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Original Article

The relative brain signal variability
increases in the behavioral variant
of frontotemporal dementia
and Alzheimer’s disease but
not in schizophrenia

Timo Tuovinen1,2 , Jani H€akli1,2, Riikka Rytty1,3,
Johanna Krüger2,4,5, Vesa Korhonen1,2 , Matti J€arvel€a1,2,
Heta Helakari1,2, Janne Kananen1,2,6 , Juha Nikkinen2,7,
Juha Veijola2,8,9, Anne M Remes10,11, Vesa Kiviniemi1,2,12 and
on behalf of the Frontotemporal Lobar Degeneration
Neuroimaging Initiative*

Abstract

Overlapping symptoms between Alzheimer’s disease (AD), behavioral variant of frontotemporal dementia (bvFTD), and

schizophrenia (SZ) can lead to misdiagnosis and delays in appropriate treatment, especially in cases of early-onset

dementia. To determine the potential of brain signal variability as a diagnostic tool, we assessed the coefficient of

variation of the BOLD signal (CVBOLD) in 234 participants spanning bvFTD (n¼ 53), AD (n¼ 17), SZ (n¼ 23), and

controls (n¼ 141). All underwent functional and structural MRI scans. Data unveiled a notable increase in CVBOLD in

bvFTD patients across both datasets (local and international, p< 0.05), revealing an association with clinical scores

(CDR and MMSE, r¼ 0.46 and r¼�0.48, p< 0.0001). While SZ and control group demonstrated no significant differ-

ences, a comparative analysis between AD and bvFTD patients spotlighted elevated CVBOLD in the frontopolar cortices

for the latter (p< 0.05). Furthermore, CVBOLD not only presented excellent diagnostic accuracy for bvFTD (AUC 0.78–

0.95) but also showcased longitudinal repeatability. During a one-year follow-up, the CVBOLD levels increased by an

average of 35% in the bvFTD group, compared to a 2% increase in the control group (p< 0.05). Our findings suggest that

CVBOLD holds promise as a biomarker for bvFTD, offering potential for monitoring disease progression and differen-

tiating bvFTD from AD and SZ.
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Introduction

Alzheimer’s disease (AD) and the behavioral variant of
frontotemporal dementia (bvFTD) are the leading
causes of early-onset dementia.1,2 These are neurode-
generative diseases characterized by clinical, genetic,
and pathological heterogeneity.2–5 AD mostly mani-
fests as amnestic syndrome, while bvFTD encompasses
changes in personality and behavior, such as apathy,
disinhibition, hyperorality, executive dysfunction, and
compulsive behaviors. However, there are often signif-
icant overlapping similarities in the clinical presenta-
tion of these diseases and atypical variants have been
recognized.6–12 Additionally, bvFTD shows significant
symptomatic overlap with non-degenerative primary
psychiatric disorders, including schizophrenia (SZ).13–16

Both SZ and bvFTD can be characterized by a pro-
found alteration in personal and social conduct, and
the clinical presentation of bvFTD can deviate from
that of typical memory disorders.14,17,18

Differentiating among the various neurodegenera-
tive causes of dementia enables affected individuals
and their families to receive suitable treatment, support,
and care. Despite extensive efforts to establish refined
clinical guidelines for differential diagnosis, the diagnos-
tic accuracy remains unsatisfactory.11,15,16,19–26 The sen-
sitivity of the criteria for possible bvFTD ranges from
75% to 95%, and for probable bvFTD from 64% to
85%.10,23,24,26,27 The specificity of the criteria for possi-
ble bvFTD ranges from 27% to 82%, and for probable
bvFTD from 85% to 95%.10,23,24,26,27 Current practice
highlights the importance of imaging in the distinguish-
ing bvFTD from other neurodegenerative disorders.
However, visual evaluation of magnetic resonance imag-
ing (MRI) requires the expertise of an experienced neu-
roradiologist and provides only 59% sensitivity and
80% specificity in distinguishing from other common
dementing diseases.26 It is also susceptible to inter-
rater differences. Delayed diagnosis is common, with
half of bvFTD patients initially receiving a psychiatric
diagnosis, and the average diagnostic delay being up to
five years from symptom onset. Conversely, patients
with primary psychiatric disorders are often misdiag-
nosed with bvFTD.13,15,16,25

Protein dyshomeostasis seems to be the common
mechanism of these neurodegenerative diseases.
Additionally, cerebrovascular dysfunction (CVD) has
now been recognized as a potential contributor to the
onset and progression of neuronal degeneration, strong-
ly linked to neuroinflammation, neurodegeneration, and

cognitive decline.28–31 Age, cerebrovascular diseases,

and hypertension are known risk factors for AD.21

Recent studies have shown that the cardiovascular

burden is also higher in sporadic FTD, especially

among patients with the bvFTD phenotype.32 Even

though bvFTD and SZ have overlapping neuropsycho-

logical findings and neuropsychiatric symptoms, CVD,

cardiovascular diseases, and hypertension are not con-

sidered risk factors for SZ.33,34

Blood oxygenation level dependent (BOLD) imag-

ing using functional MRI has shown that these afore-

mentioned risk factors are reflected in the variability

of cerebrovascular pulsatility.35–41 Although a BOLD

signal has mainly been used to measure hemodynamic

responses to neuronal activity, it also reflects underly-

ing physiological factors such as cerebral blood flow,

hemodynamics, respiration, and metabolism.36,42–52

Recent studies have emphasized that the BOLD

signal is not a static measure, showing intrinsic vari-

ability over time and between individuals.53–57 Fast

BOLD imaging reflects both coupled neurovascular

activity as well as hydrodynamic physiological factors

such as the glymphatic mechanism: its variability has

been increasingly used as an indicator of neurovascular

state in clinical investigations.35–41 We previously stud-

ied brain signal variability using coefficient of variation

of the BOLD signal (CVBOLD),
38,40,41,58 where we

detected a replicable and progressive increase in brain

CVBOLD solely in the AD patients, constituting a

robust biomarker for clearly differentiating AD cases

from controls.41 Based on these earlier reports and the

findings on the risk factors mentioned previously, we

hypothesized that the CVBOLD signal could also be dif-

ferentially altered in bvFTD and SZ.
In this study, our objectives were to examine wheth-

er CVBOLD is altered in bvFTD and/or SZ, and if it

could be used in differential diagnostics. We further

investigated whether CVBOLD could be used as a non-

invasive MR-based biomarker for distinguishing

bvFTD and SZ from imaging setup matched healthy

control data. We also verified our results by using two

independent bvFTD datasets.

Methods

Participants

The study sample included 234 individuals from three

independent datasets, including 53 patients with
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bvFTD, 23 patients with SZ, 17 patients with AD who
had been studied previously, and 141 healthy controls.
Participant datasets and baseline characteristics are
shown in Table 1. Ethical approvals were granted by
the relevant research ethics committees across the sites.
For dataset 1, the NIFD study was approved by the
University of California in San Francisco (UCSF)
institutional review board. Our research uses publicly
available, previously collected and fully anonymized
data, thus no additional ethical approval was required.
All research protocols for the local datasets (2 and 3)
were approved by The Ethics Committee of the
Northern Ostrobothnia Hospital District in Finland
(92/2002, 11/2008, 94/2011). Written informed consent
was obtained from all participants or their assigned
legal guardians. Research was conducted in accordance
with the Helsinki declaration.

All bvFTD participants met the International
Behavioral Variant FTD Criteria Consortium (FTDC)
revised guidelines 2011 for the diagnosis of bvFTD.10

All the patients of the AD group met the NINCDS-
ADRDA (National Institute of Neurological and
Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association)
criteria for probable AD.20 SZ patients met the diagnostic
criteria using a Structured Clinical Interview for DSM-IV
(SCID-I).59

Dataset 1 was obtained from the frontotemporal
lobar degeneration neuroimaging initiative (FTLDNI
also known as NIFD), through the LONI portal
(http://ida.loni.usc.edu). FTLDNI was funded through
the National Institute of Aging and started in 2010: its
primary goals were to identify neuroimaging modalities
and methods of analysis for tracking frontotemporal

lobar degeneration (FTLD) and to assess the value of
imaging versus other biomarkers in diagnostic roles.
The Principal Investigator of NIFD was Dr. Howard
Rosen, MD at the University of California, San
Francisco. FTLDNI is a multicentric longitudinal
database, collecting MRIs, PET, and CSF biomarkers
in FTD patients and age-matched controls. All patients
were clinically diagnosed by a multidisciplinary consen-
sus panel.60 The data are the result of collaborative
efforts at three sites in North America. For up-
to-date information on participation and protocol,
please visit http://memory.ucsf.edu/research/studies/
nifd. The dataset included 35 patients with bvFTD
and 92 elderly controls. This dataset also contained
follow up data consisting of 6-monthly evaluations
over 12months, including clinical and cognitive assess-
ments and brain imaging. The Mini-Mental State
Examination (MMSE) was used to assess global cogni-
tive level; and the Clinical Dementia Rating (CDR)
scale was used to describe disease severity. The educa-
tion history, quantified as the length in years, was also
collected from the subjects.

Dataset 2 was collected as part of a local research
project.58,61 The dataset comprises 18 patients with
bvFTD, 17 patients with AD, and 24 age-matched con-
trols. Results from AD patients has been previously
published.41 All the patients in this dataset had been
examined by experienced neurologists specialized in
memory disorders at the outpatient memory clinic of
the Department of Neurology at Oulu University
Hospital in Finland. All the patients underwent a
series of examinations including neurological examina-
tion, a comprehensive neuropsychological evaluation,
routine screening laboratory tests, and brain imaging

Table 1. Overview of study participants.

Dataset 1 – NIFD Participants Age at MRI (years� SD) Female (%) Education (years) MMSE CDR

bvFTD patients 35 61.8� 6.6 14 (40 %)a 18 23.2� 5.4a 1.3� 0.6a

Controls 92 64.7� 9.3 58 (62 %) 21 29.3� 0.9 0.0� 0

Dataset 2 – local

dementia study

Participants Age at MRI (years� SD) Female (%) Education (years) MMSE FBImod

bvFTD patients 18 60.2� 7.3 9 (50 %) NC 24.2� 4.1a 23.5� 4.7

AD patients 17 60.0� 5.4 11 (65 %) NC 22.9� 2.6a NC

Controls 24 60.0� 5.1 12 (50 %) NC 29.0� 1.1 NC

Dataset 3 – NFBC 66 Participants Age at MRI (years� SD) Female (%) Education (years) PANSS total SOFAS

SZ patients 23 43.2� 0.8 10 (43 %) NA 65� 23.3 49� 14.2a

Controls 25 43.5� 0.8 8 (32 %) NA NC 82� 13.9

Descriptive demographic characteristics of the groups. Values represent mean� standard deviation or N (%). [Range]. NC: not collected; NA: not

available; MMSE: Mini-Mental State Examination (maximum total score is 30); CDR: Clinical Dementia Rating (maximum total score is 3); FBImod:

Modified Frontal Behavioral Inventory (maximum total score is 72); PANSS: Positive and Negative Syndrome Scale; SOFAS: Social and Occupational

Functioning Assessment Scale (maximum total score is 100).
aPatients versus controls, where p< 0.05.
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using MRI. MMSE was used to assess their global cog-

nitive level for this study. The modified Frontal

Behavior Inventory (FBI) was collected for bvFTD

patients. When appropriate, cerebrospinal fluid analy-

ses of b-amyloid42, phosphorylated tau, and tau protein

or fluorodeoxyglucose positron emission tomography

(FDG-PET) were performed to confirm the diagnosis

according to clinical practice. Patients were allowed to

continue their ongoing medications. Throughout the

study, all scans were performed on the same MRI scan-

ner. The mean clinical follow-up time after the fMRI

scan was 25months (0–63months). Patients presenting

progressive aphasia or signs suggesting amyotrophic

lateral sclerosis were excluded. The control subjects

were interviewed, and MMSE and Beck’s Depression

Inventory (BDI) were performed to exclude memory

deficits or depression. Any psychiatric or neurological

disorders or medications affecting the central nervous

system were exclusion criteria for the control group.

The inclusion of control subjects required a structural

brain MRI free of lesions or significant white matter

changes screened by an experienced clinical

neuroradiologist.
Dataset 3 comprised the members of the Northern

Finland 1966 Birth Cohort (NFBC1966, http://kelo.

oulu.fi/NFBC/index.html). The NFBC1966 is an unse-

lected population birth cohort determined during mid-

pregnancy. The cohort is based upon 12,058 children

with an expected date of birth during 1966. The live

births in this study represent 96% of all births in the

region. NFBC1966 members with a possible psychosis

were identified.62,63 Participants answered question-

naires and underwent psychiatric interviews, cognitive

testing, and a brain MRI scan. All participants gave

written informed consent and were interviewed using a

Structured Clinical Interview for DSM-IV (SCID-I).59

Clinical symptoms in participants with schizophrenia

were examined using the Positive and Negative

Syndrome Scale (PANSS).64 The Social and

Occupational Functioning Assessment Scale (SOFAS)

was used as a rating scale for overall functional level.

23 subjects diagnosed as having SZ and with a techni-

cally successful MRI scan formed the patient group of

the present study. In the present study, 25 non-

psychotic subjects were randomly chosen for the con-

trol group. Because both groups were selected from the

same birth cohort, the subjects were already age-

matched.

Image acquisition

Each subject was imaged using both functional and

structural MRI. Details of the parameters for the

MRI scans are shown in Table 2. For additional infor-

mation on the MRI quality control, see.58

Neuroimaging processing

Preprocessing followed prior validated approaches,

and identical preprocessing and quality control proce-

dures were performed across all subjects, independent

of the diagnosis. Preprocessing for all three datasets

was conducted using the Oxford Centre for

Functional MRI of the Brain Software Library 5.0

(FSL 5.0.11, http://www.fmrib.ox.ac.uk/fsl), exactly

as described in.41 For fMRI data, this included head

motion correction, brain extraction, spatial smoothing,

and high-pass temporal filtering.65–67 Multi-resolution

affine co-registration within the FSL FLIRT software

was used to co-register the mean, non-smoothed fMRI,

and structural maps of corresponding subjects, and

to co-register these imaging data to the Montreal

Neurological Institute’s (MNI152) standard space tem-

plate. Motion analysis: From head motion correction

parameters (MCFLIRT), we extracted subject-wise

absolute displacement vectors (in mm), which describe

the amount of movement in all directions over the

entire scan as a marker of gross head motion. Also,

relative displacement vectors were extracted as a

Table 2. Imaging parameters.

Dataset 1 Datasets 2 and 3

Functional data Structural data Functional data Structural data

Scanner Siemens Trio Tim GE Signa HDx

Field strength (T) 3 1.5

Sequence EPI MP-RAGE EPI 3DFSPGR BRAVO

TR (ms)/TE (ms) 2000/27 23/2.98 1800/40 12.1/5.2

Duration (number of volumes/time) 240/8 min NC 202/6 min 4 s NC

FA (deg) 80 9 90 20

Voxel size (mm) 2.5� 2.5� 3.6 1� 1� 1 3� 3� 3 1� 1� 1

Slice thickness (mm) 3 1 4 1

TR: repetition time; TE: echo time; FA: flip angle.
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marker of motion between each fMRI volume. Both
vectors were also averaged across volumes to get the
mean values. Structural data and gray matter atrophy
(GM) maps: after the structural data underwent visual
inspection by an experienced neuroradiologist, they
were analyzed using FSL-VBM, an optimized voxel-
based morphometry analysis (VBM) protocol executed
with FSL tools.66,68–70 First, structural images were
brain-extracted and grey matter-segmented before
being registered to the MNI 152 standard space using
non-linear registration. The resulting images were aver-
aged and flipped along the x-axis to create a left-right
symmetric, study-specific grey matter template.
Second, all native grey matter images were non-
linearly registered to this study-specific template and
“modulated” to correct for local expansion (or
contraction) due to the non-linear component of the
spatial transformation. The modulated grey matter
images were then smoothed with an isotropic
Gaussian kernel with a sigma of 3mm. Finally, voxel-
wise GLM was applied using permutation-based
non-parametric testing, correcting for multiple com-
parisons across space. For each subject, a total gray
matter volume was calculated from the created gray
matter maps.

Relative brain signal variability maps (CVBOLD). We used the
temporal coefficient of variation (CV) of the BOLD
signal (CVBOLD) to measure brain signal variability,
where a higher CV value equals greater variability of
amplitude of the BOLD signal.38–41 CV is also known
as relative standard deviation. For each participant, a
map of CVBOLD was computed as the relative standard
deviation of the BOLD timeseries at each voxel from
preprocessed fMRI data:

CVBOLD ¼ rðXBOLDÞ=lðXBOLDÞ

where XBOLD is the voxel time series, r is the standard
deviation and l is the mean. Representative examples
of preprocessed BOLD signals, their standard devia-
tion (SD), mean and the calculated group average
CVBOLD maps are shown in Figure 1(b) for all three
datasets.

Statistical analyses

All statistical analyses were performed using the
GraphPad Prism 9.5.1, GraphPad Software, San
Diego, California, USA (www.graphpad.com), unless
otherwise stated. Patients were compared to controls
in the group-level analysis within each dataset. All
results were examined at a p< 0.05 significance level,
unless otherwise stated. The v2 test was used to calcu-
late p-values for categorical variables, and the t-test for

continuous variables. Voxel-level statistical analysis of
imaging data: To examine differences in patients versus
controls, between-group contrast comparisons of the
various parametric maps were statistically tested
using permutation-based nonparametric testing incor-
porating threshold-free cluster enhancement (TFCE)
and correction for multiple comparisons implemented
in the FSL randomise tool with 10,000 random permu-
tations. In functional data analysis (CVBOLD), relative
motion parameters were used as regressors, as in
our previous study.41 Region-of-interests (ROIs):
Statistically significant differences between groups in
the voxel-level analysis were also used to define
region-of-interest (ROI) segments for some of the fur-
ther analysis. ROIAD is defined as the set of voxels with
statistically significantly increased CVBOLD values in
the AD group from dataset 2 and ROIFTD is defined
as the set of common voxels with statistically signifi-
cantly increased CVBOLD values in both dataset 1 and
2. ROIdataset1 is defined as voxels where there are
group-level differences where CVBOLD is higher in
bvFTD patients in dataset 1 in baseline imaging. The
size of the ROIs in voxels and volume was also
reported. The receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC) were
calculated to estimate the feasibility of using CVBOLD

as a potential biomarker for bvFTD and AD. We plot-
ted ROC curves to evaluate whether CVBOLD could
separate healthy controls from patients in datasets 1
and 2. The mean CVBOLD for each subject was calcu-
lated using ROIFTD and ROIAD (Figure 2), and AUC
was calculated as a measure of classification accuracy.
The bootstrap approach was used to estimate the 95%
confidence interval of AUC. Follow-up data in dataset
1 were used to estimate the repeatability and the effect
of the bvFTD disease progression on CVBOLD. We cal-
culated average CVBOLD within the brain for each sub-
ject in dataset 1, and plotted this as a function of time
(Figure 3). We analyzed the follow-up CVBOLD data by
fitting a mixed model as implemented in GraphPad
Prism (Figure 3(a)). This mixed model uses a com-
pound symmetry covariance matrix, and is fit using
Restricted Maximum Likelihood (REML). In the
absence of missing values, this method gives the same
P values and multiple comparisons tests as repeated
measures ANOVA. In the presence of missing values
(missing completely at random as in here), the results
can be interpreted like repeated measures ANOVA.
The Pearson correlation coefficient was used as a sta-
tistical measure of the strength of a linear relationship
between two variables (mean CVBOLD and MMSE/
CDR; mean CVBOLD and gray matter volume; mean
CVBOLD and education history). Visualization: Most of
the data were plotted using GraphPad Prism 9. fMRI
data were plotted using Matlab (Figure 1) or
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MRIcroGL (Figures 2 and 3, https://www.mccausland
center.sc.edu/mricrogl/).

No power analysis was performed before the
study. Nevertheless, the dataset sizes were in line with
previous experiments using functional imaging in
patients with a neurodegenerative disease. Data collec-
tion and further analyses were not performed blind to
the conditions of the experiment. Preprocessing and
analysis of neuroimaging data included standard auto-
mated analytic FSL pipelines, which were agnostic
to the diagnostic and demographic characteristics of
the data.

Results

Relative brain signal variability is increased in bvFTD

but not in SZ

Physiological relative brain signal variability was esti-

mated using CVBOLD (Figure 1). Compared to healthy

controls scanned using the same scanner, the average

CVBOLD calculated from whole brain was significantly

increased in bvFTD in both datasets 1 (mean

3.3� 10�3 vs. 2.2� 10�3, p< 0.0001, t¼ 5.891,

df¼ 12) and 2 (mean 1.9� 10�3 vs. 1.4� 10�3,

Figure 1. (a) Examples of random single voxel BOLD signal time series and formation of relative brain signal variability maps
(CVBOLD) based on each voxel’s time series standard deviation (r) and mean (l). (b) Group mean CVBOLD maps on axial view and
(c) whole-brain average CVBOLD values (mean� 95% confidence interval). Note that CVBOLD values are dependent on imaging
parameters. t-test values: ****p< 0.0001; ns not significant.
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p< 0.0001, t¼ 5.150, df¼ 39) (Figure 1(c)). There was
no statistically significant difference between SZ and
controls (mean 2.0� 10�3 vs. 1.9� 10�3, p¼ 0.26,
t¼ 1.135, df¼ 46) (dataset 3, Figure 1(c)).

Patterns of increased relative brain signal variability

in bvFTD and AD

To investigate the anatomical distribution of the

altered brain signal variability, we did whole-brain

Figure 2. Relative brain signal variability (CVBOLD) in patients compared with controls. Differences in CVBOLD were examined using
whole-brain voxel-wise analyses. (a) The maps depict group-level differences where CVBOLD is higher in bvFTD patients in both
datasets 1 and 2, and where bvFTD patients exhibit higher CVBOLD levels in the frontal areas than AD patients (p< 0.05, family-wise
error corrected). Importantly, there were no statistically significant differences observed between schizophrenia patients and controls.
(b) Common voxels between datasets 1 and 2, used as the region-of-interest (ROIFTD) for further analysis. The sizes of these regions/
ROIs were reported in both voxels and cubic centimeters. The 3D map is available in NIFTI format as a supplementary file. (c–f) Area
under the ROC curves (AUC) values were calculated. (c,d) AUC for bvFTD and controls using the ROIFTD. (e) AUC for bvFTD vs. AD
and (f) AUC for SZ vs. controls. Higher AUC values indicate better discrimination. The 95% confidence intervals (CI) are presented in
brackets.
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voxel-wise analysis, where bvFTD patients showed an
increased CVBOLD (p< 0.05, family-wise error cor-
rected for multiple comparisons, and with head-
motion parameter used as a regressor). This analysis
revealed widespread clusters of voxels distributed
around the basal ganglia, periventricular white
matter, and frontal and occipital cortices in bvFTD
patients in datasets 1 and 2 (Figure 2). Most parts of
the frontal cortical grey matter, lateral temporal
areas, and periventricular white matter were shown to
have a significantly increased CVBOLD (Figure 2(b)).
Symmetrically, both the putamina (except one third
of the frontal tips), capsula externa, lateral thalami,
and amygdalae and medial caudate nuclei were also
involved in both datasets. Two thirds of both capsula
interna were symmetrically spared in the middle of
large changes in both datasets. The cerebellum was
also involved symmetrically behind the IV ventricle.

Results from the AD patients have been published
previously, where we showed increased brain signal
variability in AD compared to controls.41 In this
study we compared CVBOLD maps of bvFTD and
AD patients: bvFTD patients showed increased
CVBOLD symmetric bilateral frontopolar cortices com-
pared to AD patients, Figure 2(a).

Again, in the more spatially detailed analysis there
were still no statistically significant differences between
SZ and controls. Furthermore, there were also no
regions with significantly higher CVBOLD in controls
compared to bvFTD or SZ patients.

Replicability of increase in brain signal variability

To assess the potential for differential diagnosis of the

diseases using CVBOLD, we assessed the anatomical

concordance of the regions of increased CVBOLD in

the two independent bvFTD datasets in this study

(Figure 2(b)). The anatomical patterns of increased

CVBOLD were markedly alike in both datasets 1 and

2, even though the imaging setups differed (Table 2).

There were altogether 52,859 common 2mm voxels

(volume 423 cm3) that showed significantly increased

CVBOLD in both bvFTD datasets. This 3D map is

available in NIFTI format as a supplementary file.

Quantitatively, the spatial cross-correlation of signifi-

cantly altered voxels was 0.65 measured using FSLCC

software, part of FSL (FMRIB’s Software Library70,71)

Accuracy of brain signal variability in discriminating

between bvFTD patients, controls, and AD patients

To analyze diagnostic accuracy and repeatability of

increased brain BOLD signal variability we used receiv-

er operating characteristics (ROC) curves: the area

under the curve (AUC) was calculated to estimate the

viability of CVBOLD as a biomarker for bvFTD. Both

datasets 1 (AUC¼ 0.78, 95%-CI 0.68–0.88, p< 0.0001,

Figure 2(c)) and 2 (AUC¼ 0.95, 95%–CI 0.89–1.0,

p< 0.0001, Figure 2(d)) demonstrated that CVBOLD

was a good to excellent discriminator between

bvFTD patients and controls. Additionally, CVBOLD

Figure 3. Accuracy, repeatability, and correlation with clinical parameters in dataset 1. (a) Within-individual changes in the average
whole-brain CVBOLD over time after baseline imaging (0months) in bvFTD patients and controls. The data represents the mean� 95%
confidence intervals. Mixed-effects analysis: **** p< 0.0001. (b) Voxel-wise statistically significant difference where CVBOLD increased
over 6months (paired t-test, TFCE-corrected). (c) Voxels displaying group-level differences where CVBOLD is higher in bvFTD patients
at baseline (0months) (same as in Figure 2(a)). This area was used as the region of interest (ROIdataset1) in (d–e). (d) Negative
correlation between CVBOLD values in this area and Mini-Mental State Examination (MMSE). MMSE scores range from 0 to 30, with a
score of 10 to 26 indicating moderate-to-mild cognitive impairment and (e) correlation between CVBOLD in this area and Clinical
Dementia Rating (CDR). CDR Sum of boxes (CDR_SOB) scores range from 0 to 18, with a score above 0.5 indicating cognitive
impairment, 4.5–9.0 mild dementia, 9.5–15.5 moderate dementia, and 16–18 severe dementia.95
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clearly separated bvFTD and AD patients (AUC¼
0.89, 95%–CI 0.77–1.0, p< 0.0001, Figure 2(e)).

ROC curve analysis showed that CVBOLD could not

be used to discriminate between SZ and controls

(Figure 2(f)).

The increase in brain signal variability is repeatable

and associated with lower cognitive scores

We analyzed the repeatability and possible effect of

disease progression of these findings using the follow-

up data in dataset 1. In the control group, average

CVBOLD values within the whole brain were relatively

stable over a 12-month period (þ2% on average)

(Figure 3(a)), thus indicating good repeatability. Over

the follow-up period, the CVBOLD increased only in the

bvFTD group (þ35% on average). The repeated meas-

ures were analyzed using the mixed effects model. The

difference between bvFTD and controls was statistical-

ly significant, F(2, 106)¼ 12.91, p< 0.0001. The pre-

dicted mean of bvFTD was 1.180 and controls 1.021.

In a pairwise voxel-based analysis, there was an

increase in CVBOLD in the periventricular and frontal

areas over 6months (Figure 3(b)) and 12months (not

shown, similar to Figure 3(b)).
MMSE, global CDR, and CDR Sum of Boxes

(CDR SOB) scales were used to test for cognitive

impairment in the bvFTD participants (Table 1).

There was a negative correlation between MMSE

scores and average CVBOLD (r¼�0.48, p< 0.0001)

and positive correlation between CDR SOB scores

and average CVBOLD (r¼ 0.48, p< 0.0001), meaning

that increased BOLD signal variability was associated

with lower cognitive function scores (Figure 3(d) and

(e)). There was also a positive correlation with global

CDR scores (r¼ 0.46, p< 0.0001).

The impact of gray matter atrophy, head motion,

sex, and education on CVBOLD increase

The effect of GM atrophy on CVBOLD values was ana-

lyzed (Figure 4) in bvFTD datasets. Anatomically, the

increase in CVBOLD in bvFTD was more widespread

than atrophy (Figure 4(a) and (b)). There was no statis-

tically significant correlation between the mean CVBOLD

values and the volume of GM (Figure 4(c) and (d)).

Figure 4. Group-level differences in CVBOLD and voxel-based morphometry results. a-b shows the area where CVBOLD is statistically
significantly higher in bvFTD patients compared to controls (marked with yellow). Correspondingly, gray matter volume is lower in
bvFTD patients compared to controls, indicated in blue. Panels a and b present p-value maps (family-wise error corrected, p< 0.05).
Panels c and d depict the correlation between gray matter volume and whole-brain mean CVBOLD values.
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There was small, but statistically significant difference in

the relative motion between SZ patients and their con-

trols (0.08 vs 0.06), but not between bvFTD patients and

their controls (Supplementary Table 1). In further anal-

ysis, relative motion parameters were used as regressors,

as in our previous study.41 In datasets 2 and 3, there

were no statistically significant differences between the

sexes of the participants. In dataset 1, the use of indi-

cated sex as a regressor in voxel-level analysis using FSL

randomise produced statistical maps that were 99%

identical to those without a regressor, with an fslcc spa-

tial correlation coefficient r¼ 0.99 (Supplementary

Figure 1). Educational data was available only for

dataset 1, where there were no statistically significant

differences between bvFTD patients and controls

(18 vs. 21 years). The correlation between the mean

CVBOLD and education history was found to be

weak (r¼�0.12, not statistically significant, 95% CI

�0.24 to 0.00).

Discussion

In this study, we investigated the relative brain signal

variability of the BOLD signal (CVBOLD), measured

using fMRI, in two different disorders: the behavioral

variant of frontotemporal dementia (bvFTD) and

schizophrenia (SZ). We also compared the results

with our previous findings of increased CVBOLD in

Alzheimer’s disease (AD).41 We found that CVBOLD

was increased in bvFTD patients, but not in SZ

patients. We identified increased CVBOLD in an inter-

national longitudinal bvFTD dataset, and replicated

these findings in an independent local dataset. The

follow-up data from the longitudinal FTLDNI study

showed that the CVBOLD measure is relatively stable in

controls but increases with time in individual bvFTD

patients scanned six months and one-year later: this

indicates an association between elevated CVBOLD

and disease progression. Furthermore, we found that

the increase in CVBOLD was associated with lower

cognitive function scores (MMSE and CDR).

Additionally, we found that CVBOLD could accurately

discriminate bvFTD patients from controls (ROC

AUC¼ 0.78–0.95, p< 0.0001) and bvFTD patients

from AD patients (ROC AUC¼ 0.89, p< 0.0001).

The effect of brain atrophy on CVBOLD was investigat-

ed in this study as it may explain some of the observed

results. However, the changes in CVBOLD are more

widely localized than atrophy, and there was no corre-

lation between mean CVBOLD values and GM volume.

Given the extent of this change, the contribution of the

partial volume effect is also presumed to be small.

Atrophy GM atrophy patterns in bvFTD were in line

with previous literature72–75

Our initial idea to apply the CV to BOLD signals
was inspired by laser speckle contrast imaging (LSCI),
a wide-field optical imaging technique capable of visu-
alizing blood flow used in imaging vascular structures
and their associated hemodynamics.76–78 We hypothe-
sized that the CV in fMRI data analysis allows for the
quantification of variability in BOLD signals across the
whole brain where a higher CV value equals greater
variability of amplitude of the BOLD signal, which is
closely aligning with its use in LSCI contrast. Increased
BOLD signal variability using similar methods has
been detected in AD.79,80 Makedonov et al. have also
shown that the BOLD signal variation reflects intracra-
nial pulsatility effects in elderly patients with small
vessel and chronic kidney disease.81 A similar study
showed a close association of increased intracranial
pulsatility (rather than with low global CBF) with the
small vessel disease features such as cerebral white
matter lesions, cerebral microbleeds, perivascular
spaces, brain atrophy, and lacunar infarcts.82

Similarly, higher white matter hyperintensity burden
has been shown to be associated with greater BOLD
signal variability in right temporal regions, and lower
scores on a measure of global executive functioning.83

To the best of our knowledge, no previous studies
have found increased CVBOLD in bvFTD patients,
although increased CVBOLD in AD patients has been
reported by us and other research groups.41,79,80 In this
study, not only did we find increased CVBOLD in
bvFTD patients, we also determined that the spatial
localization of this increase differs between these dis-
eases: this makes it possible to discriminate between
bvFTD and AD patients. Our results extend this line
of research by demonstrating the potential clinical use-
fulness of CVBOLD as a biomarker for bvFTD diagno-
sis and monitoring disease progression.

In AD, ultrafast fMRI has determined that the car-
diovascular pulse propagation inside the brain paren-
chyma is more variable, and that the main driver for
increased CVBOLD is intracranial cardiorespiratory pul-
sation: this is thought to link with glymphatic clear-
ance.35,37 The impulse speeds were mostly increased
in narrowed peripheral arteries but, importantly, a
reversed impulse propagation was detected in (para)
hippocampal areas known to present increases in the
permeability of the blood brain barrier (BBB) irrespec-
tive of b-amyloid/tau depositions in early AD.29,37,41

Interestingly, a recent study has suggested that
regional glymphatic dysfunction may also contribute
to the bvFTD pathogenesis.84 Glymphatic function,
especially in the anterior and middle regions of brain,
was found to be impaired in bvFTD. Moreover,
regional glymphatic function showed a spatial correla-
tion with the bvFTD-related metabolic pattern and
clinical symptoms. Future studies should investigate
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the physiological basis of CVBOLD alterations in

bvFTD and whether these changes relate to dysfunc-

tion of the glymphatic system, especially within the

paravascular solute pathways in the BBB.
In addition to investigating physiological pulsations

and the glymphatic system, another compelling avenue

for future research is exploring the impact of our find-

ings on aspects such as the hemodynamic response

function (HRF)85,86 and functional connectivity.

Variability of HRF (HRFv) could alter resting-state

functional connectivity findings.87,88 However, most

algorithms for HRF estimation are tailored for task-

related fMRI data, and only a few are applicable to

resting-state protocols. Furthermore, identifying the

timing information of spontaneous events for HRF

estimation is challenging without concurrent electro-

physiological recordings.89 It would be interesting in

the future to explore the relationship between our

results and such algorithms, especially by utilizing mul-

timodal ultrafast fMRI sequences.
In contrast to bvFTD, we did not find any signifi-

cant differences in brain signal variability between SZ

patients and controls. This finding is somewhat unex-

pected, as a previous study showed increased variance

of BOLD signal in SZ.90 On the other hand, variance

calculated as (standard deviation)2 is not the same as

coefficient of variation which takes also account the

average intensity of the volumes (standard deviation/

mean).91 In our previous study, familial risk for psy-

chosis or genetic risk for SZ did not appear to be relat-

ed to CVBOLD in the brain.92 Further research using

more advanced techniques such as fast MRI may be

needed to fully understand the relationship between

brain signal variability and SZ.
Our results demonstrate that CVBOLD has an excel-

lent accuracy and repeatability in discriminating

bvFTD patients from controls and AD patients. This

finding suggests that CVBOLD may be a useful diagnos-

tic tool for distinguishing bvFTD from other neurode-

generative disorders that share similar clinical

symptoms, such as AD. Additionally, the high repeat-

ability of brain signal variability suggests that it may be

a reliable marker for monitoring disease progression

and treatment response in bvFTD patients.
Finally, we found that the increase in brain signal

variability was associated with more severe clinical cog-

nitive impairment scores (MMSE and CDR) in bvFTD

patients. This finding suggests that increased brain

signal variability may be a useful biomarker for track-

ing disease severity in bvFTD patients. However, fur-

ther larger prospective longitudinal studies are needed

to confirm this association and to determine the poten-

tial clinical usefulness of brain signal variability as a

prognostic marker for bvFTD.

Our work features some limitations. First, AD and
bvFTD diagnoses were based on clinical expertise but
with no pathological confirmation. However, the diag-
nostic criteria for both AD and bvFTD fulfilled stan-
dard diagnostic guidelines. Secondly, there is a certain
lack of standards in the existing literature with respect
to methodology and terminology in brain signal vari-
ability research. Also, a common issue in fMRI scan-
ning has been the dependence of the results on scanner
and imaging parameters. However, the concordance of
the present CVBOLD results in bvFTD from two inde-
pendent datasets seems to indicate a consistent pattern
of bvFTD-related changes, despite quite substantial
differences in the different vendor scanners and scan-
ning parameters. As people age, structural and func-
tional changes in the brain occur that can alter the
variability and complexity of brain signals. Previous
studies have shown that variability in spontaneous
brain activity can decrease with age.93,94 In this study
we used age-matched controls to mitigate any potential
confounding effects arising from the established influ-
ence of age on brain signal variability. One of the
strengths of this study is the inclusion of the white
matter signal in the analyses. However, a limitation is
that we did not analyze the effect of white brain matter
atrophy on the results to the same extent as the gray
matter atrophy. Prospective studies of larger replication
samples with longitudinal fMRI should serve to estab-
lish the diagnostic usefulness of the present methods.

In conclusion

Our study demonstrates that brain signal variability is
increased in bvFTD but not in SZ patients, and that it
has excellent accuracy and repeatability in discriminat-
ing bvFTD patients from both controls and AD
patients. Furthermore, our results suggest that brain
signal variability may be a useful biomarker for mon-
itoring disease progression and treatment response in
bvFTD patients. However, further research is needed
to fully understand the potential clinical applications of
this technique.
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