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Global Stability and Flow Transition in Horizontal Convection

Pierre-Yves Passaggia, Albeto Scotti and Brian White

Department of Marine Sciences,
University of North Carolina, Chapel Hill, NC 27599, USA

passaggia@unc.edu

Abstract
Horizontal convection is considered as a simple model to study the influence of heating
and cooling at the ocean surface on the Meridional Overturning Circulation. We outline
recent work on the global stability of horizontal convection and its influence on flow
transition and the onset of turbulence with increasing Rayleigh number. The transition
to turbulence is investigated using a combination of continuation procedure, stability
analyses and DNS. Past a critical value for Ra, the base flow becomes unstable first to
three-dimensional perturbations and at higher still Ra to two-dimensional instability. At
higher Ra, the mechanisms responsible for transition to turbulence are presented using
a bifurcation analysis. At Ra = 2.6 × 107, the flow exhibits a sub-critical bifurcation
which substantially modifies the circulation. The results of companion DNS confirm
this scenario leading to a retroflection of the plume. full plume reflection is observed at
Ra ≈ 1012, and the bottom of the domain progressively fills with stagnant heavy fluid, a
process which likely explains the shutdown of the core circulation first hypothesized by
Sandström (1908).

1 Introduction

Circulations driven by a differential buoyancy forcing applied along a horizontal surface
describe for example the atmosphere of Venus which absorbs most of the incoming solar
radiation along its upper edge (Houghton, 1977). The world’s ocean Meridional Over-
turning Circulation is subject to a similar forcing where differential heating is imposed
between the pole and the equator. Flows driven by this type of boundary conditions are
called Horizontal Convection (HC) (Stern, 1975).
HC flows are characterized by three nondimensional parameters: The aspect ratio of the
domain A = Lx/Lz, the Prandtl number Pr = ν/κ which quantifies the ratio of viscosity
to diffusivity of the stratifying agent and the Rayleigh number Ra ≡ δbH3/νκ, which
measures the relative strength of the buoyancy forcing relative to viscous forces. Here
we essentially focus our attention on the effect of the Rayleigh number. Unlike the much
more studied Rayleigh-Bénard convection, HC has attracted much less attention. The pi-
oneering experimental work of Sandström (1908) led to the hypothesis that an asymptotic
regime existing at high values of the Rayleigh number characterized by a shallow surface
circulation. Jeffreys (1925) later argued that for a surface-forced flow, the thermodynam-
ics requires only that the return flow of the dense fluid has to occur underneath the flow
of light fluid. A rigorous bound was developed by Paparella and Young (2002) on the
amount of kinetic energy dissipation that occurs within a horizontally convecting flow.
This result, is known as the ”anti-turbulence” theorem and questions whether HC can
sustain a deep overturning turbulent circulation at high values of the Rayleigh numbers.
Whether a truly turbulent flow exists in HC has been the object of several studies (Scotti
and White, 2011; Stewart et al., 2011; Griffiths et al., 2013; Gayen et al., 2013), which
together show that for values of the Rayleigh number greater than a critical value, HC
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Figure 1: Sketch of the different transitions of horizontal convection in a rectangular cavity, using a step
function for the buoyancy imposed at the surface and free slip boundary conditions.

flows for various values of the Prandtl number are characterized by a deep overturning
turbulent flow, characterized by a mixing efficiency near unity.
In the present work, we present the successive transition mechanisms leading to turbu-
lence responsible for the confinement of the circulation under the surface for large values
of the Rayleigh number. The successive instability mechanisms are summarized in figure
1 where the present work was performed at a Prandtl number equal to unity and an aspect
ratio A = 4. The boundary condition at the surface is a step function where the cooling
side is defined by x < 0, b = 1 and the warming side is given by x > 0, b = 1. The rest of
the domain is insulated and slip boundary conditions are imposed on all the boundaries.

2 Global Instability Analysis

The basic flow generates an unstable density profile in the surface cooling layer, which
approaches the plume region as a narrow jet (c.f. figure 3(,b)). This narrow jet near the
left boundary sinks as a sinking plume that reaches and fills the bottom of the domain.
The flow progressively diffuses in a broad upwelling region that reaches a strongly strati-
fied layer under the warming boundary.

In the cooling layer, the fluid is subject to the destabilizing effect of cooling at the top
and shear within the jet. As a result, this gravitationally unstable region is expected to
excite Rayleigh-Taylor (R-T) type instabilities.

In the present low-Rayleigh number regime, the flow characteristics follow the Rossby
scaling Ra1/5 (Rossby, 1965). Thus for increasing values of Ra, the boundary layer thick-
ness slowly decreases and diffusion cannot smooth out the unstable density contrast and
the R-T instability is expected to become active. In the following sections, we show that
the flow is subject to two different types of instabilities. The steady flow initially be-
comes unstable with respect to a three-dimensional instability, which is characterized by
transverse counter-rotating rolls localized in the plume region, defined by the wavenum-
ber β associated with the direction y. The second instability, sets in at a higher Ra, is
two-dimensional and is associated with a sheared Rayleigh-Taylor instability located in
the thin jet under the cooling layer.

In the remaining of the present section, steady solutions and the associated global
stability results were obtained across the range 8. 105 ≤ Ra ≤ 2. 108. The choice was
made to use a time stepper approach to compute both the steady states and the eigenvalue
problem associated with the stability. The same procedure was used in Passaggia et al.
(2014) and details about the numerical methods can be found in Marquillie and Ehrenstein
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Figure 2: Streamlines (a) and buoyancy distribution (b) of the steady base flow at Ra = 2. 106. Vi-

sualization of the three-dimensional unstable eigenmode by mean of iso-buoyancy surfaces b̂ = ±10%
normalized by the maximum of b̂ (green/blue) at Ra = 2.26 106, Pr = 1, β = 10.5. The width of the box
is 0 ≤ y ≤ 1.2.

(2002). Equilibrium-states, steady solutions of the Navier-Stokes system are computed
using the selective frequency damping method (Akervik et al., 2006). The eigenvalue
problem is computed using a time-stepper approach following the algorithm in Edwards
et al. (1994)

2.1 Onset of Instability: Steady Three-Dimensional modes

For sufficiently small Rayleigh numbers, the two-dimensional flow solution is stable. The
problem is thus marched in time to converge to a steady state which is achieved at t ≈
1000. For instance, at Ra = 2. 106 the flow is characterized by a single counterclockwise
rotating cell spanning the entire domain, and a small clockwise rotating cell, located under
light layer of fluid, near the surface in the top right corner (cf. figure 2(a,b)).

The recent DNS results of Gayen et al. (2014) show that the first instability is three
dimensional and is characterized by steady counter-rotating vortices with axes aligned
along the x direction. The eigenvalue problem is solved for the baseflow shown in fig-
ures 2(a,b) and a family of unstable 3D steady modes is found (see figure 2c). These
modes have been observed for a large range of Rayleigh numbers and mark the onset of
instability in horizontal convection. To study these modes, global stability analyses have
been performed over a range of Rayleigh numbers Ra = [1.8 106, 2.26 106], transverse wave
numbers β = [9, 13] where growth rates in the range ωi = [−3.2 10−3, 4.45 10−3] are found.
Increasing the Rayleigh number appears to increase both the growth rate and the most
unstable wavenumber, as well as the unstable wave number range. The critical Rayleigh
number for this mode was found at Rac,3D ∼ 1.94 106 and gives the onset of instability
for the present geometry.

2.2 Unsteady Mixing: Two-dimensional Instability

Increasing further the Rayleigh number, the simulation progressively more unstable and
the selective frequency damping method was coupled starting at Ra = 5. 107 to allow con-
vergence to a steady state. Increasing the Rayleigh number also increases the complexity
of the flow and the main recirculation cell exhibits a complex structure with co-rotating
vortices, essentially located in the lower part of the domain, under the warm fluid layer
(see figures 3(a,b) at Ra = 2.57 107).

The critical value for the onset of the two-dimensional instability (β = 0) is found to
be Rac,2D ∼ 8.05 106. The structure of the mode mostly spans the left and the bottom
boundaries of the flow and takes the form of regular transverse vortices shed along the
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Figure 3: Streamlines (a) and buoyancy distribution (b) of the steady base flow at Ra = 2.59 107.

Visualization of the three-dimensional unstable eigenmodes by mean of iso-buoyancy surfaces b̂ = ±10%
normalized by the maximum of b̂ (green/blue), at Ra = 2.59 107, β = 3. The width of the box is
0 ≤ y ≤ 2π/3.
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Figure 4: Isovalues of the stream function ψ(x, z) for the two-dimensional steady baseflow (a) at Ra =
2.59 107 for the upper branch (a) and the lower branch (b), Pr = 1 (arbitrary scale). The continuous lines
show a clear reduction of the recirculation region on the top right corner (clockwise rotation) whereas the
dotted lines show the change of pattern in the deep circulation characterized by steady rolls (counter-
clockwise rotation). Evolution of the APE (—–) and KE (- - -) (c) for the steady states as a function of
Ra. The scalings Ra−1/5 is compared also against the energetics of the baseflow.

base of the domain, which effectively transport kinetic and potential energy near the
boundaries of the domain. While instability is essentially 2D, similar modes are found
in the global spectrum for small β corresponding to wavelengths larger than the depth of
the domain. For instance, figure 3c shows the most unstable 2D type eigenfunction for
β = 3 at Ra = 2.57 107

3 Sub-Critical Bifurcation of the Baseflow

The energy diagnosis in Boussinesq stratified flows relies on the evaluation of kinetic
energy (KE) and available potential energy (APE). While the local kinetic energy density
is EKE(x) = 1

2
(U2(x) + W 2(x)), we use for the local definition (Scotti and White, 2014)

for the available potential energy

EAPE(x) =

∫ b(x)

b∗(x)

(z − z∗(s)) ds

where z∗(s) is the reference height and b∗(z) the reference profile implicitly defined by the
relationship z∗(b∗(z)) = z. The resorted buoyancy field b∗(z) is defined by the minimum
energy state of the system. This profile is a monotonically decreasing profile consisting of
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Figure 5: Snapshot of a buoyancy field b (background), the associated λ2 = −0.1 criterion (Jeong and
Hussain, 1995) (blue iso-contours). The most active regions of vertical gradient of buoyancy (∂b)/(∂z) =
2. 103Ra1/5 are also shown (cyan iso-contours) to represent the transition from the transitional regime at
Ra = 109 (a) and turbulent regimes at Ra = 1010 (b), Ra = 1011 (c) and Ra = 1012 (d) where the plume
reflection is visible. Note the different color scale for buoyancy showing the heavy layer of fluid sitting at
the bottom for Ra = 1012 (d).

the isochoric resorting of the heavier particles of fluid at the bottom and the lighter ones
at the top.

The first equilibrium state obtained using an Recursive Projection Method (RPM)
based arc-length continuation procedure (Shroff and Keller, 1993) initialized at Ra =
1.42 106 shows that the two-dimensional base flow is globally stable. The continuation
procedure was computed until 2.89 107 where the algorithm diverges. Restarting the RPM
procedure at 3. 107 and computing solutions backward in Ra until 2.48 107, two steady
solutions are found to coexist over a small Ra region (see figure 4a). This transition is
characterized by a change of behavior of the flow inside the domain shown in figure 4
(b,c). For increasing values of Ra the flow bifurcates from two to four steady rolls in the
interior of the domain. This bifurcation is responsible for an important decrease of KE
and APE.

Transition from one branch of solution to an other at constant Ra can be achieved by
a finite amplitude perturbation. Using a combination between the upper branch and the
lower branch solution and evolving this field as an initial condition for the simulation, the
flow is found to evolve on either one branch of the other. This is illustrated in figure 3a
where the dashed line in the close up view shows the the branch towards which the solu-
tion evolves and highlights the sub-critical nature of the bifurcation. Gayen et al. (2014)
reported the existence of a jump in the Nusselt number in their DNS for Ra ≈ 5107 for
somewhat different boundary conditions and values of Pr. These results show that the
present bifurcation is a robust feature that drives the onset of plume reflection.
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Figure 6: Nusselt number along the longitudinal coordinate x at the surface (z = H), in the unstable
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represent the laminar/unsteady solutions (106 ≤ Ra ≤ 108), whereas the symbols are for the turbulent
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(b).

4 Turbulent Direct Numerical Simulations

The Navier-Stokes equations are solved numerically using a standard DNS code (see Scotti
and White, 2011, and references therein for details) and figure 5 shows snapshots of the
field for different values of the Rayleigh number. For values of Ra up to 1011, The flow
is found to sustain a turbulent deep overturning circulation. However at Ra ≈ 1012 the
turbulent descending plume does not reach the bottom anymore. Instead the bottom is
filled with heavy stagnant fluid 5 and turbulence appears to be progressively confined
under the surface.

The question hence arises weather the Ra1/5 Rossby scaling is found to change, at
least for the higher value of the Rayleigh number. Such question was addressed recently
by Shishkina et al. (2016) where the exponent was conjectured to change from 1/5 to 1/4
when the flow becomes fully turbulent. There assumption relies on the fact that boundary
layer under the cooling layer becomes unstable. The nusselt number, wihch in our units
writes

Nu =
∂b

∂z

∣∣∣∣
b=Cst.

measured along the warm layer b(x > 0, z = 1), is shown as a function of the Rayleigh
number in figure 6(a,b). Despite the flow being fully turbulent under the unstable layer
and the full plume reflection regime, the scaling follows the 1/5 scaling. This is a conse-
quence of the flow remaining laminar in the stratified region located under wram layer of
fluid and acting as a buffer zone for both turbulence and heat exchanges.

In order to better understand if the warming/stratfied layer can become turbulent, we
derive a lower bound on the Richardson number. The simulations show that in the warm
boundary layer the buoyancy field depends, to first approximation, only on the vertical
coordinate z. The flow consists mostly of an horizontally uniform upwelling, which is well
approximated by an inviscid corner flow. In the buoyancy equation the balance is between
vertical upwelling and diffusion (recall that in our inviscid units κ = (PrRa)−1/2)

wb− (PrRa)−1/2∂b

∂z
= O

(
Nu(PrRa)−1/2

)
, (1)

where Nu is the Nusselt number. Following Rossby (1998), we assume that a single length
scale δ describes both the kinetic and the buoyancy layer. This is justified if Pr = O(1)
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and the flow remains laminar. It is well verified by the DNS. Note however that the
same assumption does not hold in the turbulent region under the cooling section of the
boundary. We also introduce a streamfunction Ψ, which locally can be written as

Ψ = Uδx (2)

Requiring that all terms in (1) have the same order of magnitude, we have

δ = O(Nu−1), w = −∂Ψ

∂x
= Uδ = O(Nu(PrRa)−1/2). (3)

The thinning of the boundary layer causes shear S ∼ U/δ to increase as well, thus
potentially leading to a destabilizing effect if the magnitude of the Richardson number
decreases below the threshold for Kelvin-Helmholtz instabilities. This however does not
occur because of the 1/5 Rossby scaling and the Richardson number

Ri ≡ N2

S2
= O

(
δ

U2

)
= O(PrRa−1/5), (4)

does not decrease at high Ra, indeed it remains above the threshold for instability across
the range of Rayleigh numbers considered in this study. Furthermore, it also shows that
increasing Pr only further stabilizes this stably stratified region. This result shows that
for Pr ≥ 1, HC is unlikely to become fully turbulent and follows the early inituition of
Sandström (1908).

5 Conclusions

We report the scenario leading to transition to turbulence in Horizontal Convection using a
global stability analysis, a bifurcation analysis and turbulent direct numerical simulations.
The flow is found to become unstable prior to three and two-dimensional type instabilities
successively, both of Rayleigh-Taylor type. Increasing the value of the Rayleigh number
the flow exhibits a sub-critical bifurcation which is reponsible for the onset of plume
reflection and also sets the transition to turbulence. The full reflection of the plume
is finally observed at Ra ≈ 1012 where turbulence remains confined under the cooling
boundary. The exponent associated with the heat exchanges of the turbulent dynamics
is found to follow the laminar scaling Nu ∼ Ra1/5 of Rossby (1965) for all values of Ra.
A lower bound for the Richardson number is also derived and shows that the flow in
the warm layer remains laminar for all values of Ra, at least for values of Pr greater
than unity. Therefore the turbulent Nu ∼ Ra1/4 scaling recently predicted by Shishkina
et al. (2016) may be observed for Pr ≥ 1 in turbulent simulations but the region where
a turbulent scaling can be observed will be confined to a narrow region of the flow that
shrinks as Ra increases since the overall scaling must be of order O(Ra1/5).
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