t) =− c(1+ ε1)Tc(t)−
c
β

ṡ(t)X(t)

− c(ε1− ε2)ux(s(t), t). (2.211)

Thus, the inequality ε1 ≥ ε2 enables to state the positivity of the controller Tc(t) > 0 and the

physical constraints (2.185) and (2.186) are verified.

Finally, we consider the functional defined in (2.200). After lengthy calculation and

applying inequalities in a similar way to Section 2.5, with an appropriate choice of d and p and

imposing c < c1 where c1 := α(1+ε2)

2
√

2sr
, we have

V̇ ≤− dα(1+ ε1)

4
||wx||2L2

− α(1+ ε1)

8
(
2−Ac3) ||wxx||2L2

− c2α(1+ ε1)

32β2sr

(
2−Ac3−Bc

)
X(t)2

+ ṡ(t)
{

d2s2
r ||w||2L2

+
c2

β2 X(t)2
}
. (2.212)

where A = 29
√

2s6
r (1+sr)(ε1−ε2)

2

3α3(1+ε1)2(1+ε2)
, B = 16

√
2s2

r
α(1+ε2)

. Let c2 be a positive root of Ac3
2 +Bc2 = 1. Then,

for 0 < ∀c < c̄∗ := min{c1,c2}, there exists positive constants ā and b̄ which verifies V̇ ≤

−b̄V + āṡ(t)V , which concludes Theorem 5.

Numerical simulation

Numerical simulation is studied for the designed Dirichlet boundary actuation. Analogous

plots to the ones given in Section 2.6 are depicted in Fig. 2.5 and 2.6, respectively. Basically

we can observe the similar good performance and properties to the ones for Neumann boundary

actuations in terms of the convergence to the setpoint and the validity of the physical constraints.
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Figure 2.5: The moving interface response of the plant (2.181)–(2.184) with the open-loop
pulse input (2.191) (dashed line) and the backstepping control law (2.192) (solid line), under
the accurate parameters (ε1,ε2) = (0,0) (top) and under the parameters perturbation (ε1,ε2) =
(0.3,−0.2). We can observe the faster convergence and the parametric robustness of our

backstepping control law.

2.8 Stefan-Like Problem with Dirichlet Interconnection

In this section, we study whether the procedure for control design and analysis of the

Stefan problem can be applicable to an analogous moving boundary problem. Specifically, one
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Figure 2.6: The closed-loop responses with accurate parameters (red) and parameters perturba-
tion (blue) under the backstepping control in Dirichlet boundary actuation. Both positivity of

the control input and the constraints of temperature are validated.

might be interested in the following diffusion PDE under Dirhichlet interconnection on the
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moving boundary dynamics

ut(x, t) =αuxx(x, t), 0 < x < s(t) (2.213)

u(0, t) =U(t), (2.214)

ux(s(t), t) =0, (2.215)

ṡ(t) =−βu(s(t), t). (2.216)

The dynamics (2.216) leads to the shrinking moving interface under the positivity of PDE state,

contrary to the Stefan problem. Applying maximum principle, the following lemma is stated.

Lemma 7 If u0(x) > 0 and U(t) > 0 for all t > 0, then u(x, t) > 0, ∀x ∈ (0,s(t)) and ṡ(t) < 0,

∀t > 0.

Therefore, we consider the stabilization of the interface position s(t) driven ”back” to a

setpoint sr. The following theorem is presented.

Theorem 6 Assume s0 > 0, u0(x)> 0 for ∀x ∈ (0,s0), and the setpoint is chosen to satisfy

0 < sr < s0−
β

α

∫ s0

0
xu0(x)dx. (2.217)

Then the closed-loop system under the control law

U(t) =−c
(

1
α

∫ s(t)

0
xu(x, t)dx− 1

β
(s(t)− sr)

)
, (2.218)

satisfies the following properties

U(t)>0, u(x, t)> 0, (2.219)

ṡ(t)<0, (2.220)

sr <s(t)< s0, (2.221)
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and is exponentially stable in the norm

||u||2L2
+(s(t)− sr)

2. (2.222)

Proof:

Taking the time derivative of the control law (2.218), we have

U̇(t) = c
ṡ(t)2

αβ
s(t)− cU(t). (2.223)

We prove s(t) > sr > 0. Assume there exists t∗ > 0 such that s(t) > sr for ∀t ∈ [0, t∗) and

s(t∗) = sr. Then, (2.223) yields U̇(t)>−cU(t) for ∀t ∈ [0, t∗], which leads to U(t)>U(0)e−ct

for ∀t ∈ [0, t∗]. By Lemma 7, it holds that u(x, t)> 0, ∀x ∈ (0,s(t)), ∀t ∈ [0, t∗). Thus, by (2.218),

we have

U(0)e−ct <
c
β
(s(t)− sr), ∀t ∈ [0, t∗). (2.224)

Since U(0)> 0 due to the setpoint condition (2.217), the inequality (2.224) contradicts with the

imposed assumption s(t∗) = sr. Thus, there does not exist such a finite time t∗, which yields

s(t) > sr for ∀t > 0. Applying this to (2.223) and using comparison principle, the inequalities

(2.219) are satisfied. By Lemma 7, the inequality (2.220) is derived, and finally (2.221) is proved

by applying these inequalities to (2.218).

Next, we consider the following transformation

w(x, t) = u(x, t)+
c
α

∫ s(t)

x
(y− x)u(y, t)dy− c

β
X(t). (2.225)
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Taking the time and spatial derivatives, we obtain the following target system

wt(x, t) =αwxx(x, t)+
c
α

ṡ(t)(s(t)− x)
(

c
β

X(t)+w(s(t), t)
)
, (2.226)

w(0, t) =0, (2.227)

wx(s(t), t) =0, (2.228)

Ẋ(t) =− cX(t)−βw(s(t), t). (2.229)

Finally we prove the stability of the target system (2.226)–(2.229) by utilizing the proven

inequalities (2.220) and (2.221). Consider

V1 =
1

2α
||w||2 = 1

2α

∫ s(t)

0
w(x, t)2dx. (2.230)

The time derivative is given by

V̇1 =−
∫ s(t)

0
wx(x, t)2dx+

ṡ(t)
2α

w(s(t), t)2

+
c

α2 ṡ(t)
(

c
β

X(t)+w(s(t), t)
)∫ s(t)

0
(s(t)− x)w(x, t)dx. (2.231)

By Young’s inequality with the help of ṡ(t)< 0, we have

ṡ(t)
(

c
β

X(t)+w(s(t), t)
)∫ s(t)

0
(s(t)− x)w(x, t)dx

≤− ṡ(t)
2

(
γ

(
c
β

X(t)+w(s(t), t)
)2

+
1
γ

(∫ s(t)

0
(s(t)− x)w(x, t)dx

)2
)

≤− ṡ(t)
(

c2γ

β2 X(t)2 + γw(s(t), t)2 +
s(t)3

2γ
||w||2

)
. (2.232)
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Applying (2.232) to (2.231), the following bound is obtained

V̇1 ≤−
∫ s(t)

0
wx(x, t)2dx+

ṡ(t)
2α

w(s(t), t)2

− ṡ(t)
c

α2

(
c2γ

β2 X(t)2 + γw(s(t), t)2 +
s(t)3

2γ
||w||2

)
. (2.233)

Setting γ = α

2c leads to

V̇1 ≤−||wx||2− ṡ(t)
c

α2

(
cα

2β2 X(t)2 +
cs(t)3

α
||w||2

)
. (2.234)

Consider

Y =
1
2

X(t)2. (2.235)

Taking the time derivative and applying Young’s and Agmon’s inequalities yield

Ẏ =−cX(t)2 +βX(t)w(s(t), t)≤−c
2

X(t)2 +
2β2s0

c
||wx||2. (2.236)

Therefore, by defining V =V1 + pY with p = c
4β2s0

, we have

V̇ ≤− 1
2
||wx||2−

pc
2

X(t)2− ṡ(t)
(

c2

2αβ2 X(t)2 +
c2s3

0
α3 ||w||

2
)

≤−aV −bṡ(t)V. (2.237)

As in the previous way, consider W =Vebs(t) and taking the time derivative with applying (2.237),

it holds that

Ẇ ≤−aW. (2.238)
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Thus, by (2.220) and (2.221), the following estimate of the norm is derived

V ≤V0eb(s0−sr)e−at , (2.239)

from which we conclude the exponential stability stated in Theorem 6.

Numerical simulation is studied by using the same value of α and β as of zinc. Fig. 2.7

shows that under the closed-loop system the interface position is driven from s0 = 10 [cm] to the

setpoint sr = 2 [cm] without overshoot. Fig. 2.8 illustrates that the designed controller maintains

the positivity as proven in the theorem.

2.9 Conclusion and Remarks

While the numerical analysis of the one-phase Stefan problem is broadly covered in the

literature, their control related problems have been addressed relatively fewer. In addition to it,

most of the proposed control approaches are based on finite-dimensional approximations with the

assumption of an explicitly given moving boundary dynamics [35],[7],[125]. Diffusion-reaction

processes with an explicitly known moving boundary dynamics are investigated in [7] based on

the concept of inertial manifold [28] and the partitioning of the infinite dimensional dynamics

into slow and fast finite dimensional modes. Motion planning boundary control has been adopted

in [125] to ensure asymptotic stability of a one-dimensional one-phase nonlinear Stefan problem

assuming a prior known moving boundary and deriving the manipulated input from the solutions

of the inverse problem. However, the series representation introduced in [125] leads to highly

complex solutions that reduce controller design possibilities.

For control objectives, infinite-dimensional frameworks that lead to significant challenges

in the process characterization have been developed for the stabilization of the temperature profile

and the moving interface of the Stefan problem. An enthalpy-based boundary feedback control

law that ensures asymptotical stability of the temperature profile and the moving boundary at the
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Figure 2.7: The interface response of the Stefan-like problem with Dirichlet interconnection.
s(t) is driven back to the setpoint sr = 2 [cm]
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Figure 2.8: The closed-loop response of the control input of the Stefan-like problem with
Dirichlet interconnection. Positivity of U(t) is maintained.

desired reference, has been employed in [127]. Lyapunov analysis is performed in [110] based on

a geometric control approach which enables to adjust the position of a liquid-solid interface to

the desired setpoint while exponentially stabilizing the L2-norm of the distributed temperature.

However, the results in [110] are stated based on physical assumptions on the liquid temperature
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being greater than the melting point, which needs to be guaranteed by proving strictly positive

boundary input. The significant contribution of the proposed method using backstepping is to

prove all the physical properties which needs to be addressed and global exponential stability of

the closed-loop system by focusing on the stability analysis of the target system.

This chapter presented control designs for the one-phase Stefan problem via backstepping

method. The novelties of our results are summarized below.

1. A new approach to globally stabilizing a class of nonlinear parabolic PDEs with moving

boundary via a nonlinear backstepping transformation is proposed.

2. The closed-loop responses satisfy the physical constraints needed for the validity of the

model.

3. A novel formulation of the Lyapunov function for moving boundary PDEs was applied and

it showed the exponential stability of the closed loop system.

Even though our state feedback controller for the Neumann boundary actuation is same as

the one proposed in [128], we ensure the exponential stability of the interface and temperature in

H1 norm, which is stronger than the asymptotical stability presented in [128]. The application

of extremum seeking control with static maps to the Stefan problem following the recent results

of [119] could be an interesting design that can be applied to the optimization of phase-change

phenomena in building use [103].
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Chapter 3

State Estimation Design

The state feedback control presented in Chapter 2 requires the entire profile of the

temperature in the liquid phase as a given information. Some imaging-based sensors such as

thermographic camera (a.k.a. infrared camera or IR camera) enables to capture the temperature

profile, however, they include relatively higher noise than single point thermal sensors such as

thermocouples. Thus, estimating the entire temperature profile given a boundary measurement

is a significant task for the real implementation of the control algorithm. Generally speaking,

such a problem to estimate variables of interest given some measured value is widely known

as ”state estimation”. One of the most popular state estimation methods is ”Kalman filter”

which is an optimal filter in linear dynamical systems with white Gaussian noise in the model

and measurements. Another well known method is ”Luenberger observer” which stabilizes the

estimation error at zero in linear deterministic systems. In finite dimensional systems, the observer

gain is designed by means of pole placement or linear matrix inequality. In this book, we focus

on the state estimation of the Stefan problem by Luenberger-type observer with designing the

observer gain via the backstepping method.
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3.1 Basic Idea of PDE Estimation on Fixed Boundary

Consider the unstable reaction-diffusion PDE presented in Section 2.2

ut =uxx(x, t)+λu(x, t), 0 < x < 1, (3.1)

u(0, t) =0, (3.2)

u(1, t) =U(t), (3.3)

where U(t) is a time-varying input which can be either an open-loop forcing or a feedback control.

Suppose that a boundary flux ux(0, t) is available for measurement y(t):

y(t) = ux(0, t) (3.4)

The observer is constructed as a copy of the plant (3.1)–(3.3) plus the product of the observer

gain and the measurement error, given by

ût =ûxx(x, t)+λû(x, t)+ p1(x)(y(t)− ûx(0, t)), 0 < x < 1, (3.5)

û(0, t) =0, (3.6)

û(1, t) =U(t), (3.7)

The objective is to find the gain function p1(x) such that û converges to u. First, we introduce the

estimation error variable defined by

ũ = u− û (3.8)
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Subtraction of (3.5)–(3.7) from (3.1)–(3.3) yields the estimation error dynamics as

ũt =ũxx(x, t)+λũ(x, t)− p1(x)ũx(0, t), 0 < x < 1, (3.9)

ũ(0, t) =0, (3.10)

ũ(1, t) =0, (3.11)

Consider the backstepping transformation from a newly defined variable w̃ to the estimation error

ũ, given by

ũ = w̃−
∫ x

0
p(x,y)w̃(y)dy (3.12)

where w̃ obeys the following stable diffusion PDE

w̃t =w̃xx, 0 < x < 1, (3.13)

w̃(0, t) =0, (3.14)

w̃(1, t) =0. (3.15)

Taking the spatial and time derivatives of (3.12), we obtain

ũxx =w̃xx− p(x,x)w̃x(x)−
(

d
dx

p(x,x)+ px(x,x)
)

w̃(x)

−
∫ x

0
pxx(x,y)w̃(y)dy (3.16)

ũt =w̃xx− p(x,x)w̃x(x)+ p(x,0)w̃x(0)+ py(x,x)w̃(x)

−
∫ x

0
pyy(x,y)w̃(y)dy (3.17)
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Thus,

ũt− ũxx−λũ+ p1(x)ũx(0, t) =(p1(x)+ p(x,0))w̃x(0)+
(

2
d
dx

p(x,x)−λ

)
w̃(x)

+
∫ x

0
(pxx(x,y)− pyy(x,y)+λp(x,y))w̃(y)dy (3.18)

By boundary condition, we get

p(1,y) = 0 (3.19)

Therefore,

pxx− pyy =−λp, (3.20)

d
dx

p(x,x) =
λ

2
, (3.21)

p(1,y) =0, (3.22)

Introduce a change of coordinates

x̄ = 1− y, ȳ = 1− x, p̄(x̄, ȳ) = p(x,y), (3.23)

we have

p̄x̄x̄− p̄ȳȳ =λp̄, (3.24)

d
dx̄

p̄(x̄, x̄) =− λ

2
, (3.25)

p̄(x,0) =0 (3.26)

This PDE (3.24) and the boundary conditions (3.25), (3.26) are equivalent to the one introduced
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in (2.37)–(2.39). Hence, taking back to the original coordinate x and y, the solution is given by

p(x,y) =−λ(1− x)
I1(z)

z
, z :=

√
λ((1− y)2− (1− x)2) (3.27)

The observer gain is given by

p1(x) =−p(x,0) = λ(1− x)
I1

(√
λ(1− (1− x)2)

)

√
λ(1− (1− x)2)

, (3.28)

3.2 Temperature Profile Estimation for the Stefan Problem

In this section, we develop the observer design of temperature profile for the Stefan

problem given available measurements of the interface position and the temperature gradient at

the interface. While measuring the temperature gradient at the interface lacks on the practical

feasibility in sensing technique, the estimator under the setting is relatively easy and enables the

analysis of the output feedback control.

Recall the Stefan problem modeling the liquid temperature dynamics under the melting,

described by

Tt(x, t) =αTxx(x, t), x ∈ (0,s(t)), (3.29)

−kTx(0, t) =qc(t), (3.30)

T (s(t), t) =Tm, (3.31)

ṡ(t) =−βTx(s(t), t), (3.32)

Denoting the estimates of the temperature T̂ (x, t), the following theorem holds:
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Theorem 7 Consider the plant (3.29)–(3.32) with the measurements

Y1(t) = s(t), Y2(t) = Tx(s(t), t), (3.33)

and the following observer

T̂t(x, t) =αT̂xx(x, t)+ p1(x,Y1(t))
(
Y2(t)− T̂x(Y1(t), t)

)
, (3.34)

−kT̂x(0, t) =qc(t), (3.35)

T̂ (Y1(t), t) =Tm, (3.36)

where x ∈ [0,Y1(t)], and the observer gain p1(x,Y1(t)) is

p1(x,Y1(t)) =−λY1(t)
I1

(√
λ

α
(Y1(t)2− x2)

)

√
λ

α
(Y1(t)2− x2)

, (3.37)

with a gain parameter λ > 0. Assume that the model validity condition T (x, t)≥ Tm is satisfied.

Then, for all λ > 0, the observer error system has a unique classical solution and is exponentially

stable in the sense of the norm

||T − T̂ ||2H1
. (3.38)

Since the observer PDE (3.34)–(3.35) is a cascaded system of the plant PDE-ODE (3.29)–

(3.32), the observer state T̂ (x, t) admits a classical solution only if the plant states (T (x, t),s(t))

admits a classical solution. Note that the observer gain (3.37) is dependent on the measured value

Y1(t) = s(t), which renders the derivation of the observer gain require online computation.
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Observer gain derivation by backstepping transformation

Let us define the estimation error state ũ as

ũ(x, t) = T (x, t)− T̂ (x, t). (3.39)

Subtraction of (3.34)–(3.36) from (3.29)–(3.31) leads to the estimation error system given by

ũt(x, t) =αũxx(x, t)− p1(x,s(t))ũx(s(t), t), (3.40)

ũx(0, t) =0, (3.41)

ũ(s(t), t) =0. (3.42)

As for the full-state feedback case, the following backstepping transformation for moving bound-

ary PDEs

ũ(x, t) =w̃(x, t)+
∫ s(t)

x
P(x,y)w̃(y, t)dy, (3.43)

is constructed to convert the following exponentially stable target system

w̃t(x, t) =αw̃xx(x, t)−λw̃(x, t), (3.44)

w̃x(0, t) =0, (3.45)

w̃(s(t), t) =0, (3.46)

into the ũ-system (3.40)–(3.42). Taking the derivative of (3.43) with respect to t and x along the

solution of (3.44)–(3.46), respectively, for any continuous function w̃(x, t), the gain kernel P(x,y)
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and the observer gain p1(x,s(t)) must satisfy

Pxx(x,y)−Pyy(x,y)+
λ

α
P(x,y) = 0, (3.47)

P(x,x) =
λ

2α
x, (3.48)

Px(0,y) =0, (3.49)

p1(x,s(t)) =−αP(x,s(t)), (3.50)

in order to map (3.40)–(3.42) into (3.44)–(3.46). Introduce the change of coordinates and the

state as

x̄ = y, ȳ = x, P̄(x̄, ȳ) =−P(x,y), λ̄ =
λ

α
. (3.51)

Then, the system (3.47)–(3.49) is rewritten using the new coordinates as

P̄x̄x̄− P̄ȳȳ =λ̄P̄, (3.52)

P̄(x̄, x̄) =− λ̄

2
x̄, (3.53)

P̄ȳ(x̄,0) =0. (3.54)

The solution to (3.52)–(3.54) is obtained (see eq. (4.64)–(4.66) in [99]). Taking back to the

original coordinates and variables, the gain kernel function is solved as

P(x,y) =
λ

α
y

I1

(√
λ

α
(y2− x2)

)

√
λ

α
(y2− x2)

. (3.55)

Finally, using (3.50), the observer gain (3.37) is derived.
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Inverse transformation

The inverse transformation is formulated as

w̃(x, t) =ũ(x, t)−
∫ s(t)

x
Q(x,y)ũ(y, t)dy, (3.56)

where the gain kernel Q(x,y) satisfies

Qxx(x,y)−Qyy(x,y) =
λ

α
Q(x,y), (3.57)

Q(x,x) =
λ

2α
x, (3.58)

Qx(0,y) =0. (3.59)

The solution to (3.57)–(3.59) is written as

Q(x,y) =
λ

α
y

J1

(√
λ

α
(y2− x2)

)

√
λ

α
(y2− x2)

, (3.60)

where J1(x) is a Bessel function of the first kind.

Temperature profile estimate converges to the real temperature

To show the stability of the target w̃-system (3.44)–(3.46), we consider a functional

Ṽ =
1
2
||w̃||2H1

. (3.61)

Taking the time derivative of (3.61) along the solution of (3.44)–(3.46) leads to

˙̃V =−α||w̃x||2H1
−λ||w̃||2H1

− ṡ(t)
2

w̃x(s(t), t)2. (3.62)
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As stated in Lemma 1 in Section 1.2, the model validity condition T (x, t)≥ Tm leads to ṡ(t)≥ 0.

Hence, the following differential inequality in Ṽ is derived from (3.62):

˙̃V ≤−λṼ . (3.63)

Hence, w̃-system (3.44)–(3.46) is exponentially stable, which induces the exponential stability of

the original ũ-system (3.40)–(3.42), which completes the proof of Theorem 7.

Algorithm development of the designed observer

The designed observer (3.34)–(3.36) obeys the PDE on moving boundary, however, the

numerical model needs to be described by a finite dimensional state in a discrete time. Following

the procedure in Section 1.6, the scaled PDE on the fixed domain is firstly derived, which requires

the information on s(t) and ṡ(t). Through the available measurements, these variables are obtained

by Y1(t) and −βY2(t). Since the observer utilizes the measured values as inputs, the fixed domain

PDE observer can be expressed by

v̂t(ξ, t) =
α

Y1(t)2 v̂ξξ(ξ, t)−
ξβY2(t)
Y1(t)

v̂ξ(ξ, t)

+ p1(ξ,Y1(t))
(

Y2(t)−
v̂ξ(1, t)
Y1(t)

)
, 0 < ξ < 1 (3.64)

v̂ξ(0, t) =− k−1Y1(t)qc(t), (3.65)

v̂(1, t) =Tm, (3.66)

Hence, the available measurements enable to design not only moving boundary PDE observer

but also the equivalent fixed domain PDE observer. After the spatial discretization by finite

difference and the time discretization by explicit Euler methods as in BIM, the observer algorithm

is described by the following structure.
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Algorithm 2: Time Update for Estimating Temperature Profile

Input: {v̂i
0}N

i=0,{Y1, j}M
j=0,{Y2, j}M

j=0
for j = 0 to M, do

v̂(−1)
j ← v̂(1)j +2hk−1Y1, jqc( j∆t)

v̂(N)
j ← Tm

Ŷ2, j←
3v̂(N)

j −4v̂(N−1)
j +v̂(N−2)

j
2hY1, j

for i = 0 to N−1, do
z←

√
λ

α
Y 2

1, j (1− (ih)2)

p1←−λY1, j
I1(z)

z

v̂(i)j+1←

v̂(i)j +∆t
(

α

h2Y 2
1, j
(v̂(i+1)

j −2v̂(i)j + v̂(i−1)
j )− iβY2, j

2Y1, j
(v̂(i+1)

j − v̂(i−1)
j )+ p1

(
Y2, j− Ŷ2, j

))

end for
end for
Output: {v̂i

j}
N,M
i=0, j=1

3.3 Observer-Based Output Feedback Control Design

An output feedback control law is constructed using the reconstruction of the estimated

temperature profile through the exponentially convergent observer (3.34)–(3.35) with the mea-

surements as shown in Fig. 3.1 and the following theorem holds:

Theorem 8 Consider the closed-loop system (3.29)–(3.32) with the measurements Y1(t) = s(t),

Y2(t) = Tx(s(t), t), and the observer (3.34)–(3.35) under the output feedback control law

qc(t) =− c
(

k
α

∫ s(t)

0

(
T̂ (x, t)−Tm

)
dx+

k
β
(s(t)− sr)

)
. (3.67)

Assuming that the Lipschitz constant H in Assumption 1 (0≤ T0(x)−Tm ≤ H(s0− x)) is known,

for any initial temperature estimation T̂0(x), any gain parameter of the observer λ, and any
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Figure 3.1: Block diagram of observer design and output feedback. Here, the interface position
and the temperature gradient at the interface position are assumed to be available.

setpoint sr satisfying

Tm + Ĥl(s0− x)≤T̂0(x)≤ Tm + Ĥu(s0− x), (3.68)

λ <
4α

s2
0

Ĥl−H
Ĥu

, (3.69)

sr >s0 +
βs2

0
2α

Ĥu, (3.70)

respectively, where the parameters Ĥu and Ĥl satisfy Ĥu ≥ Ĥl > H, the closed-loop system is

exponentially stable in the sense of the norm

||T − T̂ ||2H1
+ ||T −Tm||2H1

+(s(t)− sr)
2. (3.71)

Backstepping transformation

For the output feedback analysis, we introduce the estimator state of a reference error û

by defining

û = T̂ −Tm (3.72)
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Then, û-system is described by

ût(x, t) =αûxx(x, t)+ p1(x,Y1(t))(Y2(t)− ûx(Y1(t), t)) , (3.73)

−kûx(0, t) =qc(t), (3.74)

û(Y1(t), t) =0, (3.75)

with the observer gain p1 in (3.37). We can see that the estimation error state defined by (3.39) is

equivalent to the estimation error in a reference error state, namely, ũ = T − T̂ = u− û. Since

ũ-system in (3.40)–(3.42) is independent on the control input U(t), by separation principle, the

output feedback controller is designed by utilizing the estimator state û instead of the plant

state u in the full-state feedback control. The transformation of the variables (û,X) into (ŵ,X)

is performed using the gain kernel functions of backstepping transformation in state feedback

control. Thus, we consider

ŵ(x, t) = û(x, t)− c
α

∫ s(t)

x
(x− y)û(y, t)dy− c

β
(x− s(t))X(t). (3.76)

Note that ŵ 6= w− w̃ due to the different transformation between ŵ and w̃. Taking the derivatives

of (3.76) along with the solution of (3.73)–(3.75) with the help of the transformation (3.43), the

associated target system is obtained by

ŵt(x, t) =αŵxx(x, t)+
c
β

ṡ(t)X(t)+ f (x,s(t))w̃x(s(t), t), (3.77)

ŵx(0, t) =0, (3.78)

ŵ(s(t), t) =0, (3.79)

Ẋ(t) =− cX(t)−βŵx(s(t), t)−βw̃x(s(t), t), (3.80)
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where

f (x,s(t)) = P(x,s(t))− c
α

∫ s(t)

x
(x− y)P(y,s(t))dy− c(s(t)− x). (3.81)

Evaluating the spatial derivative of (3.76) at x = 0, we derive the output feedback controller as

qc(t) =−c
(

k
α

∫ s(t)

0
û(x, t)dx+

k
β

X(t)
)
. (3.82)

After lengthy calculation, one can see that the inverse transformation is also equivalent to the one

of the state feedback control, namely

û(x, t) =ŵ(x, t)+
β

α

∫ s(t)

x
ψ(x− y)ŵ(y, t)dy+ψ(x− s(t))X(t), (3.83)

where the gain kernel (2.110).

Observer gain restriction for positivity of heat input

As presented in Chapter 2, the closed loop system must verify the two physical constraints

qc(t)>0, ∀t > 0 (3.84)

s0 <s(t)< sr, ∀t > 0. (3.85)

We derive sufficient conditions to guarantee that the physical constraints (3.84) and (3.85) are not

violated when the output feedback control law (3.82) is applied to the plant. First, we state the

following lemma.

Lemma 8 Suppose that w̃(0, t) < 0. Then, the solution to (3.44)–(3.46) satisfies w̃(x, t) < 0,

∀x ∈ (0,s(t)), ∀t > 0.

The proof of Lemma 8 is constructed using the maximum principle [121]. Next, we state the
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following lemma.

Lemma 9 For any initial temperature estimate T̂0(x) and any observer gain parameter λ satisfy-

ing (3.68) and (3.69), respectively, the following properties hold:

ũ(x, t)< 0, ũx(s(t), t)> 0, ∀x ∈ (0,s(t)), ∀t > 0. (3.86)

Proof:

Lemma 8 states that if w̃(x,0)< 0, then w̃(x, t)< 0. In addition, from (3.43), w̃(x, t)< 0 leads to

ũ(x, t)< 0 due to the positivity of the solution to the gain kernel (3.55). Therefore, with the help

of (3.56), we deduce that ũ(x, t)< 0 if the following holds

ũ(x,0)<
∫ s0

x
Q(x,y)ũ(y,0)dy, ∀x ∈ (0,s0). (3.87)

Considering the bound of the solution (3.60) under the condition (3.68), the sufficient condition

for (3.87) to hold is given by (3.69), which restricts the gain λ. Thus, we have shown that condi-

tions (3.68) and (3.69) lead to ũ(x, t)< 0, ∀x ∈ (0,s(t)), ∀t > 0. In addition, from the boundary

condition (3.42) and Hopf’s lemma, it follows that ũx(s(t), t)> 0.

The final step is to prove that the output feedback closed-loop system satisfies the physical

constraint (3.84).

Proposition 1 Suppose the initial values T̂0(x) and s0 satisfy (3.68) and the setpoint sr is chosen

to satisfy (3.70). Then, the physical constraints (3.84) and (3.85) are satisfied by the closed-loop

system consisting of the plant (3.29)–(3.32), the observer (3.34)–(3.36) and the output feedback

control law (3.67).

Proof:

Taking the time derivative of (3.82) along with the solution (3.73)–(3.75), with the help of the
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observer gain (3.50), we obtain

q̇c(t) =−cqc(t)+
(

1+
∫ s(t)

0
P(x,s(t))dx

)
ũx(s(t), t). (3.88)

From the positivity of the gain kernel solution (3.55) and the Neumann boundary value (3.86),

the following differential inequality holds

q̇c(t)≥−cqc(t). (3.89)

Hence, if the initial values satisfy qc(0) > 0, equivalently (3.70) is satisfied from (3.82) and

(3.68), we get

qc(t)> 0, ∀t > 0. (3.90)

Then, using (3.86) given in Lemma 9 and the positivity of u(x, t) (see Lemma 3), the following

inequality is established:

û(x, t)> 0, ∀x ∈ (0,s(t)), ∀t > 0. (3.91)

Finally, substituting the inequalities (3.90) and (3.91) into (3.82), we arrive at X(t)< 0, ∀t > 0,

which guarantees that the second physical constraint (3.85) is satisfied.
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Convergence of estimation error and the liquid length

We prove the stability of the overall closed-loop system under the output feedback. We

consider

V̂1 =
1
2

∫ s(t)

0
ŵ(x, t)2dx. (3.92)

The time derivative yields

˙̂V1 =−α

∫ s(t)

0
ŵx(x, t)2dx+

c
β

ṡ(t)X(t)
∫ s(t)

0
ŵ(x, t)dx

+
∫ s(t)

0
f (x,s(t))ŵ(x, t)dxw̃x(s(t), t), (3.93)

≤−α

∫ s(t)

0
ŵx(x, t)2dx+ ṡ(t)

(
c2

2β2 X(t)+
sr

2

∫ s(t)

0
ŵ(x, t)2dx

)

+
γ0

2

(∫ s(t)

0
f (x,s(t))2dx

)(∫ s(t)

0
ŵ(x, t)2dx

)
+

1
2γ0

w̃x(s(t), t)2, (3.94)

where we used ṡ(t) > 0 and Young’s inequalities. Let A1 = sups0≤s(t)≤sr

∫ s(t)
0 f (x,s(t))2dx. By

Poincare’s inequality, we obtain

˙̂V1 ≤−
α

2

∫ s(t)

0
ŵx(x, t)2dx+ ṡ(t)

(
c2

2β2 X(t)+
sr

2

∫ s(t)

0
ŵ(x, t)2dx

)

+
2s2

r A1

α
w̃x(s(t), t)2, (3.95)

where we chose γ0 = α/4s2
r A1. Next, we consider

V̂2 =
1
2

∫ s(t)

0
ŵx(x, t)2dx. (3.96)
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The time derivative leads to

˙̂V2 =−α

∫ s(t)

0
ŵxx(x, t)2dx− c

β
ṡ(t)X(t)ŵx(s(t), t)−

ṡ(t)
2

ŵx(s(t), t)2

−{ f (s(t),s(t))ŵx(s(t), t)+ fx(0,s(t))ŵ(0, t)

+
∫ s(t)

0
fxx(x,s(t))ŵ(x, t)dx

}
w̃x(s(t), t). (3.97)

Applying Young’s and Poincare’s inequalities with the help of ṡ(t)> 0, we have

˙̂V2 ≤−
α

2

∫ s(t)

0
ŵxx(x, t)2dx+ ṡ(t)

(
c2

2β2 X(t)2
)
+2sr (γ2 + γ3srA2)

∫ s(t)

0
ŵx(x, t)2dx

+

(
2sr f (s(t),s(t))2

α
+

fx(0,s(t))2

2γ2
+

1
2γ3

)
w̃x(s(t), t)2 (3.98)

where A2 = maxs0≤s(t)≤sr

∫ s(t)
0 fxx(x,s(t))2dx and γ2 and γ3 are positive parameters to be deter-

mined. Let Y be a Lyapunov function such that

Y =
1
2

X(t)2 (3.99)

Taking time derivative and applying Young’s inequality,

Ẏ ≤−c
2

X(t)2 +
β2

c
ŵx(s(t), t)2 +

β2

c
w̃x(s(t), t)2 (3.100)

We define the Lyapunov functional

V̂ = V̂1 +V̂2 + pY, (3.101)
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where p > 0 is to be determined. Then, combining the inequalities, we get

˙̂V ≤−
(

α

2
− 4pβ2sr

c

)∫ s(t)

0
ŵxx(x, t)2dx−

(
α

2
−2sr (γ2 + γ3srA2)

)∫ s(t)

0
ŵx(x, t)2dx

− pc
2

X(t)2 + ṡ(t)
(

c2

β2 X(t)+
sr

2

∫ s(t)

0
ŵ(x, t)2dx

)

+

(
2sr f (s(t),s(t))2

α
+

fx(0,s(t))2

2γ2
+

1
2γ3

+
2s2

r A1

α
+

pβ2

c

)
w̃x(s(t), t)2 (3.102)

Choosing

p =
cα

16β2sr
, γ2 =

α

16sr
, γ3 =

α

16s2
r A2

, (3.103)

we obtain

˙̂V ≤− α

4

∫ s(t)

0
ŵxx(x, t)2dx− α

4

∫ s(t)

0
ŵx(x, t)2dx− pc

2
X(t)2

+ ṡ(t)
(

c2

β2 X(t)+
sr

2

∫ s(t)

0
ŵ(x, t)2dx

)

+

(
2sr f (s(t),s(t))2

α
+

8sr fx(0,s(t))2

α
+

8s2
r A2

α
+

2s2
r A1

α
+

α

16sr

)
w̃x(s(t), t)2. (3.104)

Thus, defining Vall = V̂ +dṼ , we have

V̇all ≤−
α

16s2
r

∫ s(t)

0
ŵx(x, t)2dx− α

16s2
r

∫ s(t)

0
ŵ(x, t)2dx− pc

2
X(t)2

+ ṡ(t)
(

c2

β2 X(t)+
sr

2

∫ s(t)

0
ŵ(x, t)2dx

)

−
[

dα

4sr
−
(

2sr f (s(t),s(t))2

α
+

8sr fx(0,s(t))2

α
+

8s2
r A2

α
+

2s2
r A1

α
+

α

16sr

)]
w̃x(s(t), t)2

−d(λ+α)
∫ s(t)

0
w̃x(x, t)2dx−dλ

∫ s(t)

0
w̃(x, t)2dx. (3.105)
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Choosing d sufficiently large, we arrive at

V̇all ≤−bVall +aṡ(t)Vall, (3.106)

where

a = max
{

s2
r ,

c2

pβ2

}
, b = min

{
α

8s2
r
,c,2λ

}
. (3.107)

As we have studied stability analysis of state feedback, the inequality (3.106) with the help

of ṡ(t) > 0 and s0 < s(t) < sr leads to the exponential stability of (w̃, ŵ,X)-system. By the

invertibility and boundedness of the transformations, we deduce the proof of Theorem 8.

Numerical simulation

We use parameters of zinc given in Table 1.1 in Section 1.6. The initial interface is set to

s0 = 1 [cm], and the setpoint is chosen as sr = 35 [cm]. The initial estimation of the temperature

profile is set to T̂0(x) = ¯̂T (1− x/s0)+Tm with ¯̂T = 30 [C◦] while the initial temperature is set to

T0(x) = T̄ (1− x/s0)+Tm with T̄ = 10 [C◦], and the observer gain is chosen as λ = 0.01. Then,

the restriction on T̂0(x), λ, and sr described in (3.68)–(3.70) are satisfied. The control gain is

chosen as c = 0.001 .

The dynamics of the moving interface s(t), the output feedback controller qc(t), and

the temperature at the initial interface T (s0, t) are depicted in Fig. 3.2. The first plot shows

that the interface s(t) converges to the setpoint sr without overshoot which is guaranteed in

Proposition 1. The second figure shows that the output feedback controller remains positive

as stated in Proposition 1. The model validity can be seen in the third figure, which illustrates

T (s0, t) increases from the melting temperature Tm to enable melting of material and settles back

to its equilibrium. Fig. 3.3 shows a short-time dynamics of the temperature profile (solid) and
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Figure 3.2: Simulation of the closed-loop system (3.29)–(3.32) and the estimator (3.34)–(3.37)
with the output feedback control law (3.67).

the estimated temperature (dash). Clearly, the estimated temperature converges to the the true

temperature quickly.
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Figure 3.3: Time evolution of true temperature (solid) and the estimate (dash) at x = 0 (black),
x = s(t)/4 (red), x = s(t)/2 (blue), and x = 3s(t)/4 (green), respectively.

Measurements

u(t)
E{}=0
V{}
hW i
sFdhW i
�L
0
Tm

sr

T̂ (x, t), ŝ(t)
Estimator

4 Estimated budget

Table 2: Apparatus

Name Supplier Price ($)

Para�n wax Chen’s Lab 0 ⇥ 2
Acrylic Tube (OD 3”, ID 2-1/2’, 1ft’) McMaster 100
Rubber heater OMEGA 50
Thermo Couples Pisano Lab
Camera Pisano Lab
Computer Pisano Lab

5 Schedule

March
(i) Purchase all the apparatus (one week)
(ii) Complete simulation test with good choice of thermophysical parameters
(one week)
(iii) Manufacture the test material (a few days)
(iv) Setup the test chamber, actuator and sensor placements (a few days).

6 Experimental results

6.1 Case 1 : Horizontal setup

Problems :

1.

2.

s(t), T (0, t)

6

Figure 3.4: The estimation problem measuring a boundary temperature and the interface
position.

3.4 State Estimation under More Practical Sensors

We also develop the temperature profile estimation design under the available measure-

ment on the liquid temperature at the fixed domain instead of the temperature gradient at the

interface proposed in the last sections. This setup is much more practical while the drawback is

that the analysis for the output feedback control has not been established yet due to the challenge

on proving the physical constraints. Nevertheless, we can show the analysis of the convergent

observer by proving the stability of the estimation error state.

We consider the same system in last sections, (3.29)–(3.32). The following observer is

designed with the statement on the theorem.
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Theorem 9 Consider the plant (3.29)–(3.32) with the measurements

Y1(t) = s(t), Y2(t) = T (0, t), (3.108)

and the following observer

T̂t(x, t) =αT̂xx(x, t)+ p1(x,Y1(t))
(
Y2(t)− T̂ (0, t)

)
, (3.109)

T̂x(0, t) =−
qc(t)

k
+ p2(Y1(t))

(
Y2(t)− T̂ (0, t)

)
, (3.110)

T̂ (Y1(t), t) =Tm, (3.111)

where x ∈ [0,Y1(t)], and the observer gains are

p1(x,Y1(t)) =λY1(t)(Y1(t)− x)
I2

(√
λ

α
{Y1(t)2− (x−Y1(t))2}

)

Y1(t)2− (x−Y1(t))2 , (3.112)

p2(Y1(t)) =−
λ

2α
Y1(t) (3.113)

with a gain parameter λ > 0. Assume that the model validity condition T (x, t)≥ Tm is satisfied.

Then, for all λ > 0, the observer error system is exponentially stable in the sense of the norm

||T − T̂ ||2H1
.

Let ũ(x, t) = T (x, t)− T̂ (x, t) be an estimation error variable. Then, we have a system for

error variable as

ũt(x, t) =αũxx(x, t)− p1(x,s(t))ũ(0, t), 0 < x < s(t) (3.114)

ũx(0, t) =− p2(x,s(t))ũ(0, t), (3.115)

ũ(s(t), t) =0 (3.116)

Unlike the procedure in Section 3.2, we cannot establish a good target system using the same
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form of the transformation. Instead, as developed in the state feedback design in Chapter 2, we

first consider the observer design for the analogous system on the fixed domain and develop the

observer gain with the associated backstepping transformation. After that, we apply the analogous

gain and transformation on the moving boundary to the error system (3.114)–(3.116), and prove

the stability of the associated target system on the moving boundary.

Fixed domain design

Consider the analogous estimation error system on the fixed domain x ∈ (0,D) given by

ũt(x, t) =αũxx(x, t)− p1(x,D)ũ(0, t), 0 < x < D (3.117)

ũx(0, t) =− p2(D)ũ(0, t), (3.118)

ũ(D, t) =0, (3.119)

Introduce the transformation

ũ(x, t) = w(x, t)+
∫ x

0
P(x,y)w(y, t)dy, (3.120)

which transforms into

wt(x, t) =αwxx(x, t)−λw(x, t), (3.121)

wx(0, t) =0, (3.122)

w(D, t) =0. (3.123)
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Taking time and spatial derivatives of (3.120), the conditions for the gain kernel and the observer

gain are obtained by

Pxx(x,y)−Pyy(x,y) =−
λ

α
P(x,y), (3.124)

P(x,x) =− λ

2α
(x−D), (3.125)

P(D,y) =0, (3.126)

p1(x,D) =−αPy(x,0), (3.127)

p2(D) =−P(0,0). (3.128)

The solution to the gain kernel PDE is derived as

P(x,y) = λ
′(D− x)

I1

(√
λ′ {(D− y)2− (D− x)2}

)

√
λ′ {(D− y)2− (D− x)2}

. (3.129)

By the differentiation formula for the Bessel functions, we have d
dz

(
I1(z)

z

)
= I2(z)

z . Using this

formula and some calculus, the observer gains in (3.127) and (3.128) are described by

p1(x,D) = αλ
′2D(D− x)

I2 (z)
z2 , z =

√
λ′ {D2− (D− x)2}, (3.130)

p2(D) =− λ

2α
D. (3.131)

Then, in the similar manner, we have

w(x, t) = ũ(x, t)+
∫ x

0
Q(x,y)ũ(y, t)dy, (3.132)
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which leads to the conditions of

Qxx(x,y)−Qyy(x,y) =
λ

α
Q(x,y), (3.133)

Q(x,x) =
λ

2α
(x−D), (3.134)

Q(D,y) =0. (3.135)

The solution is

Q(x,y) =P(x,y,−λ) =−λ
′(D− x)

J1

(√
λ′ {(D− y)2− (D− x)2}

)

√
λ′ {(D− y)2− (D− x)2}

. (3.136)

Analogous observer design on moving boundary domain

Referring to the result of fixed domain, we apply the backstepping observer design of

ût(x, t) =αûxx(x, t)+ p1(x,s(t))(u(0, t)− û(0, t)), 0 < x < s(t) (3.137)

û(s(t), t) =0, (3.138)

ûx(0, t) =−qc(t)/k+ p2(s(t))(u(0, t)− û(0, t)), (3.139)

with gains

p1(x,s(t)) =
λ2

α
s(t)(x− s(t))

I2

(√
λ

α
{s(t)2− (x− s(t))2}

)

√
λ

α
{s(t)2− (x− s(t))2}

, (3.140)

p2(s(t)) =−
λ

2α
s(t). (3.141)
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Now, we look at the original model in moving boundary coordinate. Consider the invertible

transformation

w̃(x, t) = ũ(x, t)+
∫ x

0
Q(x− s(t),y− s(t))ũ(y, t)dy, (3.142)

ũ(x, t) = w̃(x, t)+
∫ x

0
P(x− s(t),y− s(t))w̃(y, t)dy. (3.143)

Then, the target system has the form of

w̃t(x, t) =αw̃xx(x, t)−λw̃(x, t)

− ṡ(t)
∫ x

0
q(x̄, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy, (3.144)

w̃(s(t), t) =0, (3.145)

w̃x(0, t) =0, (3.146)

where x̄ = x− s(t), ȳ = y− s(t), and q(x̄, ȳ) = Qx(x,y)+Qy(x,y).

We prove that the target w̃-system in (3.144)–(3.146) is stable under ṡ(t)> 0 and s(t)< sr.

Consider the Lyapunov function

Ṽ1 =
1
2
||w̃||2 (3.147)

The time derivative is given by

˙̃V1 =−α

∫ s(t)

0
w̃x(x, t)2dx−λ

∫ s(t)

0
w̃(x, t)2dx

− ṡ(t)
∫ s(t)

0
w̃(x, t)

(∫ x

0
q(x̄, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
)

dx. (3.148)

Define q̄=max(x,y)∈[0,sr] q(x̄, ȳ)
2 and p̄=max(y,z)∈[0,sr]P(ȳ, z̄). Applying Young’s Cauchy Schwarz

inequalities to the second line of (3.148) with the help of ṡ(t) > 0 and s(t) ≤ sr, the following
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inequality is derived

˙̃V1 ≤−α||w̃x||2−λ||w̃||2 + ṡ(t)
2
(
1+2q̄s2

r (1+ p̄2s2
r )
)
||w̃||2. (3.149)

Consider

Ṽ2 =
1
2

∫ s(t)

0
w̃x(x, t)2dx. (3.150)

The time derivative is obtained by

˙̃V2 =−α||w̃xx||2−λ||w̃x||2−
ṡ(t)
2

w̃x(s(t), t)2 + ṡ(t)
∫ s(t)

0
Φ(w(x, t),s(t),x), (3.151)

where

Φ :=
∫ s(t)

0
w̃xx(x, t)

(∫ x

0
q(x̄, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
)

dx. (3.152)

Calculating integration by parts twice leads to

Φ =w̃x(s(t), t)
(∫ s(t)

0
q(0, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
)

+ w̃(0, t)
(

d
dx

(∫ x

0
q(x̄, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
))
|x=0

+
∫ s(t)

0
w̃(x, t)

(
d2

dx2

(∫ x

0
q(x̄, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
)

dx
)
. (3.153)

We calculate

d
dx

∫ x

0
q(x̄, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy|x=0 = q(s(t),s(t))w̃(0, t) (3.154)
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Here, we see that q(s(t),s(t)) = Qx(0,0)+Qy(0,0) =
( d

dxQ(x,x)
)
|x=0 =

λ

2α
. Moreover,

d2

dx2

(∫ x

0
q(x̄, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
)

=q(x̄, x̄)w̃x(x, t)+(q(x̄, x̄)P(x̄, x̄)−2qx̄(x̄, x̄)−qȳ(x̄, x̄))w̃(x, t)

−
∫ x

0
((2qx̄(x̄, x̄)+qȳ(x̄, x̄))P(x̄, z̄)+q(x̄, x̄)Px̄(x̄, z̄)+qx̄(x̄, z̄)) w̃(z, t)dz

−
∫ x

0
qx̄(x̄, ȳ)

(∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy. (3.155)

In addition, we have

∫ s(t)

0
q(x̄, x̄)w̃(x, t)w̃x(x, t)dx =− λ

4α
w̃(0, t)2 +

1
2
(qx̄(x̄, x̄)+qȳ(x̄, x̄))w̃(x, t)2dx. (3.156)

Thus,

Φ =w̃x(s(t), t)
(∫ s(t)

0
q(0, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
)
+

λ

4α
w̃(0, t)2

+
∫ s(t)

0
(q(x̄, x̄)P(x̄, x̄)− 3

2
qx̄(x̄, x̄)−

1
2

qȳ(x̄, x̄))w̃(x, t)2dx

+
∫ s(t)

0
w̃(x, t)I(w̃(x, t),x,s(t))dx, (3.157)

where

I(w(x, t),x,s(t))

=−
∫ x

0
((2qx̄(x̄, x̄)+qȳ(x̄, x̄))P(x̄, z̄)+q(x̄, x̄)Px̄(x̄, z̄)+qx̄(x̄, z̄)) w̃(z, t)dz

−
∫ x

0
qx̄(x̄, ȳ)

(∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy. (3.158)

Applying Young’s and Cauchy-Schwarz inequality, we can show that there exist positive constants
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M1, M2, M3 such that

w̃x(s(t), t)
(∫ s(t)

0
q(0, ȳ)

(
w̃(y, t)+

∫ y

0
P(ȳ, z̄)w̃(z, t)dz

)
dy
)

≤ 1
2

w̃x(s(t), t)2 +M1||w̃||2, (3.159)∫ s(t)

0
(q(x̄, x̄)P(x̄, x̄)− 3

2
qx̄(x̄, x̄)−

1
2

qȳ(x̄, x̄))w̃(x, t)2dx≤M2||w̃||2, (3.160)∫ s(t)

0
w̃(x, t)I(w̃(x, t),x,s(t))dx≤M3||w̃||2 (3.161)

Furthermore, by Agmon’s inequality, it holds w(0, t)2 ≤ 4sr||w̃||2. Therefore, applying all these

inequalities to (3.157) leads to

Φ≤ 1
2

w̃x(s(t), t)2 +
λsr

α
||w̃x||2 +(M1 +M2 +M3)||w̃||2. (3.162)

Applying (3.162) to (3.151), we arrive at

˙̃V2 ≤−α||w̃xx||2−λ||w̃x||2 + ṡ(t)
(

λsr

α
||w̃x||2 +(M1 +M2 +M3)||w̃||2

)
(3.163)

Thus, defining Ṽ = Ṽ1 +Ṽ2 and b = α

4s2
r
+λ, we can see that there exists a positive constant a > 0

such that the following inequality holds

˙̃V ≤−bṼ +aṡ(t)Ṽ , (3.164)

from which we conclude Theorem 9.

Improvement of the designed observer for numerical algorithm

From the numerical algorithm perspective, the designed observer (3.109)–(3.111) is not

implementable using BIM due to the following reason. Through scaling the spatial domain, the
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equivalent observer on a fixed domain ξ ∈ [0,1] is written as

v̂t(ξ, t) =
α

Y1(t)2 v̂ξξ(ξ, t)−
ξβvξ(1, t)

Y1(t)
v̂ξ(ξ, t)

+ p1(ξ,Y1(t))(Y2(t)− v̂(0, t)) , 0 < ξ < 1 (3.165)

v̂ξ(0, t) =− k−1Y1(t)qc(t)+Y1(t)p2(Y1(t))(T (0, t)− T̂ (0, t)), (3.166)

v̂(1, t) =Tm, (3.167)

The problem is that we need to know the state vξ(1, t) in the second term of the first line in

(3.165), which is not the available variable under the current setting, unlike the setting on last

sections. Therefore, for the numerical model, we should replace vξ(1, t) by the estimated variable

v̂ξ(1, t). In other words, instead of (3.165), the fixed domain PDE we calculate is

v̂t(ξ, t) =
α

Y1(t)2 v̂ξξ(ξ, t)−
ξβv̂ξ(1, t)

Y1(t)
v̂ξ(ξ, t)

+ p1(ξ,Y1(t))(Y2(t)− v̂(0, t)) , 0 < ξ < 1 (3.168)

The theoretical analysis of the fixed-domain PDE observer (3.168) is still an open problem. The

observer algorithm is given in Algorithm 3.

3.5 Estimation of Both Temperature Profile and Moving In-

terface by Measuring Only a Boundary Temperature

The most challenging setup for the state estimation of 1D one-phase Stefan problem is

to estimate both temperature profile and moving interface position given a measured value of

single boundary temperature. This is not only mathematically challenging, but also practically

important in some industrial processes such as steel casting as developed in [127]. We have
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Algorithm 3: Time Update for Estimating Temperature Profile

Input: {v̂i
0}N

i=0,{Y1, j}M
j=0,{Y2, j}M

j=0
for j = 0 to M, do

p2←− λ

2α
Y1, j

v̂(−1)
j ← v̂(1)j +2hY1, j(k−1qc( j∆t)− p2(Y2, j− v̂(0)j ))

v̂(N)
j ← Tm

ŵ j←
3v̂(N)

j −4v̂(N−1)
j +v̂(N−2)

j
2hY1, j

for i = 0 to N−1, do
z←

√
λ

α
Y 2

1, j(1− (1− (ih)2))

p1← λ2

α
Y 2

1, j(1− ih) I2(z)
z2

v̂(i)j+1←

v̂(i)j +∆t
(

α

h2Y 2
1, j
(v̂(i+1)

j −2v̂(i)j + v̂(i−1)
j )− iβŵ j

2Y1, j
(v̂(i+1)

j − v̂(i−1)
j )+ p1

(
Y2, j− v̂(0)j

))

end for
end for
Output: {v̂i

j}
N,M
i=0, j=1

Measurement
Estimator

T̂ (x, t), ŝ(t)
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T (0, t)
<latexit sha1_base64="P9tCz+8Gxw+3TkzjOKsPk9w98mA=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJFqCBlVwQ9Fr14rNAvaJeSTbNtbHazJLNCKf0PXjwo4tX/481/Y9ruQVtfCDy8M0Nm3iCRwqDrfju5tfWNza38dmFnd2//oHh41DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo7tZvfXEtREqruM44X5EB7EIBaNorWa97F7gea9YcivuXGQVvAxKkKnWK351+4qlEY+RSWpMx3MT9CdUo2CSTwvd1PCEshEd8I7FmEbc+JP5tlNyZp0+CZW2L0Yyd39PTGhkzDgKbGdEcWiWazPzv1onxfDGn4g4SZHHbPFRmEqCisxOJ32hOUM5tkCZFnZXwoZUU4Y2oIINwVs+eRWalxXP8sNVqXqbxZGHEziFMnhwDVW4hxo0gMEjPMMrvDnKeXHenY9Fa87JZo7hj5zPHyIEjis=</latexit><latexit sha1_base64="P9tCz+8Gxw+3TkzjOKsPk9w98mA=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJFqCBlVwQ9Fr14rNAvaJeSTbNtbHazJLNCKf0PXjwo4tX/481/Y9ruQVtfCDy8M0Nm3iCRwqDrfju5tfWNza38dmFnd2//oHh41DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo7tZvfXEtREqruM44X5EB7EIBaNorWa97F7gea9YcivuXGQVvAxKkKnWK351+4qlEY+RSWpMx3MT9CdUo2CSTwvd1PCEshEd8I7FmEbc+JP5tlNyZp0+CZW2L0Yyd39PTGhkzDgKbGdEcWiWazPzv1onxfDGn4g4SZHHbPFRmEqCisxOJ32hOUM5tkCZFnZXwoZUU4Y2oIINwVs+eRWalxXP8sNVqXqbxZGHEziFMnhwDVW4hxo0gMEjPMMrvDnKeXHenY9Fa87JZo7hj5zPHyIEjis=</latexit><latexit sha1_base64="P9tCz+8Gxw+3TkzjOKsPk9w98mA=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJFqCBlVwQ9Fr14rNAvaJeSTbNtbHazJLNCKf0PXjwo4tX/481/Y9ruQVtfCDy8M0Nm3iCRwqDrfju5tfWNza38dmFnd2//oHh41DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo7tZvfXEtREqruM44X5EB7EIBaNorWa97F7gea9YcivuXGQVvAxKkKnWK351+4qlEY+RSWpMx3MT9CdUo2CSTwvd1PCEshEd8I7FmEbc+JP5tlNyZp0+CZW2L0Yyd39PTGhkzDgKbGdEcWiWazPzv1onxfDGn4g4SZHHbPFRmEqCisxOJ32hOUM5tkCZFnZXwoZUU4Y2oIINwVs+eRWalxXP8sNVqXqbxZGHEziFMnhwDVW4hxo0gMEjPMMrvDnKeXHenY9Fa87JZo7hj5zPHyIEjis=</latexit><latexit sha1_base64="P9tCz+8Gxw+3TkzjOKsPk9w98mA=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJFqCBlVwQ9Fr14rNAvaJeSTbNtbHazJLNCKf0PXjwo4tX/481/Y9ruQVtfCDy8M0Nm3iCRwqDrfju5tfWNza38dmFnd2//oHh41DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo7tZvfXEtREqruM44X5EB7EIBaNorWa97F7gea9YcivuXGQVvAxKkKnWK351+4qlEY+RSWpMx3MT9CdUo2CSTwvd1PCEshEd8I7FmEbc+JP5tlNyZp0+CZW2L0Yyd39PTGhkzDgKbGdEcWiWazPzv1onxfDGn4g4SZHHbPFRmEqCisxOJ32hOUM5tkCZFnZXwoZUU4Y2oIINwVs+eRWalxXP8sNVqXqbxZGHEziFMnhwDVW4hxo0gMEjPMMrvDnKeXHenY9Fa87JZo7hj5zPHyIEjis=</latexit>

Figure 3.5: The estimation problem measuring only a boundary temperature. The problem is
challenging due to the requirement to estimate the interface position.

not established a mathematically rigorous result for this problem, however, suggest an observer

design and investigate the performance in numerical simulation. Thus, we state the following

”conjecture” for the observer design.

Conjecture Consider the plant (3.29)–(3.32) with the measurement

Y (t) = T (0, t), (3.169)
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and the following PDE observer

T̂t(x, t) =αT̂xx(x, t)+ p1(x, ŝ(t))
(
Y (t)− T̂ (0, t)

)
, (3.170)

T̂x(0, t) =−
qc(t)

k
+ p2(ŝ(t))

(
Y (t)− T̂ (0, t)

)
, (3.171)

T̂ (ŝ(t), t) =Tm, (3.172)

with the ODE observer

˙̂s(t) =−βT̂x(ŝ(t), t)+ l(Y (t)− T̂ (0, t)) (3.173)

where x ∈ [0,Y1(t)], the observer gains p1, p2 are given in (3.112), (3.113) with a gain parameter

λ > 0, and l > 0 is a gain parameter. Then, there exist λ∗ > 0 and l∗ such that ∀λ ∈ (0,λ∗) and

∀l ∈ (0, l∗) the estimation error system is exponentially stable in the norm ||T − T̂ ||2L2
+(s− ŝ)2.

Following the procedure in last section, the fixed domain PDE observer for numerical

algorithm is given by the following

v̂t(ξ, t) =
α

ŝ(t)2 v̂ξξ(ξ, t)−
ξ ˙̂s(t)
ŝ(t)

v̂ξ(ξ, t)+ p1(ξ, ŝ(t))(Y (t)− v̂(0, t)) , (3.174)

for ξ ∈ (0,1). Thus, the numerical algorithm is described by Algorithm 4.

We study the performance of the observer in numerical simulation using parameters of

zinc and tuning the gain parameters λ and l. Also, we compare with the observer design suggested

in [127], which is given by a copy of the plant for PDE observer and the same structure in (3.173)

for ODE observer. Fig. 3.6 depicts the simulation results and its comparison, as stated in its

caption, which illustrates the better performance of the proposed estimation compared to the

method in [127].
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Algorithm 4: Time Update for Estimating Temperature Profile and Interface Posi-
tion (i= 0, · · · ,N for spatial discretization and j = 0, · · · ,M for time discretization)

Input: {v̂i
0}N

i=0, ŝ0,{Yj}M
j=0

for j = 0 to M, do
p2←− λ

2α
ŝ j

v̂(−1)
j ← v̂(1)j +2hk−1ŝ jqc( j∆t)− ŝ j p2(Y j− v̂(0)j )

v̂(N)
j ← Tm

ŵ j←−β
3v̂(N)

j −4v̂(N−1)
j +v̂(N−2)

j
2hŝ j

+ l(Yj− v̂(0)j )

p1← λ2

8α
ŝ2

j

v̂(0)j+1← v̂(0)j +∆t
(

α

h2ŝ2
j
(v̂(1)j −2v̂(0)j + v̂(−1)

j )+ p1

(
Yj− v̂(0)j

))

for i = 1 to N−1, do
z←

√
λ

α
ŝ2

j(1− (1− (ih)2))

p1← λ2

α
ŝ2

j(1− ih) I2(z)
z2

v̂(i)j+1←

v̂(i)j +∆t
(

α

h2ŝ2
j
(v̂(i+1)

j −2v̂(i)j + v̂(i−1)
j )+

iŵ j
2ŝ j

(v̂(i+1)
j − v̂(i−1)

j )+ p1

(
Yj− v̂(0)j

))

end for
ŝ j+1← ŝ j +∆tŵ j

end for
Output: {v̂i

j}
N,M
i=0, j=1

State Estimation by Extended Kalman Filter

This section presents the state estimation algorithm by Extended Kalman Filter (EKF).

While we have not incorporated a stochastic noise in the system, in reality the noise should appear

in most of the value and observations. Since we have introduced the model reduction by spatial

and time discretization, it is natural to incorporate the system noise. In addition, the observation

is idealized to directly measure the surface concentration which can be inversely calculated from

the output voltage. The observation of the output voltage has a stochastic noise in general, so we
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Figure 3.6: Dynamics of the true states (black solid), estimation by Algorithm 4 (red dash), and
estimation using the method in [127] (blue dash), respectively. The upper four figures show the
temperature at x = 0,s(t)/4,s(t)/2,3s(t)/4, and the lower figure shows the interface position,
respectively. We can observe that for all the states, estimation by Algorithm 4 achieves faster

convergence to the true states.

should also incorporate the stochastic noise in the observation. Hence, we write the form of

zk+1 = f (zk)+wk, (3.175)

yk =Czk + vk (3.176)

108



where

zk = [vk,sk], (3.177)

f (zk) = zk +∆t f̄ (zk), (3.178)

C = [1,0, · · · ,0,0,0] (3.179)

, and wk and vk are white Gaussian noises in wk ∼N (0,Wk) and vk ∼N (0,Vk). Based on this

model description, EKF algorithm is given in the following.

State Estimation Algorithm by EKF

x̂−k · · · priori estimate (using meas. up to previous time)

x̂+k · · · posteriori estimate (using meas. up to current time)

(i) [Initialization] For k = 0, set

x̂+0 = E[x0], Σ
+
0 = E[(x0−E[x0])(x0−E[x0])

T ]

For k = 1,2, · · · , compute

(ii) [Time update]

Define Jacobian matrices : Ak−1 =
∂ f (x)

∂x |x=x̂+k−1

State estimate time update: x̂−k = f (x̂+k−1)

Error covariance time update: Σ
−
k = Ak−1Σ

+
k−1AT

k−1 +Wk

(iii) [Measurement update]

Kalman gain: Lk = Σ
−
k CT [CΣ

−
k CT +Vk]

State estimate measurement update: x̂+k = x̂−k +Lk[yk−Cx̂−]

Error covariance measurement update: Σ
+
k = (I−LkCk)Σ

−
k
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f̄ (zk) =




1
s2
k
(Avk +g(vk))

1
sk

c>vk


+ 1

sk




B

0


qc,k (3.180)

where A ∈ RN×N ,B ∈ RN×1,c ∈ RN×1,

A =
α

h2




−2 2 0 · · · · · · · · · · · · · · · 0

1 −2 1 0 · · · · · · · · · · · · 0

0 1 −2 1 0 · · · · · · · · · 0
... . . . ...

0 · · · · · · · · · · · · 0 1 −2 1

0 · · · · · · · · · · · · · · · 0 1 −2




(3.181)

B =
2α

hk

(
1 0 0 · · · · · · · · · · · · · · · 0

)>
, (3.182)

g =
1
2

c>vkGvk, (3.183)

c =
β

2h

(
0 0 · · · · · · · · · · · · 0 −1 4

)>
, (3.184)

G =




0 0 0 · · · · · · · · · · · · · · · 0

−1 0 1 0 · · · · · · · · · · · · 0

0 −2 0 2 0 · · · · · · · · · 0
... . . . ...

0 · · · · · · · · · 0 −(N−3) 0 (N−3) 0

0 · · · · · · · · · · · · 0 −(N−2) 0 (N−2)

0 · · · · · · · · · · · · · · · 0 −(N−1) 0




(3.185)
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Thus,

∂ f
∂zk

=I +∆t




1
s2

k
(A+ ∂g

∂vk
) − 2

s3
k
(Avk +g(vk))− 1

s2
k
Bqc,k

1
sk

c> − 1
s2

k
c>vk


 , (3.186)

∂g
∂zk

=
1
2
(c(Gvk)

>+ c>vkG) (3.187)

3.6 Estimation under Boundary Temperature Actuation

One characteristic of PDEs under boundary control is that the observer design becomes

slightly different when the actuation is changed from Neumann to Dirichlet even under the

same measurements. We reconsider the Stefan problem under boundary temperature actuation

discussed in Section 2.7, descried by

Tt(x, t) =αTxx(x, t), 0≤ x≤ s(t), (3.188)

T (0, t) =Tc(t)+Tm, (3.189)

T (s(t), t) =Tm, (3.190)

ṡ(t) =−βTx(s(t), t). (3.191)

The observer design is replaced by the following.

Corollary 1 Consider the plant (3.188)–(3.191) with measurements Y1(t)= s(t), Y2(t)=Tx(s(t), t),

and the following observer

T̂t(x, t) =αT̂xx(x, t)+ p2(x,Y1(t))
(
Y2(t)− T̂x(Y1(t), t)

)
, (3.192)

T̂ (0, t) =Tc(t)+Tm, (3.193)

T̂ (Y1(t), t) =Tm, (3.194)
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where x ∈ [0,Y1(t)], and the observer gain p2(x,Y1(t)) is

p2(x,Y1(t)) =−λx
I1

(√
λ

α
(Y1(t)2− x2)

)

√
λ

α
(Y1(t)2− x2)

, (3.195)

with an observer gain λ > 0. Assume that the two physical constraints ṡ(t)> 0 and s0 < s(t)< sr

are satisfied. Then, for all λ > 0, the observer error system has a unique classical solution and is

exponentially stable in the sense of the norm (3.38).

The proof procedure is same as that in Section 3.2. Let us define the estimation error state

ũ := T − T̂ . Then, the estimation error system is

ũt(x, t) =αũxx(x, t)− p2(x,s(t))ũx(s(t), t), 0 < x < s(t) (3.196)

ũ(s(t), t) =0, (3.197)

ũ(0, t) =0. (3.198)

Consider the transformation

ũ(x, t) = w̃(x, t)+
∫ s(t)

x
P(x,y)w̃(y, t)dy, (3.199)

which maps onto

w̃t(x, t) =αw̃xx(x, t)−λw̃(x, t), (3.200)

w̃(s(t), t) =0, (3.201)

w̃(0, t) =0. (3.202)

It is easy to see that the target w̃-system (3.200)–(3.202) is exponentially stable under the

conditions ṡ(t) > 0 and s0 < s(t) < sr. Through taking derivatives and imposing boundary
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conditions, the gain kernel and the observer gain must satisfy

Pxx(x,y)−Pyy(x,y) =−
λ

α
P(x,y), (3.203)

P(x,x) =
λ

2α
x, (3.204)

P(0,y) =0, (3.205)

p2(x,s(t)) =−αP(x,s(t)). (3.206)

The solution of the PDE is written as

P(x,y) =
λ

α
x

I1

(√
λ

α
(y2− x2)

)

√
λ

α
(y2− x2)

. (3.207)

Substituting the solution (3.207) into the condition (3.206) leads to the observer gain (3.195). By

the same technique, we can see that the inverse transformation is uniquely given by

w̃(x, t) = ũ(x, t)−
∫ s(t)

x
Q(x,y)ũ(y, t)dy, (3.208)

where

Q(x,y) =
λ

α
x

J1

(√
λ

α
(y2− x2)

)

√
λ

α
(y2− x2)

. (3.209)

Due to the invertibility of the transformation, the stability property of ũ-system is equivalent to

that of w̃-system, which proves Corollary 1.

The corresponding output feedback controller is designed using the state observer (3.192)–

(3.195).

Corollary 2 Consider the closed-loop system consisting of the plant (3.188)–(3.191), the mea-
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surements Y1(t) = s(t) and Y2(t) = Tx(s(t), t), the observer (3.192)–(3.194), and the output

feedback control law

Tc(t) =−c
(

1
α

∫ Y1(t)

0
x
(
T̂ (x, t)−Tm

)
dx+

1
β

Y1(t)(Y1(t)− sr)

)
. (3.210)

With c, T̂0(x), λ satisfying (3.68), and (3.69), respectively, and sr satisfying sr > s0 +
βs2

0
6α

Ĥu, the

closed-loop system is exponentially stable in the sense of the norm (3.71).

The proof of Corollary 2 can be established by following the methodology presented in Section

3.3.

3.7 Summary

This chapter provides the novel state estimation method for the one-phase Stefan problem

with moving boundary. Several problem setups have been provided based on available measure-

ments and the performance properties. Table 3.1 summarizes these properties of each design with

showing the application field to be used in the latter half of the dissertation. Briefly speaking,

there is essentially tradeoff between the convergence speed of the estimator and its applicability

to the output feedback control design for the sake of maintaining the positivity. Therefore, if

the primal objective of the estimator is to estimate some unmeasured variable as fast as possible

without the need of the control, Designs 2, 5, 6 are useful. On the contrary, if the primal objective

of the estimator is to use it for output feedback control, Designs 3 and 4 are useful.
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Table 3.1: Properties of each estimation design.

Measurements Stability proof Fast conver. Output FB Applications
Design 1 s,Tx(s(t)),qc X X X
Design 2 s,T (0),qc X X
Design 3 s,T (0),qc X X Polymer 3D-print.
Design 4 s,qc X X Metal 3D-print.
Design 5 s,T (0) X X Sea ice
Design 6 T (0),qc X Batteries

Problem”, IEEE Conference on Decision and Control, 2016,

• S. Koga, M. Diagne, and M. Krstic, “Control and State Estimation of the One-Phase Stefan

Problem via Backstepping Design”, IEEE Transactions on Automatic Control, vol. 64, no.

2, pp. 510-525, 2019.

The dissertation author was the primary investigators and author of these papers. The author

would like to thank Mamadou Diagne for the collaboration.
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Chapter 4

Extended Models and Design

4.1 Melting with Advection and Heat Transfer of Newton’s

Law
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Boundary Problem
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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0 < r < R(t). (1)

where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e↵ects govern the evolution of the inhibitor in the tumor, the following
reaction-di↵usion equation is also obtained
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The dynamics of the moving interface is
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aba
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Figure 4.1: Schematic of the one-phase Stefan problem with flowing liquid. We consider both
counter-convection (b > 0) and regular-convection (b < 0).

We also consider that in the liquid phase there is a fluid flow described by a velocity field,

representing the movement of the material. This configuration is shown in Fig. 4.1. Moreover, the

heat transfer through the environment can be modeled by following Newton’s law of convective

heat. Here we assume that the ambient temperature is same as the melting temperature. As a
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consequence, by defining the reference error variables u(x, t) = T (x, t)−Tm and X(t) = s(t)− sr

analogously to the last chapter, we have the following model of the Stefan problem:

ut(x, t) =αuxx(x, t)+bux(x, t)−hu(x, t), 0 < x < s(t), (4.1)

−kux(0, t) =qc(t), (4.2)

u(s(t), t) =0, (4.3)

Ẋ(t) =−βux(s(t), t). (4.4)

where b is an advection velocity which can be either positive or negative, h > 0 is the heat transfer

coefficient. The stability property of Stefan PDE depends on the sign of the advection velocity

b. The control objective is same as the one in Chapter 2, namely, u(x, t)→ 0 and X(t)→ 0 as

t→ ∞. We design the control law and provide the following theorem.

Theorem 10 Consider the closed-loop system consisting of the plant (4.1)–(4.4) and the control

law

qc(t) =−k
(

γu(0, t)+
β

α

∫ s(t)

0
f (x)u(x, t)dx+ f (s(t))X(t)

)
. (4.5)

where

f (x) =
c

β(d1−d2)

(
(d1− γ)e−d1x− (d2 + γ)e−d2x

)
, (4.6)

d1 =
−b+

√
b2 +4αh

2α
, d2 =

−b−
√

b2 +4αh
2α

, (4.7)

and γ and c are arbitral gain parameters satisfying γ > max
{

0,− b
2α

}
and c > 0. Suppose that

the setpoint is chosen to satisfy

sr > s0 +
β

α

∫ s0

0

f (x)
f (s0)

u(x,0)dx. (4.8)
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Then, the closed-loop system satisfies the model validity conditions (1.18) and (1.20) and is

exponentially stable in the sense of the norm

||T (x, t)−Tm||2H1(0,s(t))
+(s(t)− sr)

2. (4.9)

The proof of Theorem 10 is established through the remainder of this section and Appendix

C.2.

Analogous PDE-ODE cascade with constant domain

We consider an analogous PDE-ODE cascade with constant domain to the Stefan system

(4.1)–(4.4), similarly to the procedure in Chapter 2, that is

ut(x, t) =αuxx(x, t)+bux(x, t)−hu(x, t), 0 < x < D, (4.10)

ux(0, t) =U(t), (4.11)

u(D, t) =0, (4.12)

Ẋ(t) =−βux(D, t). (4.13)

Let us introduce the transformation

w(x, t) = u(x, t)− β

α

∫ D

x
φ(x− y)u(y, t)dy−φ(x−D)X(t), (4.14)

118



which maps to

wt(x, t) =αwxx(x, t)+bwx(x, t)−hw(x, t), 0 < x < D (4.15)

wx(0, t) =γw(0, t), (4.16)

w(D, t) =0, (4.17)

Ẋ(t) =− cX(t)−βwx(D, t). (4.18)

Taking the spatial and time derivatives of (4.14) yields

wx(x, t) =ux(x, t)+
β

α
φ(0)u(x, t)

− β

α

∫ D

x
φ
′(x− y)u(y, t)dy−φ

′(x−D)X(t), (4.19)

wxx(x, t) =uxx(x, t)+
β

α
(φ(0)ux(x, t)+φ

′(0)u(x, t))

− β

α

∫ D

x
φ
′′(x− y)u(y, t)dy−φ

′′(x−D)X(t), (4.20)

and

wt(x, t) =αuxx(x, t)+bux(x, t)−hu(x, t)

−β
(
φ(x−D)ux(D, t)−φ(0)ux(x, t)+φ

′(x−D)u(D, t)

−φ
′(0)u(x, t)+

∫ D

x
φ
′′(x− y)u(y, t)dy

)

− βb
α

(
φ(x−D)u(D, t)−φ(0)u(x, t)+

∫ D

x
φ
′(x− y)u(y, t)dy

)

+
βh
α

∫ D

x
φ(x− y)u(y, t)dy+φ(x−D)βux(D, t) (4.21)
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Hence, by (4.14), (4.19)–(4.21), we have

wt(x, t)−αwxx(x, t)−bwx(x, t)+hw(x, t)

=
(
αφ
′′(x−D)+bφ

′(x−D)−hφ(x−D)
)

X(t) (4.22)

Hence, the solution of the gain kernel satisfies

αφ
′′(x−D)+bφ

′(x−D)−hφ(x−D) = 0, (4.23)

φ(0) = 0, φ
′(0) =

c
β

(4.24)

The solution is described as

φ(x) =
c

β(d1−d2)

(
ed1x− ed2x

)
, (4.25)

φ
′(x) =

c
β(d1−d2)

(
d1ed1x−d2ed2x

)
(4.26)

where d1, d2 are

d1 =
−b+

√
b2 +4αh

2α
, (4.27)

d2 =
−b−

√
b2 +4αh

2α
(4.28)

Then, d1 > 0 and d2 < 0. Hence, φ′(x) > 0. Finally, by (4.14) and (4.19), to satisfy (4.16), we

require

wx(x, t)− γw(0, t)

=U(t)− β

α

∫ D

0
φ
′(−y)u(y, t)dy−φ

′(−D)X(t),

− γ

(
u(0, t)− β

α

∫ D

0
φ(−y)u(y, t)dy−φ(−D)X(t)

)
= 0, (4.29)
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which leads to the control design

U(t) = γu(0, t)+
β

α

∫ D

0
f (x)u(x, t)dy+ f (D)X(t), (4.30)

where

f (x) =φ
′(−x)− γφ(−x),

=
c

β(d1−d2)

(
(d1− γ)e−d1x− (d2 + γ)e−d2x

)
. (4.31)

Control design for Stefan system with advection and heat transfer

We design the controller for the Stefan system with advection and heat loss governed

by (4.1)–(4.4). As presented in Chapter 2, we introduce the transformation which replaces the

domain D in (4.14) by the moving boundary s(t), given by

w(x, t) = u(x, t)− β

α

∫ s(t)

x
φ(x− y)u(y, t)dy−φ(x− s(t))X(t), (4.32)

where φ is given by (4.25). Then, applying (4.32) to (4.1)–(4.4), the target system is easily shown

as

wt(x, t) =αwxx(x, t)+bwx(x, t)−hw(x, t)

+ ṡ(t)φ′(x− s(t))X(t), 0 < x < s(t) (4.33)

wx(0, t) =γw(0, t), (4.34)

w(s(t), t) =0, (4.35)

Ẋ(t) =− cX(t)−βwx(s(t), t). (4.36)
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Moreover, replacing U(t)→−qc(t)/k and D→ s(t) in (4.30), the control design for the Stefan

system is given by

qc(t) =−k
(

γu(0, t)+
β

α

∫ s(t)

0
f (x)u(x, t)dx+ f (s(t))X(t)

)
. (4.37)

Physical constraint

To prove the physical constraint under the closed-loop system, we introduce a variable

Z(t) defined by

Z(t) =
qc

k
+ γu(0, t) (4.38)

=− β

α

∫ s(t)

0
f (x)u(x, t)dx− f (s(t))X(t). (4.39)

Taking the time derivative of Z(t), we get

Ż(t) =− β

α

∫ s(t)

0
f (x)ut(x, t)dx− f (s(t))Ẋ(t)− ṡ(t) f ′(s(t))X(t),

=−β

(
f (s(t))ux(s(t), t)− f (0)ux(0, t)+ f ′(0)u(0, t)+

∫ s(t)

0
f ′′(x)u(x, t)dy

)

− β

α

(
−b f (0)u(0)−

∫ s(t)

0
(b f ′(x)+h f (x))u(x, t)dx

)
+β f (s(t))ux(s(t), t)

− ṡ(t) f ′(s(t))X(t),

=β f (0)ux(0, t)−
β

α

(
α f ′(0)−b f (0)

)
u(0, t)

− β

α

∫ s(t)

0
(α f ′′(x)−b f ′(x)−h f (x))u(x, t)dx− ṡ(t) f ′(s(t))X(t), (4.40)
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Here, by f (x) = φ′(−x)− γφ(−x), we can see that

f (0) =φ
′(0)− γφ(0) =

c
β
, (4.41)

f ′(x) =−φ
′′(−x)+ γφ

′(−x) =
(

b
α
+ γ

)
φ
′(−x)− h

α
φ(−x), (4.42)

f ′′(x) =φ
′′′(−x)− γφ

′′(−x) =− b
α

φ
′′(−x)+

(
h
α
− γ

)
φ
′(−x), (4.43)

and thus

α f ′(x)−b f (x) = αγφ
′(−x)− (h−bγ)φ(−x), (4.44)

which leads to

β

α
(α f ′(0)− f (0)) = γc. (4.45)

Moreover,

α f ′′(x)−b f ′(x)−h f (x)

=
(
αφ
′′′(−x)+bφ

′′(−x)−hφ
′(−x)

)
− γ
(
αφ
′′(−x)+bφ

′(−x)−hφ(−x)
)

=0. (4.46)

Thus, (4.40) is led to

Ż(t) =c(ux(0, t)− γu(0, t))− ṡ(t) f ′(s(t))X(t)

=− cZ(t)− ṡ(t) f ′(s(t))X(t). (4.47)
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We prove Z(t)> 0 by contradiction approach. Assume that there exists t∗ > 0 such that

Z(t)> 0, ∀t ∈ (0, t∗), Z(t∗) = 0. (4.48)

By Maximum principle and Hopf’s lemma, we get u(x, t) > 0 and ṡ(t) > 0 for all x ∈ (0,s(t))

and t ∈ (0, t∗). Thus, we have s(t)> s0 > 0, ∀t ∈ (0, t∗). In addition, using (4.39) and knowing

that f (x)> 0, it leads to X(t)< 0, ∀t ∈ (0, t∗). Therefore, (4.47) leads to

Ż(t)>−cZ(t), ∀t ∈ (0, t∗). (4.49)

Gronwall’s inequality leads to the inequality regarding the solution of the differential equa-

tion, written as Z(t) ≥ Z(0)e−ct , ∀t ∈ (0, t∗]. Thus, we have Z(t∗) ≥ Z(0)e−ct∗ > 0 , which

contradicts with the assumption (4.48). Hence,

Z(t)> 0, ∀t ≥ 0 (4.50)

is proved. Then, by Maximum principle, it holds

u(x, t)>0, ∀x ∈ (0,s(t), ∀t ≥ 0, ux(s(t), t)< 0, ∀t ≥ 0, (4.51)

ṡ(t)>0, ∀t ≥ 0. (4.52)

Imposing (4.50) and (4.51) on (4.39), we obtain

X(t)< 0, ∀t ≥ 0. (4.53)
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Thus, the following condition holds:

0 < s(t)< sr, ∀t ≥ 0. (4.54)

Finally, with the help of the conditions (4.52) and (4.54), as proven in Appendix C.2, the

exponential stability of the closed-loop system is ensured, which completes the proof of Theorem

10.

4.2 Actuator Delay Compensation

In the presence of actuator delay, a delay compensation technique has been developed

intensively for many classes of systems using a backstepping transformation [97]: see [94] for

linear ODE systems and [98] for nonlinear ODE systems. Using the Lyapunov method, [93]

presented the several analysis of the predictor-based feedback control for ODEs such as robustness

with respect to the delay mismatch and disturbance attenuation. To deal with systems under

unknown and arbitrary large actuator delay, a Lyapunov-based delay-adaptive control design was

developed in [19, 20] for both linear and nonlinear ODEs with certain systems, and [18] extended

the design for trajectory tracking of uncertain linear ODEs. For control of unstable parabolic PDE

under a long input delay, [96] designed the stabilizing controller by introducing two backstepping

transformations for the stabilization of the unstable PDE and the compensation of the delay. By

the similar technique, in [157] the coupled diffusion PDE-ODE system in the presence of the

actuator delay is stabilized. Implementation issues on the predictor-based feedback are covered

in [72] by studying the closed-loop analysis under the sampled-data control.
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Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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liquid solid

delay

Figure 4.2: Schematic of the one-phase Stefan problem with actuator delay.

Problem Setup and Main Result

Here we impose an actuator delay which is caused by several reasons such as computa-

tional time or communication delay. Specifically, the communication delay takes place during the

time in which the signals are transmitted from sensors to the controller and from the controller to

the actuator, and the computational delay is caused during the time when the controller completes

the computation after receiving the signals from the sensors. This configuration is shown in

Fig. 4.2. Thus, the Stefan problem with the actuator delay is formulated as follows;

Tt(x, t) = αTxx(x, t), 0≤ x≤ s(t), (4.55)

−kTx(0, t) = qc(t−D), (4.56)

T (s(t), t) = Tm, (4.57)

ṡ(t) =−βTx(s(t), t), (4.58)

and the initial values

s(0) = s0, T (x,0) = T0(x), ∀x ∈ [0,s0], qc(t) = qc,0(t), ∀t ∈ [−D,0) (4.59)
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where D is the time delay of the input. Since the boundary input (4.56) is now described by

qc(t−D), all the statements in Lemma 2 and 3 are replaced by qc(t−D). Thus, the boundary

input is needed to be a bounded piecewise continuous function with generating nonnegative heat,

i.e.,

qc(t−D)≥ 0, ∀t > 0. (4.60)

Hence, we require the following assumption.

Assumption 3 The past input qc,0(t) for t ∈ [−D,0) is a bounded piecewise continuous function

and maintains nonnegative, i.e.

qc,0(t)≥ 0, ∀t ∈ [−D,0). (4.61)

With Assumption 3, the model validity conditions (1.18) and (1.20) remain if qc(t)≥ 0

for ∀t > 0.

The control objective is same as Chapter 2. As addressed in Section 2.1, we study the

energy growth. The plant (4.55)–(4.58) obeys the following energy conservation law:

d
dt

(
k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β

s(t)+
∫ t

t−D
qc(θ)dθ

)
= qc(t). (4.62)

The control objective is achieved if and only if the following limit is satisfied:

lim
t→∞

(
k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β

s(t)+
∫ t

t−D
qc(θ)dθ

)
=

k
β

sr, (4.63)

which can be derived by substituting T (x, t)→ Tm, s(t)→ sr, and qc(t)→ 0 into the left hand

side of (4.63). Taking integration of (4.62) from t = 0 to t = ∞ with the help of qc(t) > 0 for

t > 0 and (4.63), the following assumption on the setpoint is provided.
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Assumption 4 The setpoint is chosen to satisfy

sr > s0 +β

(∫ 0

−D

qc(t)
k

dt +
1
α

∫ s0

0
(T0(x)−Tm)dx

)
. (4.64)

Next, we state our main result.

Theorem 1 Under Assumptions 3-4, the closed-loop system consisting of the plant (4.55)–(4.58)

and the control law

qc(t) =− c
(∫ t

t−D
qc(θ)dθ+

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β
(s(t)− sr)

)
, (4.65)

where c > 0 is an arbitral control gain, maintains the model validity conditions (1.18) and (1.20)

and is exponentially stable in the sense of the norm

||T (x, t)−Tm||2H1(0,s(t))
+(s(t)− sr)

2 +
∫ t

t−D
qc(θ)

2dθ+
∫ t

t−D
q̇c(θ)

2dθ. (4.66)

The proof of Theorem 1 is established through the remainder of this section and the

stability proof given in Appendix C.

Backstepping Transformation

Change of variables

Introduce reference error variables defined by

u(x, t) :=T (x, t)−Tm, X(t) := s(t)− sr. (4.67)
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Next, we introduce a variable

v(x, t) =
qc(t− x−D)

k
, ∀x ∈ [−D,0]. (4.68)

Here, the variable x ∈ [−D,0] in (4.68) is not the spatial coordinate x ∈ (0,s(t)) of the system

(4.55)–(4.58), but a newly introduced variable for an alternative representation of the delayed

input, as introduced in [96]. Hence, the variable qc(t − x−D) in (4.68) still represents the

boundary heat input (not an input acting on the space x ∈ (0,s(t))), during the time period

from t−D to t. Then, (4.68) gives the boundary values of current input v(−D, t) = qc(t)/k and

delayed input v(0, t) = qc(t−D)/k, and v(x, t) satisfies a transport PDE. Hence, the coupled

(v,u,X)-system is described as

vt(x, t) =− vx(x, t), −D < x < 0 (4.69)

v(−D, t) =qc(t)/k, (4.70)

ux(0, t) =− v(0, t), (4.71)

ut(x, t) =αuxx(x, t), 0 < x < s(t) (4.72)

u(s(t), t) =0, (4.73)

Ẋ(t) =−βux(s(t), t). (4.74)

Now, the control objective is to design qc(t) to stabilize the coupled (v,u,X)-system at the origin.
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Direct transformation

We consider backstepping transformations for the coupled PDEs-ODE system as

w(x, t) =u(x, t)− c
α

∫ s(t)

x
(x− y)u(y, t)dy− c

β
(x− s(t))X(t), (4.75)

z(x, t) =v(x, t)+ c
∫ 0

x
v(y, t)dy+

c
α

∫ s(t)

0
u(y, t)dy+

c
β

X(t). (4.76)

The transformation (4.75) is the same nonlinear transformation as the one proposed in Section 2.3

for delay-free Stefan problem. The formulation of (4.76) is motivated by a design in fixed domain

introduced in [96]. Taking derivatives of (4.75) and (4.76) in x and t along with the solution of

the system (4.69)–(4.74), we have

wx(x, t) =ux(x, t)−
c
α

∫ s(t)

x
u(y, t)dy− c

β
X(t), (4.77)

zx(x, t) =vx(x, t)− cv(x, t), (4.78)

zt(x, t) =− vx(x, t)− c
∫ 0

x
vy(y, t)dy+ c

∫ s(t)

0
uyy(y, t)dy− cux(s(t), t),

=− vx(x, t)+ cv(x, t). (4.79)

By (4.78) and (4.79), we get zt(x, t) =−zx(x, t). In addition, by substituting x = 0 in (4.76) and

(4.77), wx(0, t) =−z(0, t) holds. On the other hand, because w transformation does not depend

on v, w system is not changed from the delay-free target system given in Section 2.3. Thus, the
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target (z,w,X)-system is obtained by

zt(x, t) =− zx(x, t), −D < x < 0 (4.80)

z(−D, t) =0, (4.81)

wx(0, t) =− z(0, t), (4.82)

wt(x, t) =αwxx(x, t)+
c
β

ṡ(t)X(t), 0 < x < s(t) (4.83)

w(s(t), t) =0, (4.84)

Ẋ(t) =− cX(t)−βwx(s(t), t). (4.85)

The control design is achieved through evaluating (4.76) at x =−D together with the boundary

conditions (4.70) and (4.81), which yields

qc(t) =− ck
(∫ 0

−D
v(y, t)dy+

1
α

∫ s(t)

0
u(y, t)dy+

1
β

X(t)
)
. (4.86)

Finally, substituting the definitions (4.67) and (4.68) in (4.86), the control law (4.65) is obtained.

In a similar manner, the inverse transformations are obtained by

u(x, t) =w(x, t)+
β

α

∫ s(t)

x
ψ(x− y)w(y, t)dy+ψ(x− s(t))X(t), (4.87)

v(x, t) =z(x, t)−
∫ 0

x
µ(x− y)z(y, t)dy− β

α
µ(x)

∫ s(t)

0
ζ(y)w(y, t)dy−ζ(s(t))µ(x)X(t), (4.88)

where

ψ(x) =
√

cα

β
sin
(√

c
α

x
)
, (4.89)

µ(x) =cecx, ζ(x) =
1
β

cos
(√

c
α

x
)
. (4.90)
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Physical constraints

Next, we prove that the closed-loop system with the control law (4.65) guarantees some

important properties.

Lemma 1 With Assumption 4, the control law (4.65) for the system (4.55)–(4.58) generates a

positive input signal, i.e.,

qc(t)>0, ∀t > 0. (4.91)

Proof:

Taking the time derivative of (4.65) together with the solution of (4.55)–(4.58), we obtain

q̇c(t) =− c
(

qc(t)−qc(t−D)+ k
∫ s(t)

0
Txx(x, t)dx− kTx(s(t), t)

)
,

=− c(qc(t)−qc(t−D)− kTx(0, t)) ,

=− cqc(t). (4.92)

The differential equation (4.92) yields

qc(t) = qc(0)e−ct . (4.93)

Additionally, substituting t = 0 into the control law (4.65) leads to

qc(0) =−c
(∫ 0

−D
qc(θ)dθ+

k
α

∫ s0

0
(T0(x)−Tm)dx+

k
β
(s0− sr)

)
, (4.94)

Hence, Assumption 4 leads to

qc(0)> 0. (4.95)
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Applying (4.95) to (4.93), the positivity of the controller (4.91) is satisfied.

Hence, the model validity conditions (1.18) and (1.20) hold, i.e.,

T (x, t)≥Tm for all x ∈ [0,s(t)]. (4.96)

ṡ(t)≥0, ∀t > 0, (4.97)

By the control law (4.65), the following relation holds under the closed-loop system:

k
β
(s(t)− sr) =−

1
c

qc(t)−
∫ t

t−D
qc(θ)dθ− k

α

∫ s(t)

0
(T (x, t)−Tm)dx, (4.98)

Applying (4.91) and (4.96) to the control law (4.65), it holds

s0 <s(t)< sr, ∀t > 0. (4.99)

Relation between the designed control law and a state prediction

As developed in some literature for ODE systems, the delay compensated control via the

method of backstepping is known to be equivalent to the predictor-based feedback where the

control law is derived to stabilize the future state called ”predictor state”, see Section 2 in [97]

for instance. Hence, one might have a question whether our delay compensated control is also

equivalent to the predictor-based feedback. This is not a trivial question in the case of Stefan

problem due to the complicated structure of ODE dynamics whose state is the domain of the

PDE.

The nominal control design for delay-free Stefan problem developed in [82] is given by

q̄c(t) =− c
(

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β
(s(t)− sr)

)
, (4.100)

where we defined the notation q̄c(t) to distinguish with the delay compensated control law (4.65).
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Thus, our interest lies in proving qc(t) ≡ q̄c(t +D) because q̄c(t +D) is the prediction of the

nominal control. We start from the expression of q̄c(t +D) which can be described as

q̄c(t +D) =− c
(

k
α

∫ s(t+D)

0
(T (x, t +D)−Tm)dx+

k
β
(s(t +D)− sr)

)
. (4.101)

Integrating ODE dynamics ṡ(t) =−βTx(s(t), t) given in (4.58) from t to t +D yields

s(t +D) = s(t)−β

∫ t+D

t
Tx(s(τ),τ)dτ. (4.102)

Next, integrating PDE dynamics Tt = αTxx given in (4.55) in time from t to t +D leads to

T (x, t +D) = T (x, t)+α
∫ t+D

t Txx(x,τ)dτ. Furthermore, integrating the both sides in space from

0 to s(t +D), we obtain

∫ s(t+D)

0
(T (x, t +D)−Tm)dx

=
∫ s(t+D)

0
(T (x, t)−Tm)dx+α

∫ s(t+D)

0

∫ t+D

t
Txx(x,τ)dτdx,

=
∫ s(t+D)

0
(T (x, t)−Tm)dx+α

∫ t+D

t
(Tx(s(t +D),τ)−Tx(0,τ)dτ,

=
∫ s(t+D)

0
(T (x, t)−Tm)dx+α

∫ t+D

t
Tx(s(t +D),τ)dτ+

α

k

∫ t

t−D
qc(ξ)dξ. (4.103)

Therefore, substituting (4.102) and (4.103) into (4.101), we get

q̄c(t +D) =− c
(

k
α

∫ s(t+D)

0
(T (x, t)−Tm)dx+ k

∫ t+D

t
(Tx(s(t +D),τ)−Tx(s(τ),τ))dτ

+
∫ t

t−D
qc(ξ)dξ+

k
β
(s(t)− sr)

)
. (4.104)
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Consequently, it remains to consider the following term

∫ t+D

t
(Tx(s(t +D),τ)−Tx(s(τ),τ))dτ

=
∫ t+D

t

∫ s(t+D)

s(τ)
Txx(x,τ)dxdτ,

=
1
α

∫ s(t+D)

s(t)

∫ s−1(x)

t
Tτ(x,τ)dτdx,

=
1
α

∫ s(t+D)

s(t)

(
T (x,s−1(x))−T (x, t)

)
dx. (4.105)

where we switched the order of the integrations in time and space from the first line to the

second line with defining the inverse function s−1(x). The existence and uniqueness of s−1(x) is

guaranteed due to the continuous and monotonically increasing property of s(t) provided qc(t)> 0.

Thus, boundary condition T (s(t), t) = Tm, ∀t ≥ 0 given in (4.57) implies T (x,s−1(x)) = Tm from

which (4.105) is given by

∫ t+D

t
(Tx(s(t +D),τ)−Tx(s(τ),τ))dτ =− 1

α

∫ s(t+D)

s(t)
(T (x, t)−Tm)dx. (4.106)

Substituting (4.106) into (4.104), we arrive at

q̄c(t +D) =− c
(

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

∫ t

t−D
qc(ξ)dξ+

k
β
(s(t)− sr)

)
≡ qc(t). (4.107)

Therefore, we conclude that the delay compensated control (4.65) is indeed the prediction of the

nominal control law (4.100).

Robustness to delay mismatch

The results established up to the last section are based on the control design with utilizing

the exact value of the actuator delay. However, in practice, there is an error between the exact

time delays and the identified delays. Hence, guaranteeing the performance of the controller
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under the small delay mismatch is important. In this section, D > 0 is denoted as the identified

time delay and ∆D is denoted as the delay mismatch (can be either positive or negative), which

yields D+∆D as the exact time delay from the controller to the plant. Thus, the system we focus

on is described by

Tt(x, t) =αTxx(x, t), x ∈ (0,s(t)), (4.108)

−kTx(0, t) =qc(t− (D+∆D)), (4.109)

T (s(t), t) =Tm, (4.110)

ṡ(t) =−βTx(s(t), t), (4.111)

with the control law given in (4.65) which utilizes the identified delay D. Since the control law is

not changed, the same backstepping transformation in (4.75) and (4.76) can be applied, but the

target (z,w,X)-system needs to be redescribed due to the modification of (4.109). The theorem

for the robustness to delay mismatch is provided under the restriction on the control gain, as

stated in the following.

Theorem 2 Under Assumptions 3-4, there exists a positive constant c̄> 0 such that ∀c∈ (0, c̄) the

closed-loop system consisting of the plant (4.108)–(4.111) and the control law (4.65) maintains

the model validity conditions (1.18) and (1.20) and is exponentially stable in the sense of the

norm (4.66).

An important characteristic to note in Theorem 2 is that the existence of c̄ is ensured for

any given ∆D as long as D+∆D > 0. An analogous description with respect to the small delay

mismatch is given in the following corollary.

Corollary 1 Under Assumptions 3-4, for any given c > 0 there exist positive constants ε > 0 and

ε̄ > 0 such that ∀∆D ∈ (−ε, ε̄) the closed-loop system (4.108)–(4.111), (4.65) satisfies the same

model validity and stability property as Theorem 2.
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The proof of Theorem 2 can be seen in [84], and is emitted here.
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(a) Delay compensated control achieves the monotonic convergence of s(t) to the setpoint sr without
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(b) Delay compensated control keeps injecting positive heat, i.e. qc(t)> 0.
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(c) T (0, t) converges to the melting temperature Tm with maintaining T (0, t)> Tm.

Figure 4.3: The closed-loop response of (4.55)-(4.58) with the delay compensated control law
(4.65) (red) and the uncompensated control law (4.100) (blue).
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Numerical Simulation

We study the simulation of the proposed delay compensated controller under the accurate

value on the delay and the delay mismatch.

Exact Compensation

The performance of the proposed delay compensated controller is investigated by compar-

ing to the performance of the nominal controller (4.100). The time delay, the past heat input, and

the initial values are set as D = 2 [min], qc(t) = 500 [W/m] for ∀t ∈ [−D,0), s0 = 0.1 [m], and

T0(x) = T̄ (1− x/s0)+Tm with T̄ = 50 [K]. The setpoint and the controller gain are chosen as

sr = 0.15 m and c =0.01/s, which satisfies the setpoint restriction (4.64).

Fig. 4.3 shows the simulation results of the closed-loop system of the plant (4.55)–(4.58)

with the proposed delay compensated control (4.65) (red) and the uncompensated control law

(4.100) (blue). The closed-loop responses of the moving interface s(t), the boundary heat control

qc(t), and the boundary temperature T (0, t) are depicted in Fig. 4.3 (a)–(c), respectively. As stated

in their captions, the proposed delay compensated controller ensures all the derived conditions

with the convergence of the interface position to the setpoint, while the uncompensated control

does not provide such a behavior. Hence, the numerical result is consistent with the theoretical

result, and the proposed controller achieves better performances than the uncompensated controller

under the actuator delay.

Robustness to Delay Mismatch

To evaluate the delay robustness, the performance of the proposed controller is investigated

under the delay mismatch. First, the simulation is conducted with the underestimated delay

mismatch where the time delay from the actuator to the plant is 60 [sec] while the compensating

time delay in the controller is D = 30 [sec], i.e., the delay mismatch is ∆D = 30 [sec]. The

closed-loop responses are depicted in Fig. 4.4 with the choices of the control gain c = 0.01 [1/sec]
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(c) The boundary temperature keeps above the melting temperature with smaller gain, while it reaches
below the melting temperature with larger gain, which violates the temperature condition for the liquid

phase.

Figure 4.4: The closed-loop response under the ”underestimated” delay mismatch with D = 30
[sec] and ∆D = 30 [sec]. The simulations are conducted with the control gain c = 0.01 [/sec]
(red) and c = 0.1 [/sec] (blue). The delay-robustness is observed only with smaller gain in terms

of the model validity.
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Figure 4.5: The closed-loop response under the ”overestimated” delay mismatch with D = 90
[sec] and ∆D =−30 [sec]. The simulations are conducted with the control gain c = 0.01 [/sec]
(red) and c = 0.1 [/sec] (blue). In this case, all the constraints for the model validity are satisfied

with both smaller gain and larger gain.

(red) and c = 0.1 [1/sec] (blue). Fig. 4.4 (a) illustrates the convergence of the interface position

to the setpoint, however, the monotonicity of the interface dynamics is violated with larger gain
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(red). From Fig. 4.4 (b) and (c) we can observe that the positivity of the control input and the

temperature condition for the liquid phase are satisfied only with the lower gain (blue) for all

time, while the simulation with the larger gain (red) violates these conditions too. Hence, with

the underestimated delay mismatch, the robustness is well illustrated for sufficiently small gain

c > 0, which is consistent with Theorem 2.

Next, we have studied the simulation with the over-estimated delay mismatch with the

same value of the time delay from the actuator to the plant 60 [sec] but the compensating time

delay in the controller is D = 90 [sec], i.e., the delay mismatch is ∆D = -30 [sec]. The closed-loop

responses are depicted in Fig. 4.5 with the same choices of the control gain as in simulation

of underestimated delay mismatch. While the magnitude of the delay mismatch is same as the

one conducted in the underestimated delay mismatch, we can observe from Fig. 4.5 (b) and (c)

that the positivity of the control input and the temperature condition for the model validity are

satisfied for all time with both smaller control gain (red) and larger control gain (blue). Although

Theorem 2 guarantees these properties only for sufficiently small control gain c > 0, the numerical

results illustrate that the restriction on the control gain to satisfy these properties is not equivalent

between the underestimated and over-estimated delay mismatch.

Indeed, as far as we have investigated the numerical results with the over-estimated delay

mismatch using other values of the control gain c and the delay perturbation ∆D, the positivity

of the control input is satisfied for every cases and the convergence of the interface position to

the setpoint is depicted without overshooting. These observations from the numerical simulation

leads us to conjecture that the delay-compensated controller might exhibit greater sensitivity

to delay mismatch when it is underestimated rather than over-estimated in terms of the model

validation. Hence, once the user is faced with some range of the uncertainty in the actuator delay,

it is better to choose small control gain c > 0, and additionally, it might be better to choose larger

value of the compensating delay in the controller to be conservative.
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4.3 What Can We Guarantee If the Solid Phase Remains? -

ISS

While all the aforementioned results are based on the one-phase Stefan problem which

neglects the cooling heat caused by the solid phase, an analysis on the system incorporating the

cooling heat at the liquid-solid interface has not been established. The one-phase Stefan problem

with a prescribed heat flux at the interface was studied in [140]. The author proved the existence

and uniqueness of the solution with a prescribed heat input at the fixed boundary by verifying

positivity conditions on the interface position and temperature profile using a similar technique as

in [55].

Regarding the added heat flux at the interface as the heat loss induced by the remaining

other phase dynamics, it is reasonable to treat the prescribed heat flux as the disturbance of the

system. The norm estimate of systems with a disturbance is often analyzed in terms of Input-

to-State Stability (ISS) [149], which serves as a criterion for the robustness of the controller or

observer design [6, 54]. The characterizations of ISS have been investigated in [147, 148], which

have been utilized for the derivation of small gain theorems [66, 67]. Recently, the ISS for infinite

dimensional systems with respect to the boundary disturbance was developed in [73, 74, 76]

using the spectral decomposition of the solution of linear parabolic PDEs in one dimensional

spatial coordinate with Strum-Liouville operators. An analogous result for the diffusion equations

with a radial coordinate in n-dimensional balls is shown in [23] with proposing an application to

robust observer design for battery management systems [118].

We incorporate the heat loss at the interface in the one-phase Stefan problem, as a cooling

effect from the solid phase. Here, we assume that the heat loss is a time-varying function, unlike

the two-phase Stefan problem which models the heat loss by the solid phase temperature that is
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state-dependent. Hence, we consider the following model

Tt(x, t) = αTxx(x, t), 0≤ x≤ s(t), (4.112)

−kTx(0, t) = qc(t), (4.113)

T (s(t), t) = Tm, (4.114)

ṡ(t) =−βTx(s(t), t)−
β

k
qf(t), (4.115)

where qf(t)≥ 0 is a magnitude of the heat loss. The coefficient β/k is added from the physical

modeling, which yields the consistency in the physical unit. We impose the following assumption

on the heat loss.

Assumption 5 The heat loss remains non-negative, bounded, and continuous for all t ≥ 0, and

the total energy is also bounded, i.e.,

qf(t)≥0, ∀t > 0, (4.116)

∃M >0, s.t.
∫

∞

0
qf(t)dt < M. (4.117)

One critical difference of the system (4.112)–(4.115) from the systems we have studied

in previous sections is that the monotonicity of the interface dynamics does not hold, i.e.,

ṡ(t)� 0 (4.118)

which can cause the following scenario:

s(t)↘ 0 (4.119)

even under a physically reasonable situation. Namely, even if we keep injecting a positive heat

into the liquid phase, the material can be completely frozen to the solid phase due to the heat loss.
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Such a situation can be explained in the following lemma proven in [140]:

Lemma 10 Provided that qc(t)≥ 0 for all t ≥ 0, there exists σ > 0 such that for any t̄ ≤ σ where

0 < σ ≤ ∞, there is a unique classical solution of the system (4.112)–(4.115). If σ 6= ∞, then

s(σ) = 0.

However, to validate the physical model under the feedback control, we need to show

s(t)> 0, ∀t ≥ 0. (4.120)

Hence, the condition (4.120) stands as an additional constraint to hold under the closed-loop

system. Here, the heat loss qf(t) is an unknown variable, and we study how the norm estimate is

described under the feedback control law designed in Section 2.3, namely, the control law is

qc(t) =−c
(

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β
(s(t)− sr)

)
, (4.121)

We impose the same assumption on the setpoint position as follows.

Assumption 6 The setpoint is chosen to satisfy

sr > s0 +
β

α

∫ s0

0
(T0(x)−Tm)dx. (4.122)

Finally, we impose the following condition of the control gain.

Assumption 7 The control gain c is chosen sufficiently large to satisfy c > β

ksr
q̄f, where q̄f :=

sup0≤t≤∞ {qf(t)}.

The controller is feedback design of liquid temperature profile and the interface position

(T (x, t),s(t)). The heat loss qf(t) is regarded as a disturbance, and the norm estimate of the

reference error is derived in a sense of input-to-state stability, as stated in the following theorem.
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Theorem 11 Under Assumptions 5–7, the closed-loop system consisting of (4.112)–(4.115) with

the control law (4.121) satisfies the model validity conditions (1.18) and (4.120), and is ISS with

respect to the heat loss qf(t) at the interface, i.e., there exist a class-K L function ζ and a class-K

function η such that the following estimate holds:

Ψ(t)≤ ζ(Ψ(0), t)+η

(
sup

τ∈[0,t]
|qf(τ)|

)
, (4.123)

for all t ≥ 0, in the L2 norm

Ψ(t) =
(∫ s(t)

0
(T (x, t)−Tm)

2 dx+(s(t)− sr)
2
) 1

2

. (4.124)

Moreover, there exist positive constants M1 > 0 and M2 > 0 such that the explicit functions of ζ

and η are given by

ζ(Ψ(0), t) =M1Ψ(0)e−λt , (4.125)

η( sup
τ∈[0,t]

|qf(τ)|) =M2 sup
τ∈[0,t]

|qf(τ)|, (4.126)

where λ = 1
32 min

{
α

s2
r
,c
}

, which ensures the exponentially ISS.

Backstepping transformation

Let u(x, t) and X(t) be reference error variables defined by

u(x, t) :=T (x, t)−Tm, (4.127)

X(t) :=s(t)− sr. (4.128)
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Then, the system (4.112)–(4.115) is rewritten as

ut(x, t) =αuxx(x, t), (4.129)

ux(0, t) =−
qc(t)

k
, (4.130)

u(s(t), t) =0, (4.131)

Ẋ(t) =−βux(s(t), t)−d(t), (4.132)

where d(t) = β

k qf(t).

We apply the following backstepping transformation

w(x, t) =u(x, t)− β

α

∫ s(t)

x
φ(x− y)u(y, t)dy−φ(x− s(t))X(t), (4.133)

where the gain kernel φ is given by

φ(x) =
c
β

x− ε. (4.134)

Then, one can derive the following target system

wt(x, t) =αwxx(x, t)+ ṡ(t)φ′(x− s(t))X(t)+φ(x− s(t))d(t), (4.135)

wx(0, t) =
β

α
φ(0)u(0), (4.136)

w(s(t), t) =εX(t), (4.137)

Ẋ(t) =− cX(t)−βwx(s(t), t)−d(t). (4.138)
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Inverse transformation

Consider the following inverse transformation

u(x, t) =w(x, t)− β

α

∫ s(t)

x
ψ(x− y)w(y, t)dy−ψ(x− s(t))X(t). (4.139)

Taking the derivatives of (4.139) in x and t along (4.135)-(4.138), to match with (4.129)-(4.132),

we obtain the gain kernel solution as

ψ(x) =erx (p1 sin(ωx)+ εcos(ωx)) , (4.140)

where

r =
βε

2α
, ω =

√
4αc− (εβ)2

4α2 , (4.141)

p1 =−
1

2αβω

(
2αc− (εβ)2) , (4.142)

and 0 < ε < 2
√

αc
β

is to be chosen later. Finally, using the inverse transformation, the boundary

condition (4.143) is rewritten as

wx(0, t) =−
β

α
ε

[
w(0, t)− β

α

∫ s(t)

0
ψ(−y)w(y, t)dy−ψ(−s(t))X(t)

]
. (4.143)

In other words, the target (w,X)-system is described by (4.135), (4.137), (4.138), and (4.143).

Note that the boundary condition (4.137) and the kernel function (4.134) are modified from the

one in Section 2.3, while the control design is equivalent. The target system derived in Section

2.3 requires H1-norm analysis for stability proof. However, with the prescribed heat loss at the

interface, H1-norm analysis fails to show the stability due to the non-monotonic moving boundary

dynamics. The modification of the boundary condition (4.137) enables to prove the stability in L2

norm as shown later.
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Analysis of closed-loop system

Here, we prove the well-posedness of the closed-loop solution and the positivity conditions

of the state variables.

Taking the time derivative of the control law (4.121) along with the energy conservation

leads to the following differential equation

q̇c(t) =−cqc(t)+ cqf(t), (4.144)

which has the explicit solution as the following open-loop control:

qc(t) = q0e−ct + c
∫ t

0
e−c(t−τ)qf(τ)dτ, (4.145)

where

q0 =−c
(

k
α

∫ s0

0
(T0(x)−Tm)dx+

k
β
(s0− sr)

)
. (4.146)

Hence, the closed-loop solution is equivalent to to the open-loop solution with (4.145). Since

Assumption 6 leads to q0 > 0, the open-loop controller (4.145) remains positive and continuous

for all t > 0 by Assumption 5. Hence, applying Lemma 10, we can show that there exists σ > 0

such that for any t̄ ≤ σ where 0 < σ ≤ ∞, there is a unique classical solution of the system

(4.112)–(4.115).

Next, we show σ = ∞ by contradiction. Suppose there exists 0 < σ < ∞ such that s(σ) = 0.

Let E(t) be an internal energy of the physical system defined by

E(t) =
k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β

s(t). (4.147)

Note that E(σ) = 0 holds by the imposed assumption. Taking the time derivative of (4.147) yields
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the energy conservation

Ė(t) = qc(t)−qf(t). (4.148)

In addition, the time derivative of (4.145) yields

q̇c(t) =−c(qc(t)−qf(t)) . (4.149)

Combining these two and taking integration on both sides gives

E(t) = E(0)− 1
c
(qc(t)−qc(0)). (4.150)

By (4.146) and (4.147), we get

q0 =−c
(

E(0)− k
β

sr

)
. (4.151)

Substituting this and (4.145) into (4.150), we have

E(t) = e−ct
[

E(0)+
ksr

β
(ect−1)−

∫ t

0
ecτqf(τ)dτ

]
. (4.152)

Let f (t) be a function in time defined by

f (t) = E(0)+
ksr

β
(ect−1)−

∫ t

0
ecτqf(τ)dτ. (4.153)

Since E(t) = e−ct f (t), we can see that E(t)> 0 for all t > 0 if and only if f (t)> 0 for all t > 0.

By (4.153), we have f (0) = E(0)> 0. Taking the time derivative of (4.153) yields

f ′(t) = ect
(

ksrc
β
−qf(t)

)
. (4.154)
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By Assumption 7, (4.154) leads to f ′(t)> 0 for all t > 0. Therefore, f (t)> 0 for all t > 0, and

we conclude E(t) > 0 for all t > 0 which contradicts with the imposed assumption s(σ) = 0

where σ 6= ∞. Hence, the existence and uniqueness of the solution holds globally ∀t ≥ 0.

Since the open-loop system has a unique solution, the closed-loop solution has a unique

solution as well. Thus, the following properties hold:

qc(t)>0, (4.155)

u(x, t)>0, ux(s(t), t)< 0, (4.156)

s(t)>0. (4.157)

Moreover, applying (4.155) and (4.156) to (4.121), the following condition is derived

0 < s(t)< sr. (4.158)

ISS Proof

To conclude the ISS of the original system, first we show the ISS of the target system

(4.135), (4.137), (4.138), and (4.143) with respect to the disturbance d(t). We consider

V (t) =
1

2α
||w||2 + ε

2β
X(t)2. (4.159)

Then, as proven in Appendix C.4, for a sufficiently small ε > 0, the following inequality is

derived:

V̇ (t)≤−bV (t)+Γd(t)2 +a|ṡ(t)|V (t), (4.160)
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where a = 2βε

α
max

{
1, αc2sr

2β3ε3

}
, b = 1

8 min
{

α

s2
r
,c
}

, and Γ = ε

βc +
2s3

r
α2

(
csr
β
+ ε

)2
. Let z(t) be defined

by

z(t) := s(t)+2
∫ t

0
d(τ)dτ. (4.161)

By (4.117) and (4.158), we have

0 < z(t)< z̄ := sr +
2βM

k
(4.162)

The time derivative of (4.161) is given by

ż(t) =−βux(s(t), t)+d(t) (4.163)

Since ṡ(t) =−βux(s(t), t)−d(t) and recalling ux(s(t), t)< 0 and d(t)> 0, the following inequal-

ity holds:

|ṡ(t)| ≤ −βux(s(t), t)+d(t) = ż(t). (4.164)

Applying (4.164) to (4.160) leads to

V̇ (t)≤−bV (t)+Γd(t)2 +aż(t)V (t). (4.165)

Consider the following functional

W (t) =V (t)e−az(t). (4.166)
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Taking the time derivative of (4.166) with the help of (4.165) and applying (4.162), we deduce

Ẇ (t)≤−bW (t)+Γd(t)2. (4.167)

Since (4.167) leads to the statement that either Ẇ (t) ≤ −b
2W (t) or W (t) ≤ 2

bΓd(t)2 is true,

following the procedure in [149] (proof of Theorem 5 in Section 3.3), one can derive

W (t)≤W (0)e−
b
2 t +

2
b

Γ sup
τ∈[0.t]

d(τ)2. (4.168)

By (4.166), we have V (t) = W (t)eaz(t). Applying (4.168), we get V (t) ≤ eaz(t)W (0)e−
b
2 t +

2
bΓsupτ∈[0.t] d(τ)

2. Again by (4.166), we have W (0) =V (0)e−az(0). Combining these two with

the help of (4.162), finally we obtain the following estimate on the L2 norm of the target system

V (t)≤V (0)eaz̄e−
b
2 t +

2
b

Γeaz̄ sup
τ∈[0.t]

d(τ)2. (4.169)

Due to the invertibility of the transformation from (u,X) to (w,X) together with the

boundedness of the domain 0 < s(t)< sr, there exist positive constants M > 0 and M > 0 such

that the following inequalities hold:

MΨ(t)2 ≤V (t)≤MΨ(t)2, (4.170)

where Ψ(t) is the L2 norm of the original system defined in (4.124). Finally, applying (4.170) to

(4.169), one can derive the norm estimate on the original (T,s)-system as Ψ(t)≤
√

Meaz̄

M Ψ(0)e−
b
4 t +

√
2Γeaz̄

bM supτ∈[0.t] d(τ), which completes the proof of Theorem 11.
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Table 4.1: Physical properties of the liquid paraffin.

Description Symbol Value
Density ρ 790 kg ·m−3

Latent heat of fusion ∆H∗ 210 J ·g−1

Heat Capacity Cp 2.38 J ·g−1·◦C−1

Melting Temperature Tm 37.0 ◦C
Thermal conductivity k 0.220 W ·m−1

Numerical Simulation

Simulation results are performed for the one-phase Stefan problem by considering a

cylinder of paraffin whose physical properties are given in Table 4.1. The setpoint and the initial

values are chosen as sr = 2 [cm], s0 = 0.1 [cm], and T0(x)−Tm = T̄0(1− x/s0) with T̄0 = 1 [◦C].

Then, the setpoint restriction is satisfied.

The control gain is set as c = 5.0 × 10−3[/s], and the heat loss at the interface is set as

qf(t) = q̄fe−Kt , (4.171)

where K = 5.0 × 10−6 [/s]. The closed-loop responses for q̄f = 1.0 × 102[W/m2] (red), 2.0 ×

102[W/m2] (blue), and 3.0 × 103[W/m2] (green) are implemented as depicted in Fig. 4.6. Fig.

4.6 (a) shows the dynamics of the interface, which illustrates the convergence to the setpoint with

an error due to the unknown heat loss at the interface. This error becomes larger as q̄f gets larger,

which is consistent with the ISS result. In addition, the property 0 < s(t)< sr is observed. Fig.

4.6 (b) shows the dynamics of the proposed closed-loop control law, and Fig. 4.6 (c) shows the

dynamics of the boundary temperature T (0, t). Hence, we can observe that the simulation results

are consistent with the theoretical result we prove for the model validity conditions and ISS.
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(a) Convergence of the interface is observed with offsets from the setpoint depending on the magnitude
of the heat loss.
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(b) Positivity of the closed-loop controller maintains.
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(c) The model validity of the boundary liquid temperature holds, i.e., T (0, t)> Tm.

Figure 4.6: The responses of the system (4.112)–(4.115) with the heat loss qf(t) = q̄fe−Kt under
the feedback control law (4.121).
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4.4 Sampled-Data Design

The aforementioned results assumed the control input to be varying continuously in time;

however, in practical implementation of the control systems it is impossible to dynamically

change the control input continuously in time due to limitations of the sensors, actuators, and

software. Instead, the control input can be adjusted at each sampling time at which the measured

states are obtained or the actuator is manipulated. One of the most fundamental and well known

method to design such a “sampled-data” control is the so-called “emulation design” that applies

“Zero-Order-Hold” (ZOH) to the nominal “continuous-time” control law. A general result for

nonlinear ODEs to guarantee the global stability of the closed-loop system under such a ZOH-

based sampled-data control was studied in [68], and the sampled-data observer design under

discrete-time measurement is developed in [69] by introducing inter-sampled output predictor.

As further extensions, the stability of the sampled-data control for general nonlinear ODEs under

actuator delay is shown in [71, 72] by applying predictor-based feedback developed in [97], and

results for a linear parabolic PDE are given in [75] by employing Sturm-Liouville operator theory.

The sampled-data control for parabolic PDEs has been intensively developed by Fridman and

coworkers by utilizing linear matrix inequalities [4, 57, 58, 136]. However, none of the existing

work on the sampled-data control has studied the class of the Stefan problem described by a

parabolic PDE with state-dependent moving boundaries “(a nonlinear system)”.

We consider the one-phase Stefan problem in Section 2.3:

Tt(x, t) = αTxx(x, t), 0≤ x≤ s(t), (4.172)

−kTx(0, t) = qc(t), (4.173)

T (s(t), t) = Tm, (4.174)

ṡ(t) =−βTx(s(t), t), (4.175)
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In practical implementation, the actuation value cannot be changed continuously in time.

Instead, by obtaining the measured value as signals discretely in time, the control value needs to

be implemented at each sampling time. One of the most typical design for such a sampled-data

control is the application of ”Zero-Order-Hold”(ZOH) to the nominal continuous time control

law. Through ZOH, during the time intervals between each sampling, the control maintains the

value at the previous sampling time. Let t j be the j-th sampling time for j = 0,1,2, · · · ,, and τ j

be defined by

τ j = t j+1− t j. (4.176)

The application of ZOH to the nominal control law (4.121) leads to the following design for the

sampled-data control

qc(t) =− c
(

k
α

∫ s(t j)

0
(T (x, t j)−Tm)dx+

k
β
(s(t j)− sr)

)
, ∀t ∈ [t j, t j+1), (4.177)

of which the right hand side is constant during the time interval t ∈ [t j, t j+1). Let us denote

q j = qc(t) for t ∈ [t j, t j+1). Hereafter, all the variables with subscript j denote the variables at

t = t j. We introduce the following assumptions on the sampling scheduling.

Assumption 8 The sampling schedule has a finite upper diameter and a positive lower diameter,

i.e., there exist constants 0 < r ≤ R such that

sup
j∈Z+
{τ j} ≤R, (4.178)

inf
j∈Z+
{τ j} ≥r. (4.179)

Our main theorem is given next.

Theorem 3 Consider the closed-loop system (4.172)–(4.175), (4.177) under Assumptions 6, 8.
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Then for every 0 < r ≤ R < 1/c, there exists a constant M := M(r) such that the closed-loop

system has a unique solution satisfying the following estimate:

Ψ(t)≤MΨ(0)exp(−bt), (4.180)

where b= 1
8 min

{
α

s2
r
,c
}

, for all t ≥ 0, in the L2 norm Ψ(t) =
∫ s(t)

0 (T (x, t)−Tm)
2 dx+(s(t)−sr)

2.

The positive constant M in (4.180) has a dependency on r > 0 as

M(r) = M1 +
M2

1− (1− cr)2 e
cr
8
, (4.181)

for some positive constants M1 > 0 and M2 > 0 that are not dependent on r > 0.

Analysis of the closed-loop system

We introduce the following reference error states:

u(x, t) = T (x, t)−Tm, X(t) = s(t)− sr. (4.182)

The governing equations (4.172)–(4.175) are rewritten as the following reference error system

ut(x, t) =αuxx(x, t), (4.183)

ux(0, t) =−qc(t)/k, (4.184)

u(s(t), t) =0, (4.185)

Ẋ(t) =−βux(s(t), t). (4.186)
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Define the internal energy of the reference error system as follows:

Ẽ(t) =
k
α

∫ s(t)

0
u(x, t)dx+

k
β

X(t). (4.187)

Taking the time derivative of (4.187) along the solution of (4.183)–(4.186) leads to

d
dt

Ẽ(t) = qc(t). (4.188)

Noting that qc(t) is constant for t ∈ [t j, t j+1) as qc(t) = q j under ZOH-based sampled-data control,

taking the integration of (4.188) from t = t j to t = t j+1 yields

Ẽ j+1− Ẽ j = τ jq j, (4.189)

where Ẽ j = Ẽ(t j) and τ j = t j+1− t j. The sampled-data control (4.177) and the internal energy

(4.187) at each sampling time satisfy the following relation:

q j =−cẼ j. (4.190)

Substituting (4.190) into (4.189), we obtain

Ẽ j+1 =
(
1− cτ j

)
Ẽ j, (4.191)

which leads to the explicit solution as follows:

Ẽ j =Ẽ0

j−1

∏
i=0

(1− cτi) . (4.192)
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Substituting (4.192) into (4.190) yields

qc(t) = q j =q0

j−1

∏
i=0

(1− cτi) , ∀t ∈ [t j, t j+1), ∀ j ∈ Z+ (4.193)

where

q0 =−c
(

k
α

∫ s0

0
(T0(x)−Tm)dx+

k
β
(s0− sr)

)
. (4.194)

Therefore, the closed-loop system under the sampled-data feedback control (4.177) is

equivalent to the open-loop solution with the control input (4.193). Moreover, under Assumptions

6, 8, and the fact that c < 1
R , the input (4.193) is shown to be a bounded piecewise continuous

function and qc(t)≥ 0 for all t ≥ 0. Thus, the existence and uniqueness of the solution is ensured.

One can deduce

ṡ(t)> 0, ∀t ≥ 0, (4.195)

and thus s0 < s(t) for all t ≥ 0. Integrating (4.188) from t = t j to t ∈ [t j, t j+1) leads to

Ẽ(t)− Ẽ j = (t− t j)q j, ∀t ∈ [t j, t j+1). (4.196)

With the help of (4.190) and (4.192), equation (4.196) yields

Ẽ(t) =
(
1− c(t− t j)

)
Ẽ j, ∀t ∈ [t j, t j+1). (4.197)

By Assumption 8 and since c < 1
R , we have 0 < c < 1

τ j
for all j ∈ Z+. In addition, for all

t ∈ [t j, t j+1) and for all j ∈ Z+, it holds t− t j ≤ τ j. Hence, we have 1− c(t− t j) > 0, for all
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t ∈ [t j, t j+1) and for all j ∈ Z+. Applying this to (4.197) and noting that

Ẽ j < 0, ∀ j ∈ Z+, (4.198)

one can obtain

Ẽ(t)< 0, ∀t ≥ 0. (4.199)

Substituting (4.199) into (4.187) and applying u(x, t)> 0 for all x ∈ (0,s(t)) and t ≥ 0, we have

X(t)< 0, ∀t ≥ 0, (4.200)

which leads to

s0 < s(t)< sr, ∀t ≥ 0. (4.201)

Target system

We use the same backstepping transformation as (4.133) (4.134). Thus, we get the target

system

wt(x, t) =αwxx(x, t)+ ṡ(t)φ′(x− s(t))X(t), (4.202)

w(s(t), t) =εX(t), (4.203)

Ẋ(t) =− cX(t)−βwx(s(t), t). (4.204)

The boundary condition at x = 0 is obtained by

wx(0, t) =−
qc(t)

k
− β

α
εu(0, t)− c

α

∫ s(t)

0
u(y, t)dy− c

β
X(t). (4.205)
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Substituting the design of the sampled-data control qc(t) = q j =−cẼ j for all t ∈ [t j, t j+1) and for

all j ∈ Z+, and recalling the definition of Ẽ(t) in (4.187), the boundary condition (4.205) can be

written as

wx(0, t) =−
c
k

(
Ẽ(t)− Ẽ j

)
− β

α
εu(0, t). (4.206)

Moreover, substituting (4.197), we can describe (4.206) as

wx(0, t) = f (t)− β

α
εu(0, t), (4.207)

where f (t) is an explicit function in time defined by

f (t) =
c2

k
Ẽ j · (t− t j), ∀t ∈ [t j, t j+1), j ∈ Z+. (4.208)

The closed form representation of (4.207) using variables (w,X) is given by using the same

inverse transformation as (4.139) (4.140), which yields

wx(0, t) = f (t)− β

α
ε

[
w(0, t)− β

α

∫ s(t)

0
ψ(−y)w(y, t)dy−ψ(−s(t))X(t)

]
. (4.209)

Therefore, the closed form of the target (w,X)-system is described by (4.202), (4.203), (4.204),

and (4.209).

Stability proof

For a given t ≥ 0, we define the most recent sampling number as

n := {n ∈ Z+|tn ≤ t < tn+1}, (4.210)
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and we firstly apply Lyapunov method for the time interval t ∈ [t j, t j+1) for all j = 0,1, · · · ,n−1,

and next for the interval from tn to t. For both cases, we consider

V =
1

2α
||w||2 + ε

2β
X(t)2. (4.211)

where ||w|| denotes L2 norm defined by ||w||=
√∫ s(t)

0 w(x, t)2dx. As proven in Appendix C.4,

and applying ṡ(t)> 0, for a sufficiently small ε > 0, the following inequality is derived:

V̇ ≤−bV +2sr f (t)2 +aṡ(t)V, (4.212)

where

b =
1
8

min
{

α

s2
r
,c
}
, a =

2βε

α
max

{
1,

αc2sr

2β3ε3

}
. (4.213)

Consider the following functional

W =Ve−as(t). (4.214)

Taking the time derivative of (4.214) with the help of (4.212), we deduce

Ẇ ≤−bW +2sr f (t)2e−as(t)

≤−bW +2sr f (t)2. (4.215)

(i) For t ∈ [t j, t j+1), for all j = 0,1, · · · ,n−1,

Applying comparison principle to (4.215) for t ∈ [t j, t j+1) leads to

W (t)≤W (t j)e−b(t−t j)+2sre−bt
∫ t

t j

ebτ f (τ)2dτ. (4.216)
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Setting t = t j+1 and recalling f (t) = c2

k Ẽ j(t− t j),∀t ∈ [t j, t j+1), we get

Wj+1 ≤Wje−bτ j +
2c4sr

k2 e−bτ j Ẽ2
j I j, (4.217)

where Wj =W (t j), and I j is defined by

I j :=
∫ t j+1

t j

eb(τ−t j)(τ− t j)
2dτ. (4.218)

Then, by introducing the variable s = b(τ− t j) and integration by substitution, with the help of

bτ j <
1
8cτ j <

1
8 for all j ∈ Z+ derived by (4.213), Assumption 8 and the fact that c < 1

R , one can

derive the following inequality:

I j =
1
b3

∫ bτ j

0
ess2ds≤ J

b3 , (4.219)

where J is defined by J :=
∫ 1

8
0 ess2ds. Applying (4.219) to (4.217) yields

Wj+1 ≤Wje−bτ j +B j, (4.220)

where B j is defined by

B j =
2Jc4sr

k2b3 e−bτ j Ẽ2
j . (4.221)

Applying (4.220) from j = n−1 to j = 0 inductively, we get

Wn ≤W0e−b∑
n−1
i=0 τi +Bn−1 +

n−2

∑
i=0

Bie
−b∑

n−1
j=i+1 τ j . (4.222)

163



By (4.221) and the solution of Ẽ j given in (4.192), we have

n−2

∑
i=0

Bie
−b∑

n−1
j=i+1 τ j

≤2Jc4srẼ2
0 e−b∑

n−1
j=0 τ j

k2b3

(
1+

n−2

∑
i=1

(
i−1

∏
k=0

(1− cτk)
2

)
eb∑

i−1
j=0 τ j

)

≤2Jc4srẼ2
0 e−b∑

n−1
j=0 τ j

k2b3

(
1+

n−2

∑
i=1

(
i−1

∏
k=0

(1− cτk)
2 ebτk

))
. (4.223)

Since b = 1
8 min

{
α

s2
r
,c
}
< c

8 , by using r = inf j∈Z+{τ j}> 0 given in Assumption 8, the following

inequality holds

(1− cτi)
2 ebτi ≤ (1− cr)2 e

cr
8 := δ < 1, ∀ j ∈ Z+. (4.224)

Thus, the inequality (4.223) leads to

n−2

∑
i=0

Bie
−b∑

n−1
j=i+1 τ j ≤2Jc4srẼ2

0 e−b∑
n−1
j=0 τ j

k2b3

(
1+

n−2

∑
i=1

δ
i

)

≤ 2Jc4srẼ2
0

k2b3(1−δ)
e−b∑

n−1
j=0 τ j . (4.225)

In the similar way, we get

Bn−1 ≤
2Jc4srẼ2

0
k2b3(1−δ)

e−b∑
n−1
j=0 τ j . (4.226)

Recalling that τ j = t j+1− t j and t0 = 0, we get ∑
n−1
j=0 τ j = tn. Applying (4.225) and (4.226) to

(4.222), we arrive at

Wn ≤ (W0 +AẼ2
0)e
−btn. (4.227)
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where A = 2Jc4sr
k2b3(1−δ)

.

(ii) For t ∈ [tn, tn+1),

Applying comparison principle to (4.215) from tn to t ∈ [tn, tn+1), we get

W (t)≤Wne−b(t−tn)+Bne−b(t−tn+1)

≤Wne−b(t−tn)+AẼ2
0 e−bt . (4.228)

Finally, combining (4.227) and (4.228), the following bound is obtained

W (t)≤ (W0 +2AẼ2
0)e
−bt . (4.229)

Recalling the relation W = Ve−as(t) defined in (4.214), and applying 0 < s(t) < sr, the norm

estimate for W in (4.229) leads to the following estimate for V :

V (t)≤ easr(V0 +2AẼ2
0)e
−bt . (4.230)

We consider the L2-norm of (u,X)-system defined by

Ψ(t) =
∫ s(t)

0
u(x, t)2dx+X(t)2. (4.231)

Due to the invertibility of the transformation from (u,X) to (w,X) together with the boundedness

of the domain 0< s(t)< sr, there exist positive constants M > 0 and M > 0 such that the following

inequalities hold:

MΨ(t)≤V (t)≤MΨ(t). (4.232)

Moreover, due to the definition of the reference energy Ẽ(t) = k
α

∫ s(t)
0 u(x, t)dx+ k

β
X(t) given in
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(4.187), using Young’s and Cauchy Schwarz inequalities one can show that

Ẽ2
0 ≤ KΨ0, (4.233)

where K = 2k2 max{ sr
α2 ,

1
β2}. Applying (4.232) and (4.233) to (4.230), we deduce that there exists

positive constant M > 0 such that the following inequality holds

Ψ(t)≤MΨ0e−bt , (4.234)

which completes the proof of Theorem 3.

Numerical Simulation

We use the same physical parameters of paraffin, the initial conditions, and the setpoint

as those used in the last section for ISS. We consider periodic sampling with period given by

τ j = R = 10 [min], for all j ∈ Z. The control gain is set as c = 5.0 × 10−3/s, by which the

requirement R < 1
c is satisfied. The time responses of the interface position, the control input,

and the boundary temperature under the closed-loop system are depicted in Fig. 4.7 (a)–(c),

respectively. Fig. 4.7 (a) illustrates that the interface position s(t) converges to the setpoint

sr monotonically and smoothly without overshooting, i.e., ṡ(t)> 0 and s0 < s(t)< sr hold for

all t ≥ 0. Fig. 4.7 (b) shows that the proposed sampled-data control law maintains constant

positive value for every sampling period and is monotonically decreasing to zero. Fig. 4.7 (c)

illustrates that the boundary temperature T (0, t) keeps greater than the melting temperature Tm

with accompanying “spikes” at every sampling time t = τ j up to 2 hours. Such spikes are caused

by the large drop of the control input qc(t) at sampling time observed from Fig. 4.7 (b), which

affects the boundary temperature directly as given in the boundary condition. Therefore, the

numerical results are consistent with the theoretical results we have established for the required
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(c) The boundary temperature accompanies “spikes” at every sampling time.

Figure 4.7: The responses of the system (4.172)–(4.175) under the ZOH-based sampled-data
control (4.177).

properties and in Theorem 3 for the closed-loop stability.
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Chapter 5

Two-Phase Stefan Problem

Recall that in Section 4.3 we deal with a non-monotonic interface dynamics by incorpo-

rating a heat loss at the interface in the one-phase Stefan problem. However, such a heat loss

should be physically modeled by the heat flux from the solid phase, which renders additional

PDE of the solid phase temperature, and the control design to asymptotically stabilize such a

PDE-ODE-PDE system is quite challenging, let alone for Stefan systems of moving boundary.

5.1 Description of the Physical Model

The two-phase Stefan problem describes the repetitive model of the phase change phenom-

ena of melting and freezing (solidification) process. As depicted in Fig. 5.1, two complementary

time-varying sub-domains x ∈ [0,s(t)] and x ∈ [s(t),L] are occupied by the liquid phase and the

solid phase, respectively. Let Tl(x, t) and Ts(x, t) be the temperature profiles of liquid and solid,

respectively, and s(t) be the position of the interface between liquid and solid. Then, the energy

conservation and heat transfer laws give the following PDE-ODE-PDE model of the temperature
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developed via adjoint method to to track the phase interface to a prescribed
desired motion. However, the numerical scheme utilizing the iteration is
computationally expensive and not robust to the unknown disturbances and
physical parameters.

[Infinite dimensional control] In [20], an numerical

[Backstepping Control (Shumon)] Recently, a Neumann boundary con-
trol laws for the one-phase Stefan problem have been developed for both
the state feedback [11] and an observer-based output feedback [12]. The
designed control laws are guaranteed to satisfy the positivity condition and
stabilize the closed-loop system exponentially in the H1 norm of the reference
error. The control laws were designed using a backstepping transformation
(see, e.g. [17, 23]) which has been used for many other classes of infinite-
dimensional systems. In [13], the authors extended the results in [11, 12] by
ensuring the robustness to the parameters uncertainties and a gain restric-
tion to satisfy an input and state constraints. Owing to the advancement
of the backstepping method for PDEs, the control design for the one-phase
Stefan problem was developed under actuator’s delay in [] and material’s
flow in [].

[Paper’s contribution]
[Paper’s organization]

2 Problem Statement and Main Result

The two-phase Stefan problem describes the thermodynamic model of the
phase change phenomena such as melting or freezing (solidification) process
in a pure material. The dynamics of the process depends strongly on the
evolution in time of the moving interface (here reduced to a point) at which
phase transition from liquid to solid (or equivalently, in the reverse direction)
occurs. In this paper, we consider the one dimensional model with the
material’s length L, and the material’s domain x 2 [0, L] is separated into
two complementary time-varying sub-domains x 2 [0, s(t)] and x 2 [s(t), L]
which are occupied by the liquid phase and the solid phase, respectively,
as depicted in Fig. ??. While the results in [13] dealt with the one-phase
Stefan problem by assuming the temperature in the solid phase to be steady-
state, the two-phase Stefan problem describes both melting and solidification
process by considering the temperature dynamics of both phases. Let Tl(x, t)
and Ts(x, t) be the temperature profiles of liquid and solid, respectively, and
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Figure 5.1: Schematic of the two-phase Stefan problem. The temperature profiles of both the
liquid phase and the solid phase are dynamic.
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∂Tl

∂t
(x, t) =αl

∂2Tl

∂x2 (x, t), 0 < x < s(t), (5.1)

∂Ts

∂t
(x, t) =αs

∂2Ts

∂x2 (x, t), s(t)< x < L, (5.2)

∂Tl

∂x
(0, t) =− qc(t)

kl
,

∂Ts

∂x
(L, t) = 0, (5.3)

Tl(s(t), t) =Tm, Ts(s(t), t) = Tm (5.4)

γṡ(t) =− kl
∂Tl

∂x
(s(t), t)+ ks

∂Ts

∂x
(s(t), t), (5.5)

with the initial data Tl,0(x) := Tl(x,0), Ts,0(x) := Ts(x,0), s0 := s(0), where qc(t)> 0 is a boundary

heat input. Here, αi =
ki

ρici
, where ρi, ci, ki for i ∈{l, s} are the density, the heat capacity, the

thermal conductivity, and the heat transfer coefficient, respectively and the subscripts “l” and “s”

are associated to the liquid or solid phase, respectively. Also, γ = ρl∆H∗ where ∆H∗ denotes the

latent heat of fusion.
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5.2 Difficulties by Non-Monotonic Interface Dynamics

There are underlying assumptions to validate the model (5.1)-(5.5). First, the liquid phase

is not frozen to the solid phase from the boundary x = 0. This condition is ensured if the liquid

temperature Tl(x, t) is greater than the melting temperature Tm. Second, in a similar manner, the

solid phase is not melt to the liquid phase from the boundary x = L, which is ensured if the solid

temperature Ts(x, t) is less than the melting temperature. Third, the material is not completely

melt or frozen to single phase through the disappearance of the other phase. This condition

is guaranteed if the interface position remains inside the material’s domain. In addition, these

conditions are also required for the well-posedness (existence and uniqueness) of the solution in

this model. Taking into account of these model validity conditions, we emphasize the following

remark.

Remark 3 To keep the physical state of each phase meaningful, the following conditions must be

maintained:

Tl(x, t)≥Tm, ∀x ∈ (0,s(t)), ∀t > 0, (5.6)

Ts(x, t)≤Tm, ∀x ∈ (s(t),L), ∀t > 0, (5.7)

0 <s(t)< L, ∀t > 0. (5.8)

For model validity, we state the following assumption and lemma.

Assumption 9 0 < s0 < L, Tl,0(x) and Ts,0(x) are piecewise continuous functions, and there exist

Lipschitz constants Hl > 0 and Hs > 0 such that

Tm ≤Tl,0(x)≤ Tm +Hl(s0− x), ∀x ∈ [0,s0], (5.9)

Tm +Hs(s0− x)≤Ts,0(x)≤ Tm, ∀x ∈ [s0,L]. (5.10)
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The existence and uniqueness of the two-phase Stefan problem was proven in [25]

(Theorem 1 in p.4 and Theorem 4 in p.8) by employing the maximum principle, which is stated

in the following lemma.

Lemma 2 Under Assumption 9, and provided that qc(t) is a piecewise continuous function that

satisfies

qc(t)≥ 0, ∀t ∈ [0, t∗), (5.11)

there exists a finite time t := supt∈(0,t∗){t|s(t) ∈ (0,L)} > 0 such that a classical solution to

(5.1)–(5.5) exists, is unique, and satisfies the model validity condition (5.6)–(5.8) for all t ∈ (0, t).

Moreover, if t∗ = ∞ and it holds

0 < γs∞ +
∫ t

0
qc(s)ds < γL, (5.12)

for all t ≥ 0, where

s∞ := s0 +
kl

αlγ

∫ s0

0
(Tl,0(x)−Tm)dx+

ks

αsγ

∫ L

s0

(Ts,0(x)−Tm)dx, (5.13)

then t = ∞, namely, the well-posedness and the model validity conditions are satisfied for all

t ≥ 0.

The variable s∞ defined in (5.13) is s∞ = limt→∞ s(t) under the zero input qc(t)≡ 0 for

all t ≥ 0. For (5.12) to hold for all t ≥ 0, we at least require it to hold at t = 0, which leads to the

following assumption.

Assumption 10 The initial conditions that appear in s∞ in (5.13) satisfy

0 < s∞ < L. (5.14)
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5.3 State Feedback Control Design

As in the last chapters, the control objective is to stabilize the temperature profile and

the interface position (Tl,Ts,s) at a reference setpoint (Tm,Tm,sr). We approach this problem

by means of energy shaping control, that is originally developed for underactuated mechanical

systems such as robot manipulators [49]. The thermal internal energy of the total system in

(5.1)–(5.5) is given by

E(t) =
kl

αl

∫ s(t)

0
(Tl(x, t)−Tm)dx+

ks

αs

∫ L

s(t)
(Ts(x, t)−Tm)dx+ γs(t), (5.15)

which includes the specific heat of both liquid and solid phases and the latent heat. Taking the

time derivative of (5.15) along the solution of (5.1)–(5.5), one can obtain the energy conservation

law formulated as

d
dt

E(t) = qc(t). (5.16)

To achieve the control objective, the internal energy (5.15) must converge to the following setpoint

energy

lim
t→∞

E(t) = γsr. (5.17)

Taking the time integration of (5.16) from t = 0 to ∞, and imposing the input constraint (5.11)

required for the model validity as stated in Lemma 2, in order to achieve (5.17) we deduce that

the following restriction on the setpoint neccesary:

Assumption 11 The setpoint sr is chosen to satisfy

s∞ < sr < L. (5.18)
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ŝ
(t
)

 

 

s(t), state
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ
(t
)

 

 

s(t), state
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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sr
<latexit sha1_base64="7PfksIHXUJu6YoQeGDQd9Knb9Jc=">AAAB+3icbZDLSsNAFIZPvNZ6i3XpZrAIrkoigi6LblxWsBdoQ5hMJu3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSUK7JOGJHARYUc4E7WqmOR2kkuI44LQfTG/nfv+RSsUS8aBnKfViPBYsYgRrI/l2Ix+Vl+SShoXyc1kUvt10Wk5ZaBXcCppQVce3v0ZhQrKYCk04VmroOqn2ciw1I5wW9VGmaIrJFI/p0KDAMVVeXq4t0JlRQhQl0hyhUan+nshxrNQsDkxnjPVELXtz8T9vmOno2suZSDNNBVksijKOdILmQaCQSUo0nxnARDLzVkQmWGKiTVx1E4K7/OVV6F20XMP3l832TRVHDU7gFM7BhStowx10oAsEnuAZXuHNKqwX6936WLSuWdXMMfwp6/MHUZmVQQ==</latexit><latexit sha1_base64="7PfksIHXUJu6YoQeGDQd9Knb9Jc=">AAAB+3icbZDLSsNAFIZPvNZ6i3XpZrAIrkoigi6LblxWsBdoQ5hMJu3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSUK7JOGJHARYUc4E7WqmOR2kkuI44LQfTG/nfv+RSsUS8aBnKfViPBYsYgRrI/l2Ix+Vl+SShoXyc1kUvt10Wk5ZaBXcCppQVce3v0ZhQrKYCk04VmroOqn2ciw1I5wW9VGmaIrJFI/p0KDAMVVeXq4t0JlRQhQl0hyhUan+nshxrNQsDkxnjPVELXtz8T9vmOno2suZSDNNBVksijKOdILmQaCQSUo0nxnARDLzVkQmWGKiTVx1E4K7/OVV6F20XMP3l832TRVHDU7gFM7BhStowx10oAsEnuAZXuHNKqwX6936WLSuWdXMMfwp6/MHUZmVQQ==</latexit><latexit sha1_base64="7PfksIHXUJu6YoQeGDQd9Knb9Jc=">AAAB+3icbZDLSsNAFIZPvNZ6i3XpZrAIrkoigi6LblxWsBdoQ5hMJu3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSUK7JOGJHARYUc4E7WqmOR2kkuI44LQfTG/nfv+RSsUS8aBnKfViPBYsYgRrI/l2Ix+Vl+SShoXyc1kUvt10Wk5ZaBXcCppQVce3v0ZhQrKYCk04VmroOqn2ciw1I5wW9VGmaIrJFI/p0KDAMVVeXq4t0JlRQhQl0hyhUan+nshxrNQsDkxnjPVELXtz8T9vmOno2suZSDNNBVksijKOdILmQaCQSUo0nxnARDLzVkQmWGKiTVx1E4K7/OVV6F20XMP3l832TRVHDU7gFM7BhStowx10oAsEnuAZXuHNKqwX6936WLSuWdXMMfwp6/MHUZmVQQ==</latexit><latexit sha1_base64="7PfksIHXUJu6YoQeGDQd9Knb9Jc=">AAAB+3icbZDLSsNAFIZPvNZ6i3XpZrAIrkoigi6LblxWsBdoQ5hMJu3QySTMTMQS8ipuXCji1hdx59s4TbPQ1gMDH/9/zpyZP0g5U9pxvq219Y3Nre3aTn13b//g0D5q9FSSSUK7JOGJHARYUc4E7WqmOR2kkuI44LQfTG/nfv+RSsUS8aBnKfViPBYsYgRrI/l2Ix+Vl+SShoXyc1kUvt10Wk5ZaBXcCppQVce3v0ZhQrKYCk04VmroOqn2ciw1I5wW9VGmaIrJFI/p0KDAMVVeXq4t0JlRQhQl0hyhUan+nshxrNQsDkxnjPVELXtz8T9vmOno2suZSDNNBVksijKOdILmQaCQSUo0nxnARDLzVkQmWGKiTVx1E4K7/OVV6F20XMP3l832TRVHDU7gFM7BhStowx10oAsEnuAZXuHNKqwX6936WLSuWdXMMfwp6/MHUZmVQQ==</latexit>

Design qc (t) > 0

<latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit><latexit sha1_base64="SvCNqJldCHVS+8FegsTJP9G23YQ=">AAACE3icbVBNSwMxFMzW7/pV9eglWITqoeyKoCcR9eBRwWqhLUs2fduGZrNr8lYsy/4HL/4VLx4U8erFm//GtPagrQOBYea9TDJBIoVB1/1yClPTM7Nz8wvFxaXlldXS2vq1iVPNocZjGet6wAxIoaCGAiXUEw0sCiTcBL3TgX9zB9qIWF1hP4FWxDpKhIIztJJf2m0i3KOOsjMwoqNoTrPm8NYskIz38ls/43kFd47c3C+V3ao7BJ0k3oiUyQgXfumz2Y55GoFCLpkxDc9NsJUxjYJLyIvN1EBiQ1gHGpYqFoFpZcP0nG5bpU3DWNujkA7V3xsZi4zpR4GdjBh2zbg3EP/zGimGh61MqCRFUPwnKEwlxZgOCqJtoYGj7FvCuBb2rZR3mWYcbY1FW4I3/uVJcr1X9Sy/3C8fn4zqmCebZItUiEcOyDE5JxekRjh5IE/khbw6j86z8+a8/4wWnNHOBvkD5+Mbuomepw==</latexit>

Under qc(t
) ⌘ 0

<latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit><latexit sha1_base64="XPmSsELTALv4IPtTjuo7hbLrVPQ=">AAACF3icbVDLSsNAFJ34tr6qLt0MFqFuSiKCLotuXCpYLTQlTKa3dXAySWduiiXkL9z4K25cKOJWd/6N0zQLXwcGDufc15wwkcKg6346M7Nz8wuLS8uVldW19Y3q5taViVPNocVjGet2yAxIoaCFAiW0Ew0sCiVch7enE/96BNqIWF3iOIFuxAZK9AVnaKWg2vAR7lBHWUv1QNOcZn4xNAsl47f5MMh4Xsd9H4apGLl5UK25DbcA/Uu8ktRIifOg+uH3Yp5GoJBLZkzHcxPsZkyj4BLyip8aSOwmNoCOpYpFYLpZcUJO96zSo/1Y26eQFur3joxFxoyj0FZGDG/Mb28i/ud1UuwfdzOhkhRB8emifiopxnQSEu0JDRzl2BLGtbC3Un7DNONoo6zYELzfX/5Lrg4anuUXh7XmSRnHEtkhu6ROPHJEmuSMnJMW4eSePJJn8uI8OE/Oq/M2LZ1xyp5t8gPO+xeAhqC7</latexit>

qc(t)
<latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit><latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit><latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit><latexit sha1_base64="sdso38NrTbYMt2W54Me0IBt0Flk=">AAAB7XicbZBNS8NAEIYnftb6VfXoZbEI9VISEfRY9OKxgv2ANpTNdtOu3WTj7kQoof/BiwdFvPp/vPlv3LY5aOsLCw/vzLAzb5BIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DQq1Yw3mJJKtwNquBQxb6BAyduJ5jQKJG8Fo5tpvfXEtREqvsdxwv2IDmIRCkbRWs3HHqvgWa9UdqvuTGQZvBzKkKveK311+4qlEY+RSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdiTCNu/Gy27YScWqdPQqXti5HM3N8TGY2MGUeB7YwoDs1ibWr+V+ukGF75mYiTFHnM5h+FqSSoyPR00heaM5RjC5RpYXclbEg1ZWgDKtoQvMWTl6F5XvUs312Ua9d5HAU4hhOogAeXUINbqEMDGDzAM7zCm6OcF+fd+Zi3rjj5zBH8kfP5A+qOjq4=</latexit>
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Fig. 1. The moving interface.
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Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L
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Figure 5.2: Illustration of Assumptions 9–11 and control objective.

A graphic illustration of Assumptions 1-3 and the control objective is depicted in Fig. 5.2.

With Assumption 11, due to the energy conservation (5.16), the following control law

qc(t) =−c(E(t)−Er), (5.19)

=−c
(

kl

αl

∫ s(t)

0
(Tl(x, t)−Tm)dx+

ks

αs

∫ L

s(t)
(Ts(x, t)−Tm)dx+ γ(s(t)− sr)

)
, (5.20)

drives the internal energy E(t) to the reference energy Er. We state the following theorem.

Theorem 4 Under Assumptions 9–11, the closed-loop system consisting of the plant (5.1)–(5.5)

and the control law (5.20) where c > 0 is an arbitrary controller gain, maintains the conditions

(5.6)–(5.8), and there exists a positive constant M > 0 such that the following exponential stability

estimate holds:

Ψ(t)≤MΨ(0)e−dt (5.21)
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for all t ≥ 0, where d = 1
2 min

{
αl

2L2 ,
αs
L2 ,c

}
, in the L2-norm

Ψ(t) =
∫ s(t)

0
(Tl(x, t)−Tm)

2dx+
∫ L

s(t)
(Ts(x, t)−Tm)

2dx+(s(t)− sr)
2. (5.22)

Error variables relative to melting temperature

Let u(x, t) and v(x, t) be reference error temperature profiles of the liquid and the solid

phase, respectively, defined as

u(x, t) = Tl(x, t)−Tm, v(x, t) = Ts(x, t)−Tm. (5.23)

Then the system (5.1)–(5.5) is rewritten as

ut(x, t) =αluxx(x, t), 0 < x < s(t) (5.24)

ux(0, t) =−
qc(t)

kl
, u(s(t), t) = 0, (5.25)

vt(x, t) =αsvxx(x, t), s(t)< x < L (5.26)

vx(L, t) =0, v(s(t), t) = 0, (5.27)

ṡ(t) =−βlux(s(t), t)+βsvx(s(t), t). (5.28)

The system (5.24)–(5.28) shows the two PDEs coupling with the ODE describing the moving

boundary. The stabilization of states (u,v,s) at (0,0,sr) is aimed by designing the control law of

qc(t) in (5.25), however, the multiple PDEs are difficult to deal with as themselves in general.
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Change of variable to absorb the solid phase into the interface

To reduce the complexity of the system’s structure in (5.24)–(5.28), we introduce another

change of variable. Let X(t) be a state variable defined by

X(t) = s(t)− sr +
βs

αs

∫ L

s(t)
v(x, t)dx. (5.29)

Taking the time derivative of (5.29) and with the help of (5.26)–(5.28), we get Ẋ(t)=−βlux(s(t), t)

which eliminates v-dependency in ODE dynamics (5.28). Thus, (u,v,s)-system in (5.24)–(5.28)

can be reduced to (u,X)-system as

ut(x, t) =αluxx(x, t), 0 < x < s(t) (5.30)

ux(0, t) =−
qc(t)

kl
, u(s(t), t) = 0, (5.31)

Ẋ(t) =−βlux(s(t), t). (5.32)

Therefore, the control problem is now redescribed as designing the boundary control qc(t) in

(5.31) to stabilize the (u,X)-system in (5.30)–(5.32) at the zero states (0,0), which is equivalent

problem as in the stabilization of the one-phase Stefan problem studied in Section 2.3. The main

difference with Section 2.3 is that the monotonicity of the velocity of the moving interface, i.e.

ṡ(t) > 0, is not guaranteed in the two-phase Stefan problem due to the reversible melting and

freezing process.
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Backstepping transformation

We use the same backstepping transformation as (4.133) (4.134), namely,

w(x, t) =u(x, t)− βl

αl

∫ s(t)

x
φ(x− y)u(y, t)dy−φ(x− s(t))X(t), (5.33)

φ(x) =
1
βl
(cx− ε), (5.34)

where ε > 0 is a parameter to be determined in the stability analysis. Thus, the associated target

system is derived as

wt(x, t) =αlwxx(x, t)+
c
βl

ṡ(t)X(t), (5.35)

w(s(t), t) =
ε

βl
X(t), (5.36)

Ẋ(t) =− cX(t)−βlwx(s(t), t). (5.37)

Taking the derivative of (5.33) in x, we obtain

wx(x, t) =ux(x, t)−
ε

αl
u(x, t)− c

αl

∫ s(t)

x
u(y, t)dy− c

βl
X(t). (5.38)

For a standard backstepping procedure, the boundary condition at x = 0 of the target system leads

to the control design. If we chose wx(0, t) = 0, we obtain a stable target system in the case of

fixed domain. However, the Stefan problem imposes the heat input to maintain positive in order

to guarantee the model validity condition. The choice of wx(0, t) = 0 leads to the control design

which does not ensure the positivity. Instead, by the energy conservation law (5.15), (5.16), we

can see that the following choice of the state feedback controller ensures the positivity

qc(t) =− c
(

1
αl

∫ s(t)

0
u(y, t)dy+X(t)

)
, (5.39)
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as developed in “energy shaping control”. Hence, we design the control law with respect to X(t)

as (5.39) and obtain the boundary condition of the target system. Setting x = 0 in (5.38) and

applying (5.39), the boundary condition at x = 0 is obtained by

wx(0, t) =−
ε

αl
u(0, t), (5.40)

of which the right hand side should be rewritten with respect to (w,X) by using the same inverse

transformation as (4.139) (4.140).

wx(0, t) =−
ε

αl

[
w(0, t)− βl

αl

∫ s(t)

0
ψ(−y)w(y, t)dy−ψ(−s(t))X(t)

]
. (5.41)

Therefore, the target (w,X)-system is written as (5.35)–(5.37) and (5.41) as a closed form. Note

that this target (w,X)-system is not a standard choice due to its complicated structure through the

coupling between each state. Nevertheless, the target system is proven to satisfy the exponential

stability estimate in L2 norm with the help of the properties derived in the next section.

5.4 Analysis of the Closed-Loop System

Guaranteeing the conditions of the model validity

Analogously to the problems so far, we prove the positivity of input. Taking the time

derivative of the control law (5.39) along the solution of the system yields

q̇c(t) =−cqc(t). (5.42)
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Hence, the state feedback control law achieves the same solution as the exponentially decaying

function in time, described by

qc(t) = qc(0)e−ct . (5.43)

Since Assumption 11 is equivalent with qc(0)> 0, (5.43) ensures

qc(t)>0, ∀t > 0, (5.44)

Applying Lemma 2 directly leads to

u(x, t)>0, ux(s(t), t)< 0, (5.45)

v(x, t)<0, vx(s(t), t)< 0, (5.46)

0 < s(t)<L. (5.47)

Stability analysis for the liquid phase with modified interface

We show the stability of (w,X)-system given in (5.35)–(5.37) and (5.41) by using the

same approach as the one in Section 4.3 for d(t) = 0. Namely, by considering the Lyapunov

function

V (t) =
1

2αl
||w||2 + ε

2β2
l

X(t)2, (5.48)
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where the L2 norm is denoted as ||w|| :=
√∫ s(t)

0 w(x, t)2dx, we can derive that for sufficiently

small ε the time derivative satisfies the following inequality:

V̇ ≤− 1
8L2 ||w||

2− cε

4β2
l

X(t)2

+
|ṡ(t)|
2αl

((
ε

βl
X(t)

)2

+2
c
βl

∣∣∣∣
∫ s(t)

0
w(x, t)dxX(t)

∣∣∣∣

)
. (5.49)

Since ux(s(t), t) < 0 and vx(s(t), t) < 0 by (5.45) and (5.46), we have |ṡ(t)| ≤ −βlux(s(t), t)−

βsvx(s(t), t). Let us introduce

z(t) := X(t)+
βs

αs

∫ L

s(t)
v(x, t)dx < 0, (5.50)

where the negativity follows from (5.46) and (5.47). Taking the time derivative of (5.50) yields

ż(t) =−βlux(s(t), t)−βsvx(s(t), t)> 0, (5.51)

where the positivity follows from (5.45) and (5.46). Applying this inequality and Young’s and

Cauchy Schwarz inequalities to the last term of (5.49), we arrive at

V̇ ≤− 1
8L2 ||w||

2− cε

4β2
l

X(t)2 +
ż(t)
2αl

(
c2L
ε2 ||w||

2 +2
ε2

β2
l

X(t)2
)

≤−bV +aż(t)V, (5.52)

where b = min
{

αl
4L2 ,

c
2

}
, a = 1

2αl
max

{
2αlc2L

ε2 ,4ε

}
. Consider the following functional

W =Ve−az(t). (5.53)
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Taking the time derivative of (5.53) and applying (5.52), one can deduce the following differential

inequality:

Ẇ =
(
V̇ −aż(t)V

)
e−az(t) ≤−bW. (5.54)

Hence, W (t)≤W0e−bt is satisfied, which leads to

V (t)≤ ea(z(t)−z(0))V0e−bt ≤ δV0e−bt , (5.55)

where δ is defined as a constant which bounds δ > e−az(0), of which the existence is ensured by

Assumptions 9-11. Hence, (w,X)-system is shown to be exponentially stable.

Consider the Lyapunov function

V1 = ||u||2 =
∫ s(t)

0
u(x, t)2dx. (5.56)

Due to the invertibility of the transformations, there exist positive constants M > 0, M̄ > 0 such

that the following norm equivalence between (u,X)-system and (w,X)-system holds:

M
(
V1(t)+X(t)2)≤V (t)≤ M̄

(
V1(t)+X(t)2) . (5.57)

Hence, by (5.55), the following exponential stability estimate of the (u,X)-system is shown:

V1(t)+X(t)2 ≤M̄
M

δ(V1(0)+X(0))e−bt . (5.58)
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Stability analysis for the solid phase

Let V2 be the L2-norm of the reference error of the solid temperature v defined by

V2(t) = ||v||2 =
∫ L

s(t)
v(x, t)2dx. (5.59)

Taking the time derivative of (5.59) along the solution of (5.26)–(5.27), and applying Poincare’s

inequality with the help of 0 < s(t)< L, we obtain

V̇2 =−αs

∫ L

s(t)
vx(x, t)2dx,

≤− αs

2(L− s(t))2V2 <−
αs

2L2V2. (5.60)

By comparison principle, the differential inequality (5.60) yields the following exponential decay

of the norm

V2(t)≤V2(0)e
− αs

2L2 t
. (5.61)

Stability of overall liquid-interface-solid system

Applying Young’s and Cauchy Schwartz inequalities to the definition of X given in (5.29)

with the help of 0 < s(t)< L yields the following norm estimate

X(t)2 ≤2Y (t)+
2Lβ2

s
α2

s
V2, (5.62)

where we defined Y (t) = |s(t)− sr|2. On the other hand, the bound of Y (t) with respect to X(t)2

and V2 are also obtained the similar manner to (5.62), which yields

Y (t)≤ 2X(t)2 +
2Lβ2

s
α2

s
V2. (5.63)
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Finally, summing the norms of the liquid temperature, the interface position, and the solid

temperature, respectively, and applying (5.63), (5.55), (5.61), and (5.62), we can see that there

exists a positive constant M such that the following estimate of the norm holds:

V1(t)+Y (t)+V2(t)

≤M (V1(0)+Y (0)+V2(0))e−min
{

b, αs
2L2

}
t
, (5.64)

which completes the proof of Theorem 4.

5.5 Robustness to Uncertainties of Physical Parameters

The control design (5.20) requires the physical parameters of both the liquid and solid

phases, however, in practice these parameters are uncertain. Guaranteeing the robustness of the

stability of the closed-loop system with respect to such parametric uncertainties is significant.

Suppose that the proposed control law is replaced by

qc(t) =−c
(

kl

αl
(1+ εl)

∫ s(t)

0
(Tl(x, t)−Tm)dx

+
ks

αs
(1+ εs)

∫ L

s(t)
(Ts(x, t)−Tm)dx+ γ(1+ εf)(s(t)− sr)

)
, (5.65)

where εl, εs, and εf are the uncertainties of physical parameters satisfying εl >−1, εs ≥−1, and

εf ≥−1. We state the following theorem.

Theorem 5 Under Assumptions 9, 10, and assuming that the setpoint is chosen to satisfy qc(0)>

0 with (5.65) and sr < L, consider the closed-loop system consisting of the plant (5.1)–(5.5) and

the control law (5.65). Then, for any perturbations (εl,εs,εf) satisfying

εl ≥ εf ≥ εs, (5.66)
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there exists R > 0 such that if

∣∣∣∣
εf− εl

1+ εl

∣∣∣∣< R, (5.67)

then the closed-loop system maintains model validity (5.6)-(5.8) and the exponential stability at

the origin holds for the norm defined in (5.22).

Theorem 5 implies that if we know lower and upper bounds of the physical parameters as

kl ≤ kl ≤ kl, αl ≤ αl ≤ αl, and γ≤ γ≤ γ, then the most conservative choice of the control law to

satisfy the condition (5.66) is given by

qc(t) =−c
(

kl

αl

∫ s(t)

0
(Tl(x, t)−Tm)dx+ γ(s(t)− sr)

)
, (5.68)

which does not incorporate the solid phase temperature. This design requires less information

than the exact feedback design (5.20), however, the conditions qc(0)> 0 and sr < L, which lead

to

s0 +
kl

αlγ

∫ s0

0
(Tl,0(x)−Tm)dx < sr < L, (5.69)

are more restrictive than Assumption 11 for the unperturbed design (5.20), which causes a tradeoff

between the parameters’ uncertainty and the restriction of the setpoint.

The proof of Theorem 5 is established by following similar steps.

Closed-loop analysis

First, we derive an analogous result on the properties of the closed-loop system to those

derived in Section 5.4 by employing contradiction approach twice. Assume that there exists a
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finite time t∗ > 0 such that

qc(t)> 0, ∀t ∈ [0, t∗), (5.70)

qc(t∗) = 0. (5.71)

Then, by Lemma 2, for t ∈ (0, t̄) where t̄ := supt∈(0,t∗){t|s(t) ∈ (0,L)}, the solution exists and

unique with satisfying (5.6)–(5.8). If t̄ < t∗, then it implies s(t̄) = 0 or s(t̄) = L hold. However,

under Assumption 10 and qc(t)> 0 for all t ∈ [0, t∗), it holds that

s(t)> s∞ > 0, ∀t ∈ (0, t∗), (5.72)

and hence s(t̄) 6= 0. Moreover, applying qc(t) > 0 and (5.6) and (5.7) for all t ∈ (0, t̄) to the

feedback design (5.65), one can see that s(t̄) 6= L. Hence, t̄ = t∗. Taking the time derivative of the

control law (5.65), we get the following differential equation:

q̇c(t) =− c(1+ εl)qc(t)− (εl− εf)ckl
∂Tl

∂x
(s(t), t)

+(εs− εf)cks
∂Ts

∂x
(s(t), t), (5.73)

≥− c(1+ εl)qc(t), ∀t ∈ (0, t∗), (5.74)

where the inequality from (5.73) to (5.74) follows from (5.66) and Hopf’s lemma with the help

of (5.6) and (5.7) for all t ∈ (0, t∗). Therefore, applying comparison principle to (5.74), one can

show that

qc(t)> qc(0)e−ct , ∀t ∈ (0, t∗), (5.75)
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which leads to the contradiction with the imposed assumption (5.71). Thus, there does not exist

such t∗, from which we conclude

qc(t)≥ 0, ∀t ≥ 0, (5.76)

and the well-posedness and the conditions (5.6)–(5.8) holds for all t ≥ 0.

Next, we prove the stability of the perturbed closed-loop in the similar manner as the

proof of Theorem 4. Let c̄ = c(1+ εl), and redefine the gain kernel function as φ = 1
βl
(c̄x− ε)

associated with the backstepping transformation (5.33). Then, the target systems is described as

wt(x, t) =αlwxx(x, t)+
c̄
βl

ṡ(t)X(t), (5.77)

w(s(t), t) =
ε

βl
X(t), (5.78)

Ẋ(t) =− c̄X(t)−βlwx(s(t), t), (5.79)

and the boundary condition at x = 0 is given by

wx(0, t) =−
ε

αl
u(0, t)+d(t), (5.80)

where d(t) is the perturbation caused by the parametric uncertainties, given by

d(t) =
εs− εf

1+ εl

c̄ks

klαs

∫ L

s(t)
v(x, t)dx+

εf− εl

1+ εl

c̄
kl

X(t). (5.81)

We consider the Lyapunov function defined by (5.48). The time derivative of V (t) = 1
2αl
||w||2 +
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ε

2β2
l
X(t)2 along the perturbed target system (5.77)–(5.80) satisfies the following inequality

V̇ ≤−
(

1− 2εL
αl

(
3+

32c̄L2

αl

))
||wx||2

− ε

β2
l

(
c̄
2
− ε2

αl

(
3+

32c̄L2

αl

))
X(t)2−w(0, t)d(t),

+
ṡ(t)
2αl

((
ε

βl
X(t)

)2

+2
c̄
βl

∫ s(t)

0
w(x, t)dxX(t)

)
. (5.82)

Applying Young’s and Agmon’s inequalities, the perturbation is bounded by

−w(0, t)d(t)≤ 1
8L

w(0, t)2 +2Ld(t)2,

≤ 1
4L

w(s(t), t)2 +
1
2
||wx||2 +2Ld(t)2,

≤ ε2

4L
X(t)2 +

1
2
||wx||2 +2Ld(t)2. (5.83)

Moreover, applying Young’s and Cauchy Schwarz inequalities to the square of (5.81), we get

d(t)2 =2
(

εs− εf

1+ εl

c̄ks

klαs

)2

L
∫ L

s(t)
v(x, t)2dx+2

(
εf− εl

1+ εl

c̄
kl

)2

X(t)2. (5.84)

Applying (5.83) and (5.84) to (5.82), we can see that there exists sufficiently small ε > 0 such

that the following inequality holds

V̇ ≤− 1
16L2 ||w||

2− c̄

(
ε

4β2
l
− 4Lc̄

k2
l

∣∣∣∣
εf− εl

1+ εl

∣∣∣∣
2
)

X(t)2

+4L2
(

εs− εf

1+ εl

c̄ks

klαs

)2∫ L

s(t)
v(x, t)2dx

+
ṡ(t)
2αl

((
ε

βl
X(t)

)2

+2
c
βl

∫ s(t)

0
w(x, t)dxX(t)

)
. (5.85)

187



Therefore, if

∣∣∣∣
εf− εl

1+ εl

∣∣∣∣
2

<
εk2

l

32β2
l Lc̄

, (5.86)

then the differential inequality (5.85) is led to

V̇ ≤− 1
16L2 ||w||

2− εc̄
8β2

l
X(t)2 +4L2

(
εs− εf

1+ εl

c̄ks

klαs

)2∫ L

s(t)
v(x, t)2dx

+
ṡ(t)
2αl

((
ε

βl
X(t)

)2

+2
c
βl

∫ s(t)

0
w(x, t)dxX(t)

)
. (5.87)

Since v-system is equivalent to the one in previous sections, the time derivative of V2 = ||v||2

satisfies the inequality (5.60), which is

V̇2 ≤−
αs

2L2V2. (5.88)

Combining (5.60) and (5.87) with applying comparison principle, one can derive that there exist

positive constants M1 > 0 and d1 > 0 such that the following decay of the norm holds

V (t)+V2(t)≤M1(V (0)+V2(0))e−d1t . (5.89)

Using the procedure in the last section, we conclude Theorem 5.

5.6 Numerical Simulation

Simulation results are performed by considering a zinc whose physical parameters are

given in Table 1. Under the identical choice of the physical parameters in the plant and control,

we compare the performance of the proposed design in (5.20) (hereafter “two-phase design”) and
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Table 5.1: Physical properties of zinc of both the liquid phase and the solid phase.

Description Symbol Value
Liquid density ρl 6570 kg ·m−3

Solid density ρs 6890 kg ·m−3

Liquid heat capacity cl 390 J ·kg−1 ·K−1

Solid heat capacity cs 390 J ·kg−1 ·K−1

Liquid thermal conductivity kl 130 W ·m−1

Solid thermal conductivity ks 100 W ·m−1

Melting temperature Tm 420 ◦C
Latent heat of fusion ∆H∗ 120,000 J ·kg−1

the design

qc(t) =−c
(

kl

αl

∫ s(t)

0
(Tl(x, t)−Tm)dx+ γ(s(t)− sr)

)
, (5.90)

(hereafter “one-phase design”). The stability under the “one-phase design” is guaranteed by

Theorem 5 for the robustness analysis of the closed-loop system under the restriction of the

setpoint to satisfy qc(0)≥ 0 for (5.90).

The material’s length, the initial interface position, and the setpoint position are chosen

as L = 1.0 m, s0 = 0.4 m, and sr = 0.5 m. The initial temperature profiles are set as Tl,0(x) =

T̄l,0(1− x/s0)+Tm and Ts,0(x) = T̄s,0(1− (L− x)/(L− s0))+Tm with T̄l,0 = 10 ◦C and T̄s,0 =

–200 ◦C. Then, the setpoint restrictions for both “two-phase design” and “one-phase design” are

satisfied. The control gain is set as c = 1.0 × 10−2/s.

The closed-loop responses are implemented as depicted in Fig 5.3a-5.3c for both “two-

phase design” (solid) and “one-phase design” (dash). Fig 5.3a shows the dynamics of the interface

s(t). We can observe that s(t) decreases at first due to the freezing caused by the initial temperature

of the solid phase, and after some time the interface position increases and converges to the

setpoint owing to the melting heat input. Moreover, the interface dynamics under the “two-phase

design” achieves faster convergence than that under the “one-phase design” with having a little
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(a) Convergence of the interface to the setpoint sr is observed for both controls, however, the proposed
two-phase design achieves faster convergence as seen in the settling time in Fig. 5.4.
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(b) Positivity of the heat input is satisfied for both control designs.
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(c) The boundary temperature maintains above the melting temperature, and hence there is no appearance
of a new solid phase from the controlled boundary x = 0 in the liquid phase.

Figure 5.3: The closed-loop responses under the proposed “two-phase” design (pink solid) and
the “one-phase” design (pink dash).

overshoot as seen from Fig. 5.3a. Fig 5.3b shows the dynamics of the closed-loop control, and

Fig 5.3c shows the dynamics of the boundary temperature of the liquid phase Tl(0, t). Fig 5.3b
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Figure 5.4: Settling time of the interface convergence in Fig. 5.3 (a) with respect to the error ε.

illustrates the positivity of the heat input qc(t)> 0, and Fig. 5.3c illustrates the liquid boundary

temperature being greater than the melting temperature, both of which are consistent with the

derived properties. Hence, we can observe that the simulation results are consistent with the

theoretical result we prove as model validity conditions and the stability analysis.

To compare the performance on the convergence speed between “two-phase design” and

“one-phase design,” we investigate the settling time τε with respect to the error ε [%] of the

interface position relative to the setpoint, mathematically defined by

τε := inf
τ≥0

{
τ

∣∣∣∣|s(t)− sr| ≤ |s0− sr|
ε

100
, ∀t ≥ τ

}
. (5.91)

Fig. 5.4 shows the value of τε with ε = 10, 5, 2, 1 [%]. From the figure, it is observed that the

convergence speed of “two-phase design” compared to the speed of the “one-phase design” is

approximately four times faster for ε = 10[%], two times faster for ε = 5 [%], one and half times

faster for both ε = 2 [%] and 1 [%], respectively. Hence, Fig. 5.4 validates superior performance

of the proposed “two-phase design” compared to the “one-phase design”.
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5.7 Conclusion and Future Work

In this chapter, we presented the full state feedback control law of a single heat boundary

input for the two-phase Stefan problem to stabilize the moving interface position at a desired

setpoint. The main contribution is that we theoretically prove the global exponential stability of

the closed-loop system of the two-phase Stefan problem with designing the state feedback control

law by employing energy shaping and backstepping. While our present result is only on the

stabilization of the moving interface at the setpoint with restricting the equillibrium temperature

to only the uniform melting temperature, the simultaneous stabilization of the interface position

and the temperature profile at arbitrary setpoint and temperature profiles following recent results

in [177] for traffic congestion control with moving shockwave is considered as our future work.

The application of extremum seeking control for online optimization of static maps to the Stefan

problem following the recent results of [119, 51] is also a potential direction.
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Chapter 6

Sea Ice

6.1 Importance of the Arctic Sea Ice for Global Climate Model

The Arctic sea ice has been studied intensively in the field of climate and geoscience. One

of the main reasons is due to ice-albedo feedback which influences climate dynamics through the

high reflectivity of sea ice. The other reason is the rapid decline of the Arctic sea ice extent in

the recent decade shown in several observations. These observations motivate the investigation

of future sea ice amount. Several studies have developed a computational model of the Arctic

sea ice and performed numerical simulations of the model with initial sea ice temperature profile.

However, the spatially distributed temperature in sea ice is difficult to recover in realtime using a

limited number of thermal sensors. Hence, the online estimation of the sea ice temperature profile

based on some available measurements is crucial for the prediction of the sea ice thickness.

A thermodynamic model for the Arctic sea ice was firstly developed in [112] (hereafter

MU71), in which the authors investigated the correspondence between the annual cycle pattern

acquired from the simulation and empirical data of [159]. The model involves a temperature

diffusion equation evolving on a spatial domain defined as the sea ice thickness. Due to melting

or freezing phenomena, the aforementioned spatial domain is time-varying. Such a model is
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called “Stefan problem” [60] which is described by a parabolic partial differential equation (PDE)

with a state-dependent moving boundary driven by a Neumann boundary value.

Refined models of MU71 have been suggested in literature. For instance, [138] proposed

a numerical model to achieve faster and accurate computation of MU71 by discretizing the

temperature profile into some layers and neglecting the salinity effect. An energy-conserving

model of MU71 was introduced in [15] by taking into account an internal brine pocket melting

on surface ablation and the vertically varying salinity profile. Their thermodynamic model was

demonstrated by [14] using a global climate model with a Lagrangian ice thickness distribution.

Combining these two models, [173] developed an energy-conserving three-layer model of sea ice

by treating the upper half of the ice as a variable heat capacity layer.

Remote sensing techniques have been employed to obtain the Arctic sea ice data in several

studies. In [61], the authors suggested an algorithm to calculate sea ice surface temperature using

the satellite measured brightness temperatures, which provided an excellent measurement of

the actual surface temperature of the sea ice during the Arctic cold period. The Arctic sea ice

thickness data were acquired in [105] through a satellite called ”ICESat” during 2003-2008 and

compared with the data in [133] observed by a submarine during 1958-2000. More recent data

describing the evolution of the sea ice thickness have been collected between 2010 and 2014 from

the satellite called ”CryoSat-2” [104].

On the other hand, state estimation has been studied as a specific type of data assimilation

which utilizes the numerical model along with the measured value. For finite dimensional

systems associated with noisy measurements, a well-known approach is Kalman Filter. Another

well-known method is the Luenberger type state observer, which reconstructs the state variable

from partially measured variables. For the application to sea ice, [52] developed an adjoint-

based method as an iterative state and parameter estimation for the coupled sea ice-ocean in

the Labrador Sea and Baffin Bay to minimize an uncertainty-weighted model-data misfit in a

least-square sense as suggested in [175], using Massachusetts Institute of Technology general
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ŝ
(t
)

 

 

s(t), state
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Let T s(x, t), T i(x, t), be temperature profile of snow and sea-ice, and h(t)
and H(t) be the thickness of them. Then, we have following relations
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where qc(t) < 0 is a freezing controller, and q⇤ > 0 is a external melting
heat flux. The heat capacity and thermal conductivity of the sea-ice are
described as
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ŝ
(t
)

 

 

s(t), state
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Figure 6.1: Schematic of the vertical one-dimensional model of the Arctic sea ice.

circulation model (MITgcm) developed in [111]. In [53], the same methodology was applied to

reconstruct the global ocean and ice concentration. Their sea ice model is based on the zero-layer

approximation of the numerical model in [138], which is a crude model lacking internal heat

storage and promoting fast melting.

6.2 Thermodynamic Model of Arctic Sea Ice

The thermodynamic model of MU71 describes the time evolution of the sea ice tem-

perature profile in the vertical axis along with its thickness, which also evolves in time due to

accumulation or ablation caused by energy balance.

Fig. 6.1 provides a schematic of the Arctic sea ice model. During the seasons other than

summer (July and August), the sea ice is covered by snow, and the surface position of the snow

also evolves in time. Let Ts(x, t), Ti(x, t) denote the temperature profile of snow and sea ice, and

h(t) and H(t) denote the thickness of snow and sea ice. The total incoming heat flux from the
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atmosphere is denoted by Fa, and the heat flux from the ocean is denoted by Fw. The Arctic sea

ice model suggested by MU71 gives governing equations of a Stefan-type free boundary problem

formulated as

Fa− I0−σ(Ts(−h(t), t)+273)4 + ks
∂Ts

∂x
(−h(t), t)

=





0, if Ts(−h(t), t)< Tm1,

−qḣ(t), if Ts(−h(t), t) = Tm1,
(6.1)

ρsc0
∂Ts

∂t
(x, t) =ks

∂2Ts

∂x2 (x, t),∀x ∈ (−h(t),0), (6.2)

Ts(0, t) =Ti(0, t), (6.3)

ks
∂Ts

∂x
(0, t) =k0

∂Ti

∂x
(0, t), (6.4)

ρci(Ti,S)
∂Ti

∂t
(x, t) =ki(Ti,S)

∂2Ti

∂x2 (x, t)+ I0κie−κix, ∀x ∈ (0,H(t)), (6.5)

Ti(H(t), t) =Tm2, (6.6)

qḢ(t) =ki
∂Ti

∂x
(H(t), t)−Fw, (6.7)

where I0, σ, ks, ρs, c0, k0, ρ, Tm1, Tm2, and q are solar radiation penetrating the ice, Stefan-

Boltzmann constant, thermal conductivity of snow, density of snow, heat capacity of pure ice,

thermal conductivity of pure ice, density of pure ice, melting point of surface snow, melting point

of bottom sea ice, and latent heat of fusion, respectively. The total heat flux from the air is given

by

Fa = (1−α)Fr +FL +Fs +Fl, (6.8)

where Fr, FL, Fs, Fl, and α denote the incoming solar short-wave radiation, the long-wave radiation

from the atmosphere and clouds, the flux of sensible heat, the latent heat in the adjacent air, and

the surface albedo, respectively. The heat capacity and thermal conductivity of the sea ice are
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affected by the salinity as

ci(Ti,S(x)) = c0 +
γ1S(x)

Ti(x, t)2 , ki(Ti,S(x)) = k0 +
γ2S(x)
Ti(x, t)

, (6.9)

where S(x) denotes the salinity in the sea ice. γ1 and γ2 represent the weight parameters. The

thermodynamic model (6.1)-(6.7) allows us to predict the future thickness (h(t),H(t)) and the

temperature profile (Ts,Ti) given the accurate initial data. However, from a practical point of

view, it is not feasible to obtain a complete temperature profile due to a limited number of thermal

sensors. To deal with the problem, the estimation algorithm is designed so that the state estimation

converges to the actual state starting from an initial estimate.

6.3 Annual Cycle Simulation of Sea Ice Thickness

For the computation, we use boundary immobilization method and finite difference semi-

discretization [102] with 100-point mesh in space, and the resulting approximated ODEs are

calculated by using MATLAB ode15 solver.

Input Parameters

The input parameters are taken from [112] in SI units and Table 6.1 shows the monthly

averaged values of heat fluxes coming from the atmosphere for each month. Table 6.2 shows the

physical parameters of snow and sea ice. Following [15], the salinity profile is described by

S(x) = A

[
1− cos

{
π

(
x

H(t)

) n
m+ x

H(t)

}]
, (6.10)

where A = 1.6, n = 0.407, and m = 0.573.
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Table 6.1: Average monthly values for the energy fluxes.

Symbol Fr FL Fs Fl α

Unit W/m2 W/m2 W/m2 W/m2

Jan. 0 168 19.0 0 · · ·
Feb. 0 166 12.3 -0.323 · · ·
Mar. 30.7 166 11.6 -0.484 0.83
Apr. 160 187 4.68 -1.45 0.81
May. 286 244 -7.26 -7.43 0.82
Jun. 310 291 -6.30 -11.3 0.78
Jul. 220 308 -4.84 -10.3 0.64
Aug. 145 302 -6.46 -10.7 0.69
Sep. 59.7 266 -2.74 -6.30 0.84
Oct. 6.46 224 1.61 -3.07 0.85
Nov. 0 181 9.04 -0.161 · · ·
Dec. 0 176 12.8 -0.161 · · ·
Table 6.2: Physical parameters of snow and sea ice.

Symbol Meaning Unit Value
ρs density (snow) kg/m3 330
ks conductivity (snow) W/m/◦C 0.31
ρ density (ice) kg/m3 917
c0 heat capacity (ice) J/kg/◦C 2110
k0 conductivity (ice) W/m/◦C 2.034
γ1 weight of heat capacity kJ ◦C/kg 18.0
γ2 weight of conductivity W/m 0.117
I0 solar radiation W/m2 1.59
κi penetration rate /m 1.5

Tm1 melting temperature of sea ice at surface ◦C -0.1
Tm2 melting temperature of sea ice at bottom ◦C -1.8

Simulation Test of MU71

Using the given data, firstly the simulation of (6.1)-(6.7) is performed and showed in

Fig. 6.2 to recover the evolution of h(t) and H(t) in the annual season as in [112]. The dynamic

behavior of the snow surface and the bottom of sea ice are shown in Fig. 6.2 (a), and the time

evolution of the temperature profile in sea ice is illustrated in Fig. 6.2 (b). We can see that both of

Fig. 6.2 (a) and (b) have a good agreement with the simulation results shown in [112].
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Figure 6.2: Simulation tests of the plant (6.1)–(6.7) on annual cycle. Both (a) and (b) are in
good agreement with the simulation results in [112].

6.4 Temperature Profile Estimation

In this section, we derive the estimation algorithm utilizing some available measurements

and show the exponential convergence of the designed estimation to a simplified sea ice model.
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The ice thickness and surface temperature are measured in several studies [61, 105, 133]. It is

indeed typical to check observability before observer design, at least for systems on a constant

domain (see [118] for instance). Here, we start with the observer design that is accompanied by a

proof of exponential stability, which ensures the states’ detectability.

Simplification of the Model

For the sake of the design and stability proof, we give a simplification on the system (6.1)-

(6.7). The effect of the salinity profile on the physical parameters is assumed to be sufficiently

small so that it can be negligible, i.e. S(x) = 0. Therefore, the heat equation of the sea ice

temperature (6.5) is rewritten as

∂Ti

∂t
(x, t) =Di

∂2Ti

∂x2 (x, t)+ Ī0κie−κix, ∀x ∈ (0,H(t)), (6.11)

where the diffusion coefficient is defined as Di = k0/ρc0. Next, we impose the following

assumptions.

Assumption 12 The thickness H(t) is positive and upper bounded, i.e. there exists H̄ > 0 such

that 0 < H(t)< H̄, for all t ≥ 0.

Assumption 13 Ḣ(t) is bounded, i.e., there exists M > 0 such that |Ḣ(t)|< M , for all t ≥ 0.

According to [105], the observation data of the sea ice’s thickness from the 1950s to

2008 show that the maximum value including the uncertainty is less than 5[m]. Moreover,

the largest variation of the thickness in a snow-covered season of a year essentially happens

from December to March as an accumulation, and most of the literature shows at most 20

[cm] accumulation per month. Hence, conservatively it is plausible to set H̄ = 10 [m], and

M = 50[cm/Month] = 1.9×10−7[m/s].
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Mathematically, the existence of the classical solution of the simple Stefan problem given

by (6.11) and (6.6)–(6.7) has been established in literature. We refer the readers to follow [60]

for the detailed explanation. The solution of the original sea ice model (6.1)–(6.7) has not been

studied due to its high complexity.

Observer Structure

Suppose that the sea ice thickness and the ice surface temperature are obtained as mea-

surements Y1(t) and Y2(t), i.e.

Y1(t) =H(t), Y2(t) = Ti(0, t). (6.12)

The state estimate T̂i of the sea ice temperature is governed by a copy of the plant (6.11) and

(6.6)-(6.7) plus the error injection of H(t), namely, as follows:

∂T̂i

∂t
(x, t) =Di

∂2T̂i

∂x2 (x, t)+ Ī0κie−κix− p1(x, t)
(
Y1(t)− Ĥ(t)

)
, ∀x ∈ (0,H(t)) (6.13)

T̂i(0, t) =Y2(t)− p2(t)
(
Y1(t)− Ĥ(t)

)
, (6.14)

T̂i(H(t), t) =Tm2− p3(t)
(
Y1(t)− Ĥ(t)

)
, (6.15)

˙̂H(t) = p4(t)
(
Y1(t)− Ĥ(t)

)
+β

∂T̂i

∂x
(Y1(t), t)−

Fw

q
, (6.16)

where β := ki
q . Next, we define the estimation error states as

T̃ (x, t) :=−(Ti(x, t)− T̂i(x, t)), H̃(t) := H(t)− Ĥ(t), (6.17)

where the negative sign is added to be consistent with the description developed in Chapter 3 for

the liquid phase. Subtraction of the observer system (6.13)-(6.16) from the system (6.11) and
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(6.6)-(6.7) yields the estimation error system as

∂T̃
∂t

(x, t) = Di
∂2T̃
∂x2 (x, t)− p1(x, t)H̃(t), ∀x ∈ (0,H(t)) (6.18)

T̃ (0, t) =− p2(t)H̃(t), (6.19)

T̃ (H(t), t) =− p3(t)H̃(t), (6.20)

˙̃H(t) =− p4(t)H̃(t)−β
∂T̃
∂x

(H(t), t). (6.21)

Our goal is to design the observer gains p1(x, t), p2(t), p3(t), p4(t) so that the temperature error

T̃ converges to zero. The main theorem of this paper is stated as follows.

Theorem 12 Let Assumptions 12 and 13 hold. Consider the estimation error system (6.18)-(6.21)

with the design of the observer gains

p1(x, t) =
cλx
β

I1 (z)
z

+

(
εH(t)

Di
− 3

β

)
λ

2x
I2 (z)

z2 +
λ3x3

Diβ

I3 (z)
z3 , (6.22)

p2(t) =0, (6.23)

p3(t) =−
λ

2β
H(t)− ε, (6.24)

p4(t) =c− λ

2

(
1− λH(t)2

8Di

)
+

βλ

2Di
εH(t), (6.25)

where λ > 0, c > 0, and ε > 0 are positive free parameters, z is defined by

z :=
√

λ̄(H(t)2− x2), (6.26)

where λ̄ := λ

Di
, and I j(·) denotes the modified Bessel function of the j-th kind. Then, there exist

positive constants c∗ > 0 and M̃ > 0 such that, for all c > c∗, the norm

Φ(t) :=
∫ H(t)

0
T̃ (x, t)2dx+ H̃(t)2 (6.27)
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satisfies the following exponential decay

Φ(t)≤ M̃Φ(0)e−min{λ,c}t , (6.28)

namely, the origin of the estimation error system is exponentially stable in the spatial L2 norm.

Remark 4 The observer gains (6.22)-(6.25) include the thickness H(t), so the gains are not

precomputed offline, but are easily calculated online, along with the state estimation. Owing to

the slow dynamics of the sea ice model, the computation time is much less than the time step size,

which enables the real-time computation of the proposed observer.

Remark 5 The measurements (6.12) are assumed to be noiseless; however, in practice, the

measured data accompany with some noise. Preferably the observer needs pre-filtering to deal

with the noisy measurements.

To handle the discrete-time measurements in practice as in [129], the designed observer

should be discretized in time such as Euler or Runge-Kutta methods so that the estimation can be

computed at every sampling of the discrete-time measurements. The free parameters λ, c, and ε

have their physical units [1/s], [1/s], and [◦C/m], respectively. Hence we can see the consistency

of the physical units in the estimation error system (6.18)–(6.21) together with (6.22)–(6.25).

Gain Derivation via State Transformation

For the estimation error system (6.18)–(6.21), we apply the following invertible transfor-

mations:

T̃ (x, t) =w(x, t)−
∫ H(t)

x
q(x,y)w(y, t)dy−ψ(x,H(t))H̃(t), (6.29)

w(x, t) =T̃ (x, t)−
∫ H(t)

x
r(x,y)T̃ (y, t)dy−φ(x,H(t))H̃(t), (6.30)
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which map the estimation error system (6.18)-(6.21) into the following target system:

wt(x, t) =Diwxx(x, t)−λw(x, t)− Ḣ(t) f (x,H(t))H̃(t), ∀x ∈ (0,H(t)) (6.31)

w(0, t) =0, (6.32)

w(H(t), t) =εH̃(t), (6.33)

˙̃H(t) =− cH̃(t)−βwx(H(t), t), (6.34)

where f (x,H(t)) is to be determined. Taking the first and second spatial derivatives of the

transformation (6.29), we get

T̃x(x, t) =wx(x, t)+q(x,x)w(x, t)

−
∫ H(t)

x
qx(x,y)w(y, t)dy−ψx(x,H(t))H̃(t), (6.35)

T̃xx(x, t) =wxx(x, t)+q(x,x)wx(x, t)+
(

qx(x,x)+
d
dx

q(x,x)
)

w(x, t)

−
∫ H(t)

x
qxx(x,y)w(y, t)dy−ψxx(x,H(t))H̃(t). (6.36)

Next, taking the time derivative of (6.29) along the solution of the target system (6.31)–(6.34),

using integration by parts, and substituting the boundary condition (6.33), we get

T̃t(x, t) =Diwxx(x, t)+Diq(x,x)wx(x, t)− (λ+Diqy(x,x))w(x, t)

+(βψ(x,H(t))−Diq(x,H(t)))wx(H(t), t)

+(Diεqy(x,H(t))+ cψ(x,H(t)))H̃(t)

+
∫ H(t)

x
(λq(x,y)−Diqyy(x,y))w(y, t)dy

− Ḣ(t)H̃(t)(εq(x,H(t))+ψH(x,H(t))

+ f (x,H(t))−
∫ H(t)

x
q(x,y) f (y,H(t))dy

)
. (6.37)
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Thus, by (6.36) and (6.37), we have

T̃t(x, t)−DiT̃xx(x, t)+ p1(x, t)H̃(t)

=−
(

λ+2Di
d
dx

q(x,x)
)

w(x, t)

+(βψ(x,H(t))−Diq(x,H(t)))wx(H(t), t)

+(Diεqy(x,H(t))+Diψxx(x,H(t))+ cψ(x,H(t))+ p1(x, t)) H̃(t)

+
∫ H(t)

x
(λq(x,y)+Diqxx(x,y)−Diqyy(x,y))w(y, t)dy

− Ḣ(t)H̃(t)(εq(x,H(t))+ψH(x,H(t))

+ f (x,H(t))−
∫ H(t)

x
q(x,y) f (y,H(t))dy

)
. (6.38)

Substituting x = 0 and x = H(t) into (6.29), we get

T̃ (0, t)+ p2(t)H̃(t) =−
∫ H(t)

0
q(0,y)w(y, t)dy

+(p2(t)−ψ(0,H(t)))H̃(t), (6.39)

T̃ (H(t), t)+ p3(t)H̃(t) =(ε−ψ(H,H)+ p3(t))H̃(t). (6.40)

Moreover, substituting x = H(t) into (6.35) yields

˙̃H(t)+ p4(t)H̃(t)+βT̃x(H(t), t)

=(p4(t)− c+β(εq(H(t),H(t))−ψx(H(t),H(t))))H̃(t). (6.41)
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Therefore, for the equations (6.18)–(6.21) to hold, the gain kernel functions must satisfy the

following conditions:

qxx(x,y)−qyy(x,y) =− λ̄q(x,y), (6.42)

d
dx

q(x,x) =− λ̄

2
, q(0,y) = 0, (6.43)

βψ(x,H(t)) =Diq(x,H(t)), (6.44)

and the observer gains must satisfy

p1(x, t) =−Di(εqy(x,H(t))+ψxx(x,H))− cψ(x,H), (6.45)

p2(t) =ψ(0,H(t)), (6.46)

p3(t) =ψ(H(t),H(t))− ε, (6.47)

p4(t) =c−β(εq(H(t),H(t))−ψx(H(t),H(t))), (6.48)

and the function f (x,H(t)) must satisfy

f (x,H)+ εq(x,H)+ψH(x,H) =
∫ H

x
q(x,y) f (y,H)dy. (6.49)

The solutions to (6.42)–(6.44) are uniquely given by

q(x,y) =− λ̄x
I1

(√
λ̄(y2− x2)

)

√
λ̄(y2− x2)

, (6.50)

ψ(x,H(t)) =− λ

β
x

I1 (z)
z

, (6.51)

where z is defined by (6.26). Then, using (6.50)–(6.51), the conditions (6.45)–(6.48) are led to

the explicit formulations of the observer gains given as (6.22)–(6.25). In the similar manner, the
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conditions for the gain kernel functions of the inverse transformation (6.30) are given by

rxx(x,y)− ryy(x,y) =λ̄r(x,y), (6.52)

d
dx

r(x,x) =
λ̄

2
, r(0,y) = 0, (6.53)

βφ(x,H(t)) =Dir(x,H(t)), (6.54)

and, the function f (x,H(t)) is obtained by

f (x,H(t)) = r(x,H(t))p3(H(t))+φH(x,H(t)). (6.55)

The solutions to (6.52)–(6.54) are given by

r(x,y) =λ̄x
J1

(√
λ̄(y2− x2)

)

√
λ̄(y2− x2)

, φ(x,H) =
λ

β
x

J1 (z)
z

, (6.56)

where J1 is Bessel function of the first kind. Using the solutions (6.56), the function f (x,H(t)) is

obtained explicitly by (6.55), which also satisfies the condition (6.49). Hence, the transformation

from (T̃ , H̃) to (w, H̃) is invertible.

Stability Analysis

We prove the exponential stability of the origin of the estimation error system (6.18)-(6.21)

in the spatial L2 norm. First, we show the exponential stability of the origin of the target system

(6.31)-(6.34). We consider the following Lyapunov functional

V =
1
2
||w||2 + ε

2β
H̃(t)2. (6.57)
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Taking the time derivative of (6.57) together with the solution of (6.31)-(6.34) yields

V̇ =−Di||wx||2−λ||w||2− εc
β

H̃(t)2 +
Ḣ(t)

2
ε

2H̃(t)2

− Ḣ(t)H̃(t)
∫ H(t)

0
w(x, t) f (x,H(t))dx. (6.58)

Applying Young’s and Cauchy-Schwarz inequalities to the last term in (6.58) with the help of

Assumption 13, and choosing the gain parameter c to satisfy

c >
βM2 f̄

ελ
+βMε, (6.59)

one can obtain the following inequality:

V̇ ≤−min{λ,c}V. (6.60)

Applying comparison principle to the differential inequality (6.60), we get

V (t)≤V (0)e−min{λ,c}t . (6.61)

Hence, the target system (6.31)-(6.34) is exponentially stable at the origin. Due to the invertibility

of the transformations (6.29) and (6.30), there exist positive constants M > 0 and M̄ > 0 such

that for the norm Φ(t) defined in (6.27) the inequalities hold MΦ(t) ≤ V (t) ≤ M̄Φ(t). Hence,

we obtain (6.28) by defining M̃ = M̄/M, which completes the proof of Theorem 12. Note that

the designed backstepping observer achieves faster convergence with a possibility of causing

overshoot since the overshoot coefficient M̄/M is a monotonically increasing function in the

observer gains’ parameters (λ,c).

While we have focused on the simplified PDE (6.11) to derive a rigorous proof of

the proposed state estimation design (6.13)-(6.16) with observer gains given by (6.22)–(6.25),
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simulation studies are performed by applying the estimation design to the original thermodynamic

model (6.1)-(6.7) including salinity.

Initial conditions

The simulation results of temperature estimation T̂i computed by (6.13)-(6.16) along with

the available measurements obtained by the online calculation of (6.1)-(6.7) are shown in Fig.

6.3. Here the initial temperature profiles are formulated as

Ts(x,0) =
k0(Tm1−T0)

ksH0
x+T0, (6.62)

Ti(x,0) =
Tm1−T0

H0
x+T0 +asin

(
4πx
H0

)
, (6.63)

where T0 = Ti(0,0) which is obtained by solving fourth order algebraic equation from (6.1) and

the input data, and a is set as a = 1 [C◦]. The estimated initial temperature is chosen as

T̂i(x,0) =
Tm1−T0

H2
0 (1−2d)

(x2−2dH0x)+T0 (6.64)

with setting d = 1/4. Hence, the initial temperature estimate is lower than the actual temperature.

This initial condition satisfies the boundary conditions (6.14) and (6.15). The initial state of

the estimated ice thickness Ĥ(0) is set as that of the true thickness, i.e., Ĥ(0) = H(0), which is

feasible because the thickness is actually measured.

Tuning method for gain parameters

The design parameters (λ,c,ε) are selected as follows:

(i) Choose ε≈ β for the norm (6.57) to be similarly weighted.

(ii) Select λ to be the inverse of a desired time constant (i.e., the time at 63% decay of the

estimation error is achieved): here we set as one day, leading to λ≈ 1
24×3600 = 1.2 ·10−5.
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(iii) Select c sufficiently larger than λ so that the decay rate min{λ,c} is not reduced and (6.59) is

satisfied.

Finally, these parameters are varied around these reference values until we observe a smooth

and sufficiently fast convergence. Throughout the simulation, we see that the minimum value

of the time step size in ode solver is more than 1 minute, while the computation time of each

time update is less than 0.1 seconds, which shows its real-time implementability as addressed in

Remark 4.

Simulation Results

Numerical Simulation of State Estimation

The contour plot of the simulation results of Ti(x, t) and T̂i(x, t) for open-loop estimation

by setting all the observer gain to be zero is depicted in Fig. 6.3 (a), and those for the proposed

estimation are depicted in Fig. 6.3 (b) and Fig. 6.4 (a)-(b) with observer gains (6.22)–(6.25),

respectively, by using input data on January. For the proposed estimation, we fix the parameters

of c =3.0 × 10−5 and ε = 1.0 × 10−8, and use the parameter of λ =5.0 × 10−6 in Fig. 6.3

(b), λ =1.0 × 10−5 in Fig. 6.4 (a), and λ =5.0 × 10−7 in Fig. 6.4 (b). The figures show that

the backstepping observer gain makes the convergence speed of the estimation to the actual

value approximately 5 to 10 times faster at every point in sea ice. As seen in Fig. 6.4, while the

larger value of λ makes the convergence speed faster, it causes more overshoot beyond the actual

temperature. Hence, the tradeoff between the convergence speed and overshoot can be handled

by tuning the gain parameter λ appropriately, thereby the parameters used in (b) achieve the

desired performance. The overshoot behavior is noted at the end of Section 6.4 from a theoretical

perspective. Consequently, the stability properties stated in Theorem 12 for the simplified model

can be observed in numerical results of the proposed estimation applied to the original model

(6.1)-(6.7). To visualize the convergence of the estimated temperature profile used in 6.3 (b)
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(a) Open-loop estimation, i.e., p1(x, t) = 0 and pi(t) = 0 for i = 2,3,4.
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(b) The proposed estimation with the observer gains given in (6.22)–(6.25).

Figure 6.3: Simulation results of the plant (6.1)–(6.7) and the estimator (6.13)-(6.16) using
parameters on January. The designed backstepping observer achieves faster convergence to the

actual state than the straightforward open-loop estimation.

more clearly, Fig. 6.5 illustrates the profiles of both true temperature (black solid) and estimated

temperature (red dash) on January 1st to 3rd in (a)–(c), respectively. We observe that the estimated

temperature profile becomes almost the same as the true temperature profile on January 3rd,
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(a) The proposed estimation with larger value of λ than Fig. 6.3 (b). The overshoot beyond the true
temperature is observed during the first two days.
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(b) The proposed estimation with smaller value of λ than Fig. 6.3 (b). The convergence speed gets slower
than the result of Fig. 6.3 (b).

Figure 6.4: Simulation results of the plant (6.1)–(6.7) and the bacsktepping estimator (6.13)-
(6.16) with some chosen free parameters.

which is two days after the estimation algorithm runs. Moreover, Fig. 6.5 (d) depicts the time

evolution of H̃(t), which is an estimation error of the ice’s thickness. We observe that the error
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is “enlarged” from H̃(0) = 0 due to the error of temperature profile, and returns to zero after the

temperature profiles become almost indistinguishable on January 3rd, from which the necessity

of the estimator of the ice’s thickness is ensured while the thickness is actually measured.

Finally, we have studied the robustness of the proposed observer by varying the parameters

Di, β, and Fw in the observer (6.13)-(6.16) and the gains (6.22)–(6.25) to Di(1+δ1), β(1+δ2),

and Fw(1+δ3) with setting δ1 = 0.3, δ2 =−0.3, and δ3 = 0.4. Fig. 6.6 (a) shows the contour

plots of estimated and true temperature profiles and Fig. 6.6 (b) shows the evolution of H̃(t).

From both figures, we can see that the observer states converge and stay around the true states

with a modest error after 5 days, which illustrates robust performance of the proposed observer

under the parameters’ uncertainties.

6.5 Conclusion and Future Work

In this chapter, we develop the estimation algorithm for temperature profile in the Arctic

sea ice via backstepping observer design. The observer gains are derived so that the convergence of

the state estimate to the actual state is guaranteed theoretically for a simplified model. Numerical

simulation is employed to investigate the performance of the observer design with the original

thermodynamic model, which illustrates ten times faster convergence of state estimation to the

actual temperature than the straightforward open-loop estimation.

While we have assumed the online availability of the measurements, these data acquired

by satellites typically accompany a time-delay due to the communication. Such a time-delay can

be compensated by extending the method developed in [84] for control design under actuator

delay to the estimator design under sensor delay following the procedure in [97]. In addition, the

physical parameters used in this paper are uncertain variables in practice, where the uncertain

parameters can be assumed to be constants at each month, and hence it is significant to design a

simultaneous state and parameter estimation algorithm such as [118] using a reduced-order model
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(a) Temperature profile of both true and estimate on January 1st.
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(b) Temperature profile of both true and estimate on January 2nd.
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(c) Temperature profile of both true and estimate on January 3rd.
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(d) The time evolution of thickness estimation error H̃(t).

Figure 6.5: Simulation result of the plant (6.1)–(6.7) and the estimator (6.13)-(6.16) with
parameters used in Fig. 6.3 (b).

via Pade-approximation and [12] using data-driven extremum seeking as an iterative learning

method. Instead of adaptive estimation, interval observers for the state estimation of uncertain
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(a) Estimated temperature converges to the true temperature with a modest error.
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(b) H̃(t) dynamically varies first and stays at a value near zero after 5 days.

Figure 6.6: Robustness of the proposed estimation with significant parametric errors: 30[%] in
diffusion coefficient Di, 30[%] in latent heat parameter β, and 30[%] in heat flux Fw from the

ocean.

parabolic PDEs have been proposed in [79]. Moreover, applying the optimal control of the Stefan

problem developed in [63, 13, 3] to the estimation of the sea ice model is also an interesting

direction. These extensions will be considered as our future work.

6.6 Acknowledgement

Chapter 6, in part, is a reprint of the material as it appears in:

215



• S. Koga and M. Krstic, “Arctic Sea Ice Temperature Profile Estimation via Backstepping

Observer Design”, IEEE Conference on Control Technology and Applications, 2017,

• S. Koga and M. Krstic, “Arctic Sea Ice State Estimation from Thermodynamic PDE Model”,

Automatica, vol. 112, p. 108713, 2020.

The dissertation author was the primary investigators and author of this paper. The author would

like to thank I. Eisenman for suggesting the sea ice model we considered throughout this paper

and helpful discussions. The author would like to thank I. Fenty for enriching our knowledge on

recent trend of sea ice state estimation developed in NASA Jet Propulsion Laboratory.

216



Chapter 7

Lithium-Ion Batteries

7.1 Battery Management Systems

Battery management is crucial for safe and efficient use of numerous kinds of electronics

such as smartphones and laptops, and electric vehicles. Among several chemical materials

used for electrodes of lithium-ion batteries, Lithium Iron Phosphate (LFP) has several attractive

features as an active material in lithium-ion batteries such as thermal safety, high energy, and

power density [120]. LFP and other common active materials show unique charge-discharge

characteristics due to an underlying crystallographic solid-solid phase transition. Electrochemical

models for lithium-ion batteries with single phase materials do not allow to capture these unique

characteristics and thus a mathematical description of phase transitions needs to be added to these

models. Electrochemical models are of interest for the design of accurate estimation algorithms

in battery management systems. Estimation algorithms based on these models provide visibility

into operating regimes that induce degradation enabling a larger domain of operation, therefore,

increasing the performance of the battery in terms of energy capacity, power capacity, and fast

charge rates [27, 124]. Electrochemical model-based estimation is challenging for several reasons.

First, measurements of lithium concentrations outside specialized laboratory environments is
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impractical. Second, the concentration dynamics are governed by coupled and nonlinear partial

differential algebraic equations (PDAE) [158]. Finally, the only measurable quantities (voltage

and current) are related to dynamic states through a nonlinear function.

Electrochemical models describe the relevant dynamic phenomena in lithium-ion cells:

diffusion, intercalation and electrochemical kinematics (see Figure 7.1). These models predict ac-

curately the internal states of the battery, however, their complexity renders a challenging problem

for estimation algorithms. For this reason, most approaches develop estimation algorithms based

on simplified models. Among the various simplified models, the single particle model (SPM) has

been broadly used in the observer design problem, see [41, 118, 171, 36, 123, 117, 155]. The

main characteristic of the SPM is the use of a single spherical particle to represent diffusion of

lithium ions in the intercalation sites of the porous active materials in the electrodes.

LFP has been extensibility used in lithium ion cells due to its thermal stability, cost

effectiveness, non-toxic nature, and long cycle life [120]. An electrochemical model for LFP

batteries was proposed in [150] based on a core-shell model, where the concentration at the core

is assumed constant and diffusion is allowed for the phase in the shell. The LFP model with

phase transition electrode was revisited in [184] with a more complete core-shell model, allowing

diffusion in both phases of an LiCoO2 cathode.

The estimation problem for batteries with LFP electrodes has been relatively less studied;

a particle filter was derived in [135] and a Sequential Monte Carlo filter was derived in [109].

The core-shell model proposed for phase transition electrodes is described by a parabolic PDE

with a state-dependent moving boundary.

7.2 Electrochemical Model with Phase Change Electrode

The electrochemical model for lithium-ion cells with a phase transition material in the

positive electrode follows [150]. We restrict the problem to particular initial conditions of the
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(Rp,+, t) = � jn,+(t),Figure 7.1: Schematic of lithium-ion battery and the description of particles in electrochemical

models. The concentration dynamics of lithium-ion is governed on the geometry of each particle.

219



concentration of lithium ions in the particles (i.e. intercalation sites) of the positive electrode and

consider only discharge processes. The initial concentration of lithium ions in the particles of the

positive electrode follows a core-shell configuration where the core has a constant distribution of

lithium ions in a low concentration phase (the α phase), and the shell has a constant distribution

of lithium ions in a high concentration phase (the β phase). During discharge, the fluxes of

lithium ions at the surface of the particles in the positive electrode are positive, thus, increasing

the concentration of lithium ions in the shell and the phase boundary is moving to the center, i.e.,

a shrinking core process as depicted in Figure 7.2.

Single Particle Model

The single particle model is a simple electrochemical model that accounts for some

phenomena in lithium-ion cells. The main simplification in this model comes from the assumption

that a single diffusion equation in an spherical particle can be used to model the diffusion of

lithium ions in all the intercalation sites of the active material of each electrode. In the SPM, the

ionic molar fluxes jn,±(t) on both electrodes are proportional the current density I(t) applied to

the cell

jn,±(t) =∓
I(t)

as,±FL±
, (7.1)

where as,± = 3εs,±/Rp,± is the interfacial area (per unit volume), εs,± is the volume fraction of

active material in each electrode, Rp,± is the averaged radius of the intercalation sites (particles) in

the electrodes, F is the Faraday constant, and L± is the thickness of each electrode. Throughout

this paper, the subscripts + and− indicate that the variable corresponds to the positive or negative

particle. The concentration dynamics of lithium ions in the negative electrode (single phase)

follow the Fick’s law for diffusion

∂cs,−
∂t

(r, t) =
Ds,−

r2
∂

∂r

[
r2 ∂cs,−

∂r
(r, t)

]
, (7.2)
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for r ∈ (0,Rp,−), t > 0 with boundary conditions

∂cs,−
∂r

(0, t) = 0, (7.3)

Ds,−
∂cs,−

∂r
(Rp,−, t) =− jn,−(t), (7.4)

and initial condition c0,− ∈ C (0,Rp,−). Diffusion in the positive particle follows a core-shell

model. In the core of the particle, i.e., for r ∈ (0,rp(t)), lithium ions are in the α-phase. The

concentration in the core is assumed to be constant and equal to the equilibrium value of the

α-phase, i.e., cs,+(r) = cs,α for all r ∈ (0,rp(t)) . In the shell of the spherical particle, i.e. for

r ∈ (rp(t),Rp,+), the concentration of lithium ions is in β-phase. The concentration dynamics of

lithium-ions in the shell of the positive particle follows the Fick’s law for diffusion

∂cs,+

∂t
(r, t) =

Ds,+

r2
∂

∂r

[
r2 ∂cs,+

∂r
(r, t)

]
, (7.5)

for r ∈ (rp(t),Rp,+) with boundary conditions

cs,+(rp(t), t) = cs,β, (7.6)

Ds,+
∂cs,+

∂r
(Rp,+, t) =− jn,+(t), (7.7)

and initial conditions c0,+ ∈ C (rp(0),Rp,+). The time-evolution of the moving interface rp(t)

is not given explicitly. Instead, mass balance at the moving interface yields the following

state-dependent dynamics:

(cs,β− cs,α)
drp(t)

dt
=−Ds,+

∂cs,+

∂r
(rp(t), t). (7.8)
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Overpotentials η±(t) are found by solving the nonlinear algebraic equation

jn,±(t) =
i0,±(t)

F

[
e

αaF
RT η±(t)− e−

αcF
RT η±(t)

]
, (7.9)

i0,±(t) = Fk± [css,±(t)]
αc [ce,0 (cs,max,±− css,±(t))]

αa , (7.10)

where css,±(t) := cs,±(Rp,±, t). The electric potential in each electrode is given by

φs,±(t) = η±(t)+U±(css,±(t))+Rf,±F jn,±(t). (7.11)

Finally, output voltage is computed as the difference between the electric potential in each

electrode

V (t) = φs,+(t)−φs,−(t). (7.12)

Equations (7.5) -(7.12) form a complete description of the single particle model with a phase

transition electrode, and it provides the following property on the moving interface during the

discharge process.

Remark 6 During the single discharge process, the current density I(t) maintains positive,

i.e. I(t) > 0 for ∀t > 0. This current positivity ensures the moving interface being shrinking.

Furthermore, the initial interface position is less than the cell radius. Hence,

drp(t)
dt

< 0, (7.13)

0≤ rp(t)< Rp,+. (7.14)
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ββ

αα

Figure 7.2: Phase transition in the positive particle during discharge. The particle starts with a
large core of low concentration phase α and a small shell of high concentration phase β. During
discharge there is a positive flux of lithium ion in the surface of the positive particle, increasing

the concentration and increasing the size of the β-phase shell.

Mass Conservation

In this model, the total amount of lithium ions is conserved. The mathematical description

of this property is given in the following lemma.

Lemma 11 The total amount of lithium nLi in solid phase ( moles per unit area ) defined as

nLi(t) = εs,−L−cs,−(t)+ εs,+L+cs,+(t), (7.15)

where cs,−(t) and cs,+(t) are the volumetric averages of the concentrations

cs,−(t) =
3

R3
p,−

∫ Rp,−

0
cs,−(r, t)r2dr, (7.16)

cs,+(t) =
3

R3
p,+

∫ Rp,+

0
cs,+(r, t)r2dr, (7.17)

is conserved, namely dnLi(t)/dt = 0.

Lemma 11 was derived in [81] for electrodes with a single phase, and we can show that

this result extends to electrodes with phase transition materials.

Proof:

In our problem formulation there is a single phase in the negative particle and there are two
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phases in the positive particle, i.e., α-phase in the core and β-phase in the shell. The concentration

in α-phase at the core is assumed to be constant (at its equilibrium value cs,α). Under these

assumptions, the time derivative of (7.15) is given by

dnLi

dt
(t) =−as,−L− jn,−(t)−as,+L+ jn,+(t)−

3εs,+L+

R3
p,+

r2
p(t)

×
[

drp

dt
(t)
[
cs,β− cs,α

]
+Ds,+

∂cs,+

∂r
(rp(t), t)

]
. (7.18)

Hence, the molar flux equations in (7.1) and the dynamics of the moving interface in (7.8) lead to

dnLi(t)/dt = 0. In a more general formulation introduced in [78, 77], i.e. when both electrodes

have multiple phase transitions not necessarily at the equilibrium, mass conservation of lithium

ions is guaranteed with the following interface dynamics

dr[a,b]i
dt

(t) =
1

cb− ca

[
Da

∂c
∂r

(r[a,b]i (t)−, t)−Db
∂c
∂r

(r[a,b]i (t)+, t)
]
, (7.19)

where r[a,b]i is the interface radius between any two phases (phase a and phase b) in any electrode.

Each phase has a distinct equilibrium ca, cb and diffusion coefficient Da, Db.

7.3 State-of-Charge Estimation

Now, a state estimation algorithm for concentration of lithium ions, in both negative and

positive electrodes, is provided in this section from the single particle model. The state observer

for the positive electrode is derived via the backstepping method for moving boundary PDEs, and

the observer for the negative electrode is derived from the mass conservation property.
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Observer for Phase Transition Positive Electrode

The state observer is a copy of the diffusion system (7.5)-(7.7) in the positive electrode

together with output error injection

∂ĉs,+

∂t
(r, t) =

Ds,+

r2
∂

∂r

[
r2 ∂ĉs,+

∂r
(r, t)

]

+P(r̂p(t),r)
[
css,+(t)− ĉs,+(Rp,+, t)

]
, (7.20)

for r ∈ (r̂p(t),Rp,+) with boundary conditions

ĉs,+(r̂p(t), t) =cβ, (7.21)

Ds,+
∂ĉs,+

∂r
(Rp,+, t) =− jn,+(t)

+Q(r̂p(t))
[
css,+(t)− ĉs,+(Rp,+, t)

]
, (7.22)

and initial conditions ĉ0,+ ∈ L2(r̂p(0),Rp,+) and r̂p(0) ∈ (0,Rp,+). Observer gains are given by

P(r̂p(t),r) = Ds,+λ
2 Rp,+

r
l(t)s(t)

I2 (z(t))
z(t)

, (7.23)

Q(r̂p(t)) =
Ds,+

Rp,+

(
λ

2
s(t)+1

)
, (7.24)

where I2(·) is a modified Bessel function of the second kind and

λ =
λ

Ds,+
, (7.25)

s(t) = Rp,+− r̂p(t), l(t) = r− r̂p(t), (7.26)

z(t) =
√

λ [s(t)2− l(t)2]. (7.27)
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The parameter λ > 0 is designed to achieve faster convergence of the estimated concentration

to true concentration. Moreover, the estimator for the moving interface position is given by the

following dynamics:

(cs,β− cs,α)
dr̂p(t)

dt
=−κ

[
css,+(t)− ĉs,+(Rp,+, t)

]

−Ds,+
∂ĉs,+

∂r
(r̂p(t), t), (7.28)

where the parameter κ > 0 is designed to achieve fast convergence of the estimated interface

position to the true value.

The stability of the estimation error system is theoretically proven for the PDE observer

(7.20)–(7.22) with gains (7.23), (7.24) under the assumption r̂p(t)≡ rp(t) for all t ≥ 0 in the next

section. As the moving interface position rp(t) is unknown in practice, we construct the estimator

(7.28), and use the estimated interface position r̂p(t) in the gains (7.23), (7.24) of PDE observer.

The sign of the observer gain in (7.28) (first term in the right hand side) is determined

based on the monotonic relation, namely, as the surface concentration css,+(t) is increased the

moving interface position rp(t) is decreased. Physically, as the battery is discharged, the domain

of the lithium rich β-phase in the positive electrode is expanded from the outer region. Hence,

the observer (7.28) is designed so that if the measured surface concentration is larger than the

estimated surface concentration, the battery is discharged more than estimated, and the domain of

β-phase for the estimator is driven to be expanded.

Stability Analysis of the Estimation Error System with Known Interface

Position

Let c̃s,+(r, t) be an estimation error defined by c̃s,+(r, t) := cs,+(r, t)− ĉs,+(r, t). The

stability analysis of the estimation error system is presented in the following theorem.
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Theorem 13 Consider the plant PDE (7.5)–(7.7) and the PDE observer (7.20)–(7.22) with

observer gains (7.23) and (7.24) under the properties of (7.13), (7.14), and the assumption

r̂p(t)≡ rp(t) for all t ≥ 0. Then, for any initial estimation error c̃s,+(r,0), the estimation error is

exponentially stable at the origin in the sense of the norm

∫ Rp,+

rp(t)
r2c̃s,+(r, t)2dr. (7.29)

Note that subtracting (7.20)-(7.22) from (7.5)-(7.7) under r̂p(t)≡ rp(t) yields the estimation error

dynamics

∂c̃s,+

∂t
(r, t) =

Ds,+

r2
∂

∂r

[
r2 ∂c̃s,+

∂r
(r, t)

]
−P(rp(t),r)c̃s,+(Rp,+, t), (7.30)

c̃s,+(rp(t), t) =0, (7.31)

Ds,+
∂c̃s,+

∂r
(Rp,+, t) =−Q

(
rp(t)

)
c̃s,+(Rp,+, t). (7.32)

Change of coordinate

First, we introduce the following change of coordinate and state variable to simplify the

structure of the estimation error dynamics in a cartesian coordinate:

x = Rp,+− r, (7.33)

ũ(x, t) = rc̃s,+(r, t), (7.34)

s(t) = Rp,+− r̂p(t). (7.35)
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The estimation error dynamics (7.30)-(7.32) is rewritten by the new coordinate and state as

∂ũ
∂t

(x, t) = Ds,+
∂2ũ
∂x2 (x, t)−P(s(t),x)ũ(0, t), (7.36)

ũ(s(t), t) = 0, (7.37)

∂ũ
∂x

(0, t) =−Q(s(t))ũ(0, t), (7.38)

where

P(s(t),x) =
r

Rp,+
P(rp(t),r), (7.39)

Q(s(t)) =
1

Rp,+
− 1

Ds,+
Q(rp(t)). (7.40)

With respect to the variable (7.35), the properties (7.13) and (7.14) presented in Remark 6 are

equivalent to

ṡ(t)> 0, (7.41)

0 < s(t)≤ Rp,+. (7.42)

Derivation of observer gains

Consider the following invertible transformation from the estimation error ũ(x, t) to the

transformed state w̃(x, t):

w̃(x, t) = ũ(x, t)+
∫ x

0
q(x,y)ũ(y, t)dy, (7.43)

ũ(x, t) = w̃(x, t)+
∫ x

0
p(x,y)w̃(y, t)dy, (7.44)
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where x = s(t)− x, y = s(t)− y. Similarly to observer design in Section 3.4, we can show that if

the gain kernel functions and the observer gains satisfy the following conditions:

∂2 p
∂x̄2 (x̄, ȳ)−

∂2 p
∂ȳ2 (x̄, ȳ) =− λ̄p(x̄, ȳ), (7.45)

p(x̄, x̄) =
λ̄

2
x̄, (7.46)

p(0, ȳ) =0, (7.47)

∂2q
∂x̄2 (x̄, ȳ)−

∂2q
∂ȳ2 (x̄, ȳ) =λ̄q(x̄, ȳ), (7.48)

q(x̄, x̄) =− λ̄

2
x̄, (7.49)

q(0, ȳ) =0, (7.50)

P(s(t),x) =Ds,+pȳ(x̄,s(t)), (7.51)

Q(s(t)) =− p(s(t),s(t)), (7.52)

then, the following target w̃-system is obtained:

∂w̃
∂t

(x, t) = Ds,+
∂2w̃
∂x2 (x, t)−λw̃(x, t)+ ṡ(t)

∫ x

0
q′(x,y)

×
(

w̃(y, t)+
∫ y

0
p(y,z)w̃(z, t)dz

)
dy, (7.53)

w̃(s(t), t) = 0, (7.54)

∂w̃
∂x

(0, t) = 0, (7.55)
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where q′(x,y) = ∂q
∂x (x,y)+

∂q
∂y (x,y). The equations (7.45)–(7.50) lead to the following explicit

solutions:

p(x,y) =λx
I1

(√
λ
[
y2− x2

])

√
λ
[
y2− x2

] , (7.56)

q(x,y) =−λx
J1

(√
λ
[
y2− x2

])

√
λ
[
y2− x2

] , (7.57)

with a modified Bessel function I1(·) and a Bessel function J1(·) of the first kind, respectively.

Substituting the solution (7.56) to the conditions (7.51), (7.52) (note that dI1(z)
dz = I2(z)

z for all z),

and taking back to the original coordinate and variables, the observer gains are derived as (7.23)

and (7.24).

Stability proof

As done in Section 3.4, we consider the time evolution of the following Lyapunov function:

W (t) =
1
2

∫ s(t)

0
w̃(x, t)2dx. (7.58)

Taking the time derivative of (7.58) along with (7.53)-(7.55) yields

Ẇ (t) =−Ds,+

∫ s(t)

0

(
∂w̃
∂x

(x, t)
)2

dx−λ

∫ s(t)

0
w̃(x, t)2dx

+ ṡ(t)
∫ s(t)

0
w̃(x, t)

[∫ x

0
q′(x,y)

(
w̃(y, t)+

∫ y

0
P(y,z)w̃(z, t)dz

)
dy
]

dx. (7.59)

Applying Young’s, Cauchy Schwartz, and Poincare’s inequalities with the help of the properties

(7.41) and (7.42), one can show that there exists a constant a> 0 such that the following inequality
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holds: (refer to Section 3.4 for the detailed steps)

Ẇ (t)≤−bW (t)+aṡ(t)W (t), (7.60)

where b =
Ds,+

4R2
p,+

+λ. With the help of (7.41) and (7.42), it yields the exponential decay of W (t)

as

W (t)≤ eaRp,+W (0)e−bt . (7.61)

Hence, the origin of w̃-system is shown to be exponentially stable, from which we conclude

Theorem 13.

Observer for Negative Electrode

The observer design for lithium ion concentration in the negative electrode is constructed

by the copy of the dynamics (7.2)-(7.4) together with the output injection of the positive electrode

∂ĉs,−
∂t

(r, t) =
Ds,−

r2
∂

∂r

[
r2 ∂ĉs,−

∂r
(r, t)

]
+P−(rp(t))c̃s,+(Rp,+, t), (7.62)

for r ∈ (0,Rp,−), t > 0 with boundary conditions

∂ĉs,−
∂r

(0, t) =0, (7.63)

Ds,−
∂ĉs,−

∂r
(Rp,−, t) =− jn,−(t)+Q−

(
rp(t)

)
c̃s,+(Rp,+, t). (7.64)
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Observer gains in the negative electrode are computed to conserve the total amount of lithium

ions in the state observer defined as

n̂Li(t) =
3εs,+L+

R3
p,+

∫ Rp,+

0
ĉs,+(r, t)r2dr+

3εs,−L−
R3

p,−

∫ Rp,−

0
ĉs,−(r, t)r2dr. (7.65)

Taking the time derivative of (7.65) along with the dynamics (7.20)–(7.28) and (7.62)–(7.64)

leads to

dn̂Li,+

dt
=−as,+L+ jn,+(t)−as,−L− jn,−(t)+Fc̃s,+(Rp,+, t), (7.66)

where F is defined by

F = as,+L+

(
κ

R2
p,+

r̂p(t)2 +Q(r̂p(t))

)
+as,−L−Q−(r̂p(t))

+
3εs,+L+

R3
p,+

∫ Rp,+

r̂p(t)
r2P(r̂p(t),r)dr+ εs,−L−P−(r̂p(t)). (7.67)

By the balance of the ionic molar fluxes given in (7.1), the first line in the right hand side of (7.66)

is canceled. Therefore, by designing the observer gains as

Q−(rp(t)) =−
as,+L+

as,−L−

(
Q(rp(t))+

κ

R2
p,+

r̂p(t)2

)
, (7.68)

P−(rp(t)) =−
εs,+L+

εs,−L−

3
R3

p,+

[∫ Rp,+

r̂p(t)
P(rp(t))r2dr

]
, (7.69)

one can show that dn̂Li,+
dt = 0 from (7.66). Hence, the observer error in the negative electrode

approaches to zero uniformly in space with the help of Theorem 13.

232



r2 r3

r1 = rp(t)

rN−1rN−2

rN = Rp

Figure 7.3: Non-uniform grid for spatial discretization.

7.4 Numerical Simulation

Description of the proposed algorithm

For the spatial discretization of the diffusion equations in the single particle model and the

observer, we use a finite volume method with non-uniform grid [181]. The reason to use a finite

volume method is to guarantee the mass conservation property after discretization. The grid, is a

set of N points r(t) = [r1(t),r2(t), . . . ,rN−1(t),rN(t)], that divide the domain (rp(t),Rp) (or (0,Rp)

for the negative electrode) in a finite set of non-uniform intervals, as depicted in Figure 7.3, and

allow us to define a fine discretization near the boundaries of the domain without increasing the

size of the finite-dimensional state significantly. Briefly speaking, in the finite volume method, one

defines a finite-dimensional state cs(t) = [cs,2, . . . ,cs,N−1,cs,N ], where each element corresponds

to the concentration at one of the spatial discretization points. Then, solving the diffusion equation

within each of the intervals
[

ri−1+ri
2 , ri+ri+1

2

]
and using a linear interpolation, a set of ordinary

differential equations is obtained; that define the dynamics of the finite-dimensional state. For

example, in the positive electrode, the dynamic equation for the finite-dimensional approximation
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in β-phase is

M(t)
dcs

dt
(t) = A(t)cs(t)+B(t)u(t), (7.70)

css,+ =Ccs(t), (7.71)

with

u(t) =
[

jn(t),cs,β
]
, (7.72)
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and continuous matrices M(t),A(t) ∈ RN−1×N−1, B1(t) ∈ RN−1×2 , C ∈ R1×N−1 defined as

M(t) =




3
4v2(t) 1

8v3(t) 0 · · · 0

1
4v2(t) 3

4v3(t) 1
8v4(t) · · · 0

0 1
8v3(t) 3

4v4(t) · · · 0
...

...
...

...

0 0 0 · · · 1
4vN(t)

0 0 0 · · · 3
4vN(t)




, (7.73)

A(t) =




a2,2(t) a2,3(t) 0 · · · 0 0

a3,2(t) a3,3(t) a3,4(t) · · · 0 0

0 a4,3(t) a4,4(t) · · · 0 0
...

...
...

...
...

0 0 0 · · · aN−1,N−1(t) aN−1,N(t)

0 0 0 · · · aN,N−1(t) aN,N(t)




, (7.74)

B(t) =




0 b1,2(t)

0 0
...

...

0 0

bN,1 0




. (7.75)

In (7.73), the volumes vi(t) are computed based on the geometry of the grid, that is

vi(t) =

((
ri(t)+ ri+1(t)

2

)3

−
(

ri(t)+ ri−1(t)
2

)3
)
, (7.76)
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for i ∈ {2,3, . . . ,N−1}, and

vN,N(t) =

(
R3

p(t)−
(

Rp(t)+ rN−1(t)
2

)3
)
. (7.77)

The diagonal entries of the matrix A(t) in 7.74 are

aii(t) =−
Ds

4
(ri+1(t)+ ri(t))

2

ri+1(t)− r1(t)
− Ds

4
(ri(t)+ ri−1(t))

2

ri(t)− ri−1(t)
, (7.78)

for i ∈ {2,3, . . . ,N−1}, and

aN,N(t) =
Ds

4
(Rp(t)+ rN−1(t))2

Rp(t)− rN−1(t)
. (7.79)

The entries in the line above the diagonal are

ai,i+1(t) =
Ds

4
(ri+1(t)+ ri(t))

2

ri+1(t)− ri(t)
, (7.80)

for i ∈ {3,4, . . . ,N}, and the entries in the line below the diagonal are

ai,i−1(t) =
Ds

4
(ri(t)+ ri−1(t))

2

ri(t)− ri−1(t)
, (7.81)

for i ∈ {2,3,4, . . . ,N−1}. The non-zero elements of the matrix B(t) in (7.75) are

b1,2(t) =
Ds

4
(r2(t)+ rp(t))2

r2− rp(t)
, (7.82)

bN,1 =−R2
p. (7.83)

The initial conditions for (7.70)-(7.71) are the evaluation of the initial concentration profile at

each point of the grid r. For the discretization of the continuous-time finite-dimensional system
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we use the Euler backward method, which leads to

M[k+1]
cs,[k+1]− cs,[k+1]

t[k+1]− t[k]
= A[k+1]cs,[k+1]+B[k+1] jk+1, (7.84)

css,k+1 =Ccs,k+1, (7.85)

where the quantities with subscript [k] ∈ {0,1, . . . ,K}, correspond the quantities at the discrete

times {t0, t1, . . . , tNT }. The discretization of the boundary dynamics follows a discrete version of

(7.8), derived properly to guarantee mass conservation, that is

(
cs,β− cs,α

)r3
p,[k+1]− r3

p,[k]

1
=−

(
t[k+1]− t[k]

)
Ds

(
r2,[k]− r1,[k]

2

)2 cs,1,[k+1]− cs,β

r2,[k]− r1,[k]
. (7.86)

The time update of the spatial grid, corresponding to the increase of domain in time is

performed carefully to ensure mass conversation while keeping the size of the grid constant over

time. For this reason a new point in the discretization grid at every time step according to the

dynamics of the moving boundary is introduced, if a threshold in surpass. If the threshold is not

exceed, the corresponding mass change is added to a mass memory variable for consideration in

the next time step. To the new point in the grid we associate a new state equal to cβ. Then, to

avoid an increase of the number of states at every time step, an interpolation is performed from

the grid with the additional point, that is, with size N + 1, to a new grid defined in the larger

domain but with N point. The interpolation is linear and is corrected for mass conservation (see

the description in Algorithm 5).

Test with Constant Discharge Input

To test the observer we run a numerical example with a constant discharge current of 5

[C-rate]. We are assuming css,+ is available directly from measurements to be used as output error
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Algorithm 5: Time Update for Increasing Domain (Shrinking Core)
Data: Priovided some spatial grid r[k] = [r1,[k],r2,[k], . . . ,rN,[k]], state value

cs,[k] =
[
cs,1,[k],cs,2,[k], . . . ,cs,N,[k]

]
, at time t[k], and memory of mass difference

4m[k−1] (the right hand side of (7.86))
compute the mass change4m[k] due to non-zero flux at the interface, i.e., the right
hand side of (7.86) and add it to the mass change memory

m[k]← m[k]+m[k−1],

if m[k] > mthreshold then
compute a new for the boundary from the interface dynamics (7.86):

rp,[k]←
(

r3
p,[k]−

m[k]
cs,β−cs,α

)1/3
,

add this value as a new point to the grid:
r[k]←

[
rp,[k],r1,[k],r2,[k], . . . ,rN,[k]

]

add a new entry to the state concentration with the value cβ:
cs,[k]← [cβ,cs,1,[k],cs,2,[k], . . . ,cs,N,[k]],
define a new non-uniform grid r′[k] = [r′1,[k],r

′
2,[k], . . . ,r

′
N,[k]] such that r′1,[k] = rp,[k]

and r′N,[k] = Rp

interpolate (linearly) the concentration state to the new grid:
c′s← interp(r′,r,cs)

compute average concentrations c′s and cs over the spherical volumen
correct for mass conservation with the scaling factor cs/c′s:

c′s←
cs

c′s
c′s

return updated grid r′[k] , updated state value c′s,[k] , and set memory m[k] = 0.
else

return unchanged spatial grid r[k], unchanged state value cs,[k], and updated mass
memory m[k].

end
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Figure 7.4: Voltage plot for different (constant) current discharge inputs, which shows the
analogous behavior to [150].

Figure 7.5: Normalized concentration of lithium ions in a growing β-phase region. The plot
corresponds to a 5[min] simulation of constant 5[C− rate] discharge. The plot does not show

the α-phase portion of the concentration since it is assumed to be constant.
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Figure 7.6: Estimate of the concentration of lithium ions in the positive particle. Starting from
the initial error, the estimated profile converges to the true profile in Fig. 7.5.
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Figure 7.7: Averaged concentration of true value (black solid) and estimated averaged concen-
tration (blue dashed) in the positive particle normalized by the maximum concentration.
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Figure 7.8: The estimated interface position becomes the same value as the true interface
position after 0.5 [min].

injection in the observer. In practice, this quantity could be estimated from measurements. Figure

7.6 shows the estimated concentration of lithium ions in β-phase in the positive particle; one can

compare this to the true concentration in Figure 7.5. Figure 7.7 shows the averaged concentration

in the positive particle, both true value (black) and estimated value (blue). Convergence of the

estimate to the true value is achieved within 0.8 [min], a relatively short time. Furthermore, Fig.

7.8 shows the time evolution of the moving interface of the both true value (black) and estimated

value (blue), which also illustrates the convergence of the estimate to the true value. Note that

SoC is directly proportional to the averaged concentrations; then the importance to evaluate the

estimation of this quantity.

7.5 Conclusions and Future Work

This chapter develops the estimation algorithm for SoC via electrochemical-model based

moving boundary PDE observer, and provides the numerical study illustrating the desired perfor-
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mance of the proposed method. Towards a complete SoC estimation algorithm for lithium ion

batteries with phase transition materials, an extension the existing SoC estimation algorithms from

SPM to complex electrode settings will be considered, as was already achieved for electrodes with

multiple active material [24]. It was noted in [151] that two different particles sizes are needed to

correctly model LFP electrodes, this correction can be added to our results following [24]. One of

the main assumptions for the model in this paper is the restriction to only two coexisting phases

in a single particle reduced further to a single phase problem by assuming a constant core phase.

The relaxation of this assumption could be achieved through designing the state observer of

concentration of lithium-ions in two phases together with the estimation of the interface position,

by extending the method for control design in Chapter 5 to the observer design. Furthermore,

the robustness of the estimator’s performance under some additive measurement noise can be

studied in terms of input-to-state stability (ISS) following [23]. These further investigation will

be addressed in our future work.
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Table 7.1: Parameters of LFP used in the simulation.

Parameters
Negative Separator Positive

L[m]a 50×10−6 25×10−6 74×10−6

cmax
s [mol/m3]a 27760 20950
cs,α[mol/m3]b 0.0480×cmax

s,+

cs,β[mol/m3]b 0.8920×cmax
s,+

Rp [m]a 11×10−6 52×10−9

Ds [m2/s]a 9×10−14 8×10−18

εs [−]a 0.33 0.27
Rf [Ωm2]b 1×10−5 0
Rc [Ωm2]b 0 6.5×10−3

k [m2.5/mol0.5s]a 3×10−5 3×10−17

Other Parameters and Physical Constants

A [m]b 1
F [As/mol] 96487
R [J/Kmol] 8.314472

T [K]b 298
ce [mol/m3]a 1×103

αa,αc [−]a 0.5
a borrowed from [151]
b assumed
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Chapter 8

Polymer 3D-Printing via Screw Extrusion

8.1 Emergence of 3D-Printing

On the verge of new manufacturing techniques, additive manufacturing stands out as a

versatile tool for high flexibility and fast adaptability in production. It is applicable in a variety

of producing industries, ranging from tissue engineering [114], thermoplastics [162], metal

[106] and ceramic [137] fabrication. One of the most popular types of 3D printing is Fused

Deposition Modeling (FDM) [115], which uses filaments as raw material, that have to be precisely

manufactured to achieve a good final product quality [21].

8.2 Screw Extrusion Process

From the polymer processing and extrusion cooking industry, screw extruders are well-

known devices. Results stated in [116, 154, 101, 108] give an in-depth description of screw

geometrics, extruder setups and describe the dynamics of extrusion process consisting of a

conveying zone, a melting zone, and a mixing zone. A mathematical description of such a model

is derived by mass, momentum, and energy balances and appears as coupled transport equations
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coupled through a moving interface. This model is used in [108] to describe an extrusion cooking

process. The boundary control of a similar model is achieved in [38, 39] under the assumption of

constant viscosity.

More recent contributions considered screw extrusion as a useful technology for 3D

printing applications [162, 40, 37], allowing to manufacture a wider variety of materials than

FDM, while using polymer granules as raw material [162]. In [37], a time-delay control was

developed on a model consisting of two phases, similarly to [108]. In both cases, stabilization

of the moving interface separating a conveying and a melting zone is achieved with a fast

convergence rate. Another approach which enables to control screw extruders in 3D printing is

proposed in [40], where an energy-based model is established, simplifying the implementation

of the control law and circumventing difficulties with state measurement. In other words, the

control of the outflow rate at the nozzle only relies on the measurement of the heater current and

the screw speed.

In the screw extrusion process, the solid material is convected from the feed to the nozzle

located at the end of a heating chamber. The solid raw material is melted and mixed before

being expelled through the nozzle as a thin filament. For this process, the thermal behavior is

an important factor which characterizes final product quality. Indeed, heat is supplied into the

system by the heaters surrounding the extruder’s barrel on the one hand and by the viscous heat

generation due to a shearing effect [108] on the other hand. The process of the phase transition

from the solid to the liquid polymer can be described as the Stefan problem. In this context, the

dynamics of the solid-liquid phase interface is derived from the energy conservation in which

the latent heat required for melting is driven by the internal heat of the liquid phase, resulting in

the interface velocity to be proportional to the temperature gradients of the adjacent phase. For

instance, in [44], the Stefan problem for a polymer crystallization process is described, and the

analytical crystallization time is derived.
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Control of the Tumor Growth Described by Free

Boundary Problem

Shumon Koga, Marcella Gomez, and Miroslav Krstic

May 3, 2017

Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:

@�

@t
(r, t) =

D1

r2

@

@r

✓
r2@�

@r
(r, t)

◆
+ �(�B � �(r, t))� �� � g1(�, �),

0 < r < R(t). (1)

where �(r, t) is nutrient concentration of the tumor, D1 is the di↵usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e↵ects govern the evolution of the inhibitor in the tumor, the following
reaction-di↵usion equation is also obtained
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The dynamics of the moving interface is
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:
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where �(r, t) is nutrient concentration of the tumor, D1 is the di�usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e�ects govern the evolution of the inhibitor in the tumor, the following
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t)� b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t)� b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t)� kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x)� bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x)� bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.

1 Problem Statement

The tumor growth model proposed by [1] is described by the following cou-
pled system on moving boundary:

@�

@t
(r, t) =

D1

r2

@

@r

✓
r2@�

@r
(r, t)

◆
+ �(�B � �(r, t))� �� � g1(�, �),

0 < r < R(t). (1)

where �(r, t) is nutrient concentration of the tumor, D1 is the di�usion
coe�cient, �B is a constant nutrient concentration in vasculature (blood
vessel), and � is the rate of blood-tissue transfer per unit length (assumed
constant). For the avascular case we have � = 0. Assuming that similar
e�ects govern the evolution of the inhibitor in the tumor, the following
reaction-di�usion equation is also obtained
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@t
(r, t) =

D2

r2

@

@r

✓
r2@�

@r
(r, t)

◆
� g2(�, �), 0 < r < R(t) (2)

The dynamics of the moving interface is

1

3
s(t)2ṡ(t) =

Z s(t)

0
µ
�
� � ˜̃�

�
r2dr (3)
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Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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Fig. 1: Schematic of screw extruder.

boundary heat control law to stabilize the interface position at
the desired setpoint is derived, and the stability of the closed-
loop system is proved under some realistic assumptions by
extending the result in [10]. Finally, simulation results are
provided to illustrate the good performance of the control
design for some given screw speeds that correspond to slow
and fast operating extrusion process.

This paper is organized as follows. The thermodynamic
model of the screw extruder is developed in Section II,
and the steady-state analysis is provided in Section III. The
control design is derived in Section IV, and the stability proof
for a specific setup is established in Section V. Simulation
results of polymer extrusion is provided in Section VI with
a statement on the control performance. We complete the
paper with our conclusion and future work in Section VII.

II. THERMODYNAMIC MODEL OF SCREW EXTRUDER

We focus on the thermodynamic model of the screw
extrusion process in one-dimensional coordinate along the
vertical axis. The model provides the time evolution of the
temperature profile of the extruded material and the interface
position between the feeded polymer granules and the molten
polymer. The granular pellets are conveyed by the screw
rotation at a given speed b along the vertical axis while the
barrel temperature is uniformly maintained at Tb. Defining
Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase
(polymer granules) over the spatial domain x 2 (0, s(t))
and liquid phase (molten polymer) over the spatial domain
x 2 (s(t), L), respectively, the following thermodynamical
model is derived from the energy conservation and heat
conduction laws

@Ts

@t
(x, t) =↵s

@2Ts

@x2
(x, t)� b

@Ts

@x
(x, t)

+ hs (Tb � Ts(x, t)) , for 0 < x < s(t), (1)
@Tl

@t
(x, t) =↵l

@2Tl

@x2
(x, t)� b

@Tl

@x
(x, t)

+ hl (Tb � Tl(x, t)) , for s(t) < x < L. (2)

In this paper we consider the temperature distribution in the
liquid to be static, and give it in (11) and in Assumption

1 at the beginning of Section IV-A. Here, ↵i = ki

⇢ici
and

hi = h̄i

⇢ici
, where ⇢i, ci, ki, and h̄i for i 2 {s, l} are the

density, the heat capacity, the thermal conductivity, and the
heat transfer coefficient, respectively and the subscripts s
and l are associated to the solid or liquid phase, respectively.
The boundary conditions at x = 0 and x = L follow the heat
conduction law, and the temperature at the interface x = s(t)
is maintained at the melting point Tm, described as

@Ts

@x
(0, t) = �qf(t)

ks
, Ts(s(t), t) = Tm, (3)

@Tl

@x
(L, t) =

q⇤m
kl

, Tl(s(t), t) = Tm, (4)

where qf(t) < 0 is a freezing controller at the inlet and
q⇤m > 0 is a heat flux at the nozzle which is assumed to be
constant in time. The interface dynamics is derived by the
energy balance at the interface as

⇢s�Hṡ(t) = ks
@Ts

@x
(s(t), t)� kl

@Tl

@x
(s(t), t). (5)

The equations (1)-(5) are the solid-liquid phase change model
known as ”two-phase Stefan problem”.

Remark 1: To keep the physical state of each phase, the
following conditions must hold:

Ts(x, t) Tm, 8x 2 (0, s(t)), 8t > 0, (6)
Tl(x, t) �Tm, 8x 2 (s(t), L), 8t > 0, (7)

which represent the model validity conditions.

III. STEADY-STATE AND ANALYSIS

To ensure a continuous extrusion process, the control of
the quantity of molten polymer that remains in the extruder
chamber at any given time is crucial. By definition, the
volume of fully melted material contained in the chamber is
directly related to the position of the solid-liquid interface
that needs to be controlled, consequently. Physically, any
given position of the interface along the spatial domain
correspond to a melt temperature profile along the extruder.

A. Steady-state solution

An analytical solution of the steady-state temperature
profile denoted as (Ts,eq(x), Tl,eq(x)) for any given setpoint
value of the interface position defined as sr, can be computed
by setting the time derivative of the system (1)-(5) to zero.
Hence, from (1) and (2) the following set of ordinary
differential equations in space are obtained
(

0 = ↵sT
00
s,eq(x)� bT 0

s,eq(x) + hs (Tb � Ts,eq(x)) ,

0 = ↵lT
00
l,eq(x)� bT 0

l,eq(x) + hl (Tb � Tl,eq(x)) ,
(8)

where Ts,eq(x) 2 (0, sr) and Tl,eq(x) 2 (sr, L) and the
initial condition are given as

(
T 0

s,eq(0) = � q⇤
f

ks
, Ts,eq(sr) = Tm,

T 0
l,eq(L) =

q⇤
m

kl
, Tl,eq(sr) = Tm.

(9)

melt 
polymer

polymer 
granules

faucet

heater

screw

Figure 8.1: Schematic of screw extruder for original description (left) and model description
(right).

8.3 Thermodynamic Modelling

We focus on the thermodynamic model of the screw extrusion process in one-dimensional

coordinate along the vertical axis, motivated by [154] which developed a thermodynamic phase

change model for polymer processing. The model provides the time evolution of the temperature

profile of the extruded material and the interface position between the fed polymer granules and

the molten polymer. The granular pellets are conveyed by the screw rotation at a given speed

b along the vertical axis while the barrel temperature is uniformly maintained at Tb. Defining

Ts(x, t) and Tl(x, t) as the temperature profiles of solid phase (polymer granules) over the spatial

domain x ∈ (0,s(t)) and liquid phase (molten polymer) over the spatial domain x ∈ (s(t),L),
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respectively, the following thermodynamical model

∂Ts

∂t
(x, t) =αs

∂2Ts

∂x2 (x, t)−b
∂Ts

∂x
(x, t)+hs (Tb−Ts(x, t)) , 0 < x < s(t), (8.1)

∂Tl

∂t
(x, t) =αl

∂2Tl

∂x2 (x, t)−b
∂Tl

∂x
(x, t)+hl (Tb−Tl(x, t)) , s(t)< x < L (8.2)

is derived from the energy conservation and heat conduction laws. In this paper, we consider the

temperature distribution in the liquid to be static as stated in (8.11) and in Assumption 14 (see

Section 8.4). Here, αi =
ki

ρici
and hi =

h̄i
ρici

, where ρi, ci, ki, and h̄i for i ∈ {s, l} are the density,

the heat capacity, the thermal conductivity, and the heat transfer coefficient, respectively and the

subscripts s and l are associated to the solid or liquid phase, respectively. Referring to [163] which

introduces a model of spatially averaged temperature for screw extrusion, we incorporate the

convective heat transfer through the barrel temperature in (8.1) (8.2). The boundary conditions at

x = 0 and x = L follow the heat conduction law, and the temperature at the interface x = s(t) is

maintained at the melting point Tm, described as

∂Ts

∂x
(0, t) =−qf(t)

ks
, Ts(s(t), t) = Tm, (8.3)

∂Tl

∂x
(L, t) =

q∗m
kl

, Tl(s(t), t) = Tm, (8.4)

where qf(t)< 0 is a freezing controller at the inlet and q∗m > 0 is a heat flux at the nozzle which

is assumed to be constant in time. The interface dynamics is derived by the energy balance at the

interface as

ρs∆Hṡ(t) = ks
∂Ts

∂x
(s(t), t)− kl

∂Tl

∂x
(s(t), t). (8.5)

The equations (8.1)-(8.5) are the solid-liquid phase change model known as the “two-phase”

Stefan problem. Such a phase change model was developed for polymer processing. Here, we
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give the following remark to emphasize the conditions for the model (8.1)-(8.5) to be physically

validated.

Remark 7 In this paper, we assume the pressure in the chamber to be static, and the melting

temperature is constant to avoid supercooling. Then, to keep the physical state of each phase, the

following conditions must hold:

Ts(x, t)≤Tm, ∀x ∈ (0,s(t)), ∀t > 0, (8.6)

Tl(x, t)≥Tm, ∀x ∈ (s(t),L), ∀t > 0, (8.7)

which represent the model validity conditions.

Remark 8 We assume the existence of a heating/cooling system that maintains the pellets at

a controlled temperature, as stated in (8.3), which describes the heat flux control at the inlet.

Extruders can be equipped with raw material preconditioners as intermediate unit operators,

which for instance help to pre-heat ingredients before they enter the extruder chamber by adding

steam. The preconditioners are usually located between the inlet and the extruder chamber, and a

continuous flow of material from the feeder to the preconditioner is maintained [131, 48].

8.4 Ink Production Control Based on Screw Speed

To ensure a continuous extrusion process, the control of the quantity of molten polymer

that remains in the extruder chamber at any given time is crucial. By definition, the volume of

fully melted material contained in the chamber is directly related to the position of the solid-liquid

interface that needs to be controlled, consequently. Physically, any given position of the interface

along the spatial domain corresponds to a melt temperature profile along the extruder.
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Steady-state solution

An analytical solution of the steady-state temperature profile denoted as
(
Ts,eq(x),Tl,eq(x)

)

for any given setpoint value of the interface position defined as sr, can be computed by setting the

time derivative of the system (8.1)-(8.5) to zero. Hence, from (8.1) and (8.2) the following set of

ordinary differential equations in space are obtained





0 = αsT ′′s,eq(x)−bT ′s,eq(x)+hs
(
Tb−Ts,eq(x)

)
,

0 = αlT ′′l,eq(x)−bT ′l,eq(x)+hl
(
Tb−Tl,eq(x)

)
,

(8.8)

and the boundary values are given as





T ′s,eq(0) = −q∗f
ks
, Ts,eq(sr) = Tm,

T ′l,eq(L) =
q∗m
kl
, Tl,eq(sr) = Tm.

(8.9)

At equilibrium, the interface equation (8.5) satisfies the following equality:

0 =ksT ′s,eq(sr)− klT ′l,eq(sr). (8.10)

The solution to the set of differential equations (8.8) has the following form





Tl,eq(x) = p1eq1(x−sr)+ p2eq2(x−sr)+Tb,

Ts,eq(x) = p3eq3(x−sr)+ p4eq4(x−sr)+Tb,

(8.11)

where

q1 =
b+
√

b2 +4αlhl

2αl
, q2 =

b−
√

b2 +4αlhl

2αl
, (8.12)

q3 =
b+
√

b2 +4αshs

2αs
, q4 =

b−
√

b2 +4αshs

2αs
. (8.13)
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Let r = Tb−Tm. Substituting (8.11) into the boundary conditions (8.9) and (8.10), we obtain

p1 =
rq2eq2(L−sr)+q∗m/kl

q1eq1(L−sr)−q2eq2(L−sr)
, (8.14)

p2 =−
rq1eq1(L−sr)+q∗m/kl

q1eq1(L−sr)−q2eq2(L−sr)
, (8.15)

p3 =
rq4 +K/ks

q3−q4
, (8.16)

p4 =
−rq3−K/ks

q3−q4
, (8.17)

K =
klr(−q1q2)

(
eq1(L−sr)− eq2(L−sr)

)
+(q1−q2)q∗m

q1eq1(L−sr)−q2eq2(L−sr)
, (8.18)

and the steady-state input is given by

q∗f =p3q3e−q3sr + p4q4e−q4sr . (8.19)

Hence, once the parameters (sr,Tb,q∗m) are prescribed, the steady-state input is uniquely obtained.

Barrel temperature condition for a valid steady-state

For the model validity, the steady-state must satisfy (8.6) and (8.7), which restricts the

barrel temperature to some physically admissible values.

Lemma 12 If the barrel temperature satisfies

−q≤ Tb−Tm ≤ q̄, (8.20)
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where

q =
(q1−q2)q∗m

qden
, q̄ =− q∗m

klq2eq2(L−sr)
, (8.21)

qden =− klq1q2

(
eq1(L−sr)− eq2(L−sr)

)
+ ksq3

(
q1eq1(L−sr)−q2eq2(L−sr)

)
, (8.22)

then the steady-state solution satisfies (8.6) and (8.7).

Proof:

Since Tl,eq(sr) = Tm, it is necessary to have T ′l,eq(sr)≥ 0 which yields

p1q1 + p2q2 ≥ 0. (8.23)

Substituting (8.14) and (8.15) into (8.23), we get

Tb−Tm ≥
(q1−q2)q∗m

klq1q2
(
eq1(L−sr)− eq2(L−sr)

) , (8.24)

knowing that q1q2 < 0. With the help of (8.23) and from (8.11) the derivative of Tl,eq(x) satisfies

T ′l,eq(x)≥ p1q1

(
eq1(x−sr)− eq2(x−sr)

)
. (8.25)

Thus, the sufficient condition of T ′l,eq(x)≥ 0 for all x ∈ (sr,L) is p1q1 ≥ 0 which yields

Tb−Tm ≤−
q∗m

klq2eq2(L−sr)
. (8.26)

Next, the solid steady-state satisfies Ts,eq(sr) = Tm, so it is necessary to have T ′s,eq(sr)≥ 0 leading

to p3q3 + p4q4 ≥ 0 which trivially holds under condition of (8.23). Hence, from (8.11), the
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derivative of Ts,eq(x) satisfies

T ′s,eq(x)≥ p4q4

(
−eq3(x−sr)+ eq4(x−sr)

)
. (8.27)

Then, the sufficient condition for T ′s,eq(x)≥ 0 is p4q4 ≥ 0, which yields

Tb−Tm ≥−
(q1−q2)q∗m

qden
. (8.28)

One can notice that condition (8.28) is less conservative than condition (8.24). Hence, combining

(8.26) and (8.28), we conclude Lemma 12.

Estimator Design of the Temperature Profile

Generally, the full-state feedback control law is designed by assuming that the spatially

distributed temperature profile can be measured. Some imaging-based thermal sensors, such as

the IR camera, enable to capture the entire profile of temperature. However, these sensors include

high noise and detect the temperature of the chamber, which contains a nominal error from the

temperature of the polymer inside. Instead, single point thermal sensors such as thermocouples

enable to accurately measure the surface temperature at the inlet of the extruder. Moreover, the

interface position between the polymer granules and the melt polymer can be detected by cameras

via image signal processing. Thus, we build an observer to estimate the temperature profile by

utilizing these two available measurements.

Let T̂s(x, t) be the estimated temperature profile. The observer design for T̂s(x, t) is stated

in the following theorem.
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Theorem 14 Consider the plant model (8.1), (8.3) with the two available measurements of

Y1(t) = s(t), Y2(t) = Ts(0, t), (8.29)

and the following PDE observer

∂T̂s

∂t
(x, t) =αs

∂2T̂s

∂x2 (x, t)−b
∂T̂s

∂x
(x, t)

+hs
(
Tb− T̂s(x, t)

)
, 0 < x < Y1(t), (8.30)

∂T̂s

∂x
(0, t) =− qf(t)

ks
− γ
(
Y2(t)− T̂s(0, t)

)
, (8.31)

T̂s(s(t), t) =Tm, (8.32)

where γ = b
2αs

. Assume that s(t) ∈ (0,L) and ṡ(t) ≥ 0 for all t ≥ 0. Then, the observer error

system is exponentially stable at the origin in the sense of the norm

Φ̃(t) := ||Ts(x, t)− T̂s(x, t)||H1
. (8.33)

More precisely, there exists a positive constant M̃ > 0 such that the following inequality holds:

Φ̃(t)≤ M̃Φ̃(0)e−2
(

hs+
b2

4αs +
αs

4L2

)
t
. (8.34)

Remark 9 As stated in Lemma 14 (Section 8.4), the assumption ṡ(t)≥ 0 for all t ≥ 0 holds under

the closed-loop control law proposed in Section 8.4.

Proof:
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Let ũ be the estimation error state defined by

ũ := Ts− T̂s. (8.35)

Subtraction of the observer system (8.30)–(8.32) from the plant (8.1) and (8.3) yields the following

estimation error system:

∂ũ
∂t

(x, t) =αs
∂2ũ
∂x2 (x, t)−b

∂ũ
∂x

(x, t)−hsũ(x, t), (8.36)

∂ũ
∂x

(0, t) =γũ(0, t), (8.37)

ũ(s(t), t) =0. (8.38)

Let us introduce the following change of variable

z̃(x, t) = ũ(x, t)e−γx. (8.39)

Then, ũ-system in (8.36)–(8.38) is converted into the following z̃-system:

∂z̃
∂t

=α
∂2z̃
∂x2 −λz̃, (8.40)

∂z̃
∂x

(0, t) =0, (8.41)

z̃(s(t), t) =0. (8.42)

where λ = hs +
b2

4αs
. To study the stability of the estimation error state at the origin, we consider

the Lyapunov functional

Ṽ =
1
2

∫ s(t)

0
z̃(x, t)2dx+

1
2

∫ s(t)

0

∂z̃
∂x

(x, t)2dx. (8.43)
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Taking the time derivative of (8.43) along the solution of (8.36)–(8.38) leads to

˙̃V =−αs

∣∣∣∣
∣∣∣∣
∂2z̃
∂x2

∣∣∣∣
∣∣∣∣
2

L2

− (αs +λ)

∣∣∣∣
∣∣∣∣
∂z̃
∂x

∣∣∣∣
∣∣∣∣
2

L2

−λ||z̃||2L2
− ṡ(t)

2
∂z̃
∂x

(s(t), t)2. (8.44)

Note that we used ∂z̃
∂t (s(t), t) =−ṡ(t) ∂z̃

∂x(s(t), t) derived from the time derivative of the boundary

condition (8.42). With the help of s(t) ∈ (0,L), Poincare’s inequality gives ||z̃||2L2
≤ 4L2|| ∂z̃

∂x ||2L2

and || ∂z̃
∂x ||2L2

≤ 4L2|| ∂2z̃
∂x2 ||2L2

. Applying these inequalities and ṡ(t)≥ 0 to (8.44) leads to the follow-

ing differential inequality

˙̃V ≤−2
(

λ+
αs

4L2

)
Ṽ . (8.45)

Applying the comparison principle to (8.45) yields

Ṽ (t)≤ Ṽ (0)e−2
(

λ+ αs
4L2

)
t
. (8.46)

By the definition of z̃ given in (8.39), for the norm of ũ-system, the following upper and

lower bounds hold ||z̃||2L2
≤ ||ũ||2L2

≤ e2γL||z̃||2L2
,
∣∣∣∣ ∂z̃

∂x

∣∣∣∣2
L2
≤ 2

∣∣∣∣∂ũ
∂x

∣∣∣∣2
L2
+ 2γ2||ũ||2L2

,
∣∣∣∣∂ũ

∂x

∣∣∣∣2
L2
≤

2e2γL(∣∣∣∣ ∂z̃
∂x

∣∣∣∣2
L2
+ γ2||z̃||2L2

)
. Hence, by defining Φ̃(t) = ||ũ||2H1

, the following inequalities hold

M̃1Ṽ ≤ Φ̃≤ M̃2Ṽ (8.47)

where M̃1 = 1/max{3,2γ2}, and M̃2 = e2γL max{3,2γ2}. Applying (8.46) to (8.47) with defining

M̃ = M̃2/M̃1 leads to the conclusion in Theorem 14.

In addition, the estimated temperature can maintain not greater value than the true temper-

ature in the plant, as stated in the following lemma.
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Lemma 13 If ũ(x,0)≥ 0, ∀x ∈ (0,s0), then

ũ(x, t)≥0, ∀x ∈ (0,s(t)), ∀t ≥ 0, (8.48)

∂ũ
∂x

(s(t), t)≤0, ∀t ≥ 0 (8.49)

Proof:

Applying Maximum principle to z̃-system governed by (8.40)–(8.42) leads to the statement that

if z̃(0, t)≥ 0, ∀x ∈ (0,s0) then z̃(x, t)≥ 0, ∀x ∈ (0,s(t)),∀t ≥ 0. By the relation between z̃ and ũ

given in (8.39), we prove Lemma 13, with the help of Hopf’s lemma.

The properties in Lemma 13 are required to guarantee the positivity of the boundary heat

input under the output feedback control design which is given in the later sections.

Remark 10 The convergence speed of the designed observer is characterized by hs+
b2

4αs
+ αs

4L2 as

seen in the estimate of the norm (8.34), which cannot be chosen arbitrary fast for given physical

constants and the manufacturing speed. The performance improvement to fasten the observer’s

convergence can be achieved by adding the measurement error injection to the observer PDE

formulated by

∂T̂s

∂t
(x, t) =αs

∂2T̂s

∂x2 (x, t)−b
∂T̂s

∂x
(x, t)+hs

(
Tb− T̂s(x, t)

)

+ p(x, t)(Y2(t)− T̂s(0, t)), 0 < x < Y1(t), (8.50)

where the distributed observer gain p(x, t) can be designed using backstepping method as

developed in Chapter 3. However, with the PDE observer (8.50), it is challenging to ensure the

positivity of the output feedback control law. Since this paper’s primary focus is on control design,

we use the PDE observer given in (8.30)–(8.32).

256



Control Design of Boundary Heat

When the solid pellets are injected and heated into the extruder chamber, the amount

of the molten polymer expands, reducing the quantity of solid material into the chamber. Thus

a cooling effect arising from the continuous feeding of cooler pellets enables to maintain the

interface at the desired setpoint. The setpoint open-loop boundary heat control qf(t) = q∗f (see

(8.9)) is not sufficient to drive the solid-liquid interface position to the desired setpoint. In this

section, we develop the control design of the boundary heat at the inlet to drive the interface to

the setpoint while stabilizing the temperature profile at the steady-state.

Reference error system for a dynamics reduced to a single phase

First, we impose the following assumption on the liquid temperature.

Assumption 14 The liquid temperature is at steady-state profile, i.e. Tl(x, t) = Tl,eq(x).

Assumption 14 reasonably describes the case where the entire extruder chamber is

filed with molten polymer at equilibrium temperature at the initial time. Thus, under the

setup introduced later in Section 8.4, the L2-norm of the reference error temperature ‖v(x, t) =

Tl(x, t)−Tl,eq(x)‖L2 converges to zero according to a straightforward Lyapunov analysis. Under

Assumption 14, the two-phase dynamics governed by (8.1)–(8.5) is reduced to a single-phase

model. Let (u(x, t), û(x, t),X(t)) be the reference error variables defined by

u(x, t) =− ks(Ts(x, t)−Ts,eq(x)), (8.51)

û(x, t) =− ks(T̂s(x, t)−Ts,eq(x)), (8.52)

X(t) =s(t)− sr. (8.53)

Note that the negative signs are included in (8.51) and (8.52) to make the states (u, û) have

positivity properties for the model validity conditions to hold. Then, the estimation error state
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ũ defined by (8.35) yields ũ(x, t) = û(x, t)− u(x, t). We rewrite the original system (8.1)–(8.5)

using the reference and estimation error states (û,X , ũ). Substituting x = s(t) into (8.52) with the

help of (8.32), we get

û(s(t), t) =ks(Ts,eq(s(t))−Tm). (8.54)

In addition, rewriting (8.5) in term of û(x, t) with ũ(x, t) leads to the following equation of

interface dynamics

Ẋ(t) =− β̄

(
∂û
∂x

(s(t), t)− ∂ũ
∂x

(s(t), t)
)
+ β̄

(
ksT ′s,eq(s(t))− klT ′l,eq(s(t))

)
, (8.55)

where β̄ = (ρs∆H)−1. Taking a linearization of the right hand side of (8.54) and (8.55) with

respect to s(t) around the setpoint sr and by the steady-state solutions in (8.11), the dynamics of

the reference error system is obtained by

∂û
∂t

(x, t) =αs
∂2û
∂x2 (x, t)−b

∂û
∂x

(x, t)−hsû(x, t), (8.56)

∂û
∂x

(0, t) =−U(t)+ γũ(0, t), (8.57)

û(s(t), t) =CX(t), (8.58)

Ẋ(t) =AX(t)− β̄
∂û
∂x

(s(t), t)+ β̄
∂ũ
∂x

(s(t), t), (8.59)

where

U(t) =− (qf(t)−q∗f ), (8.60)

C =ks (p3q3 + p4q4) , (8.61)

A =β̄
(
ks(p3q2

3 + p4q2
4)− kl(p1q2

1 + p2q2
2)
)
. (8.62)
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Backstepping transformation

A well-known design method of the output feedback control for PDEs is achieved by

introducing the backstepping transformation which maps the observer PDE with using the gain

kernel function derived for the full-state feedback control. Therefore, we consider the following

transformation:

ŵ(x, t) =û(x, t)− β̄

αs

∫ s(t)

x
φ(x− y)û(y, t)dy−φ(x− s(t))X(t), (8.63)

where φ is the gain kernel function derived in Section 4.1, which satisfies the following differential

equation with the initial condition:

αsφ
′′(x)−(b+ β̄C)φ′(x)−

(
A− β̄b

αs
C+hs

)
φ(x) = 0, (8.64)

φ(0) =0, φ
′(0) =

c
β̄
, (8.65)

where c > 0 is a control gain. The solution to (8.64) with (8.65) is uniquely given by

φ(x) =
c

β̄(d1−d2)

(
ed1x− ed2x

)
, (8.66)

where d1, d2 are defined by

d1 =
b̄+
√

D
2αs

, d2 =
b̄−
√

D
2αs

, (8.67)

b̄ =b+ β̄C, D = b̄2 +4αs

(
A− β̄b

αs
C+hs

)
. (8.68)

The full-state feedback control law is designed by

Ufull(t) =− γu(0, t)− β̄

αs

∫ s(t)

0
f (x)u(x, t)dx− f (s(t))X(t), (8.69)
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where γ = b
2αs

, and

f (x) =φ
′(−x)− γφ(−x), (8.70)

=
c

β̄(d1−d2)

(
(d1− γ)e−d1x− (d2− γ)e−d2x

)
. (8.71)

The associated output feedback control law is generally designed by replacing the plant state in

the full-state feedback control law with the observer state. Since X(t) in (8.69) can be directly

measured and its observer state is not constructed, we keep the term X(t). Moreover, for the sake

of proving the positivity of the designed control law later, we also hold the boundary value term

u(0, t) in (8.69), which can also be directly measured. Hence, the resulting observer-based output

feedback control law is designed by

U(t) =− γu(0, t)− β̄

αs

∫ s(t)

0
f (x)û(x, t)dx− f (s(t))X(t), (8.72)

Then, taking the derivatives of (8.63) in x and t along the solution of (8.56)-(8.59) with the gain

kernel function (8.66), the transformed (ŵ,X)-system (so-called ”target system”) is described by

the following dynamics

∂ŵ
∂t

(x, t) =αs
∂2ŵ
∂x2 (x, t)−b

∂ŵ
∂x

(x, t)−hsŵ(x, t)+ ṡ(t)g(x− s(t))X(t)

− β̄φ(x− s(t))
∂ũ
∂x

(s(t), t), 0 < x < s(t) (8.73)

∂ŵ
∂x

(0, t) =γŵ(0, t), (8.74)

ŵ(s(t), t) =CX(t), (8.75)

Ẋ(t) = (A−c)X(t)− β̄
∂ŵ
∂x

(s(t), t)+ β̄
∂ũ
∂x

(s(t), t), (8.76)

where g(x) = φ′(x)− β̄

αs
Cφ(x). Rewriting the control law (8.72) with respect to the boundary

heat control qf(t), the estimated temperature T̂s, the reference steady-state Ts,eq, and the measured
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variables Y1(t) and Y2(t), the resulting output feedback control is described by

qf(t) =q∗f − γks(Y2(t)−Ts,eq(0))−
β̄ks

αs

∫ Y1(t)

0
f (x)(T̂s(x, t)−Ts,eq(x))dx

+ f (Y1(t))(Y1(t)− sr). (8.77)

Theoretical Analysis for a Specific Setup

While the controller is designed through the backstepping method, the stability of the

target system is not proven theoretically. Moreover, the condition of model validity needs to be

satisfied under the control law. To achieve a theoretical result, in this section, we impose the

following assumptions.

Assumption 15 The initial condition of the estimated temperature profile is not higher than that

of the true temperature profile, i.e., T̂s(x,0)≤ Ts(x,0), for all x ∈ (0,s0), where s0 := s(0).

Assumption 16 The barrel temperature is set as melting temperature and the external heat input

is zero, i.e., Tb = Tm, q∗m = 0.

Corollary 3 Under Assumption 15, it holds ũ(x, t) ≥ 0 and ∂ũ
∂x (s(t), t) ≤ 0, for all x ∈ (0,s(t))

and for all t ≥ 0, as proven in Lemma 13.

Corollary 4 Under Assumption 16, the steady-state profiles (8.11), and steady-state input (8.19)

becomes Tl,eq(x) = Tm, Ts,eq(x) = Tm, and q∗f = 0. Also, C = 0 and A = 0.

In addition, the following setpoint restriction is given.

Assumption 17 The setpoint is chosen to satisfy

sr > s0 +
β̄ks

αs

∫ s0

0

f (x)
f (s0)

(Tm− T̂s(x,0))dx. (8.78)
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The physical meaning of Assumption 4 is that the user needs to choose the setpoint

position sr sufficiently closer to the outlet of the extruder than the initial interface position s0

depending on the initial temperature profile of the solid polymer granules. Such a choice of the

setpoint position becomes more restrictive as the initial temperature profile in the solid polymer

decreases.

The main theorem is stated as follows.

Theorem 15 Let Assumptions 14–17 hold. Then, the closed-loop system consisting of the plant

(8.1)–(8.5), the measurements (8.29), the observer (8.30)–(8.32), and the control law (8.77)

satisfies the conditions for model validity (8.6), (8.7), and is exponentially stable at the origin in

the norm

Φ̂(t) :=||Ts(x, t)−Ts,eq(x)||H1
+ ||Ts(x, t)− T̂s(x, t)||H1

+ |s(t)− sr|, (8.79)

namely, there exists a positive constant M̂ > 0 such that Φ̂(t) ≤ M̂Φ̂(0)e−dt holds, where d =

min
{

αs
16sr

+ b2

4αs
+hs,c

}
.

The proof of Theorem 15 is established by showing that (8.6) and (8.7) are satisfied and

employing a Lyapunov analysis through the remaining of this section.

Model validity condition

Let Z(t) be defined as

Z(t) =U(t)+ γu(0, t)

=− β̄

αs

∫ s(t)

0
f (x)û(x, t)dx− f (s(t))X(t). (8.80)

The following lemma is stated.
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Lemma 14 The following properties hold:

Z(t)>0, ∀t ≥ 0, (8.81)

u(x, t)>0, ṡ(t)> 0 ∀x ∈ (0,s(t)), ∀t ≥ 0, (8.82)

s(0)<s(t)< sr, ∀t ≥ 0. (8.83)

Proof:

Taking into account A = C = 0, the differential equation for φ in (8.64) is given by αsφ
′′(x)−

bφ′(x)−hsφ(x) = 0. Thus, recalling f (x) = φ′(−x)− γφ(−x), we have

αs f ′′(x)+b f ′(x)−hs f (x) =0, (8.84)

αs f ′(0)+(b−αsγ) f (0) =0. (8.85)

Taking the time derivative of (8.80) along with the solution of (8.56)–(8.59), and substituting

(8.84), (8.85), we obtain

Ż(t)≥− cZ(t)− ṡ(t) f ′(s(t))X(t), ∀t ≥ 0, (8.86)

where we used Corollary 3 and f (x)> 0. We prove (8.81) by contradiction approach. Assume

that (8.81) is not valid, which implies ∃t∗ > 0 such that

Z(t)> 0, ∀t ∈ (0, t∗), Z(t∗) = 0. (8.87)

Similarly to Lemma 13, by Maximum principle and Hopf’s lemma, we get

u(x, t)> 0, ṡ(t)> 0, ∀x ∈ (0,s(t)), ∀t ∈ (0, t∗), (8.88)
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which, with the help of Lemma 13, leads to

û(x, t)>0, s(t)> 0, ∀x ∈ (0,s(t)), ∀t ∈ (0, t∗). (8.89)

Applying (8.87) and (8.89) to (8.80) with f (x)> 0 leads to X(t)< 0, for all t ∈ (0, t∗). Therefore,

applying this inequality and (8.88) to (8.86) leads to

Ż(t)>−cZ(t), ∀t ∈ (0, t∗). (8.90)

Applying Gronwall’s inequality to (8.90) leads to Z(t)≥ Z(0)e−ct , ∀t ∈ (0, t∗]. Thus, we have

Z(t∗)≥ Z(0)e−ct∗ > 0 , which contradicts with the assumption (8.87). Hence, (8.81) is proved.

Then, by Maximum principle, (8.82) holds. Imposing (8.81) and (8.82) on (8.80), we obtain

X(t)< 0 which leads to (8.83).

Stability analysis

Taking into account A =C = 0, we study the stability of the target (w,X)-system governed

by (8.73)–(8.76). Let ẑ be a variable defined by

ẑ(x, t) = ŵ(x, t)e−γx. (8.91)
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Applying (8.91) and z̃ := ũe−γx in (8.39), the target (w,X)-system in (8.73)–(8.76) leads to the

following (ẑ,X)-system

∂ẑ
∂t
(x, t) =αs

∂2ẑ
∂x2 (x, t)−λẑ(x, t)+ ṡ(t)g(x− s(t))X(t)e−γx

− β̄φ(x− s(t))
∂z̃
∂x

(s(t), t), 0 < x < s(t) (8.92)

∂ẑ
∂x

(0, t) =0, (8.93)

ẑ(s(t), t) =0, (8.94)

Ẋ(t) =−cX(t)− β̄eγs(t)
(

∂ẑ
∂x

(s(t), t)− ∂z̃
∂x

(s(t), t)
)
, (8.95)

where λ := hs +
b2

4αs
. Consider the following functional

V̂ =
1
2

∫ s(t)

0
ẑ(x, t)2dx+

1
2

∫ s(t)

0

(
∂ẑ
∂x

(x, t)
)2

dx+
p
2

X(t)2, (8.96)

where p > 0 is to be determined. Taking the time derivative of (8.96) along with the solution of

(8.92)–(8.95), and applying Young’s, Cauchy-Schwarz, and Agmon’s inequalities, we get

˙̂V ≤−
(

αs

2
− 4pβ̄2sre2γsr

c

)∣∣∣∣
∣∣∣∣
∂2ẑ
∂x2

∣∣∣∣
∣∣∣∣
2

− (αs +λ)

∣∣∣∣
∣∣∣∣
∂ẑ
∂x

∣∣∣∣
∣∣∣∣
2

−λ||ẑ||2− pc
2

X(t)2

+

(
β̄

2||φ||2
(

1
2hs

+
1
αs

)
+

pβ̄2e2γsr

c

)
∂z̃
∂x

(s(t), t)2

+
ṡ(t)
2

(
(1+ ḡ)X(t)2 + ||g||2||ẑ||2 +

∣∣∣∣
∣∣∣∣
∂ẑ
∂x

∣∣∣∣
∣∣∣∣
2
)
. (8.97)
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where ḡ :=maxs(t)∈(0,sr)(g(0)
2+g(−s(t))2+ ||g′||2). Choosing p= cαse−2γsr

16β̄2sr
, the inequality (8.97)

is led to

˙̂V ≤− αs

4

∣∣∣∣
∣∣∣∣
∂2ẑ
∂x2

∣∣∣∣
∣∣∣∣
2

− (αs +λ)

∣∣∣∣
∣∣∣∣
∂ẑ
∂x

∣∣∣∣
∣∣∣∣
2

−λ||ẑ||2− pc
2

X(t)2

+aṡ(t)V̂ +M1

∣∣∣∣
∣∣∣∣
∂2z̃
∂x2

∣∣∣∣
∣∣∣∣
2

, (8.98)

where a=max{ (1+ḡ)
p , ||g||2,1}, M1 = 4sr

(
β̄2||φ||2

(
1

2hs
+ 1

αs

)
+ αs

16sr

)
. Thus, using the Lyapunov

function Ṽ in (8.43) for the estimation error z̃-system (8.40)–(8.42), we define the Lyapunov

function for the total (ẑ,X , z̃)-system as

V = V̂ +
2M1

αs
Ṽ . (8.99)

Combining the inequalities (8.44) and (8.98) leads to

V̇ ≤−dV +aṡ(t)V, (8.100)

where d = min
{

αs
16sr

+λ,c
}

. Following the procedure in Chapter 2, the inequality (8.100) with

(8.82) and (8.83) leads to the exponential norm estimate

V (t)≤ ea(s(t)−s0)V (0)e−dt ≤ easrV (0)e−dt . (8.101)

Let Ψ(t) = ||w||2H1
+X(t)2. Then, we have MV ≤Ψ(t)≤ M̄V where M̄ = 2max{e2γsr(1+γ2), 1

p},

M =
(
max{2(1+ γ2), p

2}
)−1. Therefore, Ψ(t)≤ M̄

M easrΨ(0)e−dt , which proves the exponential

stability of the target w-system in H1-norm. Since the u-system in (8.56)-(8.59) and the target

w-system in (8.73)-(8.76) have equivalent stability property due to the invertibility of the back-

stepping transformation (8.63), the exponential estimate in H1-norm is also guaranteed for the

u-system, which concludes the proof of Theorem 15.
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Table 8.1: HDPE parameters obtained by [154].

melting point Tm 135◦C
specific heat solid cs 1895Jkg−1K−1

specific heat melt cl 2640Jkg−1K−1

therm. conduct. solid ks 0.373Wm−1K−1

therm. conduct. melt kl 0.324Wm−1K−1

solid density ρs 955kgm−3

melt density ρl 780kgm−3

heat of fusion ∆H 39000Jkg−1

8.5 Simulation Results

Setup and method

For numerical study to investigate the controller’s performance in different operating

conditions, we have employed the simulation of the original ”two-phase” model governed by

(8.1)–(8.5) without assuming that the liquid phase is at stead-state, run the PDE observer given

in (8.30)–(8.32), and implemented the associated output feedback controller (8.77). We used

the boundary immobilization method to obtain a fixed boundary system and discretized the

system with finite differences to construct a finite dimensional representation of the model and

the estimate.

Using Matlab’s ode23s solver, we simulated the setup with three different advection speeds

b ranging from 2[mm/s] to 50[mm/s], to cover a wide spectrum of operating modes. The material

parameters are chosen from [154], in which distinct values for high-density polyethylene in solid

and liquid state were experimentally derived (see Table 8.1). The extruder length is given by a

physical device, and here we used L=10[cm]. The initial conditions of the true temperature profile

and the estimated temperature profiles are set as linear profiles with the boundary temperature T

and T̂ , namely, Ts(x,0) = (T −Tm)(1− x/s0)+Tm, T̂s(x,0) = (T̂ −Tm)(1− x/s0)+Tm. In the

simulation, we set T = 125[◦C] and T = 105[◦C] to satisfy Assumption 15.
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(a) The time evolution of the interface position.
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(b) The time evolution of the boundary temperature.

Figure 8.2: The closed-loop responses under the control gains c =0.05[/s] (dash), c =0.2[/s]
(solid), and c =0.4[/s] (dotted). The convergence of the interface position is sufficiently fast and

the boundary temperature remains a reasonable range for c =0.2[/s] (solid).

The free parameters are the constant barrel temperature Tb, the auxiliary heat input q∗m at

the outlet, and the control gain c. The barrel temperature and the auxiliary heat input are chosen

so that they neutralize the cooling effect of the initial temperature in the solid phase within a
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(a) For each operating speed, the interface position is stabilized after 6 minutes.
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(b) The transient of the control input gets shorter as the operation gets faster.
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(c) The boundary temperature maintains reasonable value for the material and safe operation.

Figure 8.3: The closed-loop responses under the proposed output feedback control law for each
operating speed.
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Figure 8.4: The comparison of the true and estimated temperature profiles at t = 0 [s], t = 0.2
[s], and t = 0.4 [s].

range close to the conditions imposed in Section 8.4, namely, the barrel temperature is chosen

close to the melting temperature Tb and the auxiliary heat input is chosen as a positive value

close to zero. Since the initial profile of the estimated temperature is slightly below the melting

temperature, the cooling effect of the initial temperature is limited, and thereby we set the free
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parameters sufficiently close to the specific setup, Tb = 145[◦C] and q∗m = 100 W/m2 .

Gain tuning

For a given advection speed, the control gain c is adjusted so that the following two

properties are observed:

• The convergence of the interface position to the setpoint position is achieved sufficiently

fast.

• The temperature in the solid phase maintains a reasonable value during the process.

As the control gain gets larger, the convergence becomes faster, however, the temperature in the

solid phase can reach an unreasonably low value due to the large amount of the cooling input.

Hence, we aim to choose a suitable value of the control gain c. First, we test three simulations

under the small advection speed b =2[mm/s] by setting the control gain as c =0.05[/s], c =0.2[/s],

and c =0.4[/s], respectively. The closed-loop responses of the interface position s(t) and the

boundary temperature Ts(0, t) are depicted in Fig. 8.2 (a) and (b), respectively. From Fig. 8.2 (a),

we can observe that the convergence of the interface position with c =0.05[/s] takes approximately

10[min], while those with c =0.2[/s] and c =0.4[/s] take 6[min]. Additionally, from Fig. 8.2

(b), the boundary temperature with c =0.4[/s] reaches a value around 20[◦C] that is a relatively

low temperature while the boundary temperatures with c =0.05[/s] and c =0.2[/s] remain the

reasonable range 80[◦C]–135[◦C]. Therefore, the control gain c =0.2[/s] is a suitable value which

satisfies the two desired properties.

Simulation results

Following the gain tuning, the simulation results for higher advection speed b =10[mm/s]

and b =50[mm/s] are performed, and the control gain is adjusted as c =1.0[/s] and c =5.0[/s],
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respectively. For these advection speeds and the adjusted control gains, the closed-loop responses

of the interface position s(t), the boundary control input qf(t), and the boundary temperature

Ts(0, t) are shown in Fig. 8.3 (a)–(c), respectively. The interface responses, depicted in Fig. 8.3

(a), have quite similar behaviors in all three setups. However, the control input, shown in Fig. 8.3

(b), appears to act faster for higher advection speeds but exhibits similar qualitative behavior.

Similar properties were observed in the boundary temperature response in Fig.8.3 (c). Note that

all three figures have different time ranges.

Moreover, for the fast operating condition b =50[mm/s], the comparison of the estimated

temperature profile and the true temperature profile at t =0[sec], 0.2[sec], 0.4[sec] are shown in

Fig. 8.4 (a)–(c), respectively. We can observe that the estimated temperature profile gets almost

the same as the true temperature profile at 0.4[sec], associated with the expansion of the solid

granules’ region. Hence, the convergence of the designed observer to the true temperature profile

is approximately 1000 times faster than the convergence of the interface position to the setpoint

position, which is a sufficiently quick performance of the temperature estimation.

Comparison with PI control

For comparison, we also tested a closed-loop setup with PI control given by

qf(t) = q∗f +KP(s(t)− sr)+KI

∫ t

t0
(s(τ)− sr)dτ, (8.102)

where KP and KI are gain parameters to be tuned in order to achieve the desired performance.

However, for any choice of the parameters we have tried, the closed-loop response of the interface

position does not stabilize at the setpoint sr. Fig. 8.5 depicts the responses under PI control with

a relatively suitable choice of the gains. The plot in Fig. 8.5 (b) shows that the temperature at

the inlet of the extruder gets above the melting temperature at approximately 2.9 [min], which

violates the validity condition (8.7) of the solid polymer temperature, while our proposed output
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(a) The interface position causes a huge overshoot and is not stabilized.
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(b) The boundary temperature is heated up after 1 (min) and gets above the melting temperature after 2.9
(min), which violates the condition for the solid phase temperature.

Figure 8.5: The closed-loop response under PI control. The performance is bad due to the
violation of the physical condition.

feedback control guarantees to satisfy the condition under the closed-loop system. Such an

overshoot behavior beyond the melting temperature might be reduced by PID control; however,

the velocity of the interface position is nearly impossible to measure online, and the differentiator

generally causes high noise. Overall, the proposed output feedback control law illustrates superior

performance to PI control in terms of both convergence to the setpoint and the validity condition.

From the simulations, we conclude that our control design achieves a stable interface

position, even with very fast advection speeds 50 mm/s, with which a particle inserted in the inlet

273



will travel in two seconds through the extruder, when assuming a 10 cm extruder.

8.6 Conclusion and Future Work

In this chapter, we designed an observer and the associated output feedback control to

stabilize a filament production process of the screw extrusion-based polymer 3D-printing. The

steady-state analysis is provided by setting the setpoint as a given value, and the control design to

stabilize the interface position is derived. The simulation results illustrate the effectiveness of the

boundary feedback control law for some given screw speeds. While the theoretical analysis in

this chapter is established under the assumptions on the liquid phase temperature maintaining

the steady-state temperature and on the heat flux at the outlet being zero, it is expected to further

developing the control law for the two-phase system following Chapter 5, and guaranteeing the

robustness of the control with respect to the non-zero heat flux at the outlet following Chapter 4,

which could relax the aforementioned two assumptions.
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Chapter 9

Metal 3D-Printing via Selective Laser

Sintering

9.1 Selective Laser Sintering

Metal Additive Manufacturing (AM) is a state-of-the-art manufacturing technology which

has emerged rapidly in the recent decade as observed from the growth in global market. AM’s

impact relies on products and supply chains in numerous industries such as automobiles, consumer

electronics, aerospace, medical devices, etc [32]. While industrial AM systems for polymer

materials can produce reasonable quality for customers, AM for metallic materials still has room

for quality improvement.

Selective Laser Sintering (SLS) is the most common technique of the powder-bed fusion

AM processes that fabricate structurally sound three-dimensional products from a computer-aided

design (CAD) models [1]. Using a high powered laser, a thin layer of the metal powder at the

surface of the bed is fused to produce a desired geometry. A melt pool created by the laser

solidifies to a solid metal component. Such a layer-by-layer process to fabricate the entire object

enables a relatively fast process speed together with complex geometry.
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As the phase transformation of the metal powder occurs in a short time scale while

operating a fast scanning speed of the laser, SLS yields an inhomogeneous temperature field

which leads to a complex computational prediction of the geometry of the melt pool (see for

example [91]). The large thermal gradient inside the metal can lead to brittle parts, and thus

the temporal evolution of the temperature field has a significant role to guarantee the quality

of the fabrication. Using a thermodynamic model for phase transformations, several research

articles have studied the evolution of the melt pool in SLS by means of Stefan problem [60], and

employed Finite Element (FE) methods to obtain computational models [132, 2, 29, 34]. The

Stefan problem is governed by a parabolic Partial Differential Equation (PDE) for temperature

field defined on the time-varying spatial domains of the melting front, whose evolution is given

by the Neumann boundary value of the PDE state at the front position. A comprehensive review

of the thermal modeling of melt pool dynamics in SLS can be found in [182].

Process control for SLS has been developed to guarantee sufficient mechanical properties

of the fabricated three-dimensional object. For instance, in [183] a control system to eliminate

thermal gradients in the post-sintering temperature is designed using an IR camera as a sensor

and laser power density as an actuator. Repetitive control methods for SLS-based AM have been

developed in [164, 165] by utilizing three-dimensional finite element simulation for the melt-pool

evolution. As a powder deposition process, [26] proposed a control design for laser power and

scanning speed to drive the solid-liquid interface position in the melt pool to some pre-determined

setpoint geometry using an adjoint-based optimization for the Stefan problem developed in [63].

9.2 Physical Model

SLS is a common AM technique as layer-by-layer process to fabricate a 3D-object through

repetitive phenomena of the melting and solidification. At each layer, firstly the solid object

under the process of fabrication is covered by a thin granular metal powder layer at the surface.
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Figure 9.1: Schematic of the powder-bed metal AM via Selective Laser Sintering (SLS). The
melt pool is generated due to the emission of the laser energy.

Next, a laser beam is injected through reflection by scanner mirrors to heat up and fuse the metal

powder at selective areas of the surface. A local melt pool is developed by the laser power in the

metal powder. Through a phase change phenomena, the domain of the melt pool is given by the

position of the melting front that is varying in time. This configuration is depicted in Fig. 9.1.

The physical modeling of the melt pool dynamics has been developed in literature by means of

a Stefan problem. Following the work in [2] for one-dimensional approximation of the Stefan

problem in the vertical direction, and incorporating the in-domain effect of the laser power to the
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temperature dynamics, we consider the following governing equations:

∂T
∂t

(x, t) =α
∂2T
∂x2 (x, t)+g(x)qc(t), x ∈ (0,s(t)), (9.1)

−k
∂T
∂x

(0, t) =qc(t), (9.2)

T (s(t), t) =Tm, (9.3)

ṡ(t) =−β
∂T
∂x

(s(t), t), (9.4)

where T (x, t) denotes the temperature profile in the melt pool along the vertical coordinate

x ∈ (0,s(t)), α := k
ρcp

is the diffusion coefficient, k is the thermal conductivity, ρ is the density,

cp is the specific heat capacity, Tm is the constant melting temperature, β := k
ρHf

with the latent

heat of fusion Hf, and qc(t) is the controlled laser power. By Beer’s law for optical penetration of

the energy, in [132] the spatially varying function g(x) is given by g(x) = 1
ρcpδ

exp
(
− x

δ

)
, where δ

is called optical penetration rate. Here, we consider a broader class of the spatial function g(x)

satisfying the following assumption.

Assumption 18 The spatially varying function g(x) is positive, i.e., g(x)≥ 0, ∀x≥ 0.

The condition to validate the physical model (9.1)–(9.4) is given in the following remark.

Remark 11 The model (9.1)–(9.4) is physically valid if and only if

T (x, t)≥ Tm, ∀x ∈ (0,s(t)), ∀t ≥ 0. (9.5)

Based on the above condition, we impose the following assumption on the initial data.

Assumption 19 s0 := s(0)> 0, T0(x) := T (x,0)≥ Tm for all x∈ [0,s0], and T0(x) is continuously

differentiable in x ∈ [0,s0].

A sufficient condition to guarantee (9.5) is given by the following lemma.
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Lemma 3 If qc(t)> 0 for all t ∈ [0, t1) for some t1 > 0, then T (x, t)> Tm for all x ∈ (0,s(t)) and

for all t ∈ [0, t1). Moreover, if qc(t)> 0 for all t ≥ 0, then T (x, t)> Tm for all x ∈ (0,s(t)) and

for all t ≥ 0.

Lemma 3 is proven by applying the maximum principle and Hopf’s lemma for parabolic PDEs as

shown in [50] (p. 26, Corollary 2). Therefore, the condition qc(t)> 0 for all t ≥ 0 stands as a

constraint of the laser power input, which needs to be ensured after the feedback control law is

designed.

9.3 State Feedback Control

Problem statement and main result

The steady-state solution (Teq(x),seq) of the system (9.1)-(9.4) with zero laser power

qc(t) = 0 yields a uniform melting temperature Teq(x) = Tm and a constant interface position

given by the initial data. As proposed in [26], driving the depth of the melt pool to the setpoint is

desired in AM, and thus we design qc(t)> 0 such that the interface position s(t) converges to the

setpoint sr. A restriction on the choice of the setpoint is given in the following assumption.

Assumption 20 Given the initial conditions T0(x) and s0, the setpoint sr is chosen to satisfy the

following inequality:

sr > s0 +
β

α

∫ s0

0
(T0(x)−Tm)dx. (9.6)

The necessity of Assumption 20 can be derived by considering the energy conservation

law described by

d
dt

(
k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β

s(t)
)
=

(
1+

k
α

∫ s(t)

0
g(x)dx

)
qc(t). (9.7)
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Imposing the constraint qc(t) > 0 for all t ≥ 0 and taking the time integration of (9.7) from

the initial time to infinity, the condition given in Assumption (20) is obtained. Under these

assumptions, we design the control law and state our main result as follows.

Theorem 6 Under Assumptions 18–20, the closed-loop system consisting of the plant (9.1)–(9.4)

and the control law

qc(t) =−c
(

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β
(s(t)− sr)

)
, (9.8)

where c > 0 is a control gain, satisfies the model validity condition (9.5), and there exists a

positive constant M > 0 such that the norm

Φ(t) := ||T (x, t)−Tm||2H1
+(s(t)− sr)

2, (9.9)

satisfies the following exponential decay

Φ(t)≤MΦ(0)e−bt , (9.10)

where b = min
{

α

4s2
r
,c
}

, namely, the origin of the closed-loop system is exponentially stable in

the spatial H1 norm.

Remark 12 The control law (9.8) is equivalent to the design developed in Section 2.3 for the

system without in-domain effect, as we can see that (9.8) is not dependent on the spatially

varying function g(x). Hence, the stability of the closed-loop system is robust with respect to the

uncertainty of g(x) as far as Assumption 18 holds.

The proof of Theorem 6 is established through the remainder of this section by following

the steps in Chapter 2.
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Reference error and target system

We define the reference error states as follows

u(x, t) = T (x, t)−Tm, X(t) = s(t)− sr. (9.11)

Using these variables, the original system (9.1)–(9.4) is led to the following reference error system

ut(x, t) =αuxx(x, t)+g(x)qc(t), x ∈ (0,s(t)), (9.12)

−kux(0, t) =qc(t), (9.13)

u(s(t), t) =0, (9.14)

Ẋ(t) =−βux(s(t), t). (9.15)

Following the procedure in Chapter 2, we introduce the following backstepping transformation

w(x, t) =u(x, t)− c
α

∫ s(t)

x
(x− y)u(y, t)dy+

c
β
(s(t)− x)X(t). (9.16)

Taking the time and spatial derivatives of (9.16) along the solution of (9.12)–(9.15) yields the

following target system

wt(x, t) =αwxx(x, t)+
c
β

ṡ(t)X(t)+ ḡ(x,s(t))qc(t), (9.17)

w(s(t), t) =0, (9.18)

wx(0, t) =0, (9.19)

Ẋ(t) =− cX(t)−βwx(s(t), t), (9.20)
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where

ḡ(x,s(t)) :=g(x)− c
α

∫ s(t)

x
(x− y)g(y)dy. (9.21)

The boundary condition (9.13) leads to the control design

qc(t) =−ck
(

1
α

∫ s(t)

0
u(x, t)dx+

1
β

X(t)
)
, (9.22)

which is equivalent to (9.8).

Model validity conditions

To guarantee the condition (9.5) for the model validity to hold under the closed-loop

system, we provide the following lemma.

Lemma 4 The closed-loop system of (9.12)–(9.15) under the control law (9.22) satisfies the

following properties:

qc(t)>0, ∀t ≥ 0, (9.23)

u(x, t)>0, ∀x ∈ (0,s(t)), ∀t ≥ 0, (9.24)

ṡ(t)>0, ∀t ≥ 0, (9.25)

s0 < s(t)<sr, ∀t > 0. (9.26)

Proof:

First, we use contradiction approach to prove (9.23), namely, we assume that there exists a

finite time t∗ > 0 such that qc(t) > 0, ∀t ∈ [0, t∗) and qc(t∗) = 0. Then, by Lemma 3, we have

u(x, t)> 0, ∀x ∈ (0,s(t)), ∀t ∈ [0, t∗), and ṡ(t)> 0, ∀t ∈ [0, t∗). Then, by the control law (9.22),

we deduce 0 < s0 < s(t)< sr, ∀t ∈ (0, t∗). Taking the time derivative of the control law (9.22)
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leads to

q̇c(t) =− c
(

1+
k
α

∫ s(t)

0
g(x)dx

)
qc(t). (9.27)

Applying s(t)< sr ∀t ∈ (0, t∗) with the help of g(x)≥ 0 yields the following inequality

q̇(t)>−c
(

1+
k
α

∫ sr

0
g(x)dx

)
qc(t), ∀t ∈ (0, t∗). (9.28)

Applying comparison principle to (9.28), we get the following inequality

qc(t)> qc(0)e(−c(1+ k
α

∫ sr
0 g(x)dx)t), ∀t ∈ (0, t∗). (9.29)

Hence, qc(t∗) ≥ qc(0)exp
(
−c
(
1+ k

α

∫ sr
0 g(x)dx

)
t∗
)
. However, Assumption 20 for setpoint re-

striction ensures qc(0)> 0, and hence qc(t∗)> 0, which contradicts with the imposed assumption

qc(t∗) = 0. Thus, the positivity (9.23) is proven. Moreover, the properties (9.24)–(9.26) are

shown by applying Lemma 3 for infinite time domain, and extending the manner we presented at

the beginning of this proof for finite time domain to the infinite time domain.

Moreover, we have the following lemma.

Lemma 5 The control law (9.22) under the closed-loop system satisfies the following inequalities

qc(0)e(−c(1+ k
α

∫ sr
0 g(x)dx)t) < qc(t)< qc(0)e−ct , ∀t ≥ 0. (9.30)

Applying the conditions (9.23) and (9.26) to (9.27) with the use of comparison principle directly

leads to (9.30).
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Stability proof

In this section, we prove the exponential stability of the closed-loop system by Lyapunov

method with the help of the properties shown in Lemmas 4 and 5. First, we prove the stability of

the target (w,X)-system given in (9.17)–(9.20). Note that for this target system, Poincare’s and

Agmon’s inequalities are given by

||w||2 ≤4s2
r ||wx||2, ||wx||2 ≤ 4s2

r ||wxx||2, (9.31)

wx(s(t), t)2 ≤4sr||wxx||2. (9.32)

Let V be the Lyapunov function defined by

V (t) =
1

2s2
r
||w||2 + 1

2
||wx||2 +

p
2

X(t)2. (9.33)

Taking the time derivative of (9.33) along the solution of (9.17)–(9.20) leads to

V̇ (t) =− α

s2
r
||wx||2 +

c
βs2

r
ṡ(t)X(t)

∫ s(t)

0
w(x, t)dx+

1
s2

r

∫ s(t)

0
ḡ(x,s(t))w(x, t)dxqc(t)

−α||wxx||2−
c
β

ṡ(t)X(t)wx(s(t), t)−
1
2

ṡ(t)wx(s(t), t)2

−
∫ s(t)

0
ḡ(x,s(t))wxx(x, t)dxqc(t)− pcX(t)2− pβX(t)wx(s(t), t) (9.34)

Applying Cauchy Schwarz, Young’s, and Poincare’s inequalities to the term on the second line in

(9.34), for a positive constant γ1 > 0, we get

∫ s(t)

0
ḡ(x,s(t))w(x, t)dxqc(t)≤ 2γ1s2

r ||wx||2 +
1

2γ1
||ḡ||2qc(t)2. (9.35)
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Applying Young’s and Cauchy Schwarz inequalities to the term on the fifth line in (9.34), for a

positive constant γ2 > 0, we get

−
∫ s(t)

0
ḡ(x,s(t))wxx(x, t)dxqc(t)≤

||ḡ||2
2γ2
||wxx||2 +

γ2

2
qc(t)2. (9.36)

Applying Young’s and Agmon’s inequalities, we get

−pβX(t)wx(s(t), t)≤
pc
2

X(t)2 +
2pβ2sr

c
||wxx||2. (9.37)

Therefore, by applying (9.35)–(9.37) to (9.34) with setting

γ1 =
α

4s2
r
, γ2 =

2||ḡ||2
α

, p =
cα

4β2sr
, (9.38)

we arrive at

V̇ (t)≤− α

8s2
r

(
||wx||2 +

1
s2

r
||w||2

)
− pc

2
X(t)2

+
3
α
||ḡ||2qc(t)2 + ṡ(t)

(
1

2s3
r
||w||2 + 8src

α

p
2

X(t)2
)

≤−bV +aṡ(t)V +
3
α
||ḡ||2qc(t)2, (9.39)

where

a = max
{

1
sr
,
8src

α

}
, b = min

{
α

4s2
r
,c
}
. (9.40)

Let W be the functional defined by

W (t) =V (t)e−as(t). (9.41)
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With the use of (9.39), the time derivative of (9.41) is shown to satisfy

Ẇ (t)≤−bW (t)+
3
α
||ḡ||2qc(t)2e−as(t). (9.42)

Recalling the definition of ḡ in (9.21) and applying Young’s and Cauchy Schwarz inequalities,

the spatial L2 norm is bounded by

||ḡ||2 ≤2
∫ s(t)

0

(
g(x)2 +

(
c
α

∫ s(t)

x
(x− y)g(y)dy

)2
)

dx

≤2||g||2 +2
c2

α2

∫ s(t)

0

(∫ s(t)

x
(x− y)g(y)dy

)2

dx

≤2
(

1+
c2s4

r
12α2

)
||g||2L2(0,sr)

, (9.43)

which is time-independent. By Lemma 5, the square of the controller is bounded by

qc(t)2 ≤qc(0)2e−2ct . (9.44)

Applying (9.43) and (9.44) to (9.42), we get

Ẇ (t)≤−bW (t)+Nqc(0)2e−2ct , (9.45)

where N is a positive constant defined by

N =
6
α

(
1+

c2s4
r

12α2

)
||g||2L2(0,sr)

. (9.46)

Applying comparison principle to (9.45) leads to

W (t)≤W0e−bt +Nqc(0)2e−bt
∫ t

0
e−(2c−b)τdτ (9.47)
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Noting b=min
{

α

4s2
r
,c
}

given in (9.40), it is easy to see that 2c> b. Thus, through the calculation

of the integration, the inequality (9.47) is led to

W ≤
(

W0 +
Nqc(0)2

2c−b

)
e−bt . (9.48)

By V =Weas(t), (9.48) leads to the inequality of V as

V ≤eas(t)
(

W0 +
Nqc(0)2

2c−b

)
e−bt ,

≤easr

(
V0 +

Nqc(0)2

2c−b

)
e−bt . (9.49)

By the invertibility of the transformation, there exist positive constants M̄ > 0 and M > 0 such

that for the norm of the original (u,X)-system and the norm of the target (w,X)-system, it holds

MΦ(t)≤V (t)≤ M̄Φ(t), (9.50)

where

Φ(t) := ||u||2H1
+X(t)2. (9.51)

Moreover, since the control law is qc(t) =−ck
(

1
α

∫ s(t)
0 u(x, t)dx+ 1

β
X(t)

)
, taking the square of

the control law and applying Young’s and Cauchy-Schwarz inequalities lead to the following

inequality

qc(0)2 ≤ LΦ(0), (9.52)
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where L = 2c2k2 max{ sr
α2 ,

1
β2}. Combining these, we arrive at

Φ(t)≤ easr

M

(
M̄+

NL
2c−b

)
Φ0e−bt , (9.53)

from which the origin of the closed-loop system of (u,X) is shown to be exponentially stable.

9.4 Observer and Output Feedback Control Design

Here, we construct a state observer to estimate the temperature profile with measuring

only the position of the melting front s(t), and design an output-feedback control law for the

actuated laser power by utilizing the estimated temperature profile. Therefore, the measured

output y(t) is given by

y(t) = s(t). (9.54)

Throughout this section, we assume that the output (9.54) does not include a disturbance for the

purpose of proving the stability of the closed-loop system. In later section, we study the numerical

simulation with including the disturbance in the measurement (9.54).

Observer for the temperature profile

Let û(x, t) be the estimate of the reference error of the temperature u(x, t) = T (x, t)−

Tm. We design the PDE observer for û as a copy of the plant (9.12)–(9.14) with utilizing the
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measurement y(t) as the domain of the PDE estimator as follows:

ût(x, t) =αûxx(x, t)+ ĝ(x)qc(t), x ∈ (0,y(t)), (9.55)

−kûx(0, t) =qc(t), (9.56)

û(y(t), t) =0, (9.57)

where ĝ(x) is the guess of the spatial function g(x) in the plant, which is essentially uncertain.

Let ũ be the estimation error state defined by ũ := u− û. Then, the dynamics of ODE (9.15) can

be rewritten with respect to û and ũ as follows:

Ẋ(t) =−βûx(s(t), t)−βũx(s(t), t). (9.58)

Subtracting the observer PDE (9.55)–(9.57) from the plant PDE (9.12)–(9.14), we get the dynam-

ics of the estimation error as follows:

ũt(x, t) =αũxx(x, t)+ g̃(x)qc(t), x ∈ (0,s(t)), (9.59)

ũx(0, t) =0, (9.60)

ũ(s(t), t) =0, (9.61)

where g̃(x) := g(x)− ĝ(x).

Output feedback control design and stability proof

The output feedback control law is designed by replacing the plant state u in the full-state

feedback control law (9.22) with the observer state û, resulting in the following description

qc(t) =−c
(

k
α

∫ y(t)

0
û(x, t)dx+

k
β
(y(t)− sr)

)
. (9.62)
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To prove the stability of the closed-loop system, we require the following assumptions.

Assumption 21 û(x,0)≥ u(x,0)≥ 0 for all x ∈ (0,s0).

Assumption 22 ĝ(x)≥ g(x)≥ 0 for all x ∈ (0,sr).

Assumption 23 The setpoint sr is chosen to satisfy

sr > y(0)+
β

α

∫ y(0)

0
û(x,0)dx. (9.63)

Remark 13 ĝ(x) can be chosen so that Assumption 22 holds. In laser sintering, g(x) is given by

g(x) = 1
ρcpδ

e−
x
δ , and the penetration rate coefficient δ is highly uncertain. However, it is possible

to know the upper bound δ and lower bound δ, i.e., 0 < δ ≤ δ ≤ δ < ∞. Thus, a conservative

choice of ĝ(x) to satisfy Assumption 22 is

ĝ(x) =
1

ρcpδ
exp
(
−x

δ

)
. (9.64)

The theorem for the observer-based output feedback control is given below.

Theorem 7 Under Assumptions 21–23, consider the closed-loop system consisting of the plant

(9.12)–(9.15), the measurement (9.54), the observer (9.55)–(9.57), and the output feedback

control (9.62). Then, for any ĝ(x) satisfying

∫ sr

0
(g(x)− ĝ(x))2dx≤ α

80k2sr
, (9.65)

the closed-loop system satisfies the model validity condition (9.5), and there exists a positive

constant M > 0 such that the norm

Φ(t) := ||u||2H1
+(s(t)− sr)

2 + ||ũ||2H1
, (9.66)
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satisfies the following exponential decay

Φ(t)≤MΦ(0)e−bt , (9.67)

where b = 1
4 min

{
α

4s2
r
,c
}

, namely, the origin of the closed-loop system is exponentially stable in

the spatial H1 norm.

The proof of Theorem 7 is provided in the remainder of this section.

Model validity conditions

First, we prove the following lemma that is analogous to Lemma 4.

Lemma 6 The closed-loop system satisfies the following properties:

qc(t)>0, ∀t ≥ 0, (9.68)

ũ(x, t)<0, ∀x ∈ (0,s(t)), ∀t ≥ 0, (9.69)

ũx(s(t), t)>0, ∀t ≥ 0, (9.70)

u(x, t)>0, ∀x ∈ (0,s(t)), ∀t ≥ 0, (9.71)

s0 < s(t)<sr, ∀t > 0. (9.72)

Proof:

We use the contradiction approach. Assume that there exists a finite time t1 > 0 such that (9.68)

is violated, namely, qc(t)> 0 for all t ∈ (0, t1) and qc(t1) = 0. Then, owing to g̃(x)< 0 given by

Assumption 22, the estimation error PDE (9.59) satisfies ũt(x, t)< αũxx, and thereby applying

maximum principle to ũ-system leads to the negativity of the solution, i.e., ũ(x, t) < 0, for all
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x ∈ (0,s(t)), for all t ∈ (0, t1), and

ũx(s(t), t)≥ 0, ∀t ∈ (0, t1). (9.73)

Taking the time derivative of the control law (9.62) along the solution of (9.55)–(9.58) leads to

the following differential equation

q̇c(t) =−c
(

1+
k
α

∫ s(t)

0
ĝ(x)dx

)
qc(t)+ ckũx(s(t), t). (9.74)

Applying (9.73) to (9.74) leads to

q̇c(t)>−c
(

1+
k
α

∫ s(t)

0
ĝ(x)dx

)
qc(t), ∀t ∈ (0, t1). (9.75)

Using the same procedure as the derivation in Lemma 4, the differential inequality (9.75) leads to

the following inequality of the solution

qc(t)> qc(0)e(−c(1+ k
α

∫ sr
0 ĝ(x)dx)t), ∀t ∈ (0, t1). (9.76)

Thus, we have qc(t1)> 0, which contradicts with the assumption qc(t1) = 0. Hence, we deduce

(9.68), and again applying the maximum principle to (9.59)–(9.61) leads to the properties (9.69)

and (9.70) for all t ≥ 0. The conditions (9.71) and (9.72) are derived by same procedure as in

Lemma 4.

Stability analysis

To study the stability of the plant states (u,X) under the output feedback design (9.62),

we prove the stability of coupled ũ-system (9.59)–(9.61) and (û,X)-system (9.55)–(9.58). As

in full-state feedback design, we introduce the following backstepping transformation from
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(û,X)-system to (ŵ,X)-system:

ŵ(x, t) =û(x, t)− c
α

∫ s(t)

x
(x− y)û(y, t)dy+

c
β
(s(t)− x)X(t). (9.77)

Taking the time and spatial derivatives of (9.77) together with (9.55)–(9.58) yields the following

target system:

ŵt(x, t) =αŵxx(x, t)+
c
β

ṡ(t)X(t)+ ḡ(x,s(t))qc(t)

− c(s(t)− x)ũx(s(t), t), (9.78)

ŵ(s(t), t) =0, (9.79)

ŵx(0, t) =0, (9.80)

Ẋ(t) =− cX(t)−βŵx(s(t), t)−βũx(s(t), t). (9.81)

First, we prove the stability of the coupled ũ-system (9.59)–(9.61) and (ŵ,X)-system (9.78)–

(9.81). Consider the functional Ṽ defined by

Ṽ =
1

2s2
r
||ũ||2 + 1

2
||ũx||2. (9.82)

Taking the time derivative of (9.82) along the solution of (9.59)–(9.61), we get

˙̃V =− α

s2
r
||ũx||2 +

∫ s(t)

0
ũ(x, t)g̃(x)dxqc(t)−

ṡ(t)
2

ũx(s(t), t)2−α||ũxx||2

−
∫ s(t)

0
ũxx(x, t)g̃(x)dxqc(t). (9.83)

Applying Young’s and Cauchy-Schwarz inequalities to (9.83) leads to

˙̃V ≤−α

2
||ũxx||2−

α

2s2
r
||ũx||2 +

5
2α
||g̃||2|qc(t)|2. (9.84)
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In the stability proof of the full-state feedback system, the square norm of the control law was

shown to be bounded by an exponential function in time prior to Lyapunov analysis with the

help of the closed-form of the differential equation of the controller. However, under the output

feedback control design, as observed from the differential equation (9.74) including the extra term

of ũx(s(t), t), it is hard to apply the same approach. To deal with the problem, we additionally

consider the functional Q(t) defined by

Q(t) =
1
2

qc(t)2. (9.85)

The time derivative of (9.85) with the help of (9.74) yields the following

Q̇(t) =− c
(

1+
k
α

∫ s(t)

0
g(x)dx

)
qc(t)2 + ckũx(s(t), t)qc(t)

≤− c
2

qc(t)2 +2ck2sr||ũxx||2, (9.86)

where we used Young’s, Cauchy-Schwarz, and Agmon’s inequalities for the derivation from the

first line to the second line. We consider the following functional

Θ(t) = Ṽ +
α

8ck2sr
Q. (9.87)

Taking time derivative of (9.87) and applying the inequalities (9.84) and (9.86) with the help of

(9.65) yields

Θ̇(t)≤−α

4
||ũxx||2−

α

2s2
r
||ũx||2−

α

32k2sr
|qc(t)|2. (9.88)

Additionally, as defined by (9.33), we consider the following functional

V̂ (t) =
1

2s2
r
||ŵ||2 + 1

2
||ŵx||2 +

p
2

X(t)2, (9.89)
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where p = cα

4β2sr
. Referring to the derivation of (9.39) with additional terms involving ũx(s(t), t)

in (9.78) and (9.81), one can deduce that the time derivative of (9.89) is bounded by

˙̂V (t)≤− α

16s2
r

(
||wx||2 +

1
s2

r
||w||2

)
− pc

4
X(t)2 +

(
18s3

r c2

3α
+

α

4sr

)
ũx(s(t), t)2

+
3
α
||ḡ||2qc(t)2 + ṡ(t)

(
1

2s3
r
||w||2 + 8src

α

p
2

X(t)2
)

≤− b
2

V̂ +aṡ(t)V̂ +
3
α
||ḡ||2qc(t)2 +

(
72s4

r c2

3α
+α

)
||ũxx||2. (9.90)

Finally, by defining

V (t) = V̂ (t)+ rΘ(t), (9.91)

for sufficiently large r > 0, taking the time derivative of (9.91) and applying (9.90) and (9.88)

leads to

V̇ ≤− b
2

V̂ +aṡ(t)V̂ − rα

16s2
r
Ṽ − rα

32k2sr
Q(t),

≤− b̄V +aṡ(t)V, (9.92)

where

b̄ =
1
4

min
{

α

4s2
r
,c
}
. (9.93)

Applying comparison principle to (9.92) with the help of ṡ(t)> 0 and s0 < s(t)< sr leads to the

exponential decay of the norm as

V (t)≤ easrV (0)e−b̄t . (9.94)
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Table 9.1: Physical properties of Ti6Al4V alloy given by [113].

Description Symbol Value
Density (liquid) ρl 3920 kg ·m−3

Density (solid) ρs 4200 kg ·m−3

Latent heat of fusion Hf 2.86 × 105 J ·kg−1

Heat capacity (liquid) cp,l 830 J ·kg−1 ·K−1

Heat capacity (solid) cp,s 730 J ·kg−1 ·K−1

Thermal conductivity (liquid) kl 32.5 W ·m−1

Thermal conductivity (solid) ks 26.0 W ·m−1

Melting temperature Tm 1650 ◦C

Let Ψ(t) = ||û||2H1
+X(t)2 + ||ũ||2H1

and Ψ̄(t) = ||û||2H1
+X(t)2 + ||ũ||2H1

+ qc(t)2. Due to the

invertibility of the transformation from (û,X) and (ŵ,X), the norm equivalence between V and

Ψ̄ holds, i.e., there exist positive constants M > 0 and M > 0 such that MΨ̄(t)≤V (t)≤MΨ̄(t)

holds. Furthermore, using the bound of qc(t)2 derived in (9.52) (qc(t)2 ≤ LΨ(t) for some L > 0),

we obtain Ψ(t)≤ Ψ̄(t)≤ (1+L)Ψ(t). Therefore, we get

Ψ(t)≤ easr
M
M
(1+L)Ψ(0)e−bt . (9.95)

Finally, the norm equivalence between (u,X , ũ)-system and (û,X , ũ)-system holds due to the

relation u = û+ ũ, and therefore the exponential decay of the norm holds for the functional

Φ(t) = ||u||2H1
+X(t)2 + ||ũ||2H1

, from which we conclude Theorem 7.

9.5 Numerical Simulation

In this section we provide two illustrations. First, we show that the controller is effective

even when applied to a considerably more complex and realistic model than the one for which

the design was conducted and the theorems proven. Second, we push the model mismatch to the

point of the controller failing, identifying the size of the modeling error which is intolerable for

296



the controller.

Incorporating the freezing effect from the solid phase

The dynamics of the moving interface (9.4) is given under the assumption that the freezing

effect from the solid metal part is negligible, however, we incorporate the freezing effect in the

numerical simulation by modifying the dynamics as

ṡ(t) =−βl
∂Tl

∂x
(s(t), t)+βs

∂Ts

∂x
(s(t), t), (9.96)

where the variables with subscript l and s denote those of the liquid phase (melt pool) and the solid

phase (metal part), respectively. Similarly to PDE for the liquid phase, the governing equation of

the solid phase is given by

∂Ts

∂t
(x, t) =αs

∂2Ts

∂x2 (x, t), x ∈ (s(t),L), (9.97)

∂Ts

∂x
(L, t) =0, (9.98)

Ts(s(t), t) =Tm, (9.99)

where L is the thickness of the metal part. For computation of the Stefan problem (9.1)–(9.3),

(9.96)–(9.99), we use boundary immobilization method combined with finite difference semi-

discretization [102] for both the liquid and solid PDEs. The resulting approximated ODEs are

calculated by using MATLAB ode15 solver.
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Input parameters

We use the physical parameters of Ti6Al4V which is a popular composite material for

metal AM, as given in Table 9.1. The initial values are set as s0 = 50 [µm], and

Tl(x,0) = T
1+ cos

(
πx
s0

)

2
+Tm, ∀x ∈ [0,s0], (9.100)

T̂l(x,0) = T̂
(

1− x
s0

)
+Tm, ∀x ∈ [0,s0], (9.101)

T̂s(x,0) = T
(

1− L− x
L− s0

)
+Tm, ∀x ∈ [s0,L], (9.102)

where T = 10 [◦C], T̂ = 50 [◦C], and T =−100 [◦C]. Note that the profiles have boundary values

Tl(0,0) = T +Tm, T̂l(x,0) = T̂ +Tm, and T̂s(x,0) = T +Tm . The setpoint is chosen as sr = 200

[µm], which is a reasonable value for layer thickness of the SLS-based AM. Then, the setpoint

restriction (9.6) is satisfied. The control gain c is set to have a reasonable value for the laser power

at initial time, and here we choose c = 10000 [1/sec]. The spatially varying function is set as

g(x) = 1
ρcpδ

e−
x
δ following [132], where δ = 10 [µm]. The thickness L of the metal part is set as

L = 2 [cm].

Practical setup for the observer design

As presented in Remark 22, the spatially varying function ĝ(x) in the observer (9.55)–

(9.57) is chosen as (9.64), where the upper bound and the lower bound of the penetration rate are

chosen as δ = 8 [µm] and δ = 12 [µm]. Moreover, we incorporate the measurement uncertainty

as the constant bias d, namely, the measured value y(t) for the interface position s(t) is given by

y(t) = s(t)+d. (9.103)
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In the simulation study, we investigate the results with noise-free d = 0, the positive bias d > 0,

and the negative bias d < 0.

Simulation results

Robustness of the performance under the small perturbations

The simulation results of the interface position, the laser power controller, and the surface

temperature are given in Fig. 9.2 (a)–(c), respectively, for the cases of the measurements under

noise-free d = 0 [µm] (red), the positive bias d = 5 [µm] (blue), and the negative bias d =−5

[µm] (green). Fig. 9.2 (a) shows that under the noise-free measurement (red) the interface position

s(t) converges to the setpoint sr without overshooting in a short time scale 10 [msec], which

illustrates sufficiently fast process of the melting each layer. On the other hand, in the presence of

the measurement bias, a modest error of the converging position of the interface from the setpoint

position is observed in both positive and negative bias. From Fig. 9.2 (b) we observe that the

implemented output feedback control maintains positive value under noise-free measurement and

even in the presence of the measurement bias, which satisfies the constraint for the input laser

power. Owing to the positive valued input, Fig. 9.2 (c) shows that the temperature at the surface

position remains above the melting temperature Tm, which ensures the condition (9.5) for the

validity of the model addressed in Remark 11 under both noise-free measurement and the biased

measurement. Therefore, the numerical results illustrate that the proposed observer-based output

feedback control law performs robustly even in the presence of the measurement uncertainty.

Fig. 9.3 depicts the snapshots of the true temperature profile (solid line) and the estimated

temperature profile (dash line) at t =0, 1, 5 [msec] in the presence of the positive bias. From Fig.

9.3, we observe that the estimated temperature profile gradually converges to the true temperature

profile, albeit the convergence speed is not fast. Nevertheless, the control objective and the

model validity conditions are well satisfied as observed in Fig. 9.2, which shows the sufficient
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(a) In spite of the interface measurement bias d in (9.103), the regulation near the interface setpoint is
achieved.
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0

0.1
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0.4

(b) Positivity of the laser power control is maintained.
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(c) The model validity of the boundary liquid temperature is maintained, i.e., T (0, t)≥ Tm, in spite of the
presence of the solid phase and of the interface measurement bias.

Figure 9.2: The responses of the system (9.1)–(9.3) and (9.96)–(9.99), under the output feed-
back control law (9.62) associated with the observer (9.55)–(9.57). The proposed method is
successful: the convergence of the interface, the positivity of input, and the required condition
for the liquid temperature are all achieved for both positive and negative measurement biases,

namely, for d = 0,5,−5 [µm], and in the presence of the solid phase.
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Figure 9.3: The snapshots of the true temperature profile (solid line) and the estimated tempera-
ture profile (dash line) at t = 0, 1, and 5 [msec] under the positive bias.

performance of the observer for the purpose of stabilization of the melt pool in SLS.

Limitation of the performance under large perturbations

However, under large uncertainty in model caused by the cold (the negative heat) in the

solid metal, or by the measurement uncertainties, the proposed method is shown to, expectedly,

violate the required conditions for the physical model. Fig. 9.4 depicts the interface response
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Figure 9.4: The interface response of the closed-loop system under very cold initial temperature
of the solid phase. The proposed method fails, in this caricatured scenario, and the melt pool
gets entirely frozen, as observed from the disappearance of the interface position around t = 14

[msec].

under an initial very low temperature in the solid phase (9.102), namely, T =−1630 [◦C] that

results in the boundary value Ts(L,0) = T +Tm = 20 [◦C], which is still physically possible. As

we observe from Fig. 9.4, the interface disappears and with it the molten metal phase, at around

14 [msec] due to the complete solidification of the melt pool. This is caused by an insufficient

amount of the laser power input for the given ”deeply” frozen solid metal initial state. The

limitation of the proposed control law can be relaxed by designing a ”two-phase”-based control

law proposed in the absence of radiation in Chapter 5, which will be considered with radiation in

future work.

Next, we investigate the closed-loop response under d = −30 [µm], namely, a large

negative bias in the measurement. Fig. 9.5 shows the response of the control input and the

boundary temperature. Fig. 9.5 (a) illustrates that the controlled laser power reaches negative

value after t = 2 [msec], which violates the input constraint. Due to the negative input, Fig. 9.5 (b)

illustrates that the boundary temperature of the melt pool reaches below the melting temperature,

which physically causes the solidification of the melt pool from the controlled boundary and
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0
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(a) The input of the laser power reaches negative value, which cannot be implemented in practice.

0 5 10 15 20
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2200

(b) The liquid temperature can be below the melting temperature, which causes the solidification of the
melt pool from the controlled boundary.

Figure 9.5: The response of the closed-loop system under a large negative bias d =−30 [µm].
The proposed method fails due to the violation of the positivity of the input and of the condition

of the liquid temperature.

therefore the condition of the model is violated. Hence, there is a limitation of the performance

of the proposed control law with respect to the level of the measurement uncertainty in the case
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Figure 9.6: Plot of the minimum value of the control input over time through varying the bias d
from −5 [µm] to −15 [µm]. Positivity of the input is violated under the bias d ≤−8 [µm].

of negative bias. Fig. 9.6 shows the plot of minimum value of the control input qc(t) over the

time interval t ∈ [0, tf] where tf = 20 [msec] under the bias d ranging from −5 [µm] to −15 [µm].

From Fig. 9.6, we observe that the critical value of the bias violating the positivity of the input is

between −7 and −8 [µm], which is approximately 15 % of the initial interface position s0 = 50

[µm]. On the other hand, under the positive bias, as long as Assumption 23 holds, we observe

that the performance of the control law is robust as we have seen in Fig. 9.2.

9.6 Conclusion and Future Work

In this chapter we have developed the control design of laser power in SLS for metal AM

by using the PDE backstepping method in a form of both full-state and output feedback design.

The governing equation is given by the one-phase Stefan problem with in-domain effect of the

controlled laser power to the PDE dynamics. The closed-loop system is shown to satisfy some

required conditions for the physical model to be valid, and the exponential stability at the origin
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is proven. Numerical simulation is performed by computing the full ”two-phase” Stefan model

incorporating the cooing from the solid metal part and adding the measurement uncertainty. The

simulation results illustrate that the proposed output feedback control design enables sufficiently

fast process of the laser melting to drive the depth of the melt pool to the desired setpoint, and

the performance is robust under perturbations of the model and the measurements. We push

the proposed control law to its failure limit by exhibiting the closed-loop responses that violate

the required conditions of the physical states under the large perturbations of the model and the

measurement.

The limitation of the controller’s robustness might be exploited analytically in the sense of

Input-to-State Stability (ISS), by using the Lyapunov method for the perturbed system including

the model and measurement uncertainties, similarly to ISS analysis in Chapter 4. One challenge

lies in the fact that the model and the estimator are defined on a distinct range of the spatial

domains, (0,s(t)) and (0,s(t)+d(t)), under the measurement uncertainty of the moving interface.

Such a discrepancy of the domains makes the analysis of the estimation error system much harder.

Moreover, while we have focused only on the stabilization of the melt pool’s depth in this chapter,

the stabilization of the surface area of the melt pool is also a significant task for the scanning

process. This motivates us to exploit the control design for the Stefan problem along the surface

geometry of the powder bed in metal AM process, which is also challenging due to the movement

of the scanner mirror. We will consider these problems as future work.
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Chapter 10

Experimental Study using PCM

There are a few results on the experimental application of the backstepping design for

boundary control and observer of PDEs. In [122], the tracking control for flexible articulated

wings on a robotic aircraft is designed by combining PDE backstepping for feedback stabilization

and feedforward trajectory planning, and the performance of the designed boundary controller

is demonstrated by conducting the experiment of bending a long thin beam. The validation

of the backstepping boundary observer design using experimental data have been studied in

[80] for microfluidic systems, in [62] for oil drilling, and in [178] for congested freeway traffic

following their design in [179, 176]. However, there has not been any experimental results on the

boundary control and observer for the Stefan system which is governed by a parabolic PDE with

state-dependent moving boundaries “(a nonlinear system)”.

The fidelity of the Stefan model has been validated in several experimental studies.

Among the various materials in the aforementioned applications, phase change materials (PCMs)

in latent heat thermal energy storage systems for numerous applications (e.g. heat pumps,

solar engineering, and spacecraft thermal controls) have been intensively used to investigate the

correspondence of the experimental data with the numerical model of the Stefan problem (see

[42] for detailed review on simulations of PCMs). While there are several materials of PCMs,
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ŝ
(t
)

 

 

s(t), state
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Figure 10.1: Schematic of one-dimensional model of paraffin as a Phase Change Material
(PCM) in vertical coordinate.

paraffins have been utilized owing to the attractive features on safe temperature range for melting,

low cost, non-corrosive, and predictable thermal and chemical behavior [139].

10.1 Modelling of PCM

We consider a cylindrical paraffin with the diameter R and the total length L, which

is enclosed with an acrylic container serving as a thermal insulation. Hence, the geometry of

the model is represented by a cylindrical coordinate (r,θ,x) which denotes the radial distance

from the center, the angular degree from a base, and a displacement from the upper side of the

container, respectively (see Fig. 10.1). In the phase change material, the liquid-solid phase
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boundary exists as a domain inside the coordinate. We establish the physical model under the

following assumptions.

Assumption 24 The temperature profile of the paraffin is uniformly distributed along the circle-

shaped cross section of the cylinder. Mathematically, we can describe the property as

T (r,θ,x, t)≡ T (x, t), ∀r ∈ [0,R],∀θ ∈ [0,2π) (10.1)

Moreover, the domain of the phase boundary is uniform along the cross section of the cylinder,

which enables to describe the location as x = s(t).

Assumption 25 There is no convection in the liquid phase.

Owing to the cylindrical geometry and the thermal insulation along the side, if Assumption

24 holds at the initial time t = t0 then it holds for all time t > t0. By Assumption 24, the geometry

of the physical model can be described by one dimensional coordinate in x. In addition, by

Assumption 25, the governing equation is only given by the energy conservation without imposing

a mass and momentum balance. Combining the local energy conservation law inside the liquid

phase domain x ∈ (0,s(t)) and the Fourier’s thermal conduction law, the time evolution of the

temperature profile is given by the following parabolic PDE

∂T
∂t

(x, t) = α
∂2T
∂x2 (x, t), 0 < x < s(t), (10.2)

where α := k
ρCp

with a density ρ, heat capacity Cp, and the thermal conductivity k for liquid phase,

respectively. At the surface x = 0, there is a heat loss due to the convective heat transfer through

the surrounding air, which yields the following energy balance

−k
∂T
∂x

(0, t) =qc(t)−h(T (0, t)−Ta), (10.3)
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where qc(t) is a manipulated heat flux per unit area, h denotes the heat transfer coefficient, and Ta

denotes the ambient temperature (room temperature). As a fundamental physical condition of the

thermal phase change, the temperature at the liquid-solid phase boundary x = s(t) maintains the

constant melting temperature Tm, which renders the boundary condition as

T (s(t), t) = Tm. (10.4)

Moreover, the local energy balance at the position of the liquid-solid phase boundary x = s(t)

leads to the Stefan condition defined as the following nonlinear ODE

ρ∆H∗ṡ(t) =−k
∂T
∂x

(s(t), t)−qlos, (10.5)

where ∆H∗ and qlos denote the latent heat of fusion and heat loss at the interface, respectively.

Remark 14 To maintain the model (10.2)-(10.5) to be physically validated, the following condi-

tions must hold:

T (x, t)≥Tm, ∀x ∈ (0,s(t)), ∀t > 0, (10.6)

0 <s(t)< L, ∀t > 0. (10.7)

The conditions (10.6) and (10.7) are proven to hold after the design of the heat input qc(t).

10.2 Nominal Feedback Control Design

Control objective and steady-state solution

The objective is to drive the phase boundary location s(t) to a desired setpoint sr by

controlling the heat flux qc(t). As a desired state, the stead-state solution of the temperature
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profile Tr(x) at s(t) = sr needs to be considered. By setting the time derivative of the physical

model to be zero, the steady-state of the temperature is obtained by

Tr(x) =
qlos

k
(sr− x)+Tm. (10.8)

Then, at the steady-state, the heat flux input must have a balance with the heat loss at the surface

and the interface, which is described as

q∗c =
(

1+
hsr

k

)
qlos +h(Tm−Ta) . (10.9)

Continuous-time full-state feedback control design

While the governing equations (10.2)–(10.5) are given by the local energy balance law at

each location in the domain x ∈ [0,s(t)], in order to prescribe the growth of the internal energy

through the heat input and heat loss, the macroscopic energy conservation should be considered.

The internal energy of the system is composed of the specific heat and the latent heat given by

E(t) =
k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β

s(t), (10.10)

where β := k
ρ∆H∗ . Taking the time derivative of (10.10), we obtain the macroscopic energy

conservation law as

Ė(t) = qc(t)−h(T (0, t)−Ta)−qlos. (10.11)

The setpoint energy is given by substituting the steady-state solution (Tr(x),sr) into (10.10), which

yields

Er =
k
α

∫ sr

0
(Tr(x)−Tm)dx+

k
β

sr =
qloss2

r
2α

+
k
β

sr (10.12)
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To achieve the control objective driving the system states (T,s) to the reference setpoint (Tr,sr), it

is necessary that the internal energy E(t) grows to the setpoint internal energy Er. The idea of our

control design originates from parabolic PDE-ODE backstepping in [95] but in this section we

provide a simplified exposition based on energy shaping. Namely, we define the reference error

of the internal energy as

Ẽ(t) = E(t)−Er, (10.13)

and design the control law as follows:

qc(t) =− cẼ(t)+h(T (0, t)−Ta)+qlos (10.14)

=− c
(

k
α

∫ s(t)

0
(T (x, t)−Tm)dx+

k
β
(s(t)− sr)

)

+
cqloss2

r
2α

+h(T (0, t)−Ta)+qlos. (10.15)

Here, we impose the following restriction on the setpoint position sr.

Assumption 26 The setpoint sr is chosen to satisfy

s0 +
β

α

∫ s0

0
(T0(x)−Tm)dx < sr +

βqlos

2kα
s2

r < L. (10.16)

Then, the control (10.15) ensures the conditions (10.6) and (10.7), and we state the following

theorem.

Theorem 16 Consider the closed-loop system consisting of the plant (10.2)–(10.5) with the

control law (10.15). Then, the conditions (10.6) and (10.7) for the model validity hold, and

there exists a positive constant q∗los > 0 such that for all qlos ∈ (0,q∗los) the closed-loop system is
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exponentially stable in the sense of the norm

∫ s(t)

0
(T (x, t)−Tr(x))2dx+(s(t)− sr)

2. (10.17)

The proof of Theorem 16 is given at the end of this chapter. For accelerated convergence,

the backstepping PDE-ODE control design in Theorem 2 in [95] would have to be pursued.

10.3 Implementable Control Algorithm Using Sensors and

Software

This section presents the feedback control algorithm that we actually implement in the

experiment. Note that the full-state feedback control design developed in Section 10.2 requires

the following three assumptions:

• the spatial profile of the temperature is available,

• the spatial integration of the temperature profile is computed,

• and the measurements are obtained and the controller is manipulated continuously in time.

The first assumption is relaxed by introducing a state observer governed by a PDE to estimate

the entire temperature profile under measured temperature only at the surface and the measured

position of the phase interface, and re-designing the controller by associated output feedback

control law. The block diagram is depicted in Fig. 10.2. Next, the PDE observer is approximated

by an ODE observer through the truncation of the observer state and then the spatial integration

in the output feedback control law is approximated by the trapezoidal rule, which removes the

second assumption. Finally, the third assumption is relaxed by further improving the observer

and the output feedback control by sampled-data design implemented under the measurements

obtained at each discrete sampling time by following the idea of the sampled-data observer [69].
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VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t)
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Figure 10.2: Block diagram of the observer-based output feedback control. The interface
position s(t) and the surface temperature T (0, t) are available as two measurements.

PDE observer and output feedback design

Suppose that we have the following two measurements:

y(1)(t) =s(t), (10.18)

y(2)(t) =T (0, t), (10.19)

for all t ≥ 0. The state observer for the PDE system (10.2)–(10.4) is designed by

∂T̂
∂t

(x, t) =α
∂2T̂
∂x2 (x, t), 0 < x < y(1)(t), (10.20)

−k
∂T̂
∂x

(0, t) =qc(t)−h(y(2)(t)−Ta)+κ1(y(2)(t)− T̂ (0, t)), (10.21)

T̂ (y(1)(t), t) =Tm, (10.22)

for all t ≥ 0, where κ1 > 0 is the observer gain tuned by the user. To study the performance of the

observer, we introduce the estimation error variable T̃ (x, t) defined by

T̃ (x, t) := T (x, t)− T̂ (x, t). (10.23)
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Subtracting the observer system (10.20)–(10.22) from the plant (10.2)–(10.5) leads to the estima-

tion error system as follows:

∂T̃
∂t

(x, t) =α
∂2T̃
∂x2 (x, t), 0 < x < s(t), (10.24)

∂T̃
∂x

(0, t) =
κ1

k
T̃ (0, t), (10.25)

T̃ (s(t), t) =0. (10.26)

Then, the performance of the PDE observer (10.20)–(10.22) is guaranteed by the following

lemma.

Lemma 15 The estimation error system (10.24)–(10.26) is exponentially stable in the spatial

L2-norm ||T̃ ||=
√∫ s(t)

0 T̃ (x, t)2dx.

In addition to the PDE observer given in (10.20)–(10.22) to estimate the temperature

profile, we introduce the following observer reconstructing the interface position as a copy of

(10.5) plus the measurement injection of the interface position:

˙̂s(t) =−β
∂T̂
∂x

(s(t), t)− β

k
qlos +κ2(s(t)− ŝ(t)), (10.27)

where κ2 > 0 is an observer gain. The observer (10.27) is not essential to estimate the interface

position since we suppose that we can accurately measure the interface position in continuous

time. However, in the next section we propose the re-design of the observer under the sampled-

data measurements, and the observer (10.27) is required to reconstruct the unmeasured interface

position during the sampling time period. By defining s̃(t) := s(t)− ŝ(t), the dynamics of s̃(t) is

given by

˙̃s(t) =−β
∂T̃
∂x

(s(t), t)−κ2s̃(t). (10.28)
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The stability of (T̃ , s̃)-system in (10.24)–(10.26), (10.28) is addressed in the following lemma.

Lemma 16 Assume that there exists s̄ > 0 such that 0 < s(t)< s̄ for all t ≥ 0, and 0≤ qlos <
α

2βs̄

holds. The estimation error system (10.24)–(10.26), (10.28) is exponentially stable in the norm

Φ̃(t) := ||T̃ ||2 + ||∂T̃
∂x ||2 + s̃(t)2.

The proof of Lemma 16 can be done by analyzing the time derivative of Φ̃(t) and applying

Lyapunov’s method, of which the detail is omitted here. The associated output-feedback control

is given by replacing the true temperature profile in the full-state feedback control law (10.15)

with the estimated temperature T̂ (x, t) calculated by the observer (10.20)–(10.22), resulting in

the following form:

qc(t) =− c
(

k
α

∫ s(t)

0
(T̂ (x, t)−Tm)dx+

k
β
(s(t)− sr)

)

+
cqloss2

r
2α

+h(T (0, t)−Ta)+qlos. (10.29)

Then, owing to the separation principle, it is shown that the output feedback control law stabilize

the plant states (T (x, t),s(t)) at the desired reference (Tr(x),sr).

Theorem 17 Assume that T̂ (x,0)≥ T (x,0) for all x ∈ [0,s0]. Consider the closed-loop system

consisting of the plant (10.2)–(10.5), the observer (10.20)–(10.22), and the output feedback

control law (10.29). Then, the conditions (10.6) and (10.7) for the model validity and T̃ (x, t)≤ 0

hold for all x ∈ (0,s(t)) and for all t ≥ 0, and there exists a positive constant q∗los > 0 such that

for all qlos ∈ (0,q∗los) the closed-loop system is exponentially stable in the sense of the norm

||T −Tr||2 +(s(t)− sr)
2 + ||T̃ ||2.

The proof of Theorem 17 is also presented at the end of this chapter.
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ODE observer derived from discretized PDE

To implement the designed observer via numerical computation, we derive the spatially

discretized model of (10.2)–(10.5). Let N ∈N be the number of grids for the spatial discretization,

∆x be the width defined by ∆x = 1
N , and φ(i)(t) be defined by

φ
(i)(t) =T (i∆xs(t), t)−Tm, i = 0,1,2, · · · ,N, (10.30)

φ(t) =[φ(1)(t),φ(2)(t),φ(3)(t), · · · ,φ(N)(t)]T . (10.31)

Note that taking the total time derivative of (10.30) yields

φ̇
(i)(t) =

(
∂T
∂t

+ i∆xṡ(t)
∂T
∂x

)∣∣∣∣
x=i∆xs(t)

(10.32)

Then, the spatially discretized model of (10.2)–(10.5) is governed by the following coupled

nonlinear ODEs of the states φ(t) and s(t):

φ̇
(0)(t) =a(s(t))φ(0)(t)+ p(s(t))φ(t)+b(s(t))q̄c(t), (10.33)

φ̇(t) =q(s(t))φ(0)(t)+R(s(t))φ(t)+ f (φ(t),s(t)), (10.34)

ṡ(t) =g(s(t))φ(t)− β

k
qlos, (10.35)
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where q̄c(t) := qc(t)−h(φ(0)(t)+Tm−Ta), and

a(s(t)) =− 2α

(s(t)∆x)2 , (10.36)

b(s(t)) =
4α

ks(t)∆x
, (10.37)

p(s(t)) =
2α

(s(t)∆x)2

[
1 01,N−1

]
, (10.38)

q(s(t)) =
α

(s(t)∆x)2

[
1 01,N−1

]
, (10.39)

g(s(t)) =− β

2s(t)∆x

[
01,N−3 1 −4

]
, (10.40)

0i, j ∈ Ri× j denotes a matrix in which all the elements are zero, and R(s(t)) ∈ RN−1×N−1 has its

elements ri, j at i-th row and j-th column given by

ri,i =−
2α

(s(t)∆x)2 , ∀i = 1,2, · · · ,N−1 (10.41)

ri+1,i =ri,i+1 =
α

(s(t)∆x)2 , ∀i = 1,2, · · · ,N−1, (10.42)

and all other elements are zero. The function f (φ(t),s(t)) is a nonlinear function of the dynamics

derived from the last term in (10.32), which has its i-th element

fi = i∆x
(

g(s(t))φ(t)− β

k
qlos

)
φ(i+1)−φ(i−1)

2∆xs(t)
. (10.43)

Hence, by defining the state vector ψ ∈ RN+1

ψ =

[
φ(0) φ s

]T

(10.44)

the coupled dynamics (10.33)–(10.35) can be described by the following ODE on the state ψ:

ψ̇ = A(s)ψ+B(s)q̄c +F(ψ)+θ, (10.45)
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where

A(s) =




a(s) p(s) 0

q(s) R(s) 0

0 g(s) 0



, (10.46)

B(s) =
[

b(s) 01,N−1 0

]T

, (10.47)

F(ψ) =

[
0 f (φ,s) 0

]T

, (10.48)

θ =

[
0 01,N−1 −β

k qlos

]T

. (10.49)

Let y ∈ R2 be the vector associated with the measurements (10.18) and (10.19) defined by

y =
[

y(1) y(2)
]T

. (10.50)

The measurement vector is described by

y =Cψ+d, (10.51)

where

C =




0 01,N−1 1

1 01,N−1 0


 , (10.52)

d =

[
0 Tm

]T

. (10.53)
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Following the same procedure, the continuous-time PDE observer designed in (10.24)–(10.26) is

implemented by the following ODE observer:

˙̂ψ = A(y(1))ψ̂+B(y(1))q̄c +F(ψ̂)+θ+K(y− ŷ) (10.54)

where ŷ =Cψ̂+d, and K ∈ RN+2,2 is defined by

K =




0 b(s)κ1

0N−1,1 0N−1,1

κ2 0



. (10.55)

Sampled-data design of ODE observer and output feedback

The measured data are obtained not continuously in time but at each sampling time

{t j : j = 0,1,2, · · ·}. Here, we consider the sampling scheduling as periodic sampling with period

τ, which leads to the sequence of the sampling time as

t j = t0 + jτ, j = 1,2, · · · (10.56)

Hence, the sampled-data measurements are obtained by

y(1)(t j) =s(t j), (10.57)

y(2)(t j) =T (0, t j). (10.58)

We employ the methods proposed in [69], namely, we introduce the so-called ”Inter-Sample-

Predictor” (ISP) which serves as an estimate of the measured variables during the sampling

periods given the measurements at each sampling time as an initial state, and compute the

continuous-time observer coupled with ISP as an estimate of the state variables.
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Let w(1)(t) and w(2)(t) be the ISP states reconstructing y(1)(t) = s(t) and y(2)(t) = T (0, t),

respectively. At every sampling time t = t j, we set

w(1)(t j) = y(1)(t j), w(2)(t j) = y(2)(t j), (10.59)

For t ∈ [t j, t j+1), by referring to (10.33) and (10.35), the dynamics of ISP is given by

ẇ(1)(t) =g(ŝ(t))φ̂(t)− β

k
qlos, (10.60)

ẇ(2)(t) =a(ŝ(t))φ̂(0)(t)+ p(ŝ(t))φ̂(t)+b(ŝ(t))q̄c(t). (10.61)

The dynamics of the continuous-time observer state ψ̂ is given by the copy of the observer (10.54)

with replacing the measurement states by ISP states as follows:

˙̂ψ =A(w(1))ψ̂+B(w(1))q̄c +F(ψ̂)+θ+K(w− ŷ) (10.62)

where w =

[
w(1) w(2)

]T

. Furthermore, the states w(1),w(2), ψ̂ are discretized in time with the

time step ∆t, and ODEs (10.60)–(10.62) are computed numerically by forward Euler method,

which leads to Algorithm 1 providing ISP-based sampled-data observer at each sampling time.

Using the sampled-data observer states, the associated output feedback control law given in

(10.29) under the availability of the continuous-time PDE observer is re-designed by

qc(t j) =− c
ky(1)(t j)

αN

(
1
2
(y(2)(t j)−Tm)+

N

∑
i=2

φ̂
(i)(t j)

)
+ c

kεs2
r

2α
− c

k
β
(y(1)(t j)− sr)

+h(y(2)(t j)−Ta)+qlos, (10.63)

where we use trapezoidal rule for approximating the spatial integration.
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Algorithm 6: ISP-based sampled-data observer at sampling time t j for j ∈
{0,1, · · ·}

Input : y(1)(t j), y(2)(t j), ψ̂ jτ;
w(1)

jτ ← y(1)(t j); w(2)
jτ ← y(2)(t j);

for l = 0,1, · · · , I, do
i← jτ+ l;
ŷi←Cψ̂i +d;
w(1)

i+1← w(1)
i +∆t

(
g(ŝi)φ̂i− β

k qlos

)
;

w(2)
i+1← w(2)

i +∆t
(

a(ŝi)φ̂
(0)
i + p(ŝi)φ̂i +b(ŝi)q̄c,i

)
;

ψ̂i+1← ψ̂i +∆t(A(w(1)
i )ψ̂i +B(w(1)

i )q̄c,i +F(ψ̂i)+θ+K(wi− ŷi));
end for
Output : ψ̂( j+1)τ

10.4 Experimental Setup and Calibration of Unknown Param-

eters

This section presents the experimental setup and the results under a constant heat input to

validate the sampled-data observer in Algorithm 1.

Sample preparation and heating chamber

PCM-37 (Microtek laboratories, inc. Dayton, OH, USA) is chosen as the phase change

material for our experiment. Its melting temperature is 37 [◦C]. Thermal properties of PCM-37 are

summarized in Table.1. Cylindrical rod is prepared by casting of molten PCM-37 with an acrylic

container with 63.5[mm] diameter and a flat bottom. Molten PCM-37 is poured through a paper

filter to remove particles and casting can be done by keeping container in a room temperature for

12 hours. The rod of PCM-37 is pushed out from the mold once it becomes solid, then inserted

into another acrylic chamber for a heating experiment.

Fig. 10.3 illustrates a structure of the chamber to heat the cast rod from top side. Our

experiments show this configuration has least influence of convection. A removable lid on top
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(a) Schematic of the apparatus for melting paraffin.

Surface temperature
Liquid-solid 
interface

Input current

(b) The real experiment of melting paraffin with sensors and an actuator.

Figure 10.3: The images of the experimental apparatus and setup using PCM-37.

of chamber has a heater and thermocouple sensor and the PCM-37 rods are inserted so that it

contacts with the heater firmly. The space above the heater is prepared for thermal insulation
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Table 10.1: Thermophysical parameters of PCM-37.

Description Symbol Value
Density ρ 790 kg ·m−3

Latent heat of fusion ∆H∗ 210 J ·g−1

Heat capacity cp 2.38 J ·g−1 ·K−1

Melting temperature Tm 37 ◦C
Thermal conductivity k 0.22 W ·m−1

and avoids an accumulation of small bubbles on the heater, which are generated when PCM-37

is melted. Due to the transparency change of PCM-37 upon a phase change, the position of the

boundary is measured by using a digital camera with interval shuttering.

Experiment under a constant input

The boundary heat actuator qc(t) is controlled by an electric current ic(t) connected with

the film heater under the following relation:

ic(t)∼
√

qc(t)πR2

Res
, (10.64)

where R is the radius of the cylinder, and Res is the resistance of the film heater at room temperature.

In this experiment, we had R = 3.175 [cm] and Res = 13.9 [Ω]. Due to the limitation of the

equipment, the electric current is bounded by the constant imax, i.e.,

0≤ ic(t)≤ imax. (10.65)

We conducted an open-loop melting test by keeping the current input at the maximum value

imax = 0.79 [A] for 2 hours after the phase interface reaches 0.5 [cm]. Then, we observed that

the phase interface position was evolving uniformly along the vertical coordinate of the cylinder,

which validates Assumption 24. The image of the experiment is shown in Fig. 10.3 (b).
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(a) The interface position.
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(b) The surface temperature.

Figure 10.4: The estimated values (blue dash) with h =20 [W/m2K] and qlos =400 [W/m2],
which have good agreement with the measured data (green dots) and satisfy (10.68)

Calibration of unknown parameters

Let t0 be the time we observe that s(t0) = 0.5 [cm], and fix as t0 = 0. Let t f = 2 [hours] be

the process time. We measured the phase boundary position and the surface temperature at every
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10 [min] as a sampling time period, namely, the sampling scheduling is described as t j = t0 + jτ

for j = 1,2, · · ·m with τ = 10 [min] and m = t f /τ =12. Let e be the normalized estimation error

vector defined by

e =
[
e(1)0 ,e(1)1 , · · · ,e(1)m ,e(2)0 ,e(2)1 , · · · ,e(2)m

]
, (10.66)

where

e(i)j =
y(i)(t j)− ŷ(i)(t j)

y(i)(t j)
, i = 1,2, j = 0,1, · · · ,m. (10.67)

Using the measured data, the heat transfer coefficient h and the freezing heat from the solid

phase qlos are calibrated to minimize the estimation error. However, for the sake of sustaining the

robustness of the control algorithm, the estimated temperature profile should be higher than the

true temperature profile, for the condition shown in Theorem 17 holds. Since both the measured

surface temperature and the measured interface position are monotonically increasing as the

temperature profile gets larger, both the estimated surface temperature and interface position

should be higher than the measured values. Taking these into account, the unknown parameters

are calibrated so that

min
h,qlos

eT e, subject to e� 0, (10.68)

where � denotes an element-wise inequality.

We varied the parameters in a range 0 ≤ h ≤ 30 and 0 ≤ qlos ≤ 500 with the step sizes

∆h = 1 and ∆qlos = 20, respectively. Then, we observed that the problem (10.68) is achieved

with the parameters h =20 [W/m2K] and qlos =400 [W/m2]. Fig. 10.4 shows the comparison of

the measured data with the estimated values of the interface position and the surface temperature

under the obtained parameters. We can observe that the estimated values have good agreement
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with the measured data and satisfy the constraint (10.68). A reference value of the convective

heat transfer coefficient h for plastic is reported in [31] as h = 21±2[W/m2K], which also shows

a good agreement with the identified value.

10.5 Experiment of Closed-Loop Control

In this section, we present our main result on experimental validation of the proposed

feedback control algorithm. The paraffin was completely solidified at the initial time of the

experiment.

Gain tuning

The control gain c > 0 is an essential free parameter for the input current ic(t) to satisfy

the constraint (10.65). Here we provide how to tune the gain. First, the current input is kept as

imax while the paraffin starts to be molten from the top and the liquid-solid interface position is

less than s0 := 0.5 [cm] from the top. At the time when the interface position reaches to s0, we

measured the surface temperature y(2)(t0), and compute

Ẽ0 =
ks0

2α
(y(2)(t0)−Tm)−

qloss2
r

2α
+

k
β
(s0− sr), (10.69)

cmax =

Resi2max
πR2 −h(y(2)(t0)−Ta)−qlos

−Ẽ0
. (10.70)

Then, at least we require c < cmax, since the input becomes ic(t0) = imax when c = cmax by (10.63)

and (10.64). Moreover, from the results in Section 4.4, for the sampled-data state feedback control

of the Stefan problem, given a sampling time period τ > 0, the control gain needs to be chosen to

satisfy c < 1
τ

to ensure the conditions of model validity and the closed-loop stability. Considering
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these two conditions, we take the gain tuning as

c = δmin
{

cmax,
1
τ

}
, (10.71)

where δ ∈ (0,1) is a free parameter. In this experiment, we used δ =0.8.

Proposed control law

The control algorithm in the experiment is explained as follows.

1. The input current ic(t) is injected at the maximum value imax (0.79 [A]).

2. Once we observe that the liquid-solid interface arrives at 0.5 [cm], the surface temperature

is measured and only the observer is computed by Algorithm 1 with keeping the maximum

input current.

3. After that, at every sampling time 10 [min], both the surface temperature and the interface

position are measured, and the observer is computed by Algorithm 1 and the heat controller

is obtained by (10.63).

4. Given the value of the controller, the current input is given by (10.64). We repeat 3) and 4)

for 5 hours.

Experimental results

We conducted the experiment of melting paraffin by implementing the control algorithm

above. The setpoint position is chosen as sr = 2 [cm], and the time step size in the observer

is ∆t = 0.05 [sec]. Fig. 10.5 depicts the results of the experiment by showing measured data

of the phase interface position, Fig. 10.6 shows the input current and the surface temperature,
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(a) The plot is depicted at every 0.1(cm) increase until the interface reaches 2(cm) and after that depicted
at every 20(min).

1h0h
heater

interface
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(b) The snapshots of the melting paraffin at every hour is given right, which shows the interface evolution
by a ruler attached on the acrylic chamber.

Figure 10.5: The experimental result of the time evolution of the interface position under the
proposed feedback control algorithm. The experiment was successful: the liquid-solid interface

position converged to the setpoint position sr = 2(cm).

and Fig. 10.7 depicts the estimated temperature profiles of the liquid paraffin and the measured

temperature profile of the acrylic chamber obtained by IR camera, respectively.

From Fig. 10.5 (a), we can observe that the experiment was success: the phase interface

position reached to the value s0 = 0.5 [cm] at t0 = 25 [min] and converged to the chosen setpoint
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(a) The input current started from the maximum value imax of the input constraint, and the feedback
control was implemented from 35(min). After 4 hours, the current input stayed at the steady-state input

calculated by (10.9).
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(b) The estimated surface temperature has a similar behavior to the measured surface temperature together
with a nominal error around 5−10(◦C).

Figure 10.6: The experimental result of the proposed feedback control algorithm and the surface
temperature.
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(a) The estimated temperature profile of the liquid paraffin at every hour. The profile gradually converged
to the reference profile given by (10.8) and almost corresponded to the reference after 4 hours.
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(b) The measured temperature profile of the acrylic chamber obtained by IR camera at every hour. The
profile is given along the white arrow in the thermography.

Figure 10.7: The time evolution of the estimated temperature profile and the measured tempera-
ture profile of the cylinder by IR camera.

position sr = 2 [cm] asymptotically and stays at the setpoint after 4 hours. This result can be

also visually seen in 10.5 (b) which are snapshots of the melting paraffin at every hour. A ruler
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attached on the acrylic chamber shows the distance from the position of the heat actuator, which

gives the measured value of the phase interface position depicted in the left plot, and hence the

convergence of the interface position is visually observed. Fig. 10.6 (a) shows that the input

current starts from the maximum value imax = 0.79[A] under the constraint and the feedback

control is implemented at every sampling time 10 [min] from t = 35 [min] which is 10 [min]

after t0 = 25 [min]. After 4 hours, the current input stays at the steady-state input calculated by

(10.9) and (10.64). From 10.6 (b), we can observe that the estimated surface temperature has

similar behavior to the measured surface temperature together with a nominal error around 5−10

[◦C], of which the cause is discussed later. Fig. 10.7 (a) illustrates that the estimated temperature

profile converges to the reference profile given by (10.8) and almost corresponds to the reference

after 4 hours. The thermography included in Fig. 10.7 (b) is obtained by IR camera taken at t = 2

hours, which illustrates that the temperature is the highest (white color) at the position of the heat

controller and is monotonically decreasing as the vertical position goes towards the bottom. The

temperature profiles of the acrylic in the plot are given by referring to the temperature along the

white arrow in the thermography. We observe that the profiles are almost linearly distributed

in the space at every hour, of which the property is also observed in the estimated temperature

profiles of the liquid paraffin shown in Fig. 10.7 (a), though the material of the focus is distinct

and the temperature value is different. Moreover, the slope of the profiles are dropped from t = 1

hour to t = 2 hours in Fig. 10.7 (b), which is also similarly observed in Fig. 10.7 (a). Thus, while

it is not accurate to refer to the thermography of the acrylic chamber as a temperature profile of

the paraffin inside, we see some similar behavior of the evolution of the temperature profiles.

Discussion

While we observe that the control objective is successfully achieved in the experiment,

the temperature estimation accompanies a nominal error from the measured value as illustrated

in Fig. 10.6 (b). Since the estimated surface temperature is lower than the measured one, the
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Figure 10.8: Simulation of the closed-loop system with setting h =16 [W/m2K] in the model
while h =20 [W/m2K] in the observer. The plot is similar to Fig. 10.6 (b), by which we
conjecture that the estimation error of the surface temperature in Fig. 10.6 (b) is caused by the

parameter error of h.

incorporated heat loss in the observer is higher than the true heat loss in paraffin during the

closed-loop experiment. This might be caused by over-estimating the calibrated heat transfer

coefficient h. To investigate the validity, the numerical simulation of the closed-loop system of the

model (10.45), the measurement (10.50), the observer in Algorithm 1, and the output feedback

control law (10.63) is studied, where the heat transfer coefficient in the observer is set as h =20

[W/m2K] while the one in the model is set as h =16 [W/m2K]. Fig. 10.8 depicts the evolution of

the measured surface temperature (green dots) at every sampling time and the estimated surface

temperature (blue line), respectively. We observe that the plot in Fig. 10.8 is in good agreement

with Fig. 10.6 (b), which leads us to conjecture that the cause of the estimation error lies in the

parametric error of the calibrated heat loss h. Nevertheless, the control’s performance was robust

as we see in Fig. 10.5.
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10.6 Proof of Theoretical Results

Hereafter we define

ε =
qlos

k
. (10.72)

Proof of Theorem 16

Guaranteeing conditions of model validity

First, we prove the following lemma to guarantee the conditions of model validity.

Lemma 17 Under Assumption 26, consider the closed-loop system consisting of the plant (10.2)–

(10.5) with the control law (10.15). Then, the following properties hold for all t ≥ 0:

T (x, t)>Tm, ∀x ∈ (0,s(t)), (10.73)

∂T
∂x

(s(t), t)<0, (10.74)

qc(t)>qlos, (10.75)

0 < s(t)<s̄ := sr +
βεs2

r
2α

. (10.76)

Proof:

The proof of Lemma 17 is established by analysis of the energy and the use of maximum principle.

Substituting the control law (10.15) to the conservation law (10.11) with respect to Ẽ(t) defined

by (10.13) leads to

˙̃E(t) =−cẼ(t). (10.77)

334



The explicit solution to (10.77) is given by Ẽ(t) = Ẽ(0)e−ct . Since Assumption 26 leads to

Ẽ(0)< 0, we have

Ẽ(t)< 0. (10.78)

Then, clearly (10.14) leads to qc(t)− h(T (0, t)− Ta) > 0 for all t ≥ 0. With the help of this

inequality, we can apply the theorem in [140] (page 3) to the governing equations (10.2)–(10.5),

and thereby for any t̄ ≤ σ where 0 < σ≤∞, there is a unique solution of the system (10.2)–(10.5)

with satisfying the properties (10.73) and 0 < s(t)< L for all t ∈ (0, t̄), and if σ 6= ∞ then s(σ) = 0

or s(σ) = L. However, by (10.11), (10.14), and (10.78) with the help of E(0) > 0, we obtain

E(t)> 0, which at least ensures that s(σ) 6= 0. In addition, by (10.78), we have

β

α

∫ s(t)

0
(T (x, t)−Tm)dx <−s(t)+ sr +

βεs2
r

2α
. (10.79)

for all t ∈ (0, t̄). Applying (10.73) to (10.79) with the help of Assumption 26 yields (10.76) for all

t ∈ (0, t̄). Thus, we also derive s(σ) 6= L. Therefore, σ = ∞, and the properties (10.73), (10.74),

and (10.76) hold for all t ≥ 0. Finally, applying (10.78) and (10.73) to (10.14) leads to (10.75),

from which we additionally have the following property

|s(t)− sr| ≤M := max
{

βεs2
r

2α
,sr

}
. (10.80)

Backstepping transformation

Next, we define the reference error states (u,X) as

u(x, t) = T (x, t)−Tr(x), X(t) = s(t)− sr. (10.81)
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Then, rewriting the system’s dynamics (10.2)–(10.5) with respect to (u,X) leads to the following

reference error system:

∂u
∂t

(x, t) =α
∂2u
∂x2 (x, t), 0 < x < s(t), (10.82)

∂u
∂x

(0, t) =− q̃c(t)/k, (10.83)

u(s(t), t) =εX(t), (10.84)

Ẋ(t) =−β
∂u
∂x

(s(t), t), (10.85)

where

q̃c(t) :=qc(t)−h(T (0, t)−Ta)−qlos =−cẼ(t). (10.86)

Referring to the procedure in Chapter 2, we introduce the following backstepping transformation:

w(x, t) =u(x, t)− β

α

∫ s(t)

x
φ(x− y)u(y, t)dy−φ(x− s(t))X(t), (10.87)

where the gain kernel function φ is given by

φ(x) =
c
β

x. (10.88)

We derive the transformed (w,X)-system. Taking the time and spatial derivatives of (10.87)

together with the solution of (10.82)–(10.85), and substituting he control law (10.15), the target
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(w,X)-system is derived as follows:

∂w
∂t

(x, t) =α
∂2w
∂x2 (x, t)− cεX(t)− ṡ(t)

(
c
α
(x− s(t))ε− c

β

)
X(t), (10.89)

∂w
∂x

(0, t) =− cε

2α
X(t)2, (10.90)

w(s(t), t) =εX(t), (10.91)

Ẋ(t) =− cX(t)−β
∂w
∂x

(s(t), t). (10.92)

Stability analysis

We prove the stability of (w,X)-system governed by (10.89)–(10.92) using Lyapunov’s

method. Let V be the Lyapunov function defined by

V =
1

2α
||w||2 + ε

2β
X(t)2. (10.93)

Note that Poincare’s and Agmon’s inequalities for the system (10.89)–(10.92) with 0 < s(t)< s̄

lead to

||w||2 ≤2s̄ε
2X(t)2 +4s̄2

∣∣∣∣
∣∣∣∣
∂w
∂x

∣∣∣∣
∣∣∣∣
2

, (10.94)

w(0, t)2 ≤2ε
2X(t)2 +4s̄

∣∣∣∣
∣∣∣∣
∂w
∂x

∣∣∣∣
∣∣∣∣
2

. (10.95)

Taking the time derivative of (10.93) along the solution of (10.89)–(10.92) yields

V̇ =
ṡ(t)
2α

w(s(t), t)2−
∣∣∣∣
∣∣∣∣
∂w
∂x

∣∣∣∣
∣∣∣∣
2

− cε

α

∫ s(t)

0
w(x, t)dxX(t)+

cε

2α
w(0, t)X(t)2

− cṡ(t)
α

∫ s(t)

0
f (x)w(x, t)dxX(t)− cε

β
X(t)2, (10.96)
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where f = 1
α
(x− s(t))ε− 1

β
. Applying Young’s inequality to the two terms in the second line of

(10.96), we get

−cε

α

∫ s(t)

0
w(x, t)dxX(t)≤ cε

2β
X(t)2 +

βcεs̄
2α2 ||w||

2, (10.97)

cε

2α
w(0, t)X(t)2 ≤ 1

8s̄
w(0, t)2 +

s̄c2ε2

2α2 X(t)4. (10.98)

In addition, applying Young’s and Cauchy-Schwarz inequalities to the term in third line of (10.96),

we get

−cṡ(t)
α

∫ s(t)

0
f (x)w(x, t)dxX(t)≤ c|ṡ(t)|

2α

(
1√
ε
|| f ||2||w||2 +

√
ε|X(t)|2

)
. (10.99)

Applying (10.97)–(10.99), and (10.94)–(10.95) to (10.96) with the help of |X | ≤M derived in

(10.80) leads to the following inequality:

V̇ ≤−
(

1
8s̄2 −

βcεs̄
2α2

)
||w||2−

(
cε

2β
− ε2

2s̄
− s̄c2ε2M2

2α2

)
X(t)2 +

|ṡ(t)|
2α

ε
2X(t)2

c|ṡ(t)|
2α

(
1√
ε
|| f ||2||w||2 +

√
ε|X(t)|2

)
. (10.100)

Noting the property (10.74), the dynamics (10.5) yields the following bound:

|ṡ(t)| ≤ −β
∂T
∂x

(s(t), t)+βε. (10.101)

Let z(t) be a variable defined by

z(t) = s(t)+2βεt. (10.102)
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The time derivative of (10.102) is given by

ż(t) =−β
∂T
∂x

(s(t), t)+βε > 0. (10.103)

Therefore, |ṡ(t)| ≤ ż(t) holds. Applying this inequality to (10.100), and supposing that the

following inequalities hold:

1 >
8βcεs̄3

α2 , (10.104)

c
β
>

2ε

s̄
+

2s̄c2εM2

α2 , (10.105)

we get

V̇ ≤−bV +aż(t)V (10.106)

where a = c
α

max
{

2α√
ε

(
ε2s̄3

3α2 +
s̄

β2

)
,
(

β√
ε
+ βε

α

)}
, b = min

{
α

8s̄2 ,
c
2

}
. Consider the functional W

defined by

W =Ve−az(t). (10.107)

Then, the time derivative is shown to satisfy

Ẇ ≤ (V̇ −aż(t)V )e−az(t) ≤−bW (t), (10.108)

which leads to W (t)≤W (0)e−bt , and hence

V (t)≤ea(z(t)−z(0))V (0)e−bt = ea(s(t)−s(0))e2aβεtV (0)e−bt

≤eas̄V (0)e−
b
2 t , (10.109)
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under the condition 2aβε < b
2 , which is equivalent to

8βc
α

max
{

2α
√

ε

(
ε2s̄3

3α2 +
s̄

β2

)
,β
√

ε+
βε2

α

}
< min

{
α

4s̄2 ,c
}
. (10.110)

Finally, all the conditions (10.104), (10.105), (10.110) introduced in the stability proof hold for

sufficiently small ε > 0, i.e., there exists a positive constant ε∗ > 0 such that for all ε ∈ (0,ε∗)

the conditions hold and therefore the decay of the norm (10.109) is satisfied, from which we

complete the proof of Theorem 1.

Proof of Theorem 17

Since the procedure of the proof of Theorem 17 is analogous to the proof of Theorem 16,

we omit here. We show only the proof of the properties in Lemma 17. Here, the reference error

of the energy (10.13) is redefined by

Ẽ(t) =
k
α

(∫ s(t)

0

(
T̂ (x, t)−Tm

)
dx− εs2

r
2

)
+

k
β
(s(t)− sr). (10.111)

Taking the time derivative of (10.111) with the help of (10.20)–(10.22) and (10.29) leads to

˙̃E =−cẼ(t)+κT̃ (0, t)− k
∂T̃
∂x

(s(t), t). (10.112)

Applying the maximum principle and Hopf’s lemma to (10.24)–(10.26) yields the following

properties:

T̃ (x, t)≤0, ∀x ∈ [0,s(t)], ∀t ≥ 0, (10.113)

∂T̃
∂x

(s(t), t)≥0, ∀t ≥ 0. (10.114)
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Thus, (10.112) yields ˙̃E(t) ≤ −cẼ(t), and applying the comparison principle, one can obtain

Ẽ(t)≤ Ẽ(0)e−ct . Finally, applying the same steps from (10.78) to (10.80), we deduce that the

all the properties in Lemma 17 hold under the output feedback control system. Then, using the

same procedure as in the proof of Theorem 16 leads to Theorem 17.

10.7 Conclusion and Future Work

This chapter has shown the experimental validation of a boundary feedback control

algorithm developed for the phase change process. The physical model is formulated by the

Stefan problem governed by a parabolic PDE with a state-dependent moving boundary described

by an ODE, with unknown heat losses at both the surface and the phase interface. The nominal

continuous-time full-state feedback control has been presented by means of energy-shaping and

the closed-loop stability is proven by applying the backstepping-based state transformation and

Lyapunov method. Then, an implementable control algorithm is developed by further designing

an observer-based output feedback with finite-dimensional approximation, under the sampled-

data measurements of the surface temperature and the interface position. The experiment was

conducted by melting the paraffin with a cylindrical shape. The unknown parameters of the heat

losses are calibrated using the experimental data under a constant input. Finally, the proposed

feedback control was implemented in the experiment, which provided a successful result of the

convergence of the phase interface position to a priori chosen setpoint position.

This chapter has provided the first experimental result of the boundary feedback control for

the phase change process modeled by the Stefan problem. Therefore, there are several potential

future work of the experimental validation of the extended models such as the two-phase Stefan

problem in Chapter 4, the Stefan problem under materials’ convection modeled for the polymer

3D-printing in Chapter 8, and the delay-compensated control under the actuator delay in Chapter

4. Developing event-triggered control is also an interesting problem, which can be achieved
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for PDE dynamics referring to [45, 46, 47] for both hyperbolic and parabolic systems using

backstepping approach. Another direction is designing an adaptive control to simultaneously

regulating the input and learning the unknown parameters following [146, 70].
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Appendix A

Bessel Functions

Bessel function of the first kind is a solution to the following Bessel’s differential equation:

x2 d2y
dx2 + x

dy
dx

+(x2−n2)y = 0, (A.1)

where n is generally an arbitrary complex number but here we consider a positive integer

n ∈ {1,2, · · ·}. A series representation of the solution y = Jn(x) is described by

Jn(x) =
∞

∑
m=0

(−1)m(x/2)n+2m

m!(m+n)!
. (A.2)

Modified Bessel function of the first kind is a solution to the following modified Bessel’s

differential equation:

x2 d2y
dx2 + x

dy
dx

+(x2−n2)y = 0. (A.3)

A series representation of the solution y = In(x) is described by

In(x) =
∞

∑
m=0

(x/2)n+2m

m!(m+n)!
. (A.4)
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Some properties of the functions are given by

2nJn(x) = x(Jn−1(x)+ Jn+1(x)), (A.5)

Jn(−x) = (−1)nJn(x), (A.6)

In(x) = i−nJn(ix), In(ix) = inJn(x), (A.7)

2nIn(x) = x(In−1(x)− In+1(x)), (A.8)

In(−x) = (−1)nIn(x). (A.9)

Derivatives are given by

d
dx

Jn(x) =
1
2
(Jn−1(x)− Jn+1(x)) =

n
x

Jn(x)− Jn+1(x), (A.10)

d
dx

(xnJn(x)) =xnJn−1(x),
d
dx

(x−nJn(x)) =−x−nJn+1(x), (A.11)

d
dx

In(x) =
1
2
(In−1(x)+ In+1(x)) =

n
x

In(x)+ In+1(x), (A.12)

d
dx

(xnIn(x)) =xnIn−1(x),
d
dx

(x−nIn(x)) = x−nIn+1(x), (A.13)
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Appendix B

Some Inequalities

B.1 Cauchy-Schwarz Inequality

∫ D

0
f (x)g(x)dx≤

(∫ D

0
f (x)2dx

)1/2

·
(∫ D

0
g(x)2dx

)1/2

(B.1)

B.2 Poincare’s Inequality

∫ D

0
w(x)2dx≤2Dw(D)2 +4D2

∫ D

0
wx(x)2dx (B.2)∫ D

0
w(x)2dx≤2Dw(0)2 +4D2

∫ D

0
wx(x)2dx (B.3)
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Proof:

∫ D

0
w(x)2dx = xw(x)2|D0 −2

∫ D

0
xw(x)wx(x)dx

= Dw(D)2−2
∫ D

0
xw(x)wx(x)dx

≤ Dw(D)2 +
1
2

∫ D

0
w(x)2dx+2

∫ D

0
x2wx(x)2dx

Thus, we arrived at (B.2).

∫ D

0
w(x)2dx = (x−D)w(x)2|D0 −2

∫ D

0
(x−D)w(x)wx(x)dx

= Dw(0)2−2
∫ D

0
(x−D)w(x)wx(x)dx

≤ Dw(0)2 +
1
2

∫ D

0
w(x)2dx+2

∫ D

0
(x−D)2wx(x)2dx

Thus, we arrived at (B.3).

B.3 Agmon’s Inequality

Agmon’s Inequality (Case 1)

||w||2∞ ≤ w(0)2 +2||w||2||wx||2 (B.4)
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Proof:

∫ x

0
w(x)wx(x)dx =

1
2
(w(x)2−w(0)2)

Taking absolute values and triangle inequality,

w(x)2 ≤ w(0)2 +2
∫ x

0
|w(x)||wx(x)|dx

≤ w(0)2 +2
∫ D

0
|w(x)||wx(x)|dx

Because the left hand side doesn’t depend on x, we arrive at (B.5).

Agmon’s Inequality (Case 1:Extended)

||w||2∞ ≤ 2w(0)2 +4D||wx||2 (B.5)

Proof:

By (B.5) and applying Young’s inequality with γD, we have

||w||2∞ ≤ w(0)2 +
1

γD
||w||22 + γD||wx||2

≤
(

1+
2
γ

)
w(0)2 +

(
4
γ
+ γ

)
D||wx||2 (B.6)

Setting γ = 2 leads to the inequality.
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Agmon’s Inequality (Case 2)

w(0)2 ≤ D+1
D
||w||2 + ||wx||2 (B.7)

Proof:

Taking integral, we have

−
∫ x

0
w(x)wx(x)dx =

1
2
(w(0)2−w(x)2)

In addition, by Young’s inequality, we have

−
∫ x

0
w(x)wx(x)dx≤

∫ x

0

1
2
(
w(y)2 +wy(y)2)dy

≤1
2
(
||w||2 + ||wx||2

)
(B.8)

Taking integration, we have

∫ D

0

1
2
(w(0)2−w(x)2)dx≤

∫ D

0

1
2
(
||w||2 + ||wx||2

)
dx (B.9)

For non-x-dependent terms, we obtain

Dw(0)2−||w||2 ≤ D
(
||w||2 + ||wx||2

)
(B.10)

Therefore, we arrive at

w(0)2 ≤ D+1
D
||w||2 + ||wx||2 (B.11)
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In the same way, we have

∫ D

x
w(x)wx(x)dx =

1
2
(w(D)2−w(x)2)∫ D

x
w(x)wx(x)dx≤

∫ D

x

1
2
(
w(y)2 +wy(y)2)dy

≤1
2
(
||w||2 + ||wx||2

)
(B.12)

Therefore, we arrive at

w(D)2 ≤ D+1
D
||w||2 + ||wx||2 (B.13)
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Appendix C

Stable Systems and Their Proofs

C.1 One-Phase Stefan Problem With Monotonic Interface

Consider the system

wt(x, t) =αwxx(x, t)+ ṡ(t)φ′(x− s(t))X(t), (C.1)

wx(0, t) =0, (C.2)

w(s(t), t) =0, (C.3)

Ẋ(t) =− cX(t)−βwx(s(t), t). (C.4)

Lemma 7 With the conditions

ṡ(t)> 0, 0 < s(t)< s̄, (C.5)

for some positive constant s̄ > 0, (w,X)-system in (C.1)–(C.4) is exponentially stable at the origin
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in the sense of the spatial H1-norm defined by

Φ(t) :=
∫ s(t)

0
w(x, t)2dx+

∫ s(t)

0
wx(x, t)2dx+X(t)2 (C.6)

Proof:

V1 =
1
2

∫ s(t)

0
w(x, t)2dx. (C.7)

Taking the time derivative of (C.7), we have

V̇1 =
∫ s(t)

0
w(x, t)wt(x, t)dx+

1
2

ṡ(t)w(s(t), t)2

= α

∫ s(t)

0
w(x, t)wxx(x, t)dx+ ṡ(t)X(t)

∫ s(t)

0
φ
′(x− s(t))w(x, t)dx

= αw(x, t)wx(x, t)|y=s(t)
y=0 −α

∫ s(t)

0
wx(x, t)2dx+ ṡ(t)X(t)

∫ s(t)

0
φ
′(x− s(t))w(x, t)dx

=−α

∫ s(t)

0
wx(x, t)2dx+ ṡ(t)X(t)

∫ s(t)

0
φ
′(x− s(t))w(x, t)dx. (C.8)

Next, we consider V2 defined by

V2 =
1
2

∫ s(t)

0
wx(x, t)2dx. (C.9)
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Taking the time derivative of (C.9), we get

V̇2 =
∫ s(t)

0
wx(x, t)wxt(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2

=wx(x, t)wt(x, t)|x=s(t)
x=0 −

∫ s(t)

0
wxx(x, t)wt(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2

=wx(s(t), t)wt(s(t), t)−α

∫ s(t)

0
wxx(x, t)2dx

− ṡ(t)X(t)
∫ s(t)

0
φ
′(x− s(t))wxx(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2 (C.10)

Taking the total time derivative of (C.2) on both sides, we obtain the following

d
dt

w(s(t), t) = wt(s(t), t)+ ṡ(t)wx(s(t), t) = 0, (C.11)

which yields

wt(s(t), t) =−ṡ(t)wx(s(t), t). (C.12)

Moreover, the integration by parts in first term in the last line in (C.10) with the help of (C.2) is

given by

∫ s(t)

0
φ
′(x− s(t))wxx(x, t)dx = φ

′(0)wx(s(t), t)−
∫ s(t)

0
φ
′′(x− s(t))wx(x, t)dx. (C.13)

Therefore, plugging (C.12) and (C.13) into (C.10), we arrive at

V̇2 =−α

∫ s(t)

0
wxx(x, t)2dx− 1

2
ṡ(t)wx(s(t), t)2

− ṡ(t)X(t)
(

φ
′(0)wx(s(t), t)−

∫ s(t)

0
φ
′′(x− s(t))wx(x, t)dx

)
. (C.14)
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Next, we consider V3 defined by

V3 =
1
2

X(t)2. (C.15)

Using (C.4), the time derivative of (C.15) is given by

V̇3 =X(t)Ẋ(t)

=− cX(t)2−βX(t)wx(s(t), t). (C.16)

Let V be the functional defined by

V =V1 +V2 + pV3. (C.17)

By (C.8), (C.14), and (C.16), the time derivative of (C.17) is given by

V̇ =−α

∫ s(t)

0
wxx(x, t)2dx−α

∫ s(t)

0
wx(x, t)2dx− pcX(t)2− pβX(t)wx(s(t), t)

+ ṡ(t)X(t)
∫ s(t)

0
φ
′(x− s(t))w(x, t)dx− ṡ(t)

2
wx(s(t), t)2

− ṡ(t)X(t)
(

φ
′(0)wx(s(t), t)−

∫ s(t)

0
φ
′′(x− s(t))wx(x, t)dx

)
. (C.18)

Using the fact that ṡ(t)> 0 and applying Young’s inequality yields

−pβX(t)wx(s(t), t)≤
p
2

(
cX(t)2 +

β2

c
wx(s(t), t)2

)
, (C.19)

ṡ(t)X(t)
∫ s(t)

0
φ
′(x− s(t))w(x, t)dx≤ ṡ(t)

2

(
γ1X(t)2 +

1
γ1

(∫ s(t)

0
φ
′(x− s(t))w(x, t)dx

)2
)
,

(C.20)

−ṡ(t)X(t)φ′(0)wx(s(t), t)≤
ṡ(t)
2

(
γ2φ
′(0)2X(t)2 +

1
γ2

wx(s(t), t)2
)
, (C.21)
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for some positive constants γ1 > 0 and γ2 > 0. Here we choose

γ1 = φ
′(0)2, γ2 = 1. (C.22)

Also, by Cauchy-Schwarz inequality, we have

(∫ s(t)

0
φ
′(x− s(t))w(x, t)dx

)2

≤
(∫ s(t)

0
φ
′(x− s(t))2dx

)(∫ s(t)

0
w(x, t)2dx

)

≤ φ̄
′
∫ s(t)

0
w(x, t)2dx. (C.23)

where φ̄′ =
∫ s̄

0 φ′(−x)2dx. Applying (C.19)–(C.23) to (C.18), the following inequality on V is

derived

V̇ ≤−α

∫ s(t)

0
wxx(x, t)2dx−α

∫ s(t)

0
wx(x, t)2dx− pc

2
X(t)2 +

pβ2

2c
wx(s(t), t)2

+ ṡ(t)
(

φ̄′

2φ′(0)2

∫ s(t)

0
w(x, t)2dx+φ

′(0)2X(t)2
)

(C.24)

Applying Poincare’s and Agmon’s inequalities which give
∫ s(t)

0 w(x, t)2dx≤ 4s̄2 ∫ s(t)
0 wx(x, t)2dx

and wx(s(t), t)2 ≤ 4s̄
∫ s(t)

0 wxx(x, t)2dx, the inequality (C.24) becomes

V̇ ≤−
(

α− 2pβ2s̄
c

)∫ s(t)

0
wxx(x, t)2dx−α

∫ s(t)

0
wx(x, t)2dx− pc

2
X(t)2

+ ṡ(t)
(

φ̄′

2φ′(0)2

∫ s(t)

0
w(x, t)2dx+φ

′(0)2X(t)2
)
. (C.25)
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Therefore, by choosing p = cα

4β2s̄ , we arrive at

V̇ ≤− α

8s̄2

∫ s(t)

0
wx(x, t)2dx− α

4s̄2

∫ s(t)

0
w(x, t)2dx− pc

2
X(t)2

+ ṡ(t)
(

φ̄′

2φ′(0)2

∫ s(t)

0
w(x, t)2dx+φ

′(0)2X(t)2
)

≤−bV +aṡ(t)V (C.26)

where a = max
{

φ̄′

φ′(0)2 ,
2φ′(0)2

p

}
, b = min

{
α

4s̄2 ,c
}

.

However, the second term of the right-hand side of (C.26) does not enable to directly

conclude the exponential stability. To deal with it, we introduce a new Lyapunov function W

defined by

W =Ve−as(t). (C.27)

The time derivative of (C.27) is written as

Ẇ =
(
V̇ −aṡ(t)V

)
e−as(t), (C.28)

and using (C.26) the following estimate can be deduced

Ẇ ≤−bW. (C.29)

Hence, W (t)≤W (0)e−bt , and using 0 < s(t)< s̄ and (C.27), we obtain

V (t)≤ eas̄V (0)e−bt . (C.30)
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C.2 One-Phase Stefan Problem With Convection and Heat

Loss

Consider the system

wt(x, t) =αwxx(x, t)+bwx(x, t)−hw(x, t)

+ ṡ(t)φ′(x− s(t))X(t), 0 < x < s(t) (C.31)

wx(0, t) =γw(0, t), (C.32)

w(s(t), t) =0, (C.33)

Ẋ(t) =− cX(t)−βwx(s(t), t), (C.34)

where b is an arbitral parameter (can be positive or negative), h≥ 0, c > 0, and γ > max
{

0,− b
2α

}
.

Lemma 8 With the conditions

ṡ(t)> 0, 0 < s(t)< sr, (C.35)

for some positive constant sr > 0, (w,X)-system in (C.31)–(C.34) is exponentially stable at the

origin in the sense of the spatial H1-norm defined by

Φ(t) :=
∫ s(t)

0
w(x, t)2dx+

∫ s(t)

0
wx(x, t)2dx+X(t)2 (C.36)

Proof:

We consider a functional V1 defined by

V1 =
1
2

∫ s(t)

0
w(x, t)2dx. (C.37)
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Taking the time derivative of (C.37) along with (C.31)–(C.34), we have

V̇1 =
∫ s(t)

0
w(x, t)wt(x, t)dx+

1
2

ṡ(t)w(s(t), t)2

=α

∫ s(t)

0
w(x, t)wxx(x, t)dx+b

∫ s(t)

0
w(x, t)wx(x, t)dx−h

∫ s(t)

0
w(x, t)2dx

+ ṡ(t)X(t)
∫ s(t)

0
φ
′(x− s(t))w(x, t)dx

=αw(x, t)wx(x, t)|x=s(t)
x=0 −α

∫ s(t)

0
wx(x, t)2dx+

b
2
(w(s(t), t)2−w(0, t)2)

−h
∫ s(t)

0
w(x, t)2dx+ ṡ(t)X(t)

∫ s(t)

0
φ
′(x− s(t))w(x, t)dx

=−α||wx||2−h||w||2−
(

γα+
b
2

)
w(0, t)2

+ ṡ(t)X(t)
∫ s(t)

0
φ
′(x− s(t))w(x, t)dx. (C.38)

Applying Young’s inequality with the help of ṡ(t)> 0 and 0 < s(t)< sr, we have

ṡ(t)X(t)
∫ s(t)

0
φ
′(x− s(t))w(x, t)dx≤ ṡ(t)

2

(
X(t)2 +φ′

2||w||2
)
, (C.39)

where φ := sups(t)∈(0,sr)

√∫ s(t)
0 φ′(x− s(t))2dx. Thus, applying the above inequality to (C.38), we

get

V̇1 ≤−α||wx||2−h||w||2−
(

γα+
b
2

)
w(0, t)2 +

ṡ(t)
2

(
X(t)2 +φ′

2||w||2
)
. (C.40)

Next, we consider V2 defined by

V2 =
1
2

∫ s(t)

0
wx(x, t)2dx. (C.41)

357



Taking the time derivative of (C.41), we get

V̇2 =
∫ s(t)

0
wx(x, t)wxt(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2

=wx(x, t)wt(x, t)|x=s(t)
x=0 −

∫ s(t)

0
wxx(x, t)wt(x, t)dx+

1
2

ṡ(t)wx(s(t), t)2

=wx(s(t), t)wt(s(t), t)− γw(0, t)wt(0, t)−α||wxx||2−b
∫ s(t)

0
wxx(x, t)wx(x, t)dx

+h
∫ s(t)

0
wxx(x, t)w(x, t)dx− ṡ(t)X(t)

∫ s(t)

0
φ
′(x− s(t))wxx(x, t)dx

+
1
2

ṡ(t)wx(s(t), t)2 (C.42)

The boundary condition w(s(t), t) = 0 yields

wt(s(t), t) =−ṡ(t)wx(s(t), t). (C.43)

Moreover, we have

∫ s(t)

0
φ
′(x− s(t))wxx(x, t)dx

=φ
′(0)wx(s(t), t)− γφ

′(−s(t))w(0, t)−
∫ s(t)

0
φ
′′(x− s(t))wx(x, t)dx. (C.44)

Therefore, plugging (C.43) and (C.44) into (C.42), we arrive at

V̇2 =−α||wxx||2−b
∫ s(t)

0
wxx(x, t)wx(x, t)dx− γhw(0, t)2−h||wx||2− γw(0, t)wt(0, t)

− ṡ(t)X(t)
(

φ
′(0)wx(s(t), t)− γφ

′(−s(t))w(0, t)−
∫ s(t)

0
φ
′′(x− s(t))wx(x, t)dx

)

− 1
2

ṡ(t)wx(s(t), t)2. (C.45)

358



Applying Young’s and Cauchy-Schwarz inequalities, we get

−b
∫ s(t)

0
wxx(x, t)wx(x, t)dx≤ α

2
||wxx||2 +

b2

2α
||wx||. (C.46)

Moreover, applying Young’s inequality with the help of ṡ(t)≥ 0, we get

− ṡ(t)X(t)φ′(0)wx(s(t), t)≤
ṡ(t)
2

(wx(s(t), t)2 +φ
′(0)2X(t)2), (C.47)

ṡ(t)X(t)
(

γφ
′(−s(t))w(0, t)+

∫ s(t)

0
φ
′′(x− s(t))wx(x, t)dx

)

≤ ṡ(t)
2

(
(φ′s

2
+1)X(t)2 + γ

2w(0, t)2 +φ′′
2||wx||2

)
(C.48)

where φ′s := sups(t)∈(0,sr) |φ′(−s(t))|, and φ′′ := sups(t)∈(0,sr)

√∫ s(t)
0 φ′′(x− s(t))2dx. Applying

these inequalities to (C.45), we have

V̇2 ≤−
α

2
||wxx||2 +

(
b2

2α
−h
)
||wx||2− γhw(0, t)2− γw(0, t)wt(0, t)

+
ṡ(t)
2

(
(φ′(0)2 +φ′s

2
+1)X(t)2 + γ

2w(0, t)2 +φ′′
2||wx||2

)
. (C.49)

Next, we consider V3 defined by

V3 =
1
2

X(t)2. (C.50)
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The time derivative of (C.50) and applying Young’s and Agmon’s inequalities, we get

V̇3 =X(t)Ẋ(t)

=− cX(t)2−βX(t)wx(s(t), t)

≤− c
2

X(t)2 +
β2

2c
wx(s(t), t)2

≤− c
2

X(t)2 +
β2

2c
(2wx(0, t)2 +4sr||wxx||2)

=− c
2

X(t)2 +
β2γ2

c
w(0, t)2 +

2srβ
2

c
||wxx||2

≤− c
2

X(t)2 +
4srβ

2γ2

c
||wx||2 +

2srβ
2

c
||wxx||2 (C.51)

Let V ∗ be the functional defined by

V ∗ =V2 +
γ

2
w(0, t)2 + pV3, (C.52)

where p = cα

8β2sr
. By (C.49) and (C.51), the time derivative of (C.52) satisfies

V̇ ∗ ≤− α

4
||wxx||2 +

(
b2

2α
+

γ2α

2
−h
)
||wx||2− γhw(0, t)2− pc

2
X(t)2

+
ṡ(t)
2

(
(φ′(0)2 +φ′s

2
+1)X(t)2 + γ

2w(0, t)2 +φ′′
2||wx||2

)
. (C.53)

By Poincare’s inequality, we have

||wx||2 ≤ 2srwx(0, t)2 +4s2
r ||wxx||2 = 2srγ

2w(0, t)2 +4s2
r ||wxx||2 (C.54)
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Applying this to (C.53), we get

V̇ ∗ ≤− α

16s2
r
||wx||2 +

(
b2

2α
+

γ2α

2
−h
)
||wx||2 +

(
αγ2

8sr
− γh

)
w(0, t)2− pc

2
X(t)2

+
ṡ(t)
2

(
(φ′(0)2 +φ′s

2
+1)X(t)2 + γ

2w(0, t)2 +φ′′
2||wx||2

)
. (C.55)

Finally, let V be defined by

V =V ∗+qV1, (C.56)

where q > 0 is a positive parameter to be determined. Then, the time derivative of V satisfies

V̇ ≤−
(

α

16s2
r
+h+

qα

2
−
(

b2

2α
+

γ2α

2

))
||wx||2−q

(
α

8s2
r
+h
)
||w||2

−
(

q
(

γα+
b
2

)
− αγ2

8sr
+ γh

)
w(0, t)2− pc

2
X(t)2

+
ṡ(t)
2

(
(φ′(0)2 +φ′s

2
+1+q)X(t)2 +qφ′

2||w||2 + γ
2w(0, t)2 +φ′′

2||wx||2
)
. (C.57)

Therefore, by choosing

γ >max
{

0,− b
2α

}
, (C.58)

q =max

{
b2

α2 + γ
2,

αγ(2γsr +1)
16s2

r (γα+ b
2)

}
, (C.59)

there exists a positive constant a > 0 such that

V̇ ≤−dV +aṡV, (C.60)

holds, where d = min
{

α

16s2
r
+h,c

}
. Using the same approach as Appendix C.1, we can deduce
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that it holds

V (t)≤ easrV (0)e−dt . (C.61)

Recall the definition of Φ = ||w||2 + ||wx||2 +X(t)2 given in (C.36). Then, with the help of

Agmon’s inequality, we can obtain the following bound:

MΦ≤V ≤MΦ, (C.62)

where

M =
1
2

min{q,1, p}, M =
1
2

max{q,1+4γsr, p}. (C.63)

Finally, by combining (C.61) and (C.62), we obtain

Φ(t)≤ M
M

easrV (0)e−dt , (C.64)

by which we complete the proof of Lemma 8.
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C.3 One-Phase Stefan Problem With Delay

Consider the system

zt(x, t) =− zx(x, t), −D < x < 0 (C.65)

z(−D, t) =0, (C.66)

wx(0, t) =− z(0, t), (C.67)

wt(x, t) =αwxx(x, t)+
c
β

ṡ(t)X(t), 0 < x < s(t) (C.68)

w(s(t), t) =0, (C.69)

Ẋ(t) =− cX(t)−βwx(s(t), t). (C.70)

Lemma 9 With the conditions

ṡ(t)> 0, 0 < s(t)< sr, (C.71)

for some positive constant sr > 0, (w,X)-system in (C.65)–(C.70) is exponentially stable at the

origin in the sense of the spatial H1-norm defined by

Π(t) :=
∫ 0

−D
zx(x, t)2dx+

∫ s(t)

0
w(x, t)2dx+

∫ s(t)

0
wx(x, t)2dx+X(t)2. (C.72)

Proof:

Change of variable

Introduce a change of variable

ω(x, t) = w(x, t)+(x− s(t))z(0, t). (C.73)
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Using (C.73), the target (z,w,X)-system (C.65)–(C.70) is described by (z,ω,X)-system as

z(−D, t) =0, (C.74)

zt(x, t) =− zx(x, t), −D < x < 0 (C.75)

ωx(0, t) =0, (C.76)

ωt(x, t) =αωxx(x, t)− (x− s(t))zx(0, t)+ ṡ(t)
(

c
β

X(t)− z(0, t)
)
, 0 < x < s(t) (C.77)

ω(s(t), t) =0, (C.78)

Ẋ(t) =− cX(t)−β(ωx(s(t), t)− z(0, t)). (C.79)

Stability analysis of (z,ω,X)-system

Firstly, we prove the exponential stability of the (z,ω,X)-system. Let V1 be the functional

defined by

V1 =
∫ 0

−D
e−mxzx(x, t)2dx, (C.80)

where m > 0 is a positive parameter. (C.80) satisfies

||zx||2L2(−D,0) ≤V1 ≤ emD||zx||2L2(−D,0). (C.81)

Note that (C.74) yields zx(−D, t) = 0 through taking the time derivative and applying PDE (C.75).

With the help of it, taking the time derivative of (C.80) together with (C.74)-(C.75) leads to

V̇1 =−2
∫ 0

−D
e−mxzx(x, t)zxx(x, t)dx

=− e−mxzx(x, t)2|x=0
x=−D +

∫ 0

−D

(
d
dx

e−mx
)

zx(x, t)2dx

=− zx(0, t)2−m
∫ 0

−D
e−mxzx(x, t)2dx. (C.82)
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Let V2 be the functional defined by

V2 =
1
2

(
1
s2

r
||ω||2L2(0,s(t))+ ||ωx||2L2(0,s(t))

)

=
1
2

∫ s(t)

0

(
1
s2

r
ω(x, t)2 +ωx(x, t)2

)
dx. (C.83)

(C.83) satisfies max{s2
r ,1}||ω||2H1(0,s(t))

≤ 2V2 ≤max{1/s2
r ,1}||ω||2H1(0,s(t))

Note that taking the

total time derivative of (C.78) yields ωt(s(t), t) =−ṡ(t)ωx(s(t), t). Taking the time derivative of

(C.83) together with (C.76)-(C.78), we obtain

V̇2 =
ṡ(t)
2

(
1
s2

r
ω(s(t), t)2 +ωx(s(t), t)2

)

+
∫ s(t)

0

(
1
s2

r
ω(x, t)ωt(x, t)+ωx(x, t)ωxt(x, t)

)
dx

=
ṡ(t)
2

ωx(s(t), t)2

+
1
s2

r

∫ s(t)

0
ω(x, t)

(
αωxx(x, t)− (x− s(t))zx(0, t)+ ṡ(t)

(
c
β

X(t)− z(0, t)
))

dx

+ωx(s(t), t)ωt(s(t), t)−ωx(0, t)ωt(0, t)−
∫ s(t)

0
ωxx(x, t)ωt(x, t)dx

=− α

s2
r
||ωx||2L2(0,s(t))−

1
s2

r
zx(0, t)

∫ s(t)

0
(x− s(t))ω(x, t)dx

+
ṡ(t)
s2

r

(
c
β

X(t)− z(0, t)
)∫ s(t)

0
ω(x, t)dx−α||ωxx||2L2(0,s(t))+ zx(0, t)ω(0, t)

− ṡ(t)
2

ωx(s(t), t)2− ṡ(t)
(

c
β

X(t)− z(0, t)
)

ωx(s(t), t). (C.84)
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Applying Young’s and Cauchy Schwarz inequalities to the second terms on the first and second

line of the (C.84) with the help of 0 < s(t)< sr yields

∣∣∣∣zx(0, t)
∫ s(t)

0
(x− s(t))ω(x, t)dx

∣∣∣∣≤
γ1

2
zx(0, t)2 +

1
2γ1

(∫ s(t)

0
(x− s(t))ω(x, t)dx

)2

,

≤γ1

2
zx(0, t)2

+
1

2γ1

(∫ s(t)

0
(x− s(t))2 dx

)(∫ s(t)

0
ω(x, t)2dx

)
,

≤γ1

2
zx(0, t)2 +

s3
r

6γ1
||ω||2L2(0,s(t)),

≤γ1

2
zx(0, t)2 +

2s5
r

3γ1
||ωx||2L2(0,s(t)), (C.85)

|zx(0, t)ω(0, t)| ≤
γ2

2
zx(0, t)2 +

1
2γ2

ω(0, t)2,

≤ γ2

2
zx(0, t)2 +

2sr

γ2
||ωx||2L2(0,s(t)), (C.86)

where we utilized Poincare’s inequality ||ω||2L2(0,s(t))
≤ 4s2

r ||ωx||2L2(0,s(t))
and Agmon’s inequality

ω(0, t)2 ≤ 4sr||ωx||2L2(0,s(t))
, and γ1 > 0 and γ2 > 0 are positive parameters to be determined.

Hence, applying (C.85) and (C.86) to (C.84) with the choice of γ1 = 8s5
r

3α
and γ2 = 8s3

r
α

, the

following differential inequality is deduced

V̇2 ≤−
α

2
||ωxx||2L2(0,s(t))−

α

2s2
r
||ωx||2L2(0,s(t))+

16s3
r

3α
zx(0, t)2

+ ṡ(t)
(

2
c2

β2 X(t)2 +2z(0, t)2 +
1

2s3
r
||ω||2L2(0,s(t))

)
. (C.87)

Let V3 be the functional defined by

V3 =
1
2

X(t)2. (C.88)
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Taking the time derivative of (C.88) and applying Young’s and Agmon’s inequalities, we obtain

V̇3 =− cX(t)2−βX(t)(ωx(s(t), t)− z(0, t))

≤− c
2

X(t)2 +
4β2sr

c
||ωxx||2L2(0,s(t))+

4Dβ2

c
||zx||2L2(−D,0). (C.89)

Let V be the functional defined by

V = qV1 +V2 + pV3, (C.90)

where q > 0 and p > 0 are positive parameters to be determined. Combining (C.82), (C.87), and

(C.89), we get

V̇ ≤− α

2

(
1− 8pβ2sr

cα

)
||ωxx||2L2(0,s(t))−

α

2s2
r
||ωx||2L2(0,s(t))−

(
q− 16s3

r
3α

)
zx(0, t)2

−m
(

q− p
4Dβ2

mc

)
||zx||2L2(−D,0)−

pc
2

X(t)2

+ ṡ(t)
(

2
c2

β2 X(t)2 +2z(0, t)2 +
1

2s3
r

∫ s(t)

0
ω(x, t)2dx

)
. (C.91)

Hence, by choosing the parameters as

p =
cα

16β2sr
, q = max

{
16s3

r
3α

,
Dα

2msr

}
, (C.92)

the inequality (C.91) leads to

V̇ ≤− α

4
||ωxx||2L2(0,s(t))−

α

2s2
r
||ωx||2L2(0,s(t))−m

(
q− p

4Dβ

mc

)
||zx||2L2(−D,0)−

pc
2

X(t)2

+ ṡ(t)
(

2
c2

β2 X(t)2 +2z(0, t)2 +
1

2s3
r

∫ s(t)

0
ω(x, t)2dx

)
,

≤− α

8s2
r
V2−

mq
2

e−mDV1−
pc
2

X(t)2 + ṡ(t)
(

4c
β2V3 +8DV1 +

1
sr

V2

)
, (C.93)
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from which we obtain the form of

V̇ ≤−bV +aṡ(t)V, (C.94)

where

b = min
{

m
2

e−mD,
α

8s2
r
,c
}
, a = max

{
8D
q
,

1
sr
,

4c2

pβ2

}
. (C.95)

Hence, applying 0 < s(t)< sr, the exponential stability of (z,ω,X)-system is shown as

V (t)≤V (0)easre−bt . (C.96)

Stability analysis of (z,w,X)-system

Taking the square of (C.73) and applying Young’s and Cauchy Schwarz inequality, we

obtain

||ω||2H1(0,s(t))
≤2||w||2H1(0,s(t))

+K1||zx||2L2(−D,0), (C.97)

||w||2H1(0,s(t))
≤2||ω||2H1(0,s(t))

+K1||zx||2L2(−D,0), (C.98)

where K1 =
8Ds3

r
3 +8Dsr. Consider the following norm

Π(t) = ||zx||2L2(−D,0)+ ||w||2H1(0,s(t))
+X(t)2. (C.99)

Then, recalling ||zx||2L2(−D,0)≤V1≤ emD||zx||2L2(−D,0) and K2||ω||2H1(0,s(t))
≤ 2V2≤K3||ω||2H1(0,s(t))

where K2 = max{s2
r ,1} and K3 = max{1/s2

r ,1}, applying (C.98) to (C.99) yields the following
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bound:

Π≤(1+K1)||zx||2L2(−D,0)+2||ω||2H1(0,s(t))
+X(t)2,

≤(1+K1)V1 +4K2V2 +2V3. (C.100)

Moreover, recalling V = qV1+V2+ pV3 and applying the above inequalities, the following bound

on V is derived:

V ≤qemD||zx||2L2(−D,0)+
K3

2
||ω||2H1(0,s(t))

+
p
2

X(t)2,

≤
(

qemD +
K1K3

2

)
||zx||2L2(−D,0)+

K3

2
||w||2H1(0,s(t))

+
p
2

X(t)2. (C.101)

Therefore, (C.100) and (C.101) leads to the following equivalence of the norm V and Π:

δV (t)≤Π(t)≤ δ̄V (t), (C.102)

where δ = 1
max

{
qemD+

K1K3
2 ,K3,

p
2

} and δ̄ = max
{

1
q (K1 +1) ,4K2,

2
p

}
. By (C.96) and (C.102), we

have

Π(t)≤ δ̄

δ
Π(0)easre−bt , (C.103)

which yields the exponential stability of (z,w,X)-system, and we complete the proof of Lemma 9.
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C.4 One-Phase Stefan Problem With Non-Monotonic Inter-

face and Disturbances

Consider the system

wt(x, t) =αwxx(x, t)+
c
β

ṡ(t)X(t)+φ(x− s(t))d(t), (C.104)

wx(0, t) = f (t)− β

α
ε

[
w(0, t)− β

α

∫ s(t)

0
ψ(−y)w(y, t)dy−ψ(−s(t))X(t)

]
, (C.105)

w(s(t), t) =εX(t), (C.106)

Ẋ(t) =− cX(t)−βwx(s(t), t)−d(t), (C.107)

where ε > 0, c > 0, and φ(x) and ψ(x) are bounded continuous functions in x.

Lemma 10 Suppose that there exists a positive constant s̄ > 0 such that

0 < s(t)< s̄. (C.108)

Let V (t) be a Lyapunov function defined by

V (t) =
1

2α
||w||2 + ε

2β
X(t)2. (C.109)

Then, there exists a positive constant ε∗ > 0 such that for all ε ∈ (0,ε∗) the following inequality

holds:

V̇ (t)≤−bV (t)+Γd(t)2 +2s̄ f (t)2 +a|ṡ(t)|V (t), (C.110)

where a = 2βε

α
max

{
1, αc2s̄

2β3ε3

}
, b = 1

8 min
{

α

s̄2 ,c
}

, and Γ = ε

βc +
2s̄3

α2

(
cs̄
β
+ ε

)2
. Moreover, suppose
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that there exists a time-varying function z(t) which satisfies

ż(t)≥ |ṡ(t)|, z≤ z(t)≤ z̄, (C.111)

for some constants z ∈ R and z̄ ∈ R. Then, the system (C.104)–(C.107) is exponentially ISS with

respect to f (t) and d(t).

Proof:

Note that Poincare’s and Agmon’s inequalities for the system (C.104)–(C.106) with 0 < s(t)< s̄

lead to

||w||2 ≤ 2s̄ε
2X(t)2 +4s̄2||wx||2, (C.112)

w(0, t)2 ≤ 2ε
2X(t)2 +4s̄||wx||2. (C.113)

Taking the time derivative of (C.109) along with the solution of (C.104)–(C.107), we have

V̇ (t) =−||wx||2−
ε

β
cX(t)2 +

β

α
εw(0, t)2−w(0, t) f (t)

− β

α
εw(0, t)

[
β

α

∫ s(t)

0
ψ(−y)w(y, t)dy+ψ(−s(t))X(t)

]

− ε

β
X(t)d(t)+

1
α

∫ s(t)

0
φ(x− s(t))w(x, t)dxd(t)

+
ṡ(t)
α

(
ε2

2
X(t)2 +

c
β

∫ s(t)

0
w(x, t)dxX(t)

)
. (C.114)

Applying Young’s inequality to the last term in the first line, the second, third, and fourth lines of

(C.114), we obtain

−w(0, t) f (t)≤ 1
8s̄

w(0, t)2 +2s̄ f (t)2, (C.115)
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−w(0, t)
[

β

α

∫ s(t)

0
ψ(−y)w(y, t)dy+ψ(−s(t))X(t)

]

≤1
2

w(0, t)2 +
β2

α2γ1

(∫ s(t)

0
ψ(−y)w(y, t)dy

)2

+ γ1 (ψ(−s(t))X(t))2 , (C.116)

− ε

β
X(t)d(t)+

1
α

∫ s(t)

0
φ(x− s(t))w(x, t)dxd(t)

≤ 1
2γ2

(
ε

β
X(t)

)2

+
(γ2 + γ3)

2
d(t)2 +

1
2α2γ3

(∫ s(t)

0
φ(x− s(t))w(x, t)dx

)2

, (C.117)

where γi > 0 for i = {1,2,3}. Applying (C.115)-(C.117) and Cauchy Schwarz, Poincare, and

Agmon’s inequalities to (C.114) with choosing γ1 =
1
8 , γ2 =

2ε

βc , and γ3 =
4s̄3

α2

(
cs̄
β
+ ε

)2
, we have

V̇ (t)≤−
(

1
2
− 2βs̄

α

(
64cs̄2

α
+3
)

ε

)
||wx||2

− ε

(
c

8β
+g(ε)

)
X(t)2 +Γd(t)2 +2s̄ f (t)2

+
|ṡ(t)|
2α

(
ε

2X(t)2 +
2c
β

∣∣∣∣
∫ s(t)

0
w(x, t)dxX(t)

∣∣∣∣
)
, (C.118)

where Γ = (γ2+γ3)
2 , and g(ε) = c

8β
− ε

2s̄ −
β

α

(
64cs̄2

α
+3
)

ε2. Since g(0) = c
8β

> 0 and g′(ε) =

− 1
2s̄ −

2βε

α

(
64cs̄2

α
+3
)
< 0 for all ε > 0, there exists ε∗ such that g(ε)> 0 for all ε ∈ (0,ε∗) and

g(ε∗) = 0. Thus, setting ε < min

{
ε∗, α

8βs̄
(

64cs̄2
α

+3
)

}
, the inequality (C.118) leads to

V̇ (t)≤−bV (t)+Γd(t)2 +2s̄ f (t)2

+
|ṡ(t)|
2α

(
ε

2X(t)2 +
2c
β

∣∣∣∣
∫ s(t)

0
w(x, t)dxX(t)

∣∣∣∣
)
, (C.119)

where b = 1
8 min

{
α

s̄2 ,c
}

. Applying Young’s inequality to (C.119), the inequality (C.110) is

derived.
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