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ABSTRACT OF THE THESIS 
 

Exploring Higher Accuracy 
Poisson-Boltzmann Methods for Biomolecular Simulations  

 
By 

 
Changhao Wang 

 
Master of Science in Chemical and Materials Physics – Physics 

 
University of California, Irvine, 2016 

 
Professor Ray Luo, Chair 

 
 
 

  Accurate and efficient treatment of electrostatics is a crucial step in computational analyses of 

biomolecular structures and dynamics. In this study, we have explored a second-order 

finite-difference numerical method to solve the widely used Poisson-Boltzmann equation for 

electrostatic analyses of realistic biomolecules. The so-called immersed interface method was 

first validated and found to be consistent with the classical weighted harmonic averaging method 

for a diversified set of test biomolecules. The numerical accuracy and convergence behaviors of 

the new method were next analyzed in its computation of numerical reaction field grid potentials, 

energies, and atomic solvation forces. Overall similar convergence behaviors were observed as 

those by the classical method. Interestingly, the new method was found to deliver more accurate 

and better-converged grid potentials than the classical method on or nearby the molecular surface, 

though the numerical advantage of the new method is reduced when grid potentials are 
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extrapolated to the molecular surface. Our exploratory study indicates the need for further 

improving interpolation/extrapolation schemes in addition to the developments of higher-order 

numerical methods that have attracted most attention in the field. 
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CHAPTER 1: Introduction 

Electrostatic interactions play important roles in the structural, dynamic and functional properties 

of biomolecules. Accurate and efficient treatment of electrostatics is thus crucial in 

computational analyses of biomolecular structures and dynamics. A closely related issue is the 

modeling of water molecules and their electrostatic interactions with biomolecules that must be 

considered for any realistic representation of biomolecules at physiological conditions. Since 

most particles in a molecular model represent water molecules solvating the target biomolecules, 

treating these water molecules implicitly offers an opportunity to reach higher computational 

efficiency to model more complex biomolecular systems. A class of successful implicit solvent 

models based on the Poisson-Boltzmann equation (PBE) has been widely accepted for 

biomolecular applications after years of basic research and development.  

In this implicit/continuum solvent treatment, the solute molecule is treated as a low dielectric 

constant region and the solvent is treated as a high dielectric constant region. A number of fixed 

interior point charges are located atomic centers. Since analytic solution of the PBE can be 

achieved only in a few specific cases with simple solute geometry, a numerical solution of the 

PBE is needed for biomolecular applications. Among the numerical solution methods, 

finite-difference methods (FDM) [1-14], finite-element methods (FEM) [15-24] and 

boundary-element methods (BEM) [25-42] are mostly used. In these three methods, FDM has 

the advantage of the straightforward and physically transparent nature of the calculation. 

However, if a direct discretization is used without considering the discontinuity in the dielectric 
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constant, the numerical solutions tend to have large errors, and the errors are particularly obvious 

near the solute-solvent interface. To overcome this problem, Davis and McCammon proposed a 

harmonic average (HA) method to approach the approximate dielectric constant near surface in 

1991 [43]. Efforts have also been reported recently by Wei and co-workers and Li and 

co-workers to develop higher accuracy interface schemes, the matched interface and boundary 

(MIB) method and immersed interface method (IIM), to improve numerical accuracy of the PBE 

solution [44-48]. The scheme of MIB is enforcing the lowest-order jump condition repeatedly to 

achieve the high-order jump condition. On the other hand, the idea of IIM is to enforce the 

interface conditions into the finite-difference schemes at grid points near the interface. Besides 

these higher-order numerical schemes, there are also proposals to improve implicit solvent model, 

including coupling electrostatic and nonelectrostatic interactions within the implicit solvation 

treatment [49-53] and using level set to help the definition of solvent-solute interface [54, 55].  

Even with constant community-wide efforts to improve the efficiency and accuracy of 

numerical PBE models, mathematical and computational challenges remain in adoption of the 

methods to routine molecular dynamics simulations. One challenge is the difficulty of assigning 

forces related to the dielectric boundary to individual atoms, and many efforts have been 

invested to develop methods to compute electrostatic forces [7, 15, 21, 30, 56-73]. Another 

challenge is how to achieve convergence of numerical energy and forces with respect to the 

resolution of the solute-solvent boundary and charge representation efficiently both in terms of 

CPU time and memory usage [43, 74]. Indeed, numerical forces are especially difficult to reach a 
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high enough accuracy because forces are derivatives of energies that are always harder than 

energies to compute by numerical approaches. These issues still limit the applications of 

numerical PBE models to calculations involving static biomolecular structures only. 

In this study, we explored a higher-accuracy numerical scheme, the immersed interface 

method (IIM), to solve the PBE [75]. The idea of IIM is to enforce the interface conditions into 

the finite-difference schemes at grid points near the interface. Our preliminary analysis on the 

IIM for a well-studied analytical system indicated its promises for biomolecular applications [76]. 

Here we extended the IIM to realistic biomolecules to investigate its performance of electrostatic 

properties, such as gird reaction field potential, atomic reaction field energy and atomic reaction 

field forces. In addition, interface properties such as potentials and electric fields were also 

carefully analyzed for future applications in dielectric stress and pressure calculations. 
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CHAPTER 2: Theory 

2.1 Finite-difference/finite-volume method 

Without loss of generality, we focus on the Poisson’s equation in this study since the Boltzmann 

term is nonzero only outside the Stern layer, which is typically set 2 Å away from the dielectric 

interface where the dielectric constant is smooth. The partial differential equation 

∇⋅ε∇φ = −4πρ                                (1) 

establishes a relation between charge density ( ρ ) and electrostatic potential (φ ), given a 

predefined dielectric distribution function (ε ) for a solvated molecule. 

The FDM is a widely utilized numerical method to discretize partial differential equations. 

With FDM, a uniform Cartesian grid is used to discretize a finite rectangle box containing the 

solvated molecule. The grid points are numbered as (i,  j,  k) , 

 1,..., , 1,..., , 1,...,i xm j ym k zm= = = , where xm , ym  and zm  are the numbers of points 

along the x, y, and z axes, respectively. The spacing between neighbor points is uniformly set to 

be h. Charge density ( , , )i j kρ  in FDM is given as 3( , , ) ( , , ) /i j k q i j k hρ = , where the 

( , , )q i j k  is the total charge within the cubic volume centered at (i, j, k). Under this discretization 

scheme, the Poisson’s equation can be discretized as  
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1{ ( , , ) [ ( 1, , ) ( , , )]
2
1( , , )[ ( 1, , ) ( , , )]
2
1( , , )[ ( , 1, ) ( , , )]
2
1( , , )[ ( , 1, ) ( , , )]
2
1( , , )[ ( , , 1) ( , , )]
2
1( , , )[ ( , , 1) ( , , )]}/
2

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

ε φ φ

ε φ φ

ε φ φ

ε φ φ

ε φ φ

ε φ φ

− − −

+ + + −

+ − − −

+ + + −

+ − − −

+ + + − 2

34 ( , , ) / ,

h

q i j k hπ

=

−

      (2) 

where h is the spacing in each dimension; φ(i, j,k)  is the potential on grid (i, j, k), and 

  φ(i ±1, j,k) ,   φ(i, j ±1,k)  and   φ(i, j,k ±1)  are defined similarly; ε (i − 1
2
, j,k)  is the dielectric 

constant at the mid-point between grids (i, j, k) and (i-1, j, k), and 
  
ε(i, j − 1

2
,k)  and 

  
ε(i, j,k − 1

2
) are defined similarly; 

  
ε(i + 1

2
, j,k)  is the dielectric constant at the mid-point 

between grids (i, j, k) and (i+1, j, k), and 1( , , )
2

i j kε +  and 1( , , + )
2

i j kε  are defined similarly. 

The dielectric constant is related to the dielectric interface treatment to be discussed below. The 

solute atomic charge distribution is mapped onto grid points using a mapping procedure. Here 

the trilinear mapping method was used [77]. More detailed implementation information can be 

found in our recent works [9, 11, 13, 14, 78].  

2.2 Interface treatment: Harmonic average 

Harmonic average is a well-established interface treatment method. For FDM, the dielectric 
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constant is difficult to set when the two neighboring grid points belong to different dielectric 

regions. The electrostatic interface/jump condition must be satisfied across the interface between 

the different dielectric regions. One simple treatment is the use of harmonic average (HA) of the 

two dielectric constants at the interface midpoints to satisfy the jump condition in each 

dimension [43]. For example, if ( 1,  ,  )i j k−  and ( ,  ,  )i j k  belong to different dielectric regions, 

there must be an interface point on the grid edge between ( 1,  ,  )i j k−  and ( ,  ,  )i j k . In HA, 

1( , , )
2

i j kε −  is defined as 

1( , , ) ,
2

( 1, , ) ( , , )

hi j k a b
i j k i j k

ε

ε ε

− =
+

−

        (3) 

where a is the distance from the interface point to grid point ( 1,  ,  )i j k− , and b is the distance 

from the same interface point to grid point ( ,  ,  )i j k . Obviously, this is an approximated treatment, 

but this strategy has been shown to improve the convergence of reaction field energies respect to 

the grid spacing [43]. 

2.3 Interface treatment: Immersed interface method 

A more systematic way for interface treatment is the immersed interface method (IIM) [75]. In 

IIM the interface is often represented by the zero level set of a Lipchitz continuous function 

(often the signed distance function) ( , , )x y zϕ :  

( , , ) 0 ( , , )
( , , ) 0 ( , , )
( , , ) 0 ( , , ) ,

x y z if x y z
x y z if x y z
x y z if x y z

ϕ
ϕ
ϕ

−

+

< ∈Ω
= ∈Γ
> ∈Ω

            (4) 
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where Γ  is the interface, −Ω  is the inside dielectric region and +Ω  is the outside dielectric 

regions. After defining  

min{ ( 1, , ), ( , 1, ), ( , , 1)}

max{ ( 1, , ), ( , 1, ), ( , , 1)},

min
ijk

max
ijk

i j k i j k i j k

i j k i j k i j k

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= ± ± ±

= ± ± ±
    (5) 

a grid point can be classified irregular if 0min max
ijk ijkϕ ϕ ≤ , and regular if otherwise.  

Discretized partial differential equation is given as same as Eqn (2): 

      

1{ ( , , ) [ ( 1, , ) ( , , )]
2
1( , , )[ ( 1, , ) ( , , )]
2
1( , , )[ ( , 1, ) ( , , )]
2
1( , , )[ ( , 1, ) ( , , )]
2
1( , , )[ ( , , 1) ( , , )]
2
1( , , )[ ( , , 1) ( , , )]}/
2

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

i j k i j k i j k

ε φ φ

ε φ φ

ε φ φ

ε φ φ

ε φ φ

ε φ φ

− − −

+ + + −

+ − − −

+ + + −

+ − − −

+ + + − 2

3( , , ) = 4 ( , , ) / ,

h

f i j k q i j k hπ= −

                 (6) 

where ( , , )f i j k  is used to denote the point charge term, and two interface conditions on 

interface Γ  as 

[ ]
[ ] .n

w
v

φ
εφ

Γ

Γ

=
=

                                (7) 

Here, [ ]u α  is defined as [ ] = ( ) ( ) lim ( ) lim ( )
x x

u u u u x u xα α α
α α

+ −

+ −

→ →
− = − . A new set of 

finite-difference equations involves 27 points including one irregular point and 26 neighboring 

points of the irregular point in a 3×3×3 grid cube. These new equations consist of the matrix of 

IIM instead of the original 7-point finite-difference equations at irregular points.  
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The new finite difference equation at irregular point (i, j, k) can be written as 

( , , ) ( , , ) ( , , ),
sn

m m m m
m

i i j j k k f i j k C i j kγ φ + + + = +∑             (8) 

where ns represents all the 27 grid points, mγ  are the undetermined coefficients, and ( , , )C i j k  

is an undetermined correction term, chosen to minimize the local truncation error while 

satisfying the interface conditions of [ ] wφ Γ =  and [ ]n vεφ Γ = . The basic idea of IIM is to 

determine mγ  in Eqn (8) at the irregular points so that the second-order global accuracy is 

obtained as in an interface-free problem with the finite-difference/finite-volume discretization 

scheme. Since only grid points nearby the interface are involved, it is sufficient to have an O(h) 

local truncation error at those points to reach the goal [75, 79]. The detailed procedure has been 

documented in our previous works [76].  

2.4 Removal of charge singularity 

Point charge models are widely used in molecular dynamics of biomolecules, yet the 

representation of point charges is delta function that is difficult to solve by PB equations. Eqn (2) 

shows that the finite-volume discretization scheme overcomes this problem by resorting to the 

integral form of the PBE. Thus the total charge, instead of the singular charge density, appears as 

a discretized form ( , , )q i j k  in the right side of Eqn (2) at grid point ( , , )i j k . However, such a 

treatment will introduce the singularity at the gird points to distort the Coulombic potential 

especially when it is close to a grid charge [65]. 

Several advanced strategies are also available to remove the charge singularity [19, 45, 80, 
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81]. Here we adopted an efficient strategy developed by our group [82]. We explain this 

approach briefly.  The reaction field potential ( RFφ ) is solved in the solute region ( −Ω ) and the 

total potential ( RF Cφ φ φ= + ) is solved in the solvent region ( +Ω ). Here Cφ  is the Coulombic 

potential, satisfying 2 4Cε φ πρ−∇ = − [82]. The respective equations for RFφ  and φ  are 

0,
,

( ) 0,
RF in
N in

ε φ
ε φ φ

−

+

⎧∇⋅ ∇ = Ω⎪
⎨
∇⋅ ∇ − = Ω⎪⎩

                           (9) 

where ( )N φ  represents the Boltzmann term and is set to zero in the current study [82]. The 

corresponding interface conditions across Γ  are then 

.
C RF

CRF

n n

φ φ φ
φφε ε

= +⎧
⎪

∂∂⎨ ⎡ ⎤⎡ ⎤ = −⎪ ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎩

                          (10) 

As shown in Eqn (10), the Coulombic potential is needed on the interface [82].  

2.5 Electrostatic energy and forces 

2.5.1 Reaction field energy and forces  

The reaction field energy (ΔG) is calculated as 

1

1 ( ).
2

qN

i C
i

G q φ φ
=

Δ = −∑                            (11) 

If the charge singularity is removed, it is simply 

1

1 .
2

qN

i RF
i

G qφ
=

Δ = ∑                              (12) 

The reaction field forces (qE) are obtained as 
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1

.
qN

qE i RF
i
q

=

=∑F E                              (13) 

 

2.5.2 Interface potential and electrostatic field  

After solving the finite-difference equations, only potential values at grid points are known. To 

obtain potential or electrostatic field at any position 0 0 0( , , )x y z , we utilized the one-sided 

least-square fitting method [79]. Briefly, there are ( 10)N ≥  equations of the second-order 

3D-Taylor expansion, respectively, for the ( 10)N ≥  grid points with respect to the origin, 

0 0 0( , , )x y z , i.e. the surface point of interest 

1 2 0 3 0 4 0

2 2 2
5 0 6 0 7 0

8 0 0 9 0 0

10 0 0

( , , ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

i i i i

i i i

i i i i

i i

f x y z A A x x A y y A z z
A x x A y y A z z
A x x y y A y y z z
A x x z z

= + − + − + −

+ − + − + −
+ − − + − −
+ − −

 .          (14) 

These equations are involved to determine the coefficients ,    1,  ...,  10Aα α = , where 

( , , )if x y z  is the potential of grid point ( , , )ix y z , and 0( )ix x− , 0( )iy y−  and 0( )iz z−  are 

the relative position vector components of grid point ( , , )ix y z  with respect to the origin 

0 0 0( , , )x y z . The ( 10)N ≥  grid points are chosen to be within a 3×3×3 cubic grid, where the 

center point is the nearest grid point to the origin. Since we are to conduct a one-side 

extrapolation, only the inside grid points are included. Within the cubic grid, about half of the 27 

points are each side of the interface so that the number of grid points ( 10)N ≥  selected in the 

fitting is in the range of 10 ~ 18. The coefficients ,    1,  ...,  10Aα α =  are then solved by the 

Singular Value Decomposition (SVD) algorithm as summarized below. 
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In the extrapolation problem, ( 10)N ≥  linear equations from Eqn (14) are used to determine 

ten coefficients ,    1,  ...,  10Aα α = . Symbolically, it can be written as  

                    

a1,1 a1,2  a1,10
a2,1 a2,2  a2,10
  
  
aN ,1 aN ,2  aN ,10

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

i

A1
A2

A10

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

f1
f2


fN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,                  (15) 

where ,1=1ia , ,2 0=( )i ia x x− , ,3 0=( )i ia y y− , ,4 0=( )i ia z z− , 2
,5 0=( )i ia x x− , 

2
,6 0=( )i ia y y− , 2

,7 0=( )i ia z z− , ,8 0 0=( ) ( )i i ia x x y y− − , ,9 0 0=( ) ( )i i ia y y z z− − , ,10 0 0=( ) ( )i i ia x x z z− − , 

( , , )i if f x y z= .  

Eqn (15) is rewritten symbolically below as 

                                   X ⋅β =Y ,                                (16) 

where X  is the matrix of ,i ja , β  is the matrix of iA  and Y  is the matrix of if . To solve 

this over-determined linear system (i.e. the number of equations is larger than the number of 

unknowns.), a linear regression problem needs to be completed via the standard least square 

minimization protocol [83]. One way is replacing X  by its SVD in carrying out the regression 

of Y  on X , as follows. This procedure is also called principal components regression [83].  

               X iβ=U

Σ1,1 0  0

0 Σ2,2  0

   
0 0  Σ10,10

  
0 0  0

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

V *iβ=Y ,                 (17) 
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where U is a N N× unitary matrix, V* is a 10×10 unitary matrix and Σi ,i (i =1,…,10)  are the 10 

singular values of matrix X . Next β  can be calculated directly by multiplying 1( )T TX X X−  

to both sides of Eqn (17). Because U, V* and Σ
 
are known, the solution β  is obtained as 

β=

A1
A2

A10

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=V

1
Σ1,1

0  0  0

0 1
Σ2,2

 0  0

    

0 0  1
Σ10,10

 0

!

"

#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&

U *

f1
f2


fN

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

.           (18) 

Once the linear system is solved, the potential and gradient of potential (field) at position 

0 0 0( , , )x y z  are obtained by the following relation: 

0 0 0 0 0 0 1

0 0 0 0 0 0 2

0 0 0 0 0 0 3

0 0 0 0 0 0 4

( , , ) ( , , )
( , , ) ( , , )
( , , ) ( , , )

( , , ) ( , , ) .

x x

y y

z z

x y z f x y z A
x y z f x y z A
x y z f x y z A
x y z f x y z A

φ
φ
φ
φ

≈ =
≈ =
≈ =

≈ =

                        (19) 

2.6 Linear system solvers 

The coefficient matrices produced by the IIM are asymmetric and positive-indefinite. Therefore 

the conjugate gradient method or other closely related methods are not suitable for solving these 

linear systems. In this study, three general methods, Generalized Minimal RESidual method 

(GMRES), BiConjugate Gradient method (BiCG), and algebraic multigrid (AMG) are 

investigated to solve these asymmetry linear systems. 

Similar to the conjugate gradient method (CG), GMRES constructs a sequence of orthogonal 
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vectors and minimize the residue along these vectors in sequence. However, for symmetric 

matrices, only one previous vector is necessary in the construction of the new orthogonal vector. 

To handle asymmetric matrices, it is necessary to remember all previous vectors and use the 

Arnoldi iteration to construct the new vector orthogonal to all the previous vectors. GMRES can 

be summarized as the following pseudo code: 

1. Let 0l = . Compute residue 0 0r b Ax= −  and set v1 = r0 / r0 . 

2. Let 1l l= + . 

3. Use the Arnoldi iteration to construct vector 1lv +  that is orthogonal to , 0, ...,kv k l= . 

4. Minimize the residue along the new vector 1lv +  and update lx . 

5. Calculate the norm of residues rl . If rl / b  is less than a predefined convergence 

threshold δ , output lx  as the solution. Otherwise go to step 2. 

BiCG is a generalization of conjugate gradient method (CG) for asymmetric and 

positive-indefinite systems. It constructs two sequences of vectors lr  and lr% which are 

biorthogonal, that is ri
T rj = ri

T rj = 0, i ≠ j . However it constructs the new direction of 

minimization without the knowledge of previous vectors. Therefore it uses less memory. 

Apparently, when the matrix A is symmetric, BiCG goes back to CG. However, the method 

requires two matrix-vector productions at each step. BiCG can be summarized as the following 

pseudo code: 

1. Let 0l = . Compute residue 0 0r b Ax= −  and set !r0 = r0 , 0 0p r= . 

2. Set 1l l= + . 
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3. Calculate ρl−1 = !r0
T r0 . 

4. If 1l =  

set 1l lp r −= , !pl = !rl−1  

Else 

set 1 1 2/l l lβ ρ ρ− − −= , 1 1 1l l l lp r pβ− − −= + , !pl = !rl−1 + βl−1 !pl−1  

5. Calculate l lq Ap= , !ql = A
T !pl ,α l = ρl−1 / !pl

Tql , 1l l l lx x pα−= + , 1l l l lr r qα−= − , !rl = !rl−1 −α l !ql  

6. Calculate the norm of residue lr . If /lr b  is less than a predefined convergence threshold 

δ , output lx  as the solution. Otherwise go to step 2. 

Algebraic multigrid (AMG) was also explored, which is a general multigrid method that does 

not require any specific structure in the linear system. Further, it does not utilize the geometric 

information in its operators as in typical multigrid methods. Its generality is important because 

the regular pattern in the linear system from IIM is lost. According to the original linear system, 

AMG automatically constructs a series of gradually smaller liner systems, whether the 

coefficients are continuous or discontinuous. The grids at the finer level Ch are split into two 

subsets: one set (CH) includes the grids kept at the coarser level, and the other set (FH) includes 

the rest. Then the interpolation operator can be defined as  

, if
., if

H

H H
i

h
h H Hi
ik k

k C

i C
w i F

φ
φ φ

∈

⎧ ∈⎪= ⎨ ∈⎪⎩
∑               (20) 

The restriction operator is the reverse of interpolation operator, and the relaxation operator uses 

Gauss-Seidel. More grids in subset CH likely make the interpolation at grids in subset FH more 

accurate. On the other hand more grids in CH consume more computational resource. Therefore a 
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good grid-splitting algorithm has to balance the interpolation accuracy and computational cost. 

The detail of the grid-splitting algorithm is reviewed in Ref [84]. In this study, we investigated 

the performance of a publically available AMG method, AMG1R5, as implemented by Ruge, 

Stüben and Hempel [85]. 
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CHAPTER 3: Test cases and other computational details 

All computational procedures were implemented in the Amber12/PBSA program [9, 11, 13, 14, 

78]. The molecular surface was defined using a revised strategy that combines the concept of 

modified van der Waals surface with an optimized density function [55, 86]. In this strategy, the 

density function was utilized to smooth the modified van der Waals surface to remove any 

crevices. The dielectric constant inside ε −  was 1.0, and the dielectric constant outside ε +  was 

set at 80.0. All molecules were assigned the charges of Cornell et al. [87] and the modified 

Bondi radii, except that the smallest hydrogen radii were reset to 1.0 Å, i.e. as in the original 

Bondi radius definition. The probe radius was 1.4 Å. The finite-difference convergence criterion 

was set to be 10-5. And the Poisson’s equation was solved with the charge singularity removed 

[82].  

In the following, the consistency between the new IIM and the classical WHA methods were 

first investigated to validate the implementation of the new method. The full test cases consisted 

of 579 biomolecular structures including proteins, nucleic acids and short peptides in the Amber 

benchmark suite [88]. The atom numbers of these biomolecules range from 247 to 8,254 and 

their geometries are exceedingly different. These test cases chose 1/2 Å as grid spacing. Then 

four typical small molecular complexes, adenine-thymine (AT), guanine-cytosine (GC), 

arginine-aspartic acid (RD) and lysine-aspartic acid (KD) were chosen to analyze the 

convergence of reaction grid potentials, energies and atomic forces. Molecular surface potentials 

and fields were also investigated. The grid spacings were chosen as 1/2, 3/8, 1/4, 3/16, 1/8, and 
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1/16 Å in the AT, GC, RD and KD analyses. Condition numbers of the IIM matrices were also 

analyzed in the small test systems AT, GC, RD and KD using 1Å as grid spacing due to the large 

size of the full coefficient matrices. Eight representative proteins were selected to compare the 

performances of GMRES, BiCG, and AMG linear system solvers. Here, the atom numbers of the 

selected proteins varied from 1,619 to 4,211. The detail sizes of the selected proteins are showed 

in Table 1. The total numbers of grid points of these proteins varied from ~2×106 to 107. The 

tested convergence criteria ranged from 10-1 to 10-9. 

 

Table 1.  Eight selected proteins, their No. of atoms (Natom), and No. of x direction grid points 
times No. of y direction grid points times No. of z direction grid points (Ngrid). 

PROTEIN Natom Ngrid 

1a23 2955 175x159x143 
1bci 1969 159x111x111 
1bxd 2439 191x207x175 
1d8v 4211 175x191x175 
1fyb 1619 127x175x207 
1inz 2413 207x271x191 
1qto 1817 143x143x143 
2pcf 3884 239x223x159 
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CHAPTER 4. Results and Discussion 

In the following, the IIM implementation was first validated by comparing the numerical 

reaction field energies of a large set of diversified biomolecules computed by both the IIM and 

the well-established WHA method. Next the influences of enforcing interface conditions upon 

the precision of reaction field grid potentials, energies, forces, interface potentials and interface 

fields were analyzed on a few selected small biomolecular complexes. Finally the performance 

of different linear system solvers was discussed, which is important for the applications of the 

IIM in typical biomolecular systems. 

4.1 Overall consistency of IIM and WHA on tested biomolecules 

As discussed in the Methods section, both the IIM and the WHA method intend to enforce the 

dielectric boundary conditions, though the WHA method only intends to achieve this 

approximately. Both methods utilize the same numerically represented surface and the same set 

of irregular grid points, i.e. grid points with heterogeneous dielectric grid edges. The treatments 

of the irregular grid points are clearly different between the two methods, as described in detail 

in the Methods section. 

To confirm the implementation of the IIM, reaction field energies of 579 biomolecules were 

calculated by the IIM and the WHA. The correlation between the numerical energies was shown 

in Figure 1. Clearly, a very high correlation can be found between the two different algorithms. 

Detailed analysis shows that the Pearson correlation coefficient is 1.0000 between the two sets of 
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data, the linear regression slope is 1.0014 (with a fixed offset of zero), and the RMS relative 

deviation is 0.0026 between the two sets of data. These data show a very high overall 

consistency between the two methods.  
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Figure 1. Correlation of reaction field energies (∆G) by IIM and WHA at 1/2 Å grid spacing for 
the Amber training set of 579 biomolecules. The Pearson correlation coefficient is 1.0000 and 
the linear regression slope is 1.0014 (with fixed offset of zero).  

4.2 Convergence of reaction field grid potentials, energies and forces 

After validating overall consistency of WHA and IIM, four small molecular complexes (AT, GC, 

RD, and KD as described in Methods) were chosen to analyze the convergence of reaction field 

grid potentials, atomic reaction field energies, and atomic reaction field forces because these 

small systems allow us to use a very fine grid spacing (1/16 Å) for high precision numerical 
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calculations. Here the numerical results at the 1/16 Å grid were chosen as benchmark due to the 

lack of analytical solutions for these realistic molecules. Indeed, only very simple models such as 

monopolar or dipolar spheres allow analytical solution [76].  

In this study, the accuracy of the grid potentials and fields nearby each atom was studied 

using a more detailed calculation instead of the lump-sum total energy that tends to hide local 

numerical error due to cancellation. Figure 2 shows that the mean absolute errors of the grid 

potentials at the eight grid points nearby each atom follow similar overall convergence trends, 

decreasing by a factor of around twenty as the grid spacings reduce from 1/2 to 1/8 Å (with the 

solutions at 1/16 Å as benchmark). These grid points are the eight nearest grid points in the 1/2 Å 

FDPB grid whose potentials were computed with different grid spacings, 1/2 Å, 1/4 Å, 1/8 Å and 

1/16 Å, respectively, so their potentials can be looked up without any interpolation. Next, the 

eight nearest grid points of each atom at 1/2 Å, 1/4 Å, 1/8 Å and 1/16 Å FDPB grid were chosen 

to interpolate the energies and forces with the trilinear mapping method [77]. Figure 3 shows the 

mean absolute errors of atomic reaction field energies, and Figure 4 presents the mean absolute 

errors of the atomic reaction field forces. For Figure 3, it is clear that the convergence trends of 

atomic reaction field energies follow an overall consistent trend between WHA and IIM. The 

mean absolute errors go down approximately by a factor of twenty when the grid spacings 

reduce from 1/2 Å to 1/8 Å. For Figure 4, the convergences of atomic reaction field forces are 

similar to those of energies and potentials, decreasing from ~ 0.04 to ~ 0.002 kcal/mol-Å as the 

grid spacings reduce from 1/2 to 1/8 Å. The convergence curves in Figure 2, 3 and 4 are not very 
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smooth because these small molecular systems only have 20-40 atoms each, so the numbers of 

sample sizes are not large enough to cancel the fluctuation. In summary, overall similar 

convergence behaviors by the two methods are observed in the reaction field grid potentials, 

atomic reaction field energies and atomic reaction field forces in four tested small complexes. 
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Figure 2. Mean absolute errors of reaction field potentials at the 8 nearest finite-difference grid 
points of each atom (kcal/mol-e) versus grid spacing h (Å) with respect to those calculated at the 
fine grid spacing of 1/16Å for AT, GC, RD and KD dimers, respectively.  
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Figure 3. Mean absolute errors of reaction field energies at each atom (kcal/mol) versus grid 
spacing h (Å) with respect to those calculated at the fine grid spacing of 1/16Å for AT, GC, RD 
and KD dimers, respectively.  
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Figure 4. Mean absolute errors of reaction field forces at each atom (kcal/mol-Å) versus grid 
spacing h (Å) with respect to those calculated at the fine grid spacing of 1/16Å for AT, GC, RD 
and KD dimers, respectively.  

4.3 Convergence of molecular surface potential and field  

The IIM intends to offer more accurate numerical solution by enforcing interface jump 

conditions. Thus there is a good reason to expect IIM to behave more robustly on and nearby the 

molecular surface. Here AT, GC, RD and KD were again utilized to analyze the quality of 

numerical surface potential and field by IIM and WHA. As shown in Figure 5, mean absolute 

errors of inside irregular grid potentials decrease with reducing grid spacing from 1/2 Å to 1/8 Å 

for both methods: for IIM the errors change from ~0.2 to ~0.01 kcal/mol-e and for WHA the 

errors change from ~0.6 to ~0.03 kcal/mol-e. The trend lines indicate a significantly consistent 
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smaller errors in the IIM as the inside grid points approach the molecular surface. Comparing 

with the above analyses on atomic reaction field potentials and atomic reaction field energies, the 

data show that the benefit of enforcing interface conditions mainly dominates on and nearby the 

molecular surface, and the benefit is reduced at locations well within the molecular interior. 

Extrapolated potential and field on the molecular surface were next analyzed in detail, which 

are important for dielectric stress and pressure calculation. The extrapolation method is one-side 

second-order least square fitting method described in the Method section. Figure 6 shows the 

convergence of the extrapolated interface potentials, giving that the mean absolute errors of IIM 

are smaller than those of WHA, though the gap between the two convergence trend lines is 

smaller than that in Figure 5 for the irregular grid points. Here the errors in IIM change from 

~0.4 to ~0.02 kcal/mol-e while the errors in WHA is nearly twice as much as those in IIM, from 

~0.7 to ~0.04 kcal/mol-e. On the other hand, Figure 7 shows that errors with the almost same 

order of magnitude were observed in the surface field for both IIM and WHA, reducing from ~2 

to ~0.5 kcal/mol-e-Å. There are two possible strategies to improve the extrapolated field on the 

molecular surface. The first is to apply higher order fitting. Since field is the derivative of 

potential, the performance of second-order fitting of field should be similar with first-order 

fitting of potential. Thus, we can expect the third-order fitting of field performs similarly as 

second-order fitting of potential. The second strategy is to utilize grid points on both sides of the 

surface during interpolation and to consider the jump conditions across the molecular surface. 

We will explore these more elaborative methods in a future study. 
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Figure 5. Mean absolute errors of reaction field potentials at the irregular grid points (inside, 
kcal/mol-e) versus grid spacing h (Å) with respect to those calculated at the fine grid spacing of 
1/16Å for AT, GC, RD and KD dimers, respectively.  
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Figure 6. Mean absolute errors of potentials on the molecular surface (inside, kcal/mol-e) versus 
grid spacing h (Å) with respect to those calculated at the fine grid spacing of 1/16Å for AT, GC, 
RD and KD dimers, respectively. A second-order least square fitting method was used in all 
tests. 
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Figure 7. Mean absolute errors of reaction fields on the molecular surface (inside, kcal/mol-e-Å) 
versus grid spacing h (Å) with respect to those calculated at the fine grid spacing of 1/16Å for 
AT, GC, RD and KD dimers, respectively. A second-order least square fitting method was used 
in all tests. 

4.4 Condition of IIM matrices and linear system solvers 

Before comparing the performance of tested linear system solvers, the condition numbers of IIM 

matrices were first analyzed as this is a key issue determining the computational efficiency of 

linear solvers. For a linear algebraic system A x b⋅ = , condition number ( )cond A  is a property 

of matrix A , showing the rough rate at which solution x changes with respect to the change in b. 

As reviewed in Methods, the IIM coefficient matrix was constructed to preserve maximum 

principal. For such matrices the same upper bound holds for the condition number, and can be 
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estimated to be can be estimated as 2

max ( , , ) 1( )=
min ( , , )

x y zcond A
x y z h

ε
ε

 where ( , , )x y zε  is the 

dielectric constant [79]. These have been discussed in detail elsewhere, for example in [89] and 

[79]. The IIM was designed to achieve this goal by guaranteeing that the IIM coefficient matrix 

is an M-matrix that is diagonally dominant and invertible. 

Here we further demonstrate numerically that the IIM coefficient matrices are well 

conditioned with the four tested small molecular complexes, AT, GC, RD and KD. The grid 

spacings were chosen as 1 Å to keep the coefficient matrices within manageable sizes. Their 

reciprocal condition numbers are 7.4×10-3, 1.2×10-2, 1.2×10-2, and 3.0×10-2, respectively. These 

numerical analyses agree with the upper-bound estimation mentioned above, indicating the tested 

matrices are stable enough, i.e. the solutions do not change dramatically when the right hand 

sides are bounded as is the chase of atomic charges in typical biomolecular force fields. Based on 

these theoretical discussion and numerical tests, it is reasonable to assume that the IIM matrices 

are well conditioned on realistic biomolecules. Indeed convergence is observed for all tested 

biomolecules.  

Given the theoretical and numerical analysis demonstrating that the IIM linear systems are 

well conditioned, we tested three linear system solvers for potential biomolecular applications. It 

is instructive first to discuss the memory usage of each solver since the huge memory usage is 

always the bottleneck in applying numerical PBE methods in biomolecular simulations. As 

described in Methods, both the coefficient matrix and the right-hand-side term are needed during 
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iteration in all three solvers. In our program, the coefficient matrix is stored in the triad format, 

requiring 3Nnz real numbers, where Nnz is the number of non-zero element in the coefficient 

matrix. The right-hand-side term needs to use Ngrid real numbers, where Ngrid is the number of the 

FDPB grid points. Our test shows that AMG needs the most memory: it needs to store 46Ngrid 

real numbers and 49Ngrid integers. This can be a huge overhead, considering the very high 

dimensionalities that are often encountered in biomolecular applications. In contrast, both BiCG 

and GMRES use less memory. BiCG needs ~Nnz+8Ngrid real numbers and ~Nnz+4Ngrid integers. 

Because GMRES retains its previous vectors, it needs more real numbers, ~Nnz+Ngrid×(Nsave+7) 

real numbers in total, where Nsave is the number of the saved vectors, set to be 10 in this test. In 

addition, GMRES also needs ~Nnz+4Ngrid integers.  

An additional disadvantage of AMG is its numerical instability: 5 out of the 579 tested 

molecules were not able to converge. These failures are unlikely to be memory-related because 

the tests on many larger molecules were successfully converged. In contrast, tests performed by 

the GMRES and BiCG solvers on the same set of molecules are both 100% successfully 

completed. It is difficult to trace down the limitation of the AMG method because of the 

black-box package [85] that was utilized in our development. Apparently development of a brand 

new AMG routine may resolve the issue, but it is clearly beyond the scope of this study. 

Next the timing of the three tested solvers was analyzed. For the 574 tested molecules that 

AMG was able to complete successfully, their CPU times are also the longest compared with 

GMRES and BiCG (data not shown). Thus the two more robust solvers, GMRES and BiCG, 
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were given more attention below in the following comparative analysis. Figure 8 shows the CPU 

time versus the number of grid points (Ngrid). All 579 molecules in the Amber test set were used 

in this analysis. Nonlinear fits of the timing data indicate that the performance of BiCG is 

slightly better, scaling as ~ 1.25( )gridO N . GMRES scales as ~ 1.28( )gridO N . However, there are 

significant deviations in the GMRES trend line, indicating a less robust performance among 

individual tested molecules. 

Finally the relation between CPU time and the relative convergence criterion is analyzed and 

shown in Figure 9. The eight proteins listed in Table 1 were used as examples. Overall, similar 

performances between GMRES and BiCG were observed, consistent with the above analysis on 

the relation between CPU time and the linear system sizes. However, the performance of 

GMRES fluctuates greatly even for the eight relatively smaller proteins. For example, GMRES is 

about one to two times slower than BiCG for 1a23 and 1inz to reach the relative convergence 

criterion of 910− .  
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Figure 8. CPU time versus the number of grids (Ngrid) for GMRES and BiCG, respectively. 
Convergence criterion (relative) is set to be 10-6. 

 



 32 

0
60

120
180
240
300

0
10
20
30
40
50

40
80

120
160
200

30
60
90

120
150
180

0
25
50
75

100
125

100
200
300
400
500

1e-0 1e-3 1e-6 1e-9
0

10
20
30
40
50

1e-0 1e-3 1e-6 1e-9
0

50
100
150
200
250

2pcf

1inz

1d8v

1qto

1fyb

1bxd

1bci

 

 

 

 

 BiCG
 GMRES

1a23

 

 

 

 

 

 

 

C
P

U
 T

im
e(

s)

 

 

 

 
 

 

 

  

 

 

 
 

 

 

  

 

 

Convergence
 

Figure 9. CPU time versus convergence criterion for GMRES and BiCG, respectively, for the 
eight proteins listed in Table I. 
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CHAPTER 5. Conclusion and Future Directions 

We have explored a higher-accuracy numerical scheme, the immersed interface method, to solve 

the Poisson-Boltzmann equation for biomolecular applications. The implementation of the new 

method was first validated for applications on realistic biomolecules using a diversified set of 

biomolecules by comparing reaction field energies computed by the new method and the 

well-established classical weighted harmonic averaging method. Overall a very high correlation 

was found between the two set of energies, given the clearly different treatments of the interface 

grid points as described in detail in the Methods section. 

With the overall consistency of the two methods, we went ahead to analyze the convergence 

of reaction field grid potentials, atomic reaction field energies, and atomic reaction field forces 

using several tested small molecular complexes. Overall a similar convergence behavior was 

observed with the mean absolute errors that decrease by a factor of around twenty from 1/2 Å to 

1/8 Å grid spacings for both methods. We further analyzed the quality of numerical surface 

potential and field by the two methods. The convergence behavior of boundary grid potentials is 

similar for both methods, but apparently smaller errors were observed for the new method, which 

were around 1/3 of those for the classical method. Surface potentials and fields, extrapolated by 

the one-side second-order least square fitting method, converge similarly as boundary grid 

potentials for both methods. Nevertheless, larger errors were observed for the surface potentials 

compared with the errors of boundary grid potentials, though the errors of new method is still 

around half of the classical method, showing the advantage in surface potentials analyses. 
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However, the errors in the surface field by the new method are virtually identical to those by the 

classical method. 

Apparently we need to further improve the extrapolation scheme on the molecular surface to 

bring out the higher accuracy observed on the grid potentials by utilizing the higher ordered new 

method. In the current study, extrapolated surface field, as one of key physical quantities, has not 

benefitted from using the higher accuracy scheme, limiting the realistic application prospects of 

the new method. We are actively exploring to improve the accuracy of the surface field from 

developing higher-order fitting procedures and applying higher weights to grid potentials closer 

to the surface point of interest. We are also developing two-side least square fitting methods to 

utilize the dielectric boundary condition to reduce fitting errors. 
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