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Abstract Markov logic networks (MLNs) are a well-known statistical relational
learning formalism that combines Markov networks with first-order logic. MLNs
attach weights to formulas in first-order logic. Learning MLNs from data is a chal-
lenging task as it requires searching through the huge space of possible theories.
Additionally, evaluating a theory’s likelihood requires learning the weight of all
formulas in the theory. This in turn requires performing probabilistic inference,
which, in general, is intractable in MLNs. Lifted inference speeds up probabilistic
inference by exploiting symmetries in a model. We explore how to use lifted infer-
ence when learning MLNs. Specifically, we investigate generative learning where
the goal is to maximize the likelihood of the model given the data. First, we pro-
vide a generic algorithm for learning maximum likelihood weights that works with
any exact lifted inference approach. In contrast, most existing approaches opti-
mize approximate measures such as the pseudo-likelihood. Second, we provide a
concrete parameter learning algorithm based on first-order knowledge compila-
tion. Third, we propose a structure learning algorithm that learns liftable MLNs,
which is the first MLN structure learning algorithm that exactly optimizes the
likelihood of the model. Finally, we perform an empirical evaluation on three real-
world datasets. Our parameter learning algorithm results in more accurate models
than several competing approximate approaches. It learns more accurate models
in terms of test-set log-likelihood as well as prediction tasks. Furthermore, our
tractable learner outperforms intractable models on prediction tasks suggesting
that liftable models are a powerful hypothesis space, which may be sufficient for
many standard learning problems.
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1 Introduction

Statistical relational learning (SRL) (Getoor and Taskar 2007) and probabilistic
logic learning (De Raedt et al 2008) seek to develop representations that combine
the benefits of probabilistic models, such as Markov or Bayesian networks, with
those of relational representations, such as first-order logic. Markov logic networks
(MLNs), which combine first-order logic with Markov networks, are one of the
most widely used SRL formalisms (Richardson and Domingos 2006). MLNs attach
a weight to each first-order logic formula in a theory. Given a set of objects, they
compactly specify how to construct a very large propositional Markov network.

Markov logic networks pose a great challenge for inference and learning: us-
ing classical algorithms, these tasks reduce to inference and learning in densely
connected Markov networks with millions of random variables. The intractabil-
ity of reasoning with SRL models motivated a new class of lifted inference algo-
rithms (Poole 2003; Kersting 2012), which exploit the abundant symmetries in
relational representations to speed up probabilistic inference. For large classes of
liftable models and queries, these algorithms perform efficient inference without
ever grounding to a propositional Markov network (Jaeger and Van den Broeck
2012). Whereas lifted inference deals with the intractability of reasoning, the in-
tractability of learning is what motivates us in this paper. Moreover, we seek to
efficiently learn models that themselves are tractable, in the sense that they permit
lifted inference.

When learning MLNs from data, two tasks are considered. The parameter
learning task is to learn the weights associated with each formula in a given the-
ory. This is an analogous problem to that of learning feature weights in a log-linear
propositional Markov network. For the structure learning task, one also learns the
first-order logic formulas. In both cases, the data consist of a set of relational
databases. The recent success of lifted inference algorithms raises important ques-
tions for the learning task:

1. Can lifted inference techniques improve parameter learning of liftable models,
in terms of learning time or the quality of the learned model?

2. Can we learn liftable structures that guarantee tractability for certain queries?
3. How is the quality of the learned model affected when learning liftable struc-

tures? Does the reduced expressivity hurt, or is insisting on liftability and sym-
metry an effective regularization technique? Does support for lifted parameter
learning outweigh the reduced expressivity of liftable structures?

This paper addresses these questions for generative learning, where the objective
is to learn a model that maximizes the probability of observing the data. We focus
on techniques from the exact lifted inference literature, where liftable model and
query classes were defined. Moreover, this will allow us to compare the exact likeli-
hoods of the learned MLNs, which is the natural evaluation measure for generative
learning (Darwiche 2009; Koller and Friedman 2009; Murphy 2012).

Our first contribution is a generic lifted parameter learning algorithm that can
use any lifted inference oracle to efficiently learn weights that maximize the exact
training-set likelihood. This is in contrast with most existing learners, which resort
to optimizing an approximate objective such as pseudo-likelihood (Besag 1975).
Computing likelihoods requires running inference, which is often highly intractable
without lifting. We analyze two properties of the algorithm that speed up learning.
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A key insight from lifting is the possibility of grouping indistinguishable objects
that can be reasoned about as a whole. Grouping these together can significantly
reduce the number of inferences needed to learn parameters. Moreover, by using a
lifted inference oracle, parameter learning can run in time polynomial in the size
of each training database when classical methods run in exponential time.

Our second contribution is a concrete lifted parameter learning algorithm based
on first-order knowledge compilation (Van den Broeck et al 2011). This is a state-
of-the-art lifted inference algorithm that can compile a large class of MLNs into a
circuit language. The circuit guarantees that likelihood computations run in time
polynomial in the number of entities in the databases. Its most appealing property
for weight learning is that compilation only needs to be performed once per MLN
structure. In each iteration of lifted parameter learning, the compiled circuit can
be reused with updated weights to compute a new likelihood and its gradient.

Our third contribution is a lifted structure learning algorithm that learns
liftable MLN theories. It uses our lifted parameter learning algorithm as a subrou-
tine, and therefore also optimizes the exact training-set likelihood. This contrasts
with existing MLN structure learners which resort to optimizing pseudo-likelihood.
Moreover, the learned structures are guaranteed to support certain types of queries
efficiently, including, for example, conditional probability queries with bounded
Boolean rank (see Van den Broeck and Darwiche (2013) for details). Our work
thus follows in a long tradition of tractable structure learning algorithms for prob-
abilistic graphical models (e.g., Chechetka and Guestrin 2007), and is among the
first tractable learning algorithms for statistical relational representations.

Our fourth contribution is an extensive empirical evaluation of lifted parameter
and structure learning on three standard real-world SRL datasets. We find that
our lifted parameter learning algorithm learns models with better test-set likeli-
hood than competing approaches (including approximate inference techniques),
and scales well with the amount of available data. When learning tractable struc-
tures, our lifted learning algorithm outperforms existing learners in terms of likeli-
hood, but also in terms of conditional likelihood and area under the precision-recall
curve on prediction tasks. We even find that our tractable structure learner outper-
forms off-the-shelf intractable learners on prediction tasks, suggesting that liftable
models are a powerful hypothesis space, which is sufficient for many standard
learning problems.

2 Background

We first present the necessary background on relational representations, Markov
logic networks, and their inference and learning algorithms.

2.1 First-order logic

We first introduce some standard concepts from function-free first-order logic,
which has the following types of symbols: (uppercase) constants, (lowercase) vari-
ables, and predicates. Constant symbols represent objects in the domain (e.g.,
people: Alice, Bob, etc.). Variable symbols (x, y, etc.) range over the objects in
the domain. Predicate symbols represent relations among objects in the domain
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(e.g., Friends) or attributes of objects (e.g., Smokes). A term is a variable or
a constant. A predicate applied to a tuple of terms is an atom. A literal is an
atom or its negation. A formula is constructed by connecting literals using logi-
cal connectives. Following the convention for lifted inference, we assume that all
variables are free, that is, formulas have no quantifiers (see Van den Broeck et al
(2014) for the general case). A ground atom or formula contains no variables, only
constants. A database (i.e., a possible world) assigns a truth value to each ground
atom. A grounding substitution θ of a formula F replaces all logical variables in F
by constants, denoted by Fθ.

2.2 Markov logic networks

Markov networks are undirected probabilistic graphical models that represent a
joint probability distribution over a set of random variables X1, . . . Xn (Della
Pietra et al 1997). Each clique of variables Xk in the graph has an associated
potential function φk(Xk). The probability of a possible world x represented by a
Markov network is Pr(x) = 1

Z

∏
k φk(xk), where xk is the state of the kth clique

(i.e., the state of the variables that appear in that clique), and Z is a normalization
constant. Markov networks are often conveniently represented as log-linear models,
where clique potentials are replaced by an exponentiated weighted sum of features
of the state: Pr(x) = 1

Z exp
(∑

i wifi(x)
)
. A feature fi may be any real-valued

function of the state.
Markov logic networks (MLNs) (Richardson and Domingos 2006) combine

Markov networks with first-order logic. MLNs soften logic by associating a weight
with each formula. Worlds that violate formulas become less likely, but not impos-
sible. Formally, an MLN is a set of pairs, (Fi, wi), where Fi is a first-order formula
and wi ∈ R. As wi increases, so does the strength of the constraint Fi imposed on
the world. Formulas with infinite weights represent pure logic formulas.

MLNs provide a template for constructing Markov networks. When given a
finite set of constants (the domain), the MLN formulas define a Markov network.
Nodes in the network, representing random variables, are the ground instances of
the atoms in the formulas. Edges connect literals that appear in the same ground
instance of a formula. An MLN induces the following probability distribution over
relational databases db:

Pr(db) =
1

Z
exp

 |F |∑
i=1

wini(db)

 (1)

where F is the set of formulas in the MLN, wi is the weight of the ith formula,
and ni(db) is the number of true groundings of formula Fi in database db.

Example 1 Consider the following model:

w Smokes(x) ∧ Friends(x, y)⇒ Smokes(y)

The logical formula states that smokers are only friends with other smokers. By
associating a high weight w with this formula, its meaning becomes that smokers
are more likely to be friends with other smokers. Assuming a domain of two con-
stants, Alice and Bob, this MLN induces a distribution over 6 random variables,
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including Smokes(Alice) and Friends(Alice,Bob), and 26 possible worlds. The MLN
has a single first-order formula with four groundings:

w Smokes(Alice) ∧ Friends(Alice,Alice)⇒ Smokes(Alice)

w Smokes(Alice) ∧ Friends(Alice,Bob)⇒ Smokes(Bob)

w Smokes(Bob) ∧ Friends(Bob,Alice)⇒ Smokes(Alice)

w Smokes(Bob) ∧ Friends(Bob,Bob)⇒ Smokes(Bob)

When n of these groundings are true in a possible world, its probability is ewn/Z.

2.3 Lifted probabilistic inference and tractability

The advent of statistical relational languages such as Markov logic has motivated
a new class of lifted inference algorithms (Poole 2003). SRL models with large do-
mains lead to very large graphical models, causing inference to become intractable.
Lifted algorithms mitigate this cost, by exploiting the high-level structure and
symmetries of the first-order logic formulas to speed up inference (Kersting 2012).
Surprisingly, they perform tractable inference even in the absence of conditional
independencies (Niepert and Van den Broeck 2014). For instance, lifted inference
algorithms exactly compute single marginal probabilities for the MLN in Exam-
ple 1 in time linear in the size of the corresponding Markov network (Van den
Broeck et al 2011). They scale up to millions of random variables, whereas classi-
cal algorithms require exponential time.

Recently, efforts were made to understand lifted inference at a theoretical level,
and to delineate the classes of MLNs and inference tasks1 for which lifted inference
is tractable. The intuition that lifted algorithms should efficiently deal with large
domains is formalized by the notion of domain-lifted inference.

Definition 1 (Van den Broeck (2011)) An algorithm is domain-lifted when
it runs in time polynomial in the domain size.

Domain-lifted algorithms are polynomial in the number of objects in the world,
but can be exponential in other parameters, such as the number of formulas.

Based on this notion of tractability, several classes of MLNs and inference tasks
were shown to support (domain-)lifted inference. Tractable classes of MLNs in-
clude two-variable MLNs, where all features (formulas) have at most two logical
variables (Van den Broeck 2011; Taghipour et al 2013). Any combination of uni-
versal and existential quantification is liftable (Van den Broeck et al 2014). More
tractable and intractable classes are discussed in Beame et al (2015). This list of
known tractable classes is far from exhaustive, and many more complex MLNs
are liftable, including ones with more than two variables. The MLNs considered
in this paper are generally not in the classes above, yet they are still liftable.
Tractable classes of inference tasks include partition functions, single marginal
probabilities (Van den Broeck 2011), and expected counts of MLN formulas (Van
den Broeck et al 2013). Conditional probability queries are liftable given unary ev-
idence atoms (Van den Broeck and Davis 2012; Bui et al 2012) and binary evidence
atoms of bounded Boolean rank (Van den Broeck and Darwiche 2013).

1 Note that tractability of probabilistic models is always w.r.t. a class of inference tasks. For
example, polytrees, arithmetic circuits, and sum-product networks are generally considered to
be tractable, but (partial) MAP inference in them is still NP-complete (Park 2002).
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2.4 Parameter learning

The weight learning task for MLNs (Singla and Domingos 2005; Richardson and
Domingos 2006; Lowd and Domingos 2007; Huynh and Mooney 2009) uses data to
automatically learn the weight associated with each feature (formula) by optimiz-
ing a given objective function. Ideally, each candidate model would be scored by
its training-set (log-)likelihood. For MLNs, the log-likelihood is a convex function
of the weights and learning can be solved via convex optimization. The derivative
of the log-likelihood with respect to the jth feature is (Richardson and Domingos
2006):

∂

∂wj
log Prw(db) = nj(db)− Ew[nj ] (2)

where nj(db) is the number of true groundings of Fj in the training data and
Ew[nj ] is computed using the current weight vector. The jth component of the
gradient is simply the difference between the empirical counts of the jth feature in
the data and its expectation according to the current model. Thus, each iteration
of weight learning must perform inference on the current model to compute the
expectations. This is often computationally infeasible.

Currently, the default generative weight learning approach for MLNs is to
optimize the pseudo-likelihood (Besag 1975), which is more efficient to compute.
The pseudo-likelihood is defined as

Pr•w(x) =

|X|∏
j=1

Prw(Xj = xj |MBj = xMBj ),

where |X| is the number of random variables, xj is the state of the jth variable in
x, MBj is the Markov blanket of the jth variable, and xMBj is the state of that
Markov blanket in x. Maximum pseudo-likelihood weights can also be learned via
convex optimization. The (pseudo-)likelihood for a set of training examples is the
product of the (pseudo-)likelihoods for the individual examples.

For the purpose of discriminative learning, there has been work on optimizing
the conditional likelihood and the most advanced work is by Lowd and Domin-
gos (2007). They propose several approaches, the best of which is a second-order
method called pre-conditioned scaled conjugate gradient (PCSG). They use MC-
SAT (Poon and Domingos 2006), which is a slice-sampling Markov chain Monte
Carlo method, to approximate the expected counts. Generative learning is a spe-
cial case of discriminative learning where the query set contains all the variables
in the domain and the evidence set is empty. Therefore this approach is suitable
for learning maximum likelihood weights, although, to the best of our knowledge,
this has yet to be attempted until this paper (cf. Section 6).

2.5 Structure learning

The structure learning task is to learn both the formulas and their associated
weights from data. Structure learning is an incredibly challenging problem as there
is a huge number of candidate clauses and an even larger space of candidate models.
Typically, the structure of an MLN is learned by greedily adding one clause at a
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time to the MLN. While multiple MLN structure learning approaches exist, they
can be broadly divided into two categories: top-down and bottom-up.

MSL (Kok and Domingos 2005) is a canonical example of a top-down approach.
MSL begins with an MLN that only contains the unit clauses. MSL starts by
constructing all clauses of length two. It then runs a beam search to find the
current best clause and adds it to the network. In each iteration, MSL constructs
new candidate clauses by adding literals to the best clauses in the beam. The
search iterates until no clause improves the score of the MLN. To evaluate the
merit of each clause, MSL uses weighted pseudo-log-likelihood (WPLL), which is
an extension of pseudo-log-likelihood that diminishes the importance of predicates
with a large number of groundings. It does this by normalizing a predicate’s PLL by
its number of possible groundings (Kok and Domingos 2005). To avoid overfitting,
each clause receives a penalty term proportional to the number of literals that
differ between the current clause and the initial clause.

A second category of structure learners adopts a bottom-up approach (e.g.,
Mihalkova and Mooney 2007; Kok and Domingos 2010), using the data to restrict
the search space. BUSL (Mihalkova and Mooney 2007) is a two-step algorithm that
follows this paradigm. In the first step, it constructs a template Markov network
from a ground Markov network by discovering recurring paths of true atoms. In the
second step, it transforms the template Markov network into candidate clauses.
It greedily iterates through the set of candidate clauses. It adds the clause to the
MLN that most improves the score of the model. The search terminates when no
clause improves the model’s score. BUSL also uses WPLL to evaluate the merit
of a candidate clause.

3 Lifted generative weight learning

In this section, we describe a general algorithm that uses lifted inference techniques
for the weight learning task, and only assumes a domain-lifted inference black box.

Even given a single formula F , learning its maximum likelihood weight is a
challenging task. Computing the likelihood of a weight w requires computing the
partition function Z, which is hard. Moreover, optimizing the likelihood requires
computing the expectation Ew[nF ] to obtain the gradient (Equation 2) at each
iteration of a convex optimization algorithm, by summing the probabilities of each
possible grounding of F :

Ew[nF ] = Pr (Fθ1) + · · ·+ Pr(Fθm) (3)

where θ1, . . . , θm are the grounding substitutions of F . Answering these marginal
probability queries simply requires calculating the probability that each formula
is true according to the model, and does not involve conditioning on the data. The
only way in which the probabilities depend on the data is the domain size of each
variable, that is, the number of objects in the world. Nevertheless, computing these
marginal probabilities is computationally expensive with traditional algorithms.

We will now show how to use lifted inference techniques to compute the like-
lihood of a set of weights and its gradient. This approach yields two benefits:

1. Leveraging insights from the lifted inference literature allows weight learning
to compute a small number of marginals to compute the gradient.
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2. Each query is computed more efficiently using lifted inference. Namely, it is
polynomial in the size of the databases, that is, the number of objects in the
databases, whereas propositional inference is in general exponential in this size.

3.1 First benefit: Decreasing the number of inference tasks

We first review some techniques from the lifted inference literature. Second, we
show how to use these techniques to efficiently compute Ew[nF ]. Third, we analyze
the extent to which this reduces the number of required inference tasks.

3.1.1 Equiprobable random variables

A set of random variables X is called equiprobable with respect to a given distri-
bution Pr iff for all X1, X2 ∈ X : Pr(X1) = Pr(X2). In the absence of evidence,
many of the queries in an MLN will be equiprobable, because of the symmetries
imposed by the model. Lifted inference algorithms therefore excel at answering
queries with no evidence. In fact, one of the key insights from lifted inference is
that we can partition the set of random variables into equiprobable sets by purely
syntactic operations on the first-order model, and reason about the sets as a whole.

Example 2 To illustrate this point, consider again the MLN from Example 1:

w Smokes(x) ∧ Friends(x, y)⇒ Smokes(y)

Assuming a domain of three constants, Alice, Bob, and Charlie, the random vari-
ables Friends(Alice,Bob) and Friends(Bob,Charlie) are equiprobable. The queries
have identical probabilities because they are indistinguishable w.r.t. the MLN. In-
tuitively, this can be seen by looking at a permutation of the constants, mapping
Alice into Bob and Bob into Charlie. This permutation turns Pr(Friends(Alice,Bob))
into Pr(Friends(Bob,Charlie)), whereas the MLN model is invariant under this
permutation (it does not even explicitly mention the constants). Therefore, these
atoms are indistinguishable and they must have the same marginal probability. The
random variables Friends(Alice,Alice) and Friends(Bob,Charlie) are not equiprob-
able, since there is no permutation of the constants that turns one into the other.

The question then is how to partition queries into equiprobable sets. This can
be done based on syntactic properties of the MLN by a technique called preemptive
shattering (Poole et al 2011). It is a conceptually simpler version of the influential
shattering algorithm proposed by Poole (2003) and de Salvo Braz et al (2005) in
the context of lifted inference. This technique can be applied to a model with an
arbitrary number of formulas. If the model does not mention specific constants, the
algorithm enumerates all ways in which the logical variables in the same formula
can be equal or different. More formally, in the single formula case, Pr(Fθk) =
Pr(Fθl) when for all pairs of logical variables xi, xj in F , we have xiθk = xjθk iff
xiθl = xjθl. If the model itself mentions certain unique information about specific
constants, we can still partition the queries into equiprobable sets, but finding
such sets gets slightly more complicated. Poole et al (2011); Van den Broeck et al
(2012); Van den Broeck (2013) contain the full details for this procedure.
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3.1.2 Computing the gradient

To achieve the first benefit – a smaller number of inference tasks – we identify
equiprobable sets of groundings of the MLN formulas. This allows us to reduce the
number of queries in Equation 3 that need to be answered during weight learning.
For each equiprobable set, only one representative query needs to be answered, as
each other query in the group will have the identical marginal probability.

Consider again the single-formula case. Let P = {E1, . . . Eq} be the equiprob-
able partition found for formula F by preemptive shattering, and let FθEi

be any
arbitrary ground formula in Ei. We can then simplify Equation 3 to

Ew[nF ] =|E1| · Pr(FθE1
) + · · ·+ |Eq| · Pr(FθEq

), (4)

involving as many queries as there are equiprobable sets in the partition P.

3.1.3 Analysis

In the multiple-database setting (for example, when performing cross-validation),
it is necessary to compute Equation 4 for each database separately, as the do-
main size can vary between individual databases. Both the size of each Ei, and
the probability of individual FθEi

are affected by a change in domain size. The
partition size |P|, however, is not affected by domain size, and only depends on
the structure of the MLN formulas. This allows us to state the following.

Proposition 1 Given b databases and an equiprobable partition P, evaluating the
gradient of the likelihood of an MLN requires computing b · |P| probabilities.

In the special case of a single formula with n logical variables, the number of
queries we need to pose is the Bell number Bn (Bell 1934; Rota 1964).

Definition 2 (Bell Number) Bell numbers are recursively defined as

Bn+1 =
n∑

k=0

(
n

k

)
Bk with B0 = B1 = 1.

The Bell number Bn represents the number of partitions of n elements into non-
empty sets. In our case, it is the number of equivalence relations on the n logical
variables in the formula, which does not depend on the size of the domain or
database. Assuming a domain size of D, that same formula will have Dn ground-
ings and computing Equation 2 without using these insights from lifted inference
would require answering Dn queries.

Example 3 The formula of Example 1 has two logical variables and Bell number
two. Assuming a domain of 1000 people, one equiprobable set has size 999,000,
and the other has size 1000. Computing the gradient with Equation 3 requires one
million inference calls. Computing the gradient with Equation 4 requires two calls.

When we more generally have multiple formulas that do not explicitly mention
any constants from the database, the analysis is also easy, based on properties of
the preemptive shattering algorithm.
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Proposition 2 An MLN with k formulas, containing respectively n1, . . . , nk log-
ical variables and no constants has an equiprobable partition P of size

∑k
i=1Bni .

For this case, Equation 3 requires computing
∑k

i=1D
ni marginals per database,

whereas lifted learning requires computing
∑k

i=1Bni , essentially removing the de-
pendency on the size of the database from the number of inference calls. This
difference can be significant. Formulas typically have a bounded number of vari-
ables ni, between two and four, which gives Bell numbers B2 = 2, B3 = 5 and
B4 = 15. SRL databases, on the other hand, typically describe relations between
thousands of objects, resulting in models with millions of random variables. This
is also true for the databases used in Section 6.

In the most general case, where the MLN being learned explicitly mentions cer-
tain constants, the analysis becomes more complex. Still, the size of the equiprob-
able partition will grow polynomially with the number of constants that appear in
MLN formulas, and be independent of the number of constants in the databases.

3.2 Second benefit: Lifting individual inference tasks

Our general lifted weight learning algorithm assumes access to a lifted inference
oracle that can efficiently compute the partition function and marginal probability
of any random variable (ground atom) in the MLN, even for large domain sizes.
More specifically, we assume a black-box inference algorithm is domain-lifted.

The second benefit of lifted learning over its propositional counterpart is the
complexity of inference for each query. A domain-lifted inference algorithm guaran-
tees that the complexity of computing the partition function (needed to compute
the likelihood), and the marginal probabilities in Equation 4 (needed to compute
the gradient) grows polynomially with the domain size, and therefore polynomially
with the size of the training databases. On the other hand, when doing proposi-
tional inference to compute the same numbers, inference is in general exponential
in the domain size. Treewidth is a polynomial of the domain size for most non-
trivial MLNs, and propositional inference is often exponential in treewidth. Indeed,
running the propositional variable elimination algorithm on the MLN of Example 1
with 1000 people would require building a table with 21000 rows.

4 Lifted weight learning using first-order knowledge compilation

The lifted weight learning algorithm assumed the presence of a lifted inference or-
acle. One could use any exact lifted inference technique, such as PTP (Gogate and
Domingos 2011) or FOVE (de Salvo Braz et al 2005; Milch et al 2008; Taghipour
and Davis 2012). We will now look at the implications of choosing one partic-
ular algorithm, namely weighted first-order model counting by first-order knowl-
edge compilation (WFOMC) (Van den Broeck et al 2011; Van den Broeck 2013).
WFOMC is chosen because it supports domain-lifted inference on a large variety
of MLN structures. Moreover, its knowledge compilation approach offers circuit
reuse, which will prove to be beneficial for learning. First, we give the necessary
background on WFOMC and then describe its application to lifted learning.
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4.1 WFOMC background

The WFOMC approach to lifted probabilistic inference consists of the following
three steps: (i) convert the MLN to a weighted model counting problem, (ii) com-
pile the weighted model counting problem into a First-Order d-DNNF (FO d-
DNNF) circuit, and (iii) evaluate the circuit for a given set of weights and domain
sizes to compute the partition function. Marginal probabilities can be obtained
by taking ratios of partition functions of different circuits. We will give a brief
overview here, and refer to Van den Broeck (2013) for details. Darwiche (2009)
discusses weighted model counting for propositional probabilistic inference.

Weighted first-order model counting A WFOMC problem is similar to a Markov
logic network. The difference is that in a WFOMC problem, weights can only
be associated with predicates. For example, for the predicate Q, only weighted
formulas of the form (Q(x1, . . . , xn), w) are allowed. Formulas that are complex
(containing logical connectives) must be hard formulas, with infinite weight. Any
MLN can be transformed into a WFOMC problem by adding new predicates to
the theory, representing the truth value of each complex MLN formula.

Example 4 Example 1 contains one weighted complex formula. Its WFOMC rep-
resentation introduces the predicate F to carry the weight of the MLN formula,
and consists of a single weighted atom together with a hard formula:

w F(x, y)

∞ F(x, y)⇔ [Smokes(x) ∧ Friends(x, y)⇒ Smokes(y)] . (5)

First-order knowledge compilation The goal of first-order knowledge compilation
is to take a theory in first-order logic, and compile it into a circuit representation
that allows certain queries to be answered efficiently. In our case, the logical theory
∆ consists of the hard clauses in our WFOMC representation of the MLN M , the
query is computing the weighted model count WFOMC(∆, w̄,D) for any weight
vector w̄ and domain size D, corresponding to the partition function of M , and the
target circuit language is called FO d-DNNF. The circuit is logically equivalent
to the input theory, but has certain syntactic properties, called decomposabil-
ity, determinism, and automorphism, that make it a tractable representation for
WFOMC problems. Note that the FO d-DNNF circuit for a WFOMC problem is
independent of its domain size and weights. Once a FO d-DNNF is obtained, one
can query the partition function for any domain size and weights efficiently, that
is, polynomially in the domain size, by evaluating the circuit bottom-up.

Example 5 The FO d-DNNF for the WFOMC problem of Example 1 is shown in
Figure 1. Its syntax and semantics are formally defined in Van den Broeck (2013).
Intuitively, the circuit root states that there exists a subset D of people in the
domain. At the next layer, the circuit makes five assertions: (a) all people in D
smoke, and (b) nobody else smokes. This defines D to be the set of smokers. Next,
it encodes the truth value of the MLN formula: (c) when x is a smoker and y
is a non-smoker, then the formula is satisfied (F is true) precisely when Friends

is false. Moreover, when (d) x and y are both smokers, or (e) when x is a non-
smoker, then the formula is always satisfied. These assertions make the circuit
logically equivalent to Formula 5.
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(a) (b) (c) (d) (e)

∀x
x∈D

Smokes(x)

∀x
x∈People∧x/∈D

¬Smokes(x)

∀x
x∈D

∀y
y∈People∧y/∈D

∧

∃D
D⊆People

∀x
x∈D

∀y
y∈D

∀x
x∈People∧x/∈D

∀y
y∈People

∨

∧

Friends(x, y) ¬F(x, y)

∧

¬Friends(x, y) F(x, y)

Fig. 1 A FO d-DNNF circuit for the friends and smokers problem (see Example 5)

The FO d-DNNF circuit can be evaluated bottom-up to efficiently compute
the partition function Z. For our running example, this computation has the form

Z =
n∑

d=0

(
n

d

)
· 1d︸︷︷︸

(a)

· 1n−d︸ ︷︷ ︸
(b)

· (1 + ew)d(n−d)︸ ︷︷ ︸
(c)

· (2ew)d
2︸ ︷︷ ︸

(d)

· (2ew)(n−d)n︸ ︷︷ ︸
(e)

.

Here, n is the domain size (number of people), d is the size of D (number of smok-
ers), and we associate each factor in the computation with a branch of Figure 1.2

Note that the complexity of this computation is polynomial in n.

The FO d-DNNF compilation algorithm cannot compile any arbitrary logical
theory, but certain guarantees exist. For example, any MLN with up to two logical
variables per formula can always be compiled. In our experiments, however, we
will often be able to still compile MLN structures that are outside this class.

4.2 Lifted weight learning

To illustrate the benefits of our knowledge compilation approach, we first con-
sider computing the likelihood gradient for the single formula case, weights w and
domain size D. Then, computing the expected number of true groundings of F re-
quires estimating Pr(FθEi

) once for each equiprobable partition. WFOMC solves
this by computing the ratio of weighted model counts

WFOMC(FθEi
∧∆,w,D)

WFOMC(∆,w,D)

Notice that each ratio has the same denominator WFOMC(∆,w,D), which cor-
responds to the partition function of the original MLN. If we have q equiprobable
partitions, evaluating the weighted model counts requires compiling q+ 1 circuits:

2 Factors (a) and (b) are always 1 because our example has no weight for the Smokes relation.
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Algorithm 1 LiftedWeightLearning(M ,DB)

Input.
M : A set of MLN formulas with initial weights
DB : A set of training databases

Supporting functions.
Compile: Compile to FO d-DNNF circuit
Shatter: Partition into equiprobable sets
WFOMC: Compute weighted FO model count
LBFGS: Optimization algorithm

Function.

1: let Ddb be the domain sizes in database db
2: let ndb

F be the number of true groundings of formula F in database db
3: let w̄ be the initial weight vector of M
4: let ∆ be the hard clauses in the WFOMC representation of M
5: CZ ← Compile(∆)
6: for each F ∈ M do
7: PF ← Shatter(M , F ) // Partition
8: for each E ∈ PF do
9: for some FθE ∈ E do

10: CE ← Compile(∆ ∧ FθE)
11: repeat
12: L ← 0 // Log-likelihood
13: ∇L ← 0̄ // Log-likelihood gradient vector
14: for each db ∈ DB do
15: Z ←WFOMC(CZ , w̄,D

db)
16: L ← L− log(Z)
17: for each Fi ∈ M do
18: L ← L+ w̄i · ndb

Fi

19: ∇Li ← ∇Li + ndb
Fi

20: for each E ∈ PFi
do

21: p ←WFOMC(CE , w̄,D
db)/Z

22: ∇Li ← ∇Li − |E| · p
23: w̄ ← LBFGS(L, w̄,∇L)
24: until convergence
25: return w̄

one for each equiprobable set, and one for the partition function. These circuits are
independent of the weights and domains of the first-order model and can therefore
be used to compute Equation 4 for any database size and weight vector. Thus,
each circuit can be reused on each iteration of weight learning. This exemplifies
the idea behind the knowledge compilation approach to inference (Darwiche and
Marquis 2002): transform the model from a representation where a certain task is
hard to a representation where the task is easy, and reuse that representation to
solve multiple problems.

Algorithm 1 outlines our Lifted Weight Learning (LWL) approach. It takes an
MLN M and a set of databases DB as inputs and returns a weight vector w̄. The
algorithm works as follows. First, it builds all the circuits needed to compute the
likelihood and its gradient. It compiles one circuit for M to compute the partition
function. Then it preemptively shatters each weighted formula F in M to identify
its equiprobable partition. It compiles one circuit for every equiprobable set in the
partition. Second, it runs an iterative procedure to learn the weights. During each
iteration i of convex optimization, it computes the gradient of the likelihood given
the current weights w̄i. First it computes the partition function. Then, for each of
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the b databases, the expected counts for each formula are calculated by reevaluat-
ing the compiled circuit associated with every one of the formula’s equiprobable
partitions. Traditionally, this is the most challenging step in computing Equation 2
(the gradient). The algorithm terminates when a stop condition is met (e.g., after
a predefined number of iterations).

It follows from Proposition 1 that over t iterations of convex optimization,
a vanilla lifted learning algorithm needs to answer t · b · |P| hard queries. Using
WFOMC for lifted learning provides significant savings.

Proposition 3 Lifted weight learning by first-order knowledge compilation per-
forms 1 + |P| hard compilation steps and reuses each circuit t · b times by reevalu-
ating it for different weight vectors w̄i and domain sizes D.

An additional benefit of knowledge compilation is that it exploits local structure
and context-specific independencies in the MLN. These are regularities that arise
from using Boolean logic to compactly define potentials (Chavira and Darwiche
2008). They are not exploited by factor-based lifted inference algorithms, such as
FOVE (de Salvo Braz et al 2005).

For the special case of a single formula with n logical variables, by using both
knowledge compilation and lifted inference, we went from answering t·b·Dn queries
whose complexity is exponential in the size of the databases to 1+Bn compilations
that are independent of the training databases, and t · b circuit evaluations whose
complexity is polynomial in the size of the databases.

5 Lifted structure learning

In this section, we describe a general algorithm that uses lifted inference tech-
niques for the structure learning task. To optimally benefit from the existing lifted
inference algorithms and our lifted weight learning algorithm, we need a structure
learning approach that learns liftable theories.

The ideal way to learn a liftable model is to design a search space that only
contains liftable models. This is complicated by the fact that we still lack a full
characterization of which models are liftable. We know that models where each
formula contains at most two distinct logical variables are always liftable. How-
ever, this class of models may be too restrictive. Many models that contain more
expressive formulas are also liftable. This process is complicated by the fact that
two formulas, considered independently, may be liftable, but combining them into
a single model results in a theory that is not liftable. Furthermore, even if a model
is liftable, the circuit may be too big to fit in memory or too time-consuming to
evaluate. The end result is that it is difficult to design a suitable search space.

Consequently, learning a liftable model can be achieved in two ways. The first
way is to run an off-the-shelf structure learning algorithm, such as BUSL or MSL,
using the default objective function of WPLL, and to perform parameter tuning
in such a way that the final learned theory is compilable. Since we have only little
understanding of which theories are compilable, the parameter tuning process can
be tedious and time-consuming.

The second way is to integrate a check into the search procedure that verifies
whether each candidate theory is compilable. Hence, unliftable candidate theories
are discarded from the search space. Furthermore, a bias can be inserted into
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the search to avoid liftable theories that are too big to fit in memory or too
complex to be evaluated in practice. An additional benefit is that the learner can
directly optimize the exact likelihood instead of using an approximation such as
the pseudo-likelihood. The end result is a theory that is guaranteed to be liftable.

Algorithm 2 outlines our Lifted Structure Learning (LSL) approach, which
adopts the latter search strategy. LSL takes a set of MLN formulas and train-
ing databases as inputs and returns a theory of MLN formulas and their associ-
ated weights. The algorithm optimizes the training-set log-likelihood by iteratively
adding formulas to an initially empty theory.

Algorithm 2 LiftedStructureLearning(CFS ,DB)

Input.
CFS : A set of candidate MLN formulas
DB : A set of training databases

Supporting functions.
LiftedWeightLearning Compute formula weights
ComputeLogLikelihood Compute training-set log-likelihood

Function.

1: T ← ∅ // Initialize theory
2: TLL ← 0 // Theory log-likelihood
3: while |CFS| > 0 do
4: BCT ← ∅ // Best candidate theory
5: BCF ← ∅ // Best candidate formula
6: BCTLL ← 0 // Best candidate theory log-likelihood
7: for each CF ∈ CFS do
8: CT ← T ∪ CF // Compose candidate theory
9: WCT ← LiftedWeightLearning(CT,DB)

10: WCTLL ← ComputeLogLikelihood(WCT,DB)
11: if WCTLL > BCTLL then
12: BCT ← WCT // Update best candidate theory
13: BCF ← CF // Update best candidate formula
14: BCTLL ← WCTLL // Update best candidate theory log-likelihood
15: T ← BCT // Replace theory by best candidate theory
16: CFS ← CFS \ {BCF} // Remove best candidate formula from candidate set
17: return T

In each iteration, the algorithm performs three steps. First, the algorithm
builds a set of candidate theories by adding each candidate formula to a distinct
copy of the current theory. Second, the algorithm learns the associated formula
weights and computes the training-set log-likelihood for each candidate theory.
This step is allowed a user-specified amount of time to complete. Each candidate
formula that cannot be compiled or whose weight cannot be learned within the
allotted time, is discarded. By biasing the search process towards formulas that
can be compiled, the final theory’s liftability is ensured. Third, the algorithm re-
places the current theory by the best candidate theory in terms of training-set
log-likelihood if that theory yields a log-likelihood improvement. The algorithm
ends when no more candidate formulas are available or none of the remaining can-
didate theories yields a log-likelihood improvement over the current best theory.

The initial set of candidate formulas can be constructed either by running the
candidate formula construction step of an off-the-shelf structure learning algorithm
or by greedily enumerating all valid formulas satisfying certain constraints. In our
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experimental evaluation (see Section 6), we enumerate all formulas having at most
three literals and at most three object variables. We only consider “connected”
formulas for which a path via arguments exists between any two literals.

To compute the training-set log-likelihood for a candidate theory, we employ
an internal cross-validation approach. We learn the formula weights on all-but-
one training database and compute the log-likelihood on the left-out database.
We repeat this procedure such that each database served as validation database
once. To obtain the log-likelihood for a candidate theory, we simply average the
log-likelihoods across the validation databases.

6 Empirical evaluation

In this section, we evaluate both our lifted weight learning (LWL) and lifted struc-
ture learning (LSL) approach.3 We first present the experimental setup and then
address five research questions; two questions related to weight learning and four
questions related to structure learning.

Weight learning questions

– Q1: How well does lifted weight learning scale with respect to database size?
– Q2: Does exactly optimizing the likelihood during weight learning result in

more accurate weights?

Structure learning questions

– Q3: How does lifted structure learning compare to the off-the-shelf structure
learners in terms of log-likelihood when learning tractable models?

– Q4: How does lifted structure learning compare to the off-the-shelf structure
learners in terms of AUC and CLL when learning tractable models?

– Q5: How does lifted structure learning compare to the off-the-shelf structure
learners in terms of AUC and CLL when learning intractable models?

– Q6: What is the effect of our clause evaluation time-out on the complexity and
quality of the models for each of the algorithms?

6.1 Experimental setup

We now introduce the datasets, explain how we learn the models, and discuss the
inference setup.

6.1.1 Datasets

We use the following three real-world datasets and a synthetic dataset:

– The IMDb dataset comes from the IMDb.com website (Mihalkova and Mooney
2007). The dataset contains information about attributes (e.g., gender) and
relationships among actors, directors, and movies. The data is divided into five
different folds.

3 LWL and LSL are available in the WFOMC package: http://dtai.cs.kuleuven.be/wfomc.
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– The UWCSE dataset contains information about the University of Wash-
ington CSE Department (Richardson and Domingos 2006). The data contains
information about students, professors and classes, and models relationships
(e.g., teaching assistant and advisor) among these entities. The data consists of
five folds, each one corresponding to a different group in the CSE Department.

– The WebKB dataset consists of Web pages from the computer science de-
partments of four universities (Mihalkova and Mooney 2007). The data has
information about labels of pages (e.g., student and course). There are four
folds, one for each university.

– The synthetic dataset comes from the friends and smokers model from Ex-
ample 1 (Singla and Domingos 2005).

In all domains, we perform cross-validation by holding out one fold as test set
and learning a model on the remaining folds. Each fold serves as test set once.

6.1.2 Models

We compare tractable models learned by LSL with both tractable and intractable
models learned by the bottom-up structure learner BUSL (Mihalkova and Mooney
2007) and the top-down structure learner MSL (Kok and Domingos 2005). We
learned these models as follows:

– Tractable LSL models: LSL is run with all valid “connected” MLN formulas
containing up to three literals and three distinct object variables as input.
LSL discards any candidate theory for which the LWL subroutine fails to find
weights within the allotted time limit of five minutes.

– Tractable BUSL and MSL models: To enforce tractability, we found it is
sufficient to restrict BUSL and MSL to learn formulas containing up to four
literals and three distinct object variables.

– Intractable BUSL and MSL models: BUSL and MSL are run with their
default parameter settings, which allows them to learn formulas containing up
to five literals and five distinct object variables.

6.1.3 Inference setup

In each domain, we predict the marginal probabilities of each predicate given
evidence about all other predicates. Since lifted inference approaches cannot effi-
ciently handle arbitrary binary evidence (Van den Broeck and Darwiche 2013), we
use MC-SAT, which is part of the Alchemy package, to compute the probabilities.
We use a burn-in of 10,000 samples and compute the probabilities with the follow-
ing 100,000 samples. We measure the area under the precision-recall curve (AUC)
and the test-set conditional log-likelihood (CLL) for the predicate of interest. AUC
is insensitive to the large number of true negatives in the datasets, whereas CLL
measures the quality of the probability estimates.

In our evaluation, we report the number of wins, losses, and ties for each algo-
rithm. Since AUC and CLL are both skew-dependent metrics and the skew of a
predicate varies across different predicates and different databases, simply averag-
ing AUCs and CLLs, as has commonly been done in the past, is incorrect (Boyd
et al 2012).
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6.2 Weight learning questions

Q1: How well does lifted weight learning scale with respect to database size?

The goal of this question is to explore how LWL scales with the database size. In
this experiment, we use the synthetic dataset as a controlled environment. We vary
the number of people in the domain from 100 to 30,000 and randomly generate
a training database for each size. The largest database, for domain size 30, 000,
assigns truth values to 30, 0002 + 30, 000 or approximately 900 million ground
atoms. Figure 2 shows the comparison of LWL with WFOMC and two other exact
inference methods: variable elimination (VE) and FOVE.4
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Fig. 2 Learning time for an increasing number of people in the friends-smokers dataset

Lifted learning with VE benefits from a reduced number of inference tasks
(Section 3.1), yet each query still runs in time exponential in the database size.
Lifted learning with FOVE additionally benefits from domain-lifted inference (Sec-
tion 3.2). Finally, lifted weight learning with WFOMC additionally benefits from
knowledge compilation (Section 4) and outperforms the other approaches. The
MLN structure is fully liftable, which means that the training time for FOVE and
WFOMC is polynomial in the domain size. From the results for VE, it is clear
that maximum-likelihood learning without lifting is highly intractable.

Q2: Does exactly optimizing the likelihood result in more accurate weights?

The goal of this question is to investigate whether exactly optimizing the likelihood
yields better models than optimizing the approximated likelihood during weight
learning. We use the tractable BUSL and MSL models to address this question.
For each structure, we learn the weights with the following three algorithms:

– PLL: This approach optimizes the pseudo-likelihood of the weights via the
limited-memory BFGS algorithm (Liu and Nocedal 1989). We use the imple-
mentation that is available in the Alchemy package (Kok et al 2008).

– PSCG: The discriminative weight learning approach of Lowd and Domingos
(2007) optimizes the log-likelihood of the data by making all the predicates
query atoms and hence leaving the evidence set empty. We use the implemen-
tation that is available in the Alchemy package (Kok et al 2008).

4 We use the BLOG implementation (Milch et al 2008): http://bayesianlogic.github.io.
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– LWL: This is the approach that is proposed in this paper. It uses the WFOMC
package (Van den Broeck et al 2011) for computing the gradient and the
limited-memory BFGS algorithm that is part of the Breeze system.

First, each weight learning algorithm learns the weights for the given structures
using the same data that produced each structure. Second, we compute the test-
set log-likelihood for each model. Since we use WFOMC to compute the test-set
log-likelihoods, the only difference among the three algorithms is how the formula
weights are learned.

Table 1 Test-set log-likelihoods for all three methods in all three domains for the models
learned by BUSL. LWL consistently outperforms both PLL and PSCG for all 14 models. The
best result for each fold in each domain is in bold

IMDb UWCSE WebKB
PSCG PLL LWL PSCG PLL LWL PSCG PLL LWL

F1 -566 -548 -378 -1,774 -1,860 -1,524 -863 -858 -778
F2 -548 -689 -390 -601 -594 -535 -1,422 -1,422 -1,331
F3 -1,223 -1,157 -851 -1,415 -1,462 -1,245 -717 -717 -702
F4 -425 -415 -285 -2,781 -2,820 -2,510 -1,224 -1,224 -1,052
F5 -423 -413 -267 -2,634 -2,763 -2,357

Table 2 Test-set log-likelihoods for all three methods in all three domains for the models
learned by MSL. LWL consistently outperforms both PLL and PSCG for all 14 models. The
best result for each fold in each domain is in bold

IMDb UWCSE WebKB
PSCG PLL LWL PSCG PLL LWL PSCG PLL LWL

F1 -558 -831 -440 -1,761 -1,705 -1,469 -869 -868 -797
F2 -561 -944 -477 -594 -574 -509 -1,426 -1,426 -1,324
F3 -1,336 -1,576 -909 -1,382 -1,358 -1,198 -711 -711 -677
F4 -442 -393 -315 -2,745 -2,758 -2,449 -1,207 -1,207 -1,054
F5 -443 -388 -353 -2,616 -2,582 -2,254

Table 1 reports the test-set log-likelihoods for all three methods in all three
domains for the models learned by BUSL. LWL consistently outperforms both
PLL and PSCG. Table 2 reports the test-set log-likelihoods for all three methods
in all three domains for the models learned by MSL. LWL consistently outperforms
both PLL and PSCG. These empirical results confirm our hypothesis that exactly
optimizing the training-set log-likelihood results in more accurate formula weights.

For completeness, we adapted this experiment to also compare with learning
by means of (generalized) belief propagation for factor graphs. We use the FastInf
toolbox because it supports a relational factor graph representation (Jaimovich
et al 2010).5 With a time-out of 24 hours, all 14 LWL tasks converged while only 3

5 Because FastInf learns each parameter in the factor graph, we cannot compare directly
with learning the parameters of an MLN because one formula and associated parameter can
represent multiple parameters in a factor. Therefore, the tractable MLNs learned by BUSL
were transformed to have the same parameters (by adding weighted formulas). The resulting
MLNs now have identical parameters to the equivalent factor graphs we give to FastInf.
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out of 14 FastInf tasks converged. For each of the converged tasks, we compute the
test-set log-likelihood of the parameters using WFOMC. The test-set log-likelihood
of the LWL parameters was consistently 100 times better than the log-likelihoods
of the FastInf parameters.

6.3 Structure learning questions

Q3: How does lifted structure learning compare to the off-the-shelf structure learn-
ers in terms of log-likelihood when learning tractable models?

The goal of this question is to investigate whether models learned by LSL yield bet-
ter test-set log-likelihoods than tractable models learned by the off-the-shelf struc-
ture learning algorithms. We compare the tractable LSL models to the tractable
BUSL and MSL models to address this question. We use LWL to learn the weights
for the BUSL and MSL models since this approach outperforms the traditional
weight learning algorithms (see Q1).

Table 3 Test-set log-likelihoods for all methods when learning tractable models. LSL outper-
forms both BUSL and MSL in terms of test-set log-likelihood in 12 of the 14 settings, doing
only marginally worse than MSL on the second fold of the UWCSE and WebKB dataset. The
best result for each fold in each domain is in bold

IMDb UWCSE WebKB
BUSL MSL LSL BUSL MSL LSL BUSL MSL LSL

F1 -378 -440 -274 -1,524 -1,469 -1,407 -778 -797 -777
F2 -390 -477 -311 -535 -509 -543 -1,331 -1,324 -1,341
F3 -851 -909 -737 -1,245 -1,198 -1,157 -702 -677 -662
F4 -285 -315 -222 -2,510 -2,449 -2,409 -1,052 -1,054 -1,049
F5 -267 -353 -220 -2,357 -2,254 -2,089

Table 3 reports the test-set log-likelihoods for tractable models learned by
BUSL, MSL, and LSL. LSL outperforms both BUSL and MSL in terms of test-set
log-likelihood in 12 of the 14 settings, doing only marginally worse than MSL on
the second fold of the UWCSE and WebKB dataset. These results show there is no
reason to prefer an off-the-shelf structure learner to our lifted structure learning
approach for learning tractable models when optimizing the test-set log-likelihood.

Q4: How does lifted structure learning compare to the off-the-shelf structure learn-
ers in terms of AUC and CLL when learning tractable models?

The goal of this question is to investigate whether models learned by LSL are better
at answering queries than tractable models learned by the off-the-shelf structure
learning algorithms. We compare the tractable LSL models to the tractable BUSL
and MSL models to address this question. We use LWL to learn the weights for
the BUSL and MSL models since this approach outperforms the traditional weight
learning algorithms (see Q1).

Table 4 reports the number of times LSL wins, loses, and ties against the off-
the-shelf structure learners BUSL and MSL in terms of both AUC and CLL. In
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Table 4 Comparison of AUC and CLL results when learning tractable models in all three
domains. In comparison to BUSL, LSL wins in 133 of the 190 settings, ties in 6 settings, and
loses in 51 settings. In comparison to MSL, LSL wins in 120 of the 190 settings, ties in 13
settings, and loses in 57 settings. The most frequent result for each comparison is in bold

IMDb UWCSE WebKB
Win Loss Tie Win Loss Tie Win Loss Tie

LSL vs. BUSL AUC 20 5 5 14 6 0 27 17 1
LSL vs. MSL AUC 10 8 12 12 8 0 28 16 1

LSL vs. BUSL CLL 25 5 0 15 5 0 32 13 0
LSL vs. MSL CLL 23 7 0 15 5 0 32 13 0

terms of AUC, LSL beats BUSL in 61 of the 95 settings, ties in 6 settings, and
loses in 28 settings. In terms of CLL, LSL beats BUSL in 72 of the 95 settings and
loses in 23 settings. In terms of AUC, LSL beats MSL in 50 of the 95 settings, ties
in 13 settings, and loses in 32 settings. In terms of CLL, LSL beats MSL in 70 of
the 95 settings and loses in 25 settings.

LSL is consistently leading to better models: it achieves more wins than both
BUSL and MSL for both metrics. Although we used LWL (and thus exact like-
lihood) to relearn the weights for the BUSL and MSL models, during structure
learning these algorithms initially optimize WPLL, which has a very similar ob-
jective to CLL, and thus should be to their advantage on that metric. This makes
it surprising that LSL does particularly well at CLL compared to BUSL and MSL.

Appendix A provides an extensive overview of per-predicate results.

Q5: How does lifted structure learning compare to the off-the-shelf structure learn-
ers in terms of AUC and CLL when learning intractable models?

The goal of this question is to investigate whether models learned by LSL are better
at answering queries than models learned by the off-the-shelf structure learning
algorithms. We compare the tractable LSL models to the intractable BUSL and
MSL models to address this question. We use PLL to relearn the weights for the
BUSL and MSL models. We cannot use LWL to relearn the weights since these
models cannot be compiled.

Table 5 Comparison of AUC and CLL results when learning intractable models in all three
domains. In comparison to BUSL, LSL wins in 115 of the 190 settings, ties in 13 settings, and
loses in 62 settings. In comparison to MSL, LSL wins in 102 of the 190 settings, ties in 12
settings, and loses in 76 settings. The most frequent result for each comparison is in bold

IMDb UWCSE WebKB
Win Loss Tie Win Loss Tie Win Loss Tie

LSL vs. BUSL AUC 12 7 11 12 8 0 26 18 1
LSL vs. MSL AUC 7 11 12 9 11 0 31 14 0

LSL vs. BUSL CLL 17 12 1 15 5 0 33 12 0
LSL vs. MSL CLL 16 14 0 11 9 0 28 17 0

Table 5 reports the number of times LSL wins, loses, and ties against the off-
the-shelf structure learners BUSL and MSL in terms of both AUC and CLL. In
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terms of AUC, LSL beats BUSL in 50 of the 95 settings, ties in 12 settings, and
loses in 33 settings. In terms of CLL, LSL beats BUSL in 65 of the 95 settings,
ties in 1 setting, and loses in 29 settings. In terms of AUC, LSL beats MSL in 47
of the 94 settings, ties in 12 settings, and loses in 36 settings. In terms of CLL,
LSL beats MSL in 55 of the 95 settings and loses in 40 settings.

Surprisingly, BUSL and MSL do only slightly better at answering queries when
they are no longer bound to learning tractable models. Their performance remains
roughly the same. These results show that learning longer, more complex formulas
does not necessarily lead to much better inference results. A possible explanation
is that more complex models may fit the data better but also lead to more compli-
cated inference tasks, which in turn leads to a decreased predictive performance.

Appendix B provides an extensive overview of per-predicate results.

Q6: What is the effect of our clause evaluation time-out on the complexity and
quality of the models for each of the algorithms?

The goal of this question is to investigate whether a restriction on the clause
evaluation time leads to simpler models. To answer this question, we modify the
off-the-shelf structure learners such that they can only spend a specified amount
of time to evaluate each candidate clause. We run all three structure learning algo-
rithms with three different clause evaluation time-outs: one minute, two minutes,
and five minutes. Keeping all other parameter values unchanged, we learn both
tractable and intractable models with the off-the-shelf structure learners.

Table 6 Test-set log-likelihoods for LSL with three different time-out values: one, two, and
five minutes. In most settings, the time-out value has either a small impact or no impact at
all on the test-set log-likelihood. The best result for each fold in each domain is in bold

IMDb UWCSE WebKB
1 m. 2 m. 5 m. 1 m. 2 m. 5 m. 1 m. 2 m. 5 m.

F1 -276 -275 -274 -1,454 -1,421 -1,407 -777 -794 -777
F2 -309 -310 -311 -594 -562 -543 -1,341 -1,341 -1,341
F3 -739 -739 -737 -1,209 -1,162 -1,157 -664 -663 -662
F4 -222 -222 -222 -2,434 -2,406 -2,409 -1,049 -1,043 -1,049
F5 -219 -220 -220 -2,089 -2,142 -2,089

Table 6 reports the test-set log-likelihoods for the models learned by LSL for all
three clause evaluation time-outs. In most settings, the time-out has either a small
impact or no impact at all on the test-set log-likelihood. The only domain that
seems to benefit from a longer run time is UWCSE, which is the most complicated
domain in terms of number of predicates and facts. These results show that LSL
is robust to the clause evaluation time-out value and confirm our observation that
most structures can be compiled either relatively quickly or not at all. Hence,
restricting the clause evaluation time for LSL does not lead to simpler models.

Furthermore, the clause evaluation time-out also does not have an impact on
the complexity of the models learned by the off-the-shelf structure learners. Both
BUSL and MSL learn the same structures for all three time-out values. Since these
algorithms do not need to run inference to evaluate a candidate clause, they require
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only little time per clause evaluation. Hence, restricting the clause evaluation time
for the off-the-shelf structure learners does not lead to simpler models either.

Table 7 The average number of clauses in a theory for each algorithm in each domain.

IMDb UWCSE WebKB
LSL (5-minute time-out) 5.40 ± 1.14 10.20 ± 0.45 4.75 ± 1.50

BUSL tractable 1.40 ± 0.55 7.60 ± 3.21 3.25 ± 0.50
MSL tractable 3.00 ± 0.00 6.80 ± 0.45 4.00 ± 1.15

BUSL intractable 6.60 ± 3.36 18.60 ± 10.55 8.50 ± 4.20
MSL intractable 4.20 ± 0.84 4.60 ± 1.95 4.00 ± 1.15

Table 8 The average length of the clauses for each algorithm in each domain.

IMDb UWCSE WebKB
LSL (5-minute time-out) 2.69 ± 0.14 2.69 ± 0.09 2.85 ± 0.17

BUSL tractable 3.00 ± 0.35 2.18 ± 0.25 2.35 ± 0.31
MSL tractable 2.67 ± 0.00 2.65 ± 0.07 2.53 ± 0.22

BUSL intractable 3.12 ± 0.51 2.71 ± 0.22 3.02 ± 0.37
MSL intractable 4.23 ± 0.33 3.27 ± 0.48 2.53 ± 0.22

Tables 7 and 8 report the average number of clauses in a learned theory and
the average clause length for all learning methods in each domain. We compute
these metrics because they are indicative of model complexity and allow us to
further explore if LSL has a bias towards simpler models. Note that both BUSL
and MSL include a complexity penalty based on clause length. The results show
that all approaches tend to learn similarly sized theories. The exception is that
BUSL, in the intractable setting, learns more clauses than the other approaches,
and its clauses tend to be slightly longer on average.

These results give some evidence that LSL does not offer better performance
simply because it has a preference for simpler models. Instead, regularization by
liftability and support for maximum-likelihood learning can explain this success.

7 Related work

Jaimovich et al (2007) describe a formalism for relational Markov random fields
and propose a form of lifted belief propagation for generative parameter learning
in that language. This is related to Markov logic in that logic variables are used
to express templates that generate the underlying factor graph. Markov logic,
however, uses first-order logic, or constraints, to define the weights in the factors
whereas relational Markov random fields require all weights in a factor template
to be given explicitly. Overall, our work provides a much more detailed treatment
of the subject. We looked at using exact lifted inference for learning, as opposed
to approximate, which furthermore guarantees liftability of the learned models.
Our experiments provide some initial evidence that generative parameter learning
with belief propagation can provide sub-optimal results (Section 6.2).



24 Jan Van Haaren et al.

Ahmadi et al (2012) recently proposed using lifted belief propagation (Singla
and Domingos 2008; Kersting et al 2009), in a stochastic gradient optimization
approach to piecewise discriminative weight learning. They show that the lifted
learning approach reaches the same quality solution that can be achieved by propo-
sitional, approximate parameter learning with belief propagation, but converges
to a solution over an order of magnitude faster.

Learning tractable probabilistic models, that is, models that always permit
efficient inference for certain queries, is an emerging area of research. The largest
body of work restricts the structure of the learned models (e.g., Chechetka and
Guestrin 2007). One way to do this is to only consider models with a low tree-
width (Narasimhan and Bilmes 2004; Chechetka and Guestrin 2007). Another
body of work looks at simultaneously learning either a Bayesian network or a
Markov network as well as an alternative representation (typically an arithmetic
circuit) of the model that permits efficient inference. Then the model is penalized
by the cost of inference, which can be calculated based on well-defined properties
of the representation. By penalizing the circuit size of the associated model, it is
possible to bias the learning algorithm towards models where efficient inference
is possible (Lowd and Domingos 2008; Lowd and Rooshenas 2013). Our work fits
within this framework since we have proposed tractable structure learning towards
models that allow lifted inference. This guarantees tractable inference for certain
types of queries (see Section 2.3). While tractable statistical relational languages
have been investigated before (Domingos and Webb 2012), we believe our work is
among the first to consider the problem of learning such tractable representations.

8 Conclusions

We investigated the effect of lifted inference for parameter and structure learning
in the statistical relational learning setting. Specifically, we investigate generative
learning, where the goal is to maximize the probability of observing the data,
in the context of Markov logic networks (MLNs). We present four contributions.
Our first contribution is a generic lifted parameter learning algorithm that can
use exact lifted inference approaches to efficiently learn weights that maximize
the exact training-set likelihood. We employ the concept of equiprobable random
variables to characterize the reduced cost of computing the gradient given a lifted
inference oracle. Our second contribution is a concrete lifted parameter learning
algorithm based on first-order knowledge compilation. Its most appealing property
for parameter learning is that compilation only needs to be performed once per
MLN structure. Our third contribution is a lifted structure learning algorithm that
learns liftable MLN theories. In contrast to existing MLN structure learners, which
resort to optimizing pseudo-likelihood, it optimizes the exact likelihood using our
lifted parameter learning algorithm as a subroutine. Our fourth contribution is an
extensive empirical evaluation of lifted parameter and structure learning on three
real-world SRL data sets. We find that our lifted parameter learning algorithm
learns models with better test-set likelihood than competing approaches and scales
well with the amount of training data. Our lifted structure learning algorithm
outperforms existing learners in terms of likelihood as well as conditional likelihood
and area under the precision-recall curve on prediction tasks. More surprisingly,
we found that liftable models outperformed unliftable ones on prediction tasks.



Lifted generative learning of Markov logic networks 25

This provides some evidence that liftable models are a powerful hypothesis space
that are suitable for modeling commonly used domains.
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A Detailed experimental results for research question Q4

This section provides per-predicate inference results for research question Q4, where we in-
vestigate how lifted structure learning compares to off-the-shelf structure learners BUSL and
MSL in terms of AUC and CLL when learning tractable models.

Table 9 AUC results for learning tractable IMDb models. In comparison to BUSL, LSL wins
in 20 of the 30 settings, loses in 5 settings, and ties in 5 settings. In comparison to MSL, LSL
wins in 10 of the 30 settings, loses in 8 settings, and ties in 12 settings

BUSL MSL
Win Loss Tie Win Loss Tie

actor 5 0 0 0 0 5
director 0 0 5 0 0 5

genre 5 0 0 2 1 2
male 3 2 0 2 3 0

movie 2 3 0 3 2 0
workedUnder 5 0 0 3 2 0

Total 20 5 5 10 8 12

Table 10 CLL results for learning tractable IMDb models. In comparison to BUSL, LSL wins
in 25 of the 30 settings, loses in 5 settings, and ties in 0 settings. In comparison to MSL, LSL
wins in 23 of the 30 settings, loses in 7 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

actor 5 0 0 4 1 0
director 5 0 0 5 0 0

genre 5 0 0 5 0 0
male 5 0 0 4 1 0

movie 0 5 0 0 5 0
workedUnder 5 0 0 5 0 0

Total 25 5 0 23 7 0

Table 11 AUC results for learning tractable WebKB models. In comparison to BUSL, LSL
wins in 14 of the 20 settings, loses in 6 settings, and ties in 0 settings. In comparison to MSL,
LSL wins in 12 of the 20 settings, loses in 8 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

courseProf 1 3 0 3 1 0
courseTA 4 0 0 3 1 0

faculty 1 3 0 1 3 0
project 4 0 0 3 1 0
student 4 0 0 2 2 0

Total 14 6 0 12 8 0
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Table 12 CLL results for learning tractable WebKB models. In comparison to BUSL, LSL
wins in 15 of the 20 settings, loses in 5 settings, and ties in 0 settings. In comparison to MSL,
LSL wins in 15 of the 20 settings, loses in 5 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

courseProf 4 0 0 4 0 0
courseTA 4 0 0 4 0 0

faculty 1 3 0 1 3 0
project 4 0 0 4 0 0
student 2 2 0 2 2 0

Total 15 5 0 15 5 0

Table 13 AUC results for learning tractable UWCSE models. In comparison to BUSL, LSL
wins in 27 of the 45 settings, loses in 17 settings, and ties in 1 setting. In comparison to MSL,
LSL wins in 28 of the 45 settings, loses in 16 settings, and ties in 1 setting

BUSL MSL
Win Loss Tie Win Loss Tie

Advisedby 5 0 0 3 2 0
Courselevel 2 3 0 3 2 0

Phase 1 4 0 3 2 0
Professor 2 2 1 2 2 1

Publication 5 0 0 4 1 0
Ta 2 3 0 4 1 0

Taughtby 3 2 0 4 1 0
Tempadvisedby 5 0 0 5 0 0
Yearsinprogram 2 3 0 0 5 0

Total 27 17 1 28 16 1

Table 14 CLL results for learning tractable UWCSE models. In comparison to BUSL, LSL
wins in 32 of the 45 settings, loses in 13 settings, and ties in 0 settings. In comparison to MSL,
LSL wins in 32 of the 45 settings, loses in 13 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

Advisedby 5 0 0 5 0 0
Courselevel 4 1 0 4 1 0

Phase 0 5 0 1 4 0
Professor 1 4 0 1 4 0

Publication 5 0 0 5 0 0
Ta 4 1 0 4 1 0

Taughtby 5 0 0 5 0 0
Tempadvisedby 5 0 0 5 0 0
Yearsinprogram 3 2 0 2 3 0

Total 32 13 0 32 13 0
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B Detailed experimental results for research question Q5

This section provides per-predicate inference results for research question Q5, where we in-
vestigate how lifted structure learning compares to off-the-shelf structure learners BUSL and
MSL in terms of AUC and CLL when learning intractable models.

Table 15 AUC results for learning IMDb models. In comparison to BUSL, LSL wins in 12 of
the 30 settings, loses in 7 settings, and ties in 11 settings. In comparison to MSL, LSL wins in
7 of the 30 settings, loses in 11 settings, and ties in 12 settings

BUSL MSL
Win Loss Tie Win Loss Tie

actor 1 0 4 0 0 5
director 0 0 5 0 0 5

genre 3 0 2 2 1 2
male 1 4 0 1 4 0

movie 4 1 0 2 3 0
workedUnder 3 2 0 2 3 0

Total 12 7 11 7 11 12

Table 16 CLL results for learning IMDb models. In comparison to BUSL, LSL wins in 17 of
the 30 settings, loses in 12 settings, and ties in 1 setting. In comparison to MSL, LSL wins in
16 of the 30 settings, loses in 14 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

actor 2 2 1 3 2 0
director 5 0 0 3 2 0

genre 5 0 0 3 2 0
male 3 2 0 2 3 0

movie 0 5 0 2 3 0
workedUnder 2 3 0 3 2 0

Total 17 12 1 16 14 0

Table 17 AUC results for learning WebKB models. In comparison to BUSL, LSL wins in 12
of the 20 settings, loses in 8 settings, and ties in 0 settings. In comparison to MSL, LSL wins
in 9 of the 20 settings, loses in 11 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

courseProf 2 2 0 2 2 0
courseTA 2 2 0 3 1 0

faculty 1 3 0 0 4 0
project 4 0 0 3 1 0
student 3 1 0 1 3 0

Total 12 8 0 9 11 0
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Table 18 CLL results for learning WebKB models. In comparison to BUSL, LSL wins in 15
of the 20 settings, loses in 5 settings, and ties in 0 settings. In comparison to MSL, LSL wins
in 11 of the 20 settings, loses in 9 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

courseProf 4 0 0 3 1 0
courseTA 4 0 0 4 0 0

faculty 2 2 0 0 4 0
project 3 1 0 3 1 0
student 2 2 0 1 3 0

Total 15 5 0 11 9 0

Table 19 AUC results for learning UWCSE models. In comparison to BUSL, LSL wins in 26
of the 45 settings, loses in 18 settings, and ties in 1 setting. In comparison to MSL, LSL wins
in 31 of the 45 settings, loses in 14 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

Advisedby 3 2 0 4 1 0
Courselevel 1 4 0 3 2 0

Phase 2 3 0 5 0 0
Professor 0 4 1 1 4 0

Publication 5 0 0 4 1 0
Ta 4 1 0 3 2 0

Taughtby 2 3 0 3 2 0
Tempadvisedby 4 1 0 5 0 0
Yearsinprogram 5 0 0 3 2 0

Total 26 18 1 31 14 0

Table 20 CLL results for learning UWCSE models. In comparison to BUSL, LSL wins in 33
of the 45 settings, loses in 12 settings, and ties in 0 settings. In comparison to MSL, LSL wins
in 28 of the 45 settings, loses in 17 settings, and ties in 0 settings

BUSL MSL
Win Loss Tie Win Loss Tie

Advisedby 5 0 0 5 0 0
Courselevel 5 0 0 4 1 0

Phase 0 5 0 1 4 0
Professor 1 4 0 1 4 0

Publication 4 1 0 4 1 0
Ta 5 0 0 4 1 0

Taughtby 5 0 0 2 3 0
Tempadvisedby 5 0 0 5 0 0
Yearsinprogram 3 2 0 2 3 0

Total 33 12 0 28 17 0
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