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Abstract

In the past years, data-driven approaches such as deep learning have been widely ap-
plied on machinery signal processing to develop intelligent fault diagnosis systems.
In real-world applications, domain shift problem usually occurs where the distribu-
tion of the labeled training data, denoted as source domain, is different from that of
the unlabeled testing data, known as target domain. That results in serious diagnosis
performance degradation. This paper proposes a novel domain adaptation method
for rolling bearing fault diagnosis based on deep learning techniques. A deep convo-
lutional neural network is used as the main architecture. The multi-kernel maximum
mean discrepancies (MMD) between the two domains in multiple layers are mini-
mized to adapt the learned representations from supervised learning in the source
domain to be applied in the target domain. The domain-invariant features can be
efficiently extracted in this way, and the cross-domain testing performance can be
significantly improved. Experiments on a popular rolling bearing dataset are carried
out to validate the effectiveness of the domain adaptation approach, and the diag-
nosis performance is extensively evaluated in different scenarios. Comparisons with
other approaches and related works on the same dataset demonstrate the superi-
ority of the proposed method. The experimental results of this study suggest the
proposed domain adaptation method offers a new and promising tool for intelligent
fault diagnosis.
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1 Introduction

Rolling element bearings are critical components in heavy-duty machineries, manufacturing
systems etc. and have been widely applied in modern industries. Unexpected bearing faults
during long-term operations lead to large costs of maintenance and loss of safety [1]. In the
past decades, bearing fault diagnosis has received considerable attention from researchers,
and a large number of fault diagnosis methods have been proposed [2–8]. Especially, data-
driven intelligent fault diagnosis methods, which are able to rapidly and efficiently process
collected signals, provide reliable fault diagnosis results and do not require prior expertise,
are becoming more and more popular nowadays [9–14]. Generally, data-driven techniques
for fault diagnosis are carried out under the assumption that training and testing data
are subject to the same distribution. However, in real-world applications, due to variations
of environment, operating condition, bearing quality etc., the distributions of training and
testing data are usually different from each other, that deteriorates the generalization ability
of applying the pattern knowledge learned from the labeled training data, denoted as source
domain, to the new unlabeled testing data, denoted as target domain. This challenge of
pattern learning validity is known as the domain shift problem [15].

Figure 1 presents an illustration of domain shift. While the classifier can be effectively trained
using the labeled source domain data, it loses the classification validity on the target domain
due to the existence of domain shift. That leads to serious performance degradation in fault
diagnosis. This paper proposes a novel deep learning method for rolling bearing fault diag-
nosis using multi-layer domain adaptation. As shown in Figure 1, the domain shift problem
is expected to be solved by jointly minimizing the classification error and the distribution
discrepancy between the source and target domains.

Traditionally, many signal processing methods have been applied to machinery fault sig-
nal analysis, including wavelet analysis [2, 3], stochastic resonance techniques [4, 16, 17] and
so forth [5–8]. In the past decade, a large number of studies have been carried out based
on machine learning and statistical inference techniques, such as artificial neural networks
(ANN) [9, 10, 18], support vector machines (SVM) [13, 14], random forest (RF) [19], fuzzy
inference and other improved algorithms [11, 12]. In general, neural networks are one of the
most popular data-driven methods to identify faulty and healthy machine conditions. Fault
diagnosis is treated as a classification problem through feature extraction. First, raw input
signal is mapped into representative features. The health condition and the corresponding
fault location and severity are identified according to the extracted features afterwards.

Recently, deep learning network is emerging as a highly effective network structure for pattern
recognition, that holds the potential to overcome the obstacles in the current intelligent fault
diagnosis. Deep learning is characterized by the deep network architecture where multiple
layers are stacked in the network to fully capture the representative information from raw
input data [20]. High-level abstractions of data can be modeled well with the help of the
complex deep structures, leading to more efficient feature extraction compared with the
shallow networks. Deep learning methods have gained great interests and achieved significant
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results in machinery fault diagnosis researches [21–27]. In this study, deep learning is used
as the main architecture for fault diagnosis.

Domain Adaptation (DA) is a particular case of transfer learning that leverages labeled
data in the source domain, to learn a classifier for unlabeled data in the target domain
[15]. In the recent years, domain adaptation methods have been successfully developed and
applied in many practical tasks such as sentiment analysis [28], object recognition in different
situations [29, 30], facial recognition [31], speech recognition [32], video recognition [33] etc.
Generally, it is assumed that the task is the same for different domains, i.e. class labels are
shared, and the source domain is related to the target domain. However, the two domains
are not subject to the same distribution. The domain discrepancy poses an obstacle in
adapting the well-trained models across domains. In bearing fault diagnosis, domain shift
is very common in industries. For instance, with respect to the same fault location and
severity classification task, the distributions of the data are possible to differ significantly
with different rotating speed and motor load. Basically, applying the learned fault patterns
on new operating conditions requires specific customization to accommodate the new domain
data. One solution is by the means of acquiring a certain number of valid and labeled data in
the target domain. However, that is time consuming and expensive in most cases, and even
not feasible in some practical applications. On the other hand, the labeled source domain
data and unlabeled target domain data can be further explored to calibrate the established
model in order to achieve promising performance in the new situations, that is relatively
easy to implement and preferred in real-world applications. This approach can be achieved
by either adapting the established model trained from the source domain using the unlabeled
target data, or developing a new model with the all the available data.

Domain adaptation establishes knowledge transfer from the source domain to the target do-
main by exploring domain-invariant structures that bridge the distribution discrepancy [34].
In the past years, a large number of researchers have been trying to build the domain-
invariant model from data, which minimizes the distribution discrepancy in the latent feature
space. In [35–37], shallow domain-invariant features are learned by minimizing the discrepan-
cy. Furthermore, latest researches have revealed that deep learning architectures for domain
adaptation are able to learn more transferable features and thus are more promising [38,39].

In general, the deep architecture extracts features from generic to task-specific ones through
the layers. Some studies find that the feature transferability drops significantly in the higher
layers with increasing domain discrepancy [38], while others report that the lower layers
may be more responsible for the domain biases [40]. Based on the latest understanding
of domain discrepancy in the literature, we attempt to enhance the feature transferability
by minimizing the distribution discrepancy throughout the deep network. Specifically, the
representations of multiple layers are embedded to a reproducing kernel Hilbert space where
the mean embeddings of different domain distributions can be explicitly matched. Since the
mean embedding matching is inevitably influenced by the kernel selections, a multi-kernel
approach is further designed to leverage different kernels and formulate a principled approach
for optimal kernel selection.
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Despite the success achieved by domain adaptation, limited researches can be found with
respect to its application on fault diagnosis. Lu et al. proposed a deep neural network-based
domain adaptation method for diagnosis, where the feature maximum mean discrepancy
(MMD) is minimized, and a weight regularization term is used to strengthen the repre-
sentative features. An adaptive batch normalization method was proposed by Zhang and
colleagues [41] to improve the domain adaptation ability of neural network. Xie et al. [42]
addressed the cross-domain feature extraction and fusion from time and frequency-domain
with spectrum envelop pre-processing and time domain synchronization average principle
using transfer component analysis (TCA). The source domain data are used as auxiliary
data to assist target data classification in [43].

This paper proposes a novel deep convolutional neural network-based domain adaptation
method for rolling bearing fault diagnosis. Machinery vibration data are used as model
inputs. Labeled source domain data and unlabeled target domain data are assumed to be
available. Different from existing researches, multi-layer and multi-kernel maximum mean
discrepancies between the source and target domain data are minimized to address the
domain shift problem. Experiments on a popular rolling bearing dataset are carried out to
validate the effectiveness of the proposed method. The diagnosis performance is extensively
evaluated in different scenarios. It is illustrated that multiple layers, rather than only the
last ones, contribute to the domain biases through the network, and the necessity of the
application of multi-layer MMD is presented. The superiority of the proposed method is
demonstrated by comparing with other approaches and related works using the same dataset.

The remainder of this paper starts with the theoretical background in Section 2. The do-
main adaptation problem, convolutional neural network, MMD and softmax classifier are
introduced. The proposed fault diagnosis method is presented in Section 3, and experimen-
tally validated using a popular rolling bearing dataset in Section 4. We close the paper with
conclusions in Section 5.

2 Theoretical Background

In this section, the domain adaptation problem for fault diagnosis is formulated, and the
preliminaries for convolutional neural network, maximum mean discrepancy and softmax
regression are introduced.

2.1 Domain Adaptation Problem

Traditionally, machinery fault diagnosis aims to identify fault location, severity etc. based on
a prior known set of faults. It is assumed that the source and target domain distributions are
the same, and the learned fault patterns from the labeled training samples can be directly
applied on the unlabeled testing samples. However, discrepancy between the source and
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target domains inevitably exists in practical tasks, which makes the model generalization
ability deteriorate across domains.

In this paper, we focus on the domain adaptation methods in order to better generalize the
learned fault patterns from the source domain to the target domain. In general, this study
is carried out under the assumptions:

(1) The fault diagnosis task remains the same for different domains, i.e. the class labels are
shared.

(2) The source and target domains are related to each other, but have different distributions.
(3) Labeled samples from the source domain are available for training.
(4) Unlabeled samples from the target domain are available for training and testing.

In domain adaptation problems with respect to fault diagnosis, let X denote the input
space and Y = {1, 2, ..., Nc} represents the set of Nc possible machine health conditions. We
are given a source domain Ds = {(xs

i ,y
s
i )}

ns

i=1 of ns labeled samples and a target domain
Dt = {(xt

i)}
nt

i=1 of nt unlabeled samples. Ds and Dt are sampled from joint distributions
P (X, Y ) and Q(X, Y ) respectively, and P ̸= Q. The purpose of this paper is to construct
a deep neural network y = f (x) that is able to reduce the cross-domain shifts in joint
distributions and learn domain-invariant features and classifiers, in order to minimize the
target risk Rt(f) = Pr(x,y)∼Q [f (x) ̸= y] with source supervision.

2.2 Maximum Mean Discrepancy

In this study, the maximum mean discrepancy (MMD) is adopted to measure the discrepancy
between distributions [44]. MMD is defined as the squared distance between the kernel
embeddings of marginal distributions in the reproducing kernel Hilbert space (RKHS).

MMDk(P,Q) ,
∥∥∥EP [ϕ (xs)]− EQ

[
ϕ
(
xt

)]∥∥∥2
Hk

, (1)

where Hk denotes the RKHS endowed with a characteristic kernel k. The most important
property is MMDk(P,Q) = 0 iff P = Q.

As stated in [45], kernel choice is critical to ensure the testing power and low testing error of
MMD, since different kernels may embed probability distributions in different RKHSs where
different orders of sufficient statistics can be emphasized. Therefore in this study, we adopt
multiple kernels of MMD to leverage different kernels and formulate a principled approach
for optimal kernel selection. Specifically, a mixture of Nk RBF kernels are utilized,

k(xs,xt) =
Nk∑
i=1

kσi
(xs,xt), (2)

where kσi
represents a Gaussian kernel with bandwidth parameter σi. In the experiments, it

is found that using simple values of the bandwidth prameters and a mixture of 5 kernels is
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able to obtain good results [46]. Therefore, the default bandwidth parameters are selected
as 1, 2, 4, 8 and 16 in this study, and their weights are kept equal for simplicity.

2.3 Convolutional Neural Network

Convolutional neural networks (CNNs), that are specifically designed for variable and com-
plex signals, are utilized in this study. In the past few years, a large number of research-
es [24–27] have benefited from CNN’s characteristics of local receptive fields, shared weights
and spatial sub-sampling. CNN’s ability to maintain data information regardless of scale,
shift and distortion invariance has been shown [47].

The convolutional layers convolve multiple filters with raw input data and generate features,
and the following pooling layers extract the most significant local features afterwards. The
input data are usually 2-dimensional (2D) data for CNNs to learn abstract spatial features
by alternating and stacking convolutional kernels and pooling operation. Since the input
data in this research is a sequence of machinery vibration signal, the 1-dimensional (1D)
CNN is briefly introduced in the following.

The input sequential data is assumed to be x = [x1, x2, ..., xN ] where N denotes the length of
the sequence. The convolution operation in the convolutional layer can be defined as a multi-
ply operation between a filter kernel w, w ∈ RFL , and a concatenation vector representation
xi:i+FL−1, which can be expressed as,

xi:i+FL−1 = xi ⊕ xi+1 ⊕ · · · ⊕ xi+FL−1, (3)

where xi:i+FL−1 represents a window of FL length sequential signal starting from the i-th
point, and ⊕ concatenates the data samples into a longer embedding. The final convolution
operation is defined as,

zi = φ(wTxi:i+FL−1 + b), (4)

where ∗T denotes the transpose of a matrix ∗, and b and φ represent the bias term and
non-linear activation function, respectively. The output zi can be considered as the learned
feature of the filter kernel w on the corresponding subsequence xi:i+FL−1. By sliding the filter
window from the first point to the last point in the sample data, the feature map of the j-th
filter can be obtained, which is denoted as,

zj = [z1j , z
2
j , ..., z

N−FL+1
j ]. (5)

In CNNs, multiple filter kernels can be applied in the convolution layer with different filter
length FL.

Usually, a pooling layer is applied to the feature maps generated by the convolutional layer.
On the one hand, the pooling is able to extract the most significant local information in
each feature map. On the other hand, the feature dimensionality, i.e. the number of model
parameters, can be remarkably reduced by this operation. In general, average-pooling and
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max-pooling are widely used. In this paper, the max-pooling function is applied in the
network.

The max-pooling operation is carried out in the feature maps with a pooling length of g.
The extracted feature corresponding to the filter kernel can be obtained as,

pj = [p1j , p
2
j , ..., p

s
j ], (6)

pkj = max
(
z
(k−1)g+1
j , z

(k−1)g+2
j , ..., zkgj

)
, (7)

where pj is the output of the pooling layer applied to the j-th feature map and has s dimen-
sions. By alternating the convolutional and max-pooling layers, fully-connected layer and
softmax regression are usually added as the top layers to make classification. The framework
for 1D CNN is displayed in Figure 2.

2.4 Softmax Classifier

A softmax regression is usually implemented on the top layer in a neural network for multi-
class classification [48]. The information derived from multiple hidden layers is used as input
of a supervised classifier followed by global back-propagation optimizations. In this paper,
softmax regression is employed as the machinery health condition classifier in the network.

The training samples are denoted as x(i) and the corresponding label set is y(i) where i =
1, 2, ..., Ntrain and Ntrain is the number of the training samples. x(i) ∈ RN×1 and y(i) ∈
{1, 2, ..., K} where K is the number of the labeled categories. For an input sample x(i),
the softmax regression is able to estimate the probability p(y(i) = j | x(i)) for each label j
(j = 1, 2, ...K). The estimated probabilities of the input data x(i) belonging to each label
can be obtained according to the hypothesis function,

Jθ(x
(i)) =



p(y(i) = 1 | x(i); θ)

p(y(i) = 2 | x(i); θ)
...

p(y(i) = K | x(i); θ)


=

1∑K
k=1 e

θT
k
x(i)



eθ
T
1 x(i)

eθ
T
2 x(i)

...

eθ
T
Kx(i)


, (8)

where θ = [θ1, θ2, ..., θK ]
T denotes the softmax model parameters. This classifier makes sure

the outputs are positive and sum to 1, allowing us to interpret the outputs of the network
as the probabilities for each class.
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3 Proposed Fault Diagnosis Method

3.1 Network Architecture

In this paper, we focus on the investigation of domain adaptation, and a conventional deep
CNN architecture is used for simplicity. Figure 3 shows the structure of the proposed network
for machinery fault diagnosis. In general, the proposed deep learning method combines two
architectural ideas for better feature extraction of vibration signals, i.e. CNN and fully-
connected layer.

First, four stacked 1D convolutional layers are designed for feature extraction, and they
are supposed to share the same configuration for convenience. FN local filters of FL length
window size are used in each convolutional layer, and zeros-padding operation is implemented
to keep the feature map dimension from changing [49]. Each convolutional layer is followed
by a max-pooling layer to reduce the data dimension while keeping the significant spatial
information. In this way, different levels of representations of input data are obtained.

Next, the learned high-level feature representations are flattened and connected to a fully-
connected (FC) layer. Dropout technique is used in this layer with rate of 0.5 to avoid
overfitting [22]. Finally, a softmax regression is adopted to predict the fault categories.

Batch normalization (BN) is able to accelerate the training process especially for deep net-
work and has achieved good performance in deep learning recently [50]. In this study, BN
is used after each convolution layer and before activation. In addition, the rectified linear
units (ReLU) activation functions are generally used in the network [51]. They do not suf-
fer from gradient vanishing or gradient diffusion in the training process. Therefore, better
performance can be usually achieved especially in deep architecture [52].

Based on previous researches, the network performance can be significantly affected by the
number and size of the convolutional filters. Since the convolutional parameters are closely
related to the distribution discrepancy of the layers, they are expected to have remarkable
influence on the proposed method, and that will be investigated in Section 4.3.4. By default,
the filter number is 10 and the filter length is 10 in this paper, and the fully-connected layer
has 256 neurons for the final regression.

3.2 Optimization Objective

As pointed out in Section 2.1, the fault diagnosis task is the same for different domains
in this study, that indicates the class categories are shared. Since labeled training samples
are available, the first optimization objective is to minimize the classification error of the
training samples. In this case, the cross-entropy function Lc is used as the loss function [53].

8



Corresponding with the softmax classifier in Section 2.4, Lc is defined as,

Lc = − 1

Ntrain

Ntrain∑
i=1

K∑
k=1

1
{
yi = k

}
log

eθ
T
k x(i)∑K

j=1 e
θTj x(i)

 . (9)

Furthermore, in order to effectively generalize the classifier trained from the source domain
to the target domain, the two domain distributions of the input data are supposed to be
drawn closer to each other from the learned feature representations, i.e. the hidden layers in
the network. Therefore, the multi-kernel MMD between distributions as described in Section
2.2 is used as the optimization objective.

While MMD has been adopted in the literature and achieved good domain adaptation results,
most researches aim to minimize the distribution discrepancy in the last layer of the network.
However, as pointed out in [34], feature transferability deteriorates in multiple top layers,
and adapting a single layer is not able to effectively eliminate the bias between the source
and target domains since other layers may not be transferable. Moreover, recent researches
pointed out that the first layers are susceptible to domain shift even more than the later
layers [40]. Therefore in this paper, we develop the domain adaptation method by jointly
adapting the representation layers and the classifier, and the multiple layer MMD is adopted.
That is expected to bridge the domain discrepancy underlying both the marginal distribution
and the conditional distribution [54]. The MMD loss is defined as,

Lm =
∑
l∈L

MMDk(P
l, Ql), (10)

where L denotes the layers between which the MMD loss is computed and used, P l and
Ql are the l-th layer representations for the source and target samples respectively, and
MMDk(P

l, Ql) represents the multi-kernel MMD between the source and target domains
evaluated on the l-th layer representation.

By integrating Equations (9) and (10), the final objective function can be expressed as,

Lfinal = Lc + αLm, (11)

where α denotes the penalty coefficient whose default value is 1 in this paper.

3.3 Diagnosis Procedure

The flow chart of the proposed fault diagnosis method is presented in Figure 5. First, the raw
machinery vibration signals are collected by sensors, and the training and testing samples
are prepared based on the labeled source domain and unlabeled target domain data. The raw
vibration data are used directly as the model input. No hand-crafted signal processing feature
is needed, such as skewness, kurtosis etc. Therefore, no prior expertise on fault diagnosis is
required in the proposed method, that facilitates the industrial applications.
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Next, based on the specific fault diagnosis problem and the dataset information, the network
configuration is determined. In this study, since we focus on domain adaptation problem, a
conventional deep CNN architecture is used as described in Section 3.1. The Xavier normal
initializer is employed for the initializations of the network weights and biases [55].

To start the learning process, both the labeled source domain data and the unlabeled target
domain data are fed into the proposed network. Domain-invariant features of the vibration
signals are extracted through the multiple convolutional and pooling layers. The distribution
discrepancies in multiple layers are minimized. On the top of the network, the fully-connected
layer and softmax regression are applied to classify the rolling bearing health conditions with
the learned domain-invariant features from the deep network. The back-propagation (BP)
algorithm [56] is applied for the updates of all the parameters in the network, and the Adam
optimization method [57] is used to minimize the objective (Equation (11)) with the whole
batch. After training for 2000 epochs, the loss of the proposed network converges in general.
Therefore, the number of training epochs is 2000 by default.

The testing samples from the target domain will be fed into the proposed network when the
training process is over, and the testing fault diagnosis results can be obtained.

4 Experimental Study

4.1 Experimental Setup

The rolling bearing dataset used in this study is provided by the Bearing Data Center of
Case Western Reserve University [58]. The dataset is composed of multi-variate vibration
signals generated by a bearing test-rig, as presented in Figure 4.

The main components of the experimental apparatus are a 2-horsepower (hp) motor (left
side of figure), a torque transducer/encoder (center of figure) and a dynamometer (right side
of figure). The motor shaft is supported by 6205-2RS JEM SKF bearings. These bearing
data are collected by acceleration transducers under four load conditions (0, 1, 2 and 3 hp)
with sampling rates of 12kHz. The motor rotational speed varies between 1730 and 1797 rpm
depending on the load.

The vibration signals used in this study were collected from the drive end of the motor in the
test rig on four different health conditions: 1) normal condition (H); 2) outer race fault (OF);
3) inner race fault (IF); and 4) ball fault (BF). All the three kinds of faults are generated
by electro-discharge machining with fault diameters of 7 mils, 14 mils and 21 mils (1 mil
= 0.001 inches), respectively. Therefore, this dataset contains 10 bearing health conditions
under the four loads, where the same health condition under different loads is treated as 1
class.

In this paper, the proposed method is evaluated across 6 transfer tasks, i.e. T01, T02, T03,
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T30, T31 and T32. The subscripts are intuitive to understand. For instance, the task name
T01 denotes the scenario where the labeled data with 0 hp load are considered as the source
domain for supervised training, and the unlabeled data with 1 hp load are the target domain
for testing. The 6 tasks provide a general evaluation of the proposed method with respect to
the model transferability in different operating situations.

Nsou and Ntar samples for each health condition under one load are supposed to be selected
as the source and target domain data, respectively. In the case studies of this paper, we
assume Nsou = Ntar in the training process for simplicity. After the networks finish training,
Ntest samples of each class are selected for cross-domain testing. In order to fully examine
the validity of the fault diagnosis methods, Ntest = 400 is used as the default value which
indicates 400× 10 = 4000 samples are tested.

For the convenience of classification, the 10 health conditions with different fault location
and fault size are artificially set as class label 1 to 10, respectively. The detailed information
of the dataset and the transfer tasks is presented in Tables 2 and 3.

For each raw collected signal sequence that represents one working condition, the first 120000
points are used for selecting samples. The raw data sequence is equally divided into Nsou

or Ntar sub-signals based on the specific task and each sub-signal contains Ninput sequential
points. In this study, different amount of data are used to evaluate the proposed method,
that will be presented in Section 4.3. By default, Ninput = 500 is used, and data overlapping
is generally avoided in the sampling process.

4.2 Comparison Approaches

In order to present a complete evaluation of the proposed method, different implementations
are carried out for comparison. The latest related researches on the same dataset are also
presented to show the effectiveness and superiority of the proposed method. Specifically, the
following approaches are studied.

(1) ML-MK-I-(x)
The abbreviations denote the proposed fault diagnosis methods where the Multi-

Layer and Multi-Kernel MMD, and the Integrated optimization objective as expressed
in Equation (11) are used. x represents the layers whose feature MMD are minimized as
Equation (10) shows. For instance, the proposed method ML-MK-I-(1,2,3,4,fc) denotes
the situation where the MMDs of the convolutional layers with number 1, 2, 3 and
4, and the fully-connected layer are included in the optimization objective. In the
following sections, different layer combinations of x are evaluated for comparisons in
various situations.

(2) MK-I
Most existing researches on unsupervised domain adaptation focus on minimizing the

distribution discrepancy in the last layer of high-level extracted features. In order to
show the superiority of the proposed multi-layer MMD method, the MK-I approach,
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which is equivalent to ML-MK-I-(fc), is implemented for comparison where only the
MMD in the final fully-connected layer is considered.

(3) ML-I-(x)
ML-I-(x) is examined as comparison to show the performance improvements by the

multi-kernel MMD. In this study, ML-I-(1,2,3,4,fc) which corresponds with the proposed
method is implemented for comparison, and the one MMD kernel with bandwidth pa-
rameter of 4 is used.

(4) T-S
Instead of training a generic network with both the source and target domain data,

some researches [59] suggest performing adaptation by learning a Target-Specific net-
work from the source-specific network. That is an alternative solution for the domain
adaptation problem and is evaluated in this paper.
First, a network is trained with the labeled source domain data, which is denoted as

the source-specific network. Next, a new similar network, i.e. the target-specific network,
is built and trained with the unlabeled target domain data. The layer distribution
discrepancies between the two networks are minimized as the optimization objective
for the new network. Finally, the high-level features extracted by the target-specific
network are classified by the source-specific classifier for fault diagnosis. In this way, the
domain-invariant features are also expected to be learned.

(5) Two-Stage Learning
As proposed in recent studies [60], a two-stage learning method for domain adap-

tation can be adopted, where the integrated objective in Equation (11) is separated.
Specifically, after initialization with the labeled source domain data, the generic network
can be further trained with both the source and target domain data by minimizing the
distribution discrepancies through layers (Equation (10)). Afterwards, the classifier is
determined using the labeled source domain data only (Equation (9)).
However, the network weights have high probability of dropping to near-zeros without

proper regularizations using this method [60]. The regularizations do not offer noticeable
improvements to the proposed method, and thus there is not a fair basis to compare
with the two-stage learning method in this paper. Diagnosis performance of that method
under similar experimental settings can be found in [60].

(6) Without-DA
At last, the traditional training method without domain adaptation (DA) is imple-

mented for comparison. In this case, only the Equation (9) is used as the optimization
objective.

4.3 Experimental Results and Performance Analysis

In this section, the cross-domain fault diagnosis results of the proposed method on the
rolling bearing dataset are presented, as well as comparisons with other approaches and
related researches on the same dataset. In this paper, the reported experimental results are
averaged by 10 trials to reduce the effect of randomness, and the mean values and standard
deviations are provided. All the experiments are carried out on a PC with Intel Core i7
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CPU, 8-GB RAM and GEFORCE GTX 950M GPU. Tensorflow platform is used for the
programming, and GPU parallel computing is employed to accelerate the computing.

4.3.1 Results on the Rolling Bearing Dataset

4.3.1.1 Transfer Task T03 Figure 6 shows the comprehensive experimental results of
the cross-domain fault diagnosis task T03. In order to better illustrate the performance of
different methods, different amount of the labeled source domain data (Nsou) are used for
training. The compared methods are implemented with the default experimental setting in
this section.

First, it is noted that training with more labeled source domain data leads to higher testing
accuracy for all the methods. That is consistent with the related studies on deep learning
that sufficient training samples are usually required for good network performance, and the
cross-domain tasks also follow this pattern.

Furthermore, it can be observed that generally, significant improvements in cross-domain
diagnosis can be achieved by domain adaptation. Basically, low testing accuracies are ob-
tained using the Without-DA method in all the cases, while for the rest of the methods with
domain adaptation, remarkable increases in the testing accuracies are obtained.

Specifically, the proposed method achieves the best diagnosis performance in all the scenar-
ios. The testing accuracies achieved by the ML-I-(1,2,3,4,fc) method are generally smaller
than those of the proposed method, that shows the improvements by the proposed multi-
kernel MMD. The diagnosis approaches with a single layer MMD minimization are also
evaluated, i.e. ML-MK-I-(1), ML-MK-I-(2), ML-MK-I-(3), ML-MK-I-(4), and MK-I (ML-
MK-I-(fc)). While the MK-I method which minimizes the distribution discrepancy in the
final fully-connected layer provides relatively good results, the rest approaches achieve lim-
ited improvements comparing with the Without-DA method. As variations of the proposed
multi-layer MMD method, ML-MK-I-(1,2,fc) and ML-MK-I-(3,4,fc) are also evaluated, and
they have obtained satisfactory results, which are slightly worse than the proposed method,
but obviously better than the rest. Therefore, domain adaptation with multiple layer MMD
is well suited for the cross-domain problems, and it is preferred to consider the distribution
discrepancies in all the layers in this case study.

Moreover, the T-S method which provides an alternative way for domain adaptation, achieves
good testing results with large labeled training dataset. However, the diagnosis performance
deteriorates significantly when Nsou becomes smaller. That is because for the T-S method,
the target-specific network is trying to minimize the distribution discrepancy between the
target domain data and the learned representations from the source-specific network. In this
way, the features which are learned for the source domain data are enhanced, rather than
the domain-invariant features directly learned by the proposed network.

The presented experimental results demonstrate the effectiveness and superiority of the pro-
posed method. Especially, comparing with other approaches, the improvements by the pro-
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posed method are more significant with small training dataset. Therefore, the proposed
method has large potential for industrial applications since the valid and labeled training
data are always difficult to obtain in practice.

4.3.1.2 The Other five Transfer Tasks The experimental results of the other 5 trans-
fer tasks, i.e. T01, T02, T30, T31 and T32, are presented in Figures 7 and 8, where different
amount of the labeled source domain data are used for training. In general, the display pat-
terns of the diagnosis performance using different methods are similar with those in Figure 6.
The testing accuracies in some tasks such as T01 and T02 are slightly higher than that of T03

as presented in Figure 6. That is due to the fact that the related source and target domains
are closer to each other by nature. For instance, the difference in motor load between 0 hp
and 1 hp (T01) is smaller than that between 0 hp and 3 hp (T03), which makes it easier
to transfer the learned representations from 0 hp domain to 1 hp domain. Moreover, the
high accuracies in the tasks T30, T31 and T32 indicate the proposed method performs well
bidirectionally between domains.

In addition, corresponding with the findings from Figure 6, larger cross-domain diagnosis
improvements can be achieved by the proposed method comparing with other approaches
when small labeled source domain dataset is used. Therefore, the proposed method is able
to achieve the best cross-domain diagnosis performance in different transfer tasks, and its
effectiveness and robustness are further validated.

4.3.2 Visualization of Learned Representation

In this section, the effectiveness of the proposed method for fault diagnosis is illustrated qual-
itatively based on visualization of learned representation. Since the last hidden layer in the
network, i.e. the fully-connected layer, is directly responsible for the final fault classification,
and it is generally agreed in the literature that the last hidden layer is of great importance
in cross-domain problems, the visualization of the fully-connected layer is presented in this
section.

An effective technique “t-SNE” is used to visualize the high-dimensional data representation
by mapping the samples from the original feature space into a 2-dimensional space map [61].
The principal component analysis (PCA) is first adopted to reduce the dimensionality of the
feature data to 50 and suppress signal noise. Afterwards, the technique “t-SNE” is used to
convert the 50-dimensional learned representation to a 2-dimensional map.

Take the task T03 for instance, Figure 9 shows the resulting maps of the learned representa-
tions in the fully-connected layer for both the source and target domains. The visualizations
of the features using the proposed method (ML-MK-I-(1,2,3,4,fc)) and those without domain
adaptation (Without-DA) are both presented.

It can be seen that the features extracted by the proposed method cluster the best where
all the data samples of different conditions are separated well. That is the basic requirement
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for high fault diagnosis accuracy. Furthermore, good fusion of the source and target domains
is observed. The samples in the two domains that belong to the same fault class mostly
cluster into the same region, and only a small amount of cross-region data overlappings are
observed. For each class, the samples from the source and target domains practically overlap
together, that facilitates the final regression for the cross-domain classification.

On the other hand, for the Without-DA method without domain adaptation, while the sam-
ples with the same health condition labels cluster well using the same network architecture
with the proposed method, significant separations between the source and target domains are
observed. For most of the fault classes, the two domains of the same class are not projected
into the same region, and the target domain samples merge into the regions of other classes.
Note that for the well-trained network, the feature space is divided into multiple regions cor-
responding with different labels by the softmax classifier. Distribution discrepancy between
the source and target domains in the fully-connected layer directly leads to worse testing
classification results. In this way, the necessity of domain adaptation is demonstrated.

It should be pointed out that the final classification is carried out in a high-dimensional
space nonlinearly. Therefore, acceptable point overlappings for different health conditions in
visualization agree with the high classification accuracies presented in Figure 6.

4.3.3 Layer Distribution

In this section, comprehensive distribution discrepancies between the source and target do-
mains in each layer are illustrated, in order to show the improvements by the proposed
multi-layer MMD method. The visualization approach used in this section is the same with
that presented in Section 4.3.2. The experimental results of the transfer task T03 are adopted
for demonstration, and Nsou = 100 is used.

Figure 10 shows the visualizations of the two domains in each layer of the proposed network.
Three methods are compared, i.e. Without-DA, ML-MK-I-(1) and ML-MK-I-(1,2,3,4,fc). It
can be clearly observed that generally, distribution discrepancy between domains exists in
all the layers in the network. Especially, the domain shift phenomenon is more obvious in
the higher layers than in the lower ones. That can be explained that the lower layers are
basically responsible for extracting generic features from signals, and the high-level abstract
features that are task-specific are extracted by the higher layers.

Corresponding with the results presented in Figure 9, the source and target domains are
drawn closer to each other in every layer using the proposed multi-layer MMD approach,
that indicates the domain-invariant features rather than the task-specific ones are mostly
extracted throughout the network. Therefore, the domain shift problem can be effectively
solved with the proposed method.

In addition, as stated in many researches, since the lower-level filters are mostly generic, they
can be considered domain-invariant themselves, and domain adaptation can be thus focused
on the higher layers. In order to show the effects of lower layers on domain adaptation,
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the layer visualization of the ML-MK-I-(1) method is presented in the middle column in
Figure 9. In this case, only the distribution discrepancy in the first convolutional layer is
minimized. It is observed that the general distances between the two domains using ML-MK-
I-(1) are noticeably smaller than those without domain adaptation for all the layers. That
indicates the domain-invariant information generated in the first layer propagates forward
to the higher layers. While the first layers are usually considered generic, i.e. they extract
features regardless of the dataset, they still have large potential to further relieve the domain
shift problem. Therefore, the representative information in the first layers also conveys the
dataset characteristics, and is supposed to be utilized for better domain adaptation.

Furthermore, the distribution MMD in each layer with different methods are exhibited in
Figure 11. It is clearly observed that the first layers can be considered generic to some
extent, and generally have low MMD even for the Without-DA method. For the higher
layers especially the fully-connected layer, the differences in MMD become significant. It is
found that generally the MMD in the fully-connected layer using different method is inversely
proportional to the testing diagnosis accuracy presented in Figure 6. That is consistent with
the fact that the fully-connected layer is directly related to the final classification, and larger
discrepancy leads to worse cross-domain diagnosis performance. Figure 11 also shows the
superiority of the proposed method, which is able to achieve the smallest MMD in each
layer in general, resulting in the highest cross-domain classification accuracy. Additionally,
since the ML-I-(1,2,3,4,fc) method uses only one kernel of MMD, its corresponding metric is
relatively smaller than others with five kernels, and its results are thus not necessarily better
than the proposed method.

4.3.4 Effects of Parameters

In the proposed fault diagnosis method, the convolutional filter number and size are two
main parameters that affect the network performance. The introduced punishment factor α,
which determines the domain adaptation strength, may also have influence on the diagnosis
accuracy. In this section, we discuss the effects of the associated parameters. The experi-
mental setting is similar with that in previous sections, and the transfer task T03 is used for
illustration. In order to better present the difference in diagnosis performance by different
parameters, Nsou = 20 is adopted in this case study.

Figure 12 shows the impacts of the convolutional filter size and number on the testing
diagnosis accuracy. In general, significant improvements can be achieved by larger FN and
FL. More convolutional filters in each layer and larger filter size contribute to the learning
capacity of the deep neural network. Additionally, the long distance information in the
sequential vibration signal can not be effectively captured with small window size in some
cases [25].

Specifically, it is observed that the influence of the filter number is more remarkable than
that of the filter size. As FN becomes larger, the average testing accuracy increases stably,
and it reaches 99.75% when 50 filters are adopted in each layer. On the other hand, the
improvements by larger filter size are relatively limited, and FL = 50 leads to 96.65% average

16



accuracy in this case.

Therefore, generally large values of FN and FL are suggested to improve the cross-domain
diagnosis performance. However, as shown in Figure 12, the computing time for network
training becomes longer with larger FN and FL. A tradeoff is supposed to be made between
the diagnosis accuracy and the computational burden. Since the network training process is
implemented off-line, the longest average computing time of 865.5 seconds for 2000 epochs
in this case is still acceptable in the proposed fault diagnosis framework.

Another important coefficient that affects the network performance is the sample dimension
Ninput. Based on previous studies and related works, larger Ninput generally leads to better
diagnosis performance. However, the variation of Ninput with the same number of training
samples indicates the training dataset changes implicitly. Therefore, it is difficult to provide
a fair comparison basis to study the impacts of Ninput.

In addition, experiments are also carried out to investigate the influence of the introduced
punishment factor α, whose default value is 1 in this paper. However, it is found that the
testing diagnosis accuracy is not significantly affected by α in the case study, and the testing
results generally keep stable with respect to different α in a reasonable range such as [0.1, 10].
That suggests the proposed method is robust to the selection of α.

4.3.5 Comparing with Related Works

The rolling bearing dataset used in this paper is very popular in machinery fault diagnosis
researches, and many state-of-the-art classification results have been reported in the past
years. However, very limited work can be found on cross-domain problem, and most studies
focus on diagnosing bearing health condition using the training and testing data from the
same domain.

In the latter case, 95% and higher testing accuracies were achieved in [62–64] where 4 bear-
ing health conditions or fewer were considered. In [65], [66] and [67], 10 or more bearing
conditions were classified, and 88.9%, 92.5% and 97.9% testing accuracies were obtained re-
spectively. A two-stage machine learning method was proposed in [48] based on unsupervised
feature learning and sparse filtering. Fairly high diagnosis accuracy of 99.66% was achieved.

On the other hand, domain adaptation problem was studied in [60], where the labeled data
under 0 hp load were used as the source domain and the unlabeled data under 3 hp load
were considered the target domain. That case study is similar with the T03 transfer task
in this paper. Specifically, 4 health conditions were considered in [60], and 1000 samples
of Ninput = 1200 sample length were selected from both the source and target domains for
training. As a result, as high as 94.73% cross-domain classification accuracy was achieved.

For the T03 transfer task in this study, using the default network configuration, the proposed
method obtains the testing accuracy of 94.02% with 200 labeled source-domain samples
(Nsou = 20), and 99.17% with 1000 labeled source-domain samples (Nsou = 100). Even
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higher testing accuracy is expected to be obtained using larger labeled training dataset. Fur-
thermore, as presented in Section 4.3.4, the network configuration and the hyper-parameters
have remarkable influence on the diagnosis performance. If the enhanced experimental set-
tings of the proposed method is used regardless of the off-line computational burden for
training, higher classification accuracy can also be achieved. For instance, using the param-
eters of Nsou = 50, FL = 20 and FN = 50, fairly high average testing accuracy of 99.76%
is obtained, and the standard deviation is 0.17%. In fact, 100% testing accuracy is achieved
in two out of ten trials, where all the 4000 target domain samples are precisely classified.
Based on the experiments, even better results are obtained with the proposed cross-domain
diagnosis method than those explicitly trained with the labeled target domain data in the
literature. Considering 10 bearing health conditions are diagnosed in this paper, the proposed
method is promising in solving domain shift problems.

In summary, the detailed comparison results with related works on the same rolling bearing
dataset are presented in Table 4.

5 Conclusions

This paper proposes a novel deep learning-based machinery fault diagnosis method for do-
main adaptation. The maximum mean discrepancies between the source and target domains
in multiple layers are minimized in order to solve the domain shift problem. Multiple ker-
nels of MMD are used to leverage different kernels, and the MMD term is integrated with
the classification loss for the network training. The effectiveness of the proposed method is
validated by extensive experiments on a popular rolling bearing dataset. Comprehensive ex-
periments are carried out to evaluate the robustness of the proposed method under different
conditions, and assess the influence of the associated parameters on the diagnosis perfor-
mance. Comparisons with other approaches and related researches on the same dataset are
provided to verify the superiority of the proposed method.

Generally for data samples from two domains, while low transferring ability is observed for
traditional neural networks, significant improvements in the cross-domain diagnosis perfor-
mance can be achieved using domain adaptation techniques. Specifically in the case study
of this paper, we attempt to diagnose the bearing health condition under a new motor load,
that is different from the one under which the labeled data samples are available for train-
ing. Traditional methods fail to accurately predict the bearing fault class in the new domain.
On the other hand, the domain adaptation methods are able to learn the domain-invariant
features under the two different motor loads, and thus perform well diagnosing faults in the
new domain.

It is observed in the experiments that the proposed method is well suited for the cross-
domain fault diagnosis problem, and generally achieves the highest testing accuracy in dif-
ferent scenarios. The proposed method using multi-layer and multi-kernel MMD offers fur-
ther improvements to the domain adaptation method, and outperforms the other comparing
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approaches. As high as 99.17% cross-domain testing accuracy is obtained with the default
experimental setting, and up to 99.76% accuracy can be achieved using the enhanced network
configuration.

Especially, the improvements by the proposed method on the cross-domain diagnosis perfor-
mance are more significant when a smaller labeled training dataset is used. That indicates
the overfitting problem, which is usually due to insufficient training data, can be relieved
to some extent by the domain adaptation technique, and the proposed method has large
potential for industrial applications since valid and precisely labeled data are always difficult
to obtain in practice.

While satisfactory results have been obtained with the proposed method, the drawback
lies in that currently the training dataset is balanced over different categories of bearing
health conditions. In real applications, the bearing data in healthy condition (Class 1) are
usually easy to obtain, while the data for different fault classes are scarce. Therefore, the next
challenge is to efficiently extract the domain-invariant features between the source and target
domains based on imbalanced training dataset. It is more difficult for transferring between
imbalanced datasets than training on imbalanced dataset itself, since unlabeled data may
significantly confuse the learned representations when the distribution is not balanced.

Moreover, as presented in the experimental results in this paper, the standard deviations
of the testing results are not negligible in many scenarios. In the proposed framework, the
initializations of the network weights and biases are mainly responsible for the deviations,
which are supposed to be minimized for robustness. The two issues mentioned above will be
focused on in further research, as well as the optimization of the hyper-parameters in the
proposed method.
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Table 1
Default parameters of the proposed method and the experimental setting.

Parameter Value Parameter Value

Epoch number 2000 Nsou 5/10/20/30/50/100

Learning rate 0.001 Ntar 5/10/20/30/50/100

FN 10 Ntest 400

FL 10 Ninput 500

Table 2
The rolling bearing dataset information.

Class Label Fault Location Fault Size (mil) Load (hp) Sample Length

1 N/A (H) 0 0, 1, 2, 3 Ninput

2 IF 7 0, 1, 2, 3 Ninput

3 IF 14 0, 1, 2, 3 Ninput

4 IF 21 0, 1, 2, 3 Ninput

5 BF 7 0, 1, 2, 3 Ninput

6 BF 14 0, 1, 2, 3 Ninput

7 BF 21 0, 1, 2, 3 Ninput

8 OF 7 0, 1, 2, 3 Ninput

9 OF 14 0, 1, 2, 3 Ninput

10 OF 21 0, 1, 2, 3 Ninput

Table 3
The information of the transfer tasks in this paper.

Transfer Task Source Domain Target Domain No. of Samples No. of Samples

(Load) (Load) from Source Domain from Target Domain

T01 0 1 10×Nsou 10×Ntar

T02 0 2 10×Nsou 10×Ntar

T03 0 3 10×Nsou 10×Ntar

T30 3 0 10×Nsou 10×Ntar

T31 3 1 10×Nsou 10×Ntar

T32 3 2 10×Nsou 10×Ntar
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Table 4
Comparisons of classification accuracy of related researches on the same rolling bearing dataset.

Training with Method Number of Testing Accuracy

Fault Classes on Target Domain

[62] 4 95.8%

Labeled [65] 10 88.9%

Target Domain [66] 10 92.5%

Samples [67] 11 97.91%

[48] 10 99.66%

Labeled Source Domain [60] 4 94.73%

and Unlabeled Target Proposed (default) 10 99.17%

Domain Samples Proposed (enhanced) 10 99.76%
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Fig. 1. Illustration for domain adaptation. The triangles and circles denote two different classes.
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Fig. 4. The bearing test rig used in the experiments [58].
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Fig. 6. Testing diagnosis results on the target domain samples in the task T03. Different methods
are evaluated using different amount of labeled source domain data.
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Fig. 7. Testing diagnosis results on the target domain samples in five transfer tasks, i.e. T01, T02,
T30, T31 and T32. Nsou = 100 is used.
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Fig. 8. Testing diagnosis results on the target domain samples in five transfer tasks, i.e. T01, T02,
T30, T31 and T32. Nsou = 20 is used.
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Fig. 9. Visualization of the features in the fully-connected (FC) layer in the T03 task. S- and T- in
the legend denote the data from the source and target domains respectively.
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Fig. 10. Visualization of the two domains in each layer of the proposed network in the T03 task.
Blue circle: Source domain; Red circle: Target domain. Conv1 to Conv4 denote the four convo-
lutional layers respectively. FC represents the fully-connected layer. The three columns show the
visualizations using different method. For instance, Conv1 without DA indicates the Without-DA
method; Conv1 with DA-1 represents the ML-MK-I-(1) method; Conv1 with DA is by the proposed
method ML-MK-I-(1,2,3,4,fc).
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Fig. 11. Distribution MMD in each layer between the source and target domains in task T03 using
different methods. The abbreviations are the same with those in Figure 10.
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Fig. 12. Effects of the convolutional filter size and number on the testing diagnosis accuracy in task
T03. The red bars denote the average testing accuracies, and the blue lines represent the average
training time.
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