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ARTICLE OPEN

Genetic investigation of the contribution of body composition
to anorexia nervosa in an electronic health record setting
Taralynn Mack 1,2, Sandra Sanchez-Roige1,3 and Lea K. Davis1,2,4,5,6✉

© The Author(s) 2022

Anorexia nervosa (AN) is a psychiatric disorder defined by anthropometric symptoms, such as low body weight, and cognitive-
behavioral symptoms, such as restricted eating, fear of weight gain, and distorted body image. Recent studies have identified a
genetic association between AN and metabolic/anthropometric factors, including body mass index (BMI). Although the reported
associations may be under pleiotropic genetic influences, they may represent independent risk factors for AN. Here we examined
the independent contributions of genetic predisposition to low body weight and polygenic risk (PRS) for AN in a clinical population
(Vanderbilt University Medical Center biobank, BioVU). We fitted logistic and linear regression models in a retrospective case-control
design (123 AN patients, 615 age-matched controls). We replicated the genetic correlations between PRSBMI and AN
(p= 1.12 × 10−3, OR= 0.96), but this correlation disappeared when controlling for lowest BMI (p= 0.84, OR= 1.00). Additionally, we
performed a phenome-wide association analysis of the PRSAN and found that the associations with metabolic phenotypes were
attenuated when controlling for PRSBMI. These findings suggest that the genetic association between BMI and AN may be a
consequence of the weight-related diagnostic criteria for AN and that genetically regulated anthropometric traits (like BMI) may be
independent of AN psychopathology. If so, individuals with cognitive-behavioral symptomatology suggestive of AN, but with a
higher PRSBMI, may be under-diagnosed given current diagnostic criteria. Furthermore, PRSBMI may serve as an independent risk
factor for weight loss and weight gain during recovery.
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INTRODUCTION
Anorexia nervosa (AN) is amongst the psychiatric disorders with
the highest mortality rates [1]. According to the Diagnostic and
Statistical Manual of Mental Disorders (DSM), the symptomatology
of AN is diverse, including anthropometric symptoms, such as low
body weight, and cognitive-behavioral symptoms, such as a
strong fear of weight gain or continuous behavior to avoid weight
gain, and body image/self-worth contingent on physical appear-
ance [2]. The etiology of AN is multifactorial, with substantial
environmental and genetic influences [1, 3–7]. AN is heritable,
with SNP and twin heritability estimates ranging from 20% to 58%,
respectively [1, 8, 9]. Understanding the genetic basis for each of
the AN symptom domains could improve diagnosis and treatment
mechanisms.
Under the earlier diagnostic criteria of the DSM-IV, an AN

diagnosis could only be given if the patient was clinically
underweight [10]. Since the implementation of the DSM-5 [2],
those criteria were modified to “a significantly low body weight in
the context of age, sex, developmental trajectory, and physical
health”. Nonetheless, low body weight remains a hallmark of the
disorder. The criterion for low body weight can make it difficult for
patients to receive a diagnosis, and therefore treatment if they
exhibit other symptoms of the disorder but do not have

significantly low body weight. In some cases, individuals with
subsyndromal forms of AN presenting with a normal or above
normal body mass index (BMI) may be diagnosed with atypical
AN. Compared to individuals with AN diagnosis, these atypical AN
patients usually have a longer duration of symptoms and greater
weight loss before diagnosis [11], and are less likely to receive
inpatient treatment for their condition [12].
In addition to the role of low body weight as diagnostic criteria,

emerging genetic studies have identified a possible metabolic
component to genetic risk for anorexia [1, 13, 14]. For instance, AN
is negatively genetically correlated with BMI [15], triglyceride
levels, and fasting insulin, and positively correlated with metabolic
markers like HDL cholesterol [16]. Furthermore, BMI heritability is
heavily concentrated in the tissues of the central nervous system,
which are also directly involved in the cognitive and behavioral
aspects of anorexia [17], leading to the hypothesis that metabolic
factors are involved in the development of AN [18]. However,
questions regarding the nature of the relationship between
metabolic control and AN, remain. It is hypothesized that AN
and anthropometric factors, such as BMI, may share a common
genetic basis due to the pleiotropic effects of genes that
simultaneously influence both phenotypes. Alternatively, it is also
possible that the observed association between PRSBMI and AN
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diagnosis is in part due to the weight-related diagnostic criteria for
anorexia. For example, because the GWAS for AN is reliant on
diagnostic criteria requiring a low BMI, it is possible that BMI is
acting as a collider variable [19], potentially inducing genetic
correlations between AN and BMI. If true, then genetic correlates
of BMI may not be involved in AN psychopathology per se, but
may instead be critical for understanding the extent and rate of
weight loss that can occur as a consequence of AN. For example,
patients in treatment for AN often return to very low weights even
following full recovery, which may also be, in part, explained by
genetic variations that contribute to increased metabolism and a
lower genetic “set-point” for body weight [20]. Therefore, in the
present study, we set out to illuminate the genetic association
between AN and BMI using health record data over time from
cases and controls collected in a biobank setting.

MATERIALS AND METHODS
Study population and anorexia phenotype
Our cohort included 123 genotyped female subjects from the Vanderbilt
University Medical Center biobank (BioVU) with a lifetime diagnosis of AN
as determined via at least one ICD-9 (307.1) or ICD-10 (F50*) codes for AN.
BioVU is a repository of leftover blood samples (~240,000 samples) from
clinical testing, which are sequenced, de-identified, and linked to clinical
and demographic data [21]. All BioVU participants have provided informed
consent. The VUMC Institutional Review Board oversees BioVU and
approved this project (IRB#160302).
The prevalence of AN in the BioVU population was ~0.65%, which is

similar to that observed in the general population (~0.9%) [22]. Control
subjects (N= 615) were identified as those without ICD codes for AN. A
ratio of 5:1 controls to cases was used, as the effect of increased statistical
power is negligible above that ratio [23]. We restricted the sample to
females due to the very small number of male AN cases with genotype
data available (N= 2).
We assessed the relationship between AN genetic risk, and both mean and

lowest BMI, as mean BMI better summarizes long-term BMI over lifetime,
while lowest BMI better reflects biological extremes. We defined two separate
control samples to test hypotheses related to mean and lowest BMI, each
containing 615 female subjects (1:5 ratio) without the ICD-9 or ICD-10 codes
for AN. The first set was age-matched to cases based on the median age
across the medical record for each individual for use in analyses involving
mean BMI. Median age is used to represent the age of the individual while
they were a patient at VUMC. The second control set was age-matched to
cases based on the age at lowest recorded BMI for use in analyses involving
lowest BMI. Because lowest BMI is a single incident measurement, the
corresponding age at lowest BMI is the most appropriate age variable.

Calculation of BMI
For every individual in BioVU, age and BMI measurements were collected
from their de-identified EHR. After quality controls (QC, see Supplementary
Materials), mean BMI and lowest BMI were calculated for each individual.

Generation of polygenic scores
We calculated polygenic risk scores (PRS) using PRC-CS [24] “auto” version
(i.e., the global shrinkage parameter phi was learned from the data in a
Bayesian approach) for each of the defined AN groups, as well as for each
of the 66,914 BioVU individuals genotyped on the Illumina MEGA-EX array
for further exploratory analyses. Genotyping and QC of this sample have
been described elsewhere [21, 25]. We used GWAS summary statistics for
AN from the largest available study (N= 72,517) [1]. For BMI, we used the
female stratified GWAS summary statistics from the GIANT Consortium and
UK BioBank meta-analysis (N ~430,000) [26]. Scores were z score
standardized for both PRSAN and PRSBMI.

Statistical analyses
We tested a total of eight multivariable regression models, including four
logistic regression models and four linear regression models. The first ten
principal components calculated from the genetic data were included in all
models to control for residual population stratification. To account for
multiple testing, we used a Bonferroni corrected p value of 6.25 × 10−3

(0.05/8) to determine statistical significance.

We first examined if the PRSAN was significantly associated with the
diagnosis of AN; and if PRSBMI was significantly associated with both mean
and lowest BMI. We then hypothesized that PRSAN would be associated with
mean lifetime BMI and with lowest BMI, regardless of whether the diagnosis
of anorexia is present. To test this hypothesis, we regressed PRSAN on mean
BMI and, separately, on lowest BMI, while controlling for AN diagnosis.
Next, we tested whether the PRSBMI variable was associated with AN

diagnosis, and then assessed whether that association remained after
controlling for the lowest measured BMI. Similarly, we also investigated the
effect of including a covariate for the lowest BMI when regressing PRSAN
on the AN diagnosis.

Mediation analysis
We performed two mediation analyses, first we tested a model in which
PRSBMI was the exposure, lowest BMI was the mediator, and AN diagnosis
was the outcome. Second, we tested a model in which PRSAN was the
exposure, lowest BMI was the mediator, and AN diagnosis was the
outcome. Bootstrapping (10,000 iterations) was used to generate
confidence intervals and determine statistical significance. The analyses
were performed using the mediation R package v4.5.0 [25]. Due to the
limitations of EHR data, we were unable to conclusively determine the
chronological order of lowest BMI measurement and AN diagnosis.

PheWAS analyses
In the BioVU sample (N= 66,914), we fitted a logistic regression for each of
the 1335 disease phenotypes available to estimate the odds of a diagnosis
of that phenotype given the PRSAN. Each disease phenotype (commonly
referred to as “phecode”; https://phewascatalog.org/phecodes, Phecode
Map 1.2) was classified using EHR and ICD diagnostic codes to establish
“case” status. For an individual to be considered a case, they were required
to have two separate ICD codes for the index phenotype, and each
phenotype needed at least 100 cases to be included in the analysis.
We performed an exploratory phenome-wide association analysis

(PheWAS) to examine genetic associations between PRSAN and thousands
of other phenotypes in the medical phenome, including metabolic
conditions. We repeated the analyses after adjusting for PRSBMI to
determine the impact of genetic correlates of BMI on these associations.
The covariates included in the analyses were sex, median age of the
longitudinal EHR measurements, and the top ten principal components of
ancestry. We repeated the analyses including AN diagnosis and PRSBMI,
respectively, as additional covariates. We used the standard
Benjamini–Hochberg false discovery rate (FDR 5%) to correct for multiple
testing. PheWAS analyses were run using the PheWAS R package v0.12
[27].

RESULTS
BMI distributions and sample characteristics
Mean and lowest BMI was significantly lower among cases
compared to controls (cases (mean, SD)= 20.93, 4.47; (lowest,
SD)= 18.14, 4.31; controls (mean, SD)= 26.27, 6.81; (lowest, SD)
20.70, 6.48). Because the groups were age-matched, the average
median age for both cases and controls was 26 (range 11–79), and
the average age at the lowest BMI was also 26 (range 12–78).
In the case group, 65% of individuals had an underweight

lowest BMI at some point in their BioVU medical record, while only
13% of controls had an underweight lowest BMI. Additionally, 82%
of cases had a mean BMI that was normal or below, while only
48% of controls had a mean BMI that was normal or below normal.

Regression models
Figure 1 presents the results for all the tested regression models.
As expected, PRSAN was associated with AN diagnosis
(p= 6.25 × 10−4, OR= 1.05, CI= 0.97, 1.07). PRSBMI was associated
with mean BMI (p= 2.00 × 10−16, β= 2.14, SE= 0.23) and with
lowest BMI (p= 2.00 × 10−16, β= 2.40, SE= 0.23).
PRSAN was not associated with mean BMI (p= 0.88, β=−0.001,

SE= 0.01) but was associated with lowest BMI (p= 9.03 × 10−6,
β=−0.03, SE= 0.01), even after controlling for AN diagnosis
(p= 6.46 × 10−4, β=−0.02, SE= 0.01). As previously reported by
others, we observed a negative association between PRSBMI and
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AN diagnosis (p= 1.12 × 10−3, OR= 0.96, SE= 0.01). After
accounting for the lowest measured BMI, the association between
PRSAN and AN diagnosis remained nominally significant (p= 0.01,
OR= 1.03, SE= 0.01) indicating the PRSAN contributes to the AN
diagnosis beyond contributions to body weight. In contrast, after
controlling for lowest measured BMI, the association between
PRSBMI and AN diagnosis was null (p= 0.84, OR= 1.02, SE= 0.01).
Using a mediation model, we found that nearly the entire effect

of the PRSBMI on AN diagnosis was accounted for by the lowest
BMI measured (proportion variance mediated= 95%,
p= 2.00 × 10−16). Again, in contrast, the lowest measured BMI
only accounted for 40% of the variance (p= 3.24 × 10−3) in AN
diagnosis contributed by the PRSAN.

PheWAS results
PRSAN was initially significantly associated with metabolic and
psychiatric phenotypes, including positive associations with
anxiety (β= 0.07, p= 1.81 × 10−8) and mood disorders (β= 0.07,
p= 7.81 × 10−8) and negative associations with obesity and
diabetes (β=−0.08, p= 1.80 × 10−7, β=−0.09, p= 1.53 × 10−14,
respectively; Fig. 2, Supplementary Table 1), even when control-
ling for AN diagnosis (Supplementary Table 2). However, when
PRSBMI was included as a covariate, the magnitude and strength of
the associations with metabolic phenotypes were substantially
decreased (Fig. 2, Supplementary Table 3), suggesting that these
initial observations were largely a consequence of the genetic
association between the PRSAN and the PRSBMI.

DISCUSSION
Here, we investigated the role of measured BMI as a mediator in
the observed genetic relationship between AN and metabolic
factors. Recent genetic studies suggest that AN should be
recategorized as a metabo-psychiatric disorder due to the
observed genetic associations between risk for AN and metabolic
factors [1, 13, 18]. The present study does not suggest the
complete absence of a link between AN and all metabolic factors,
but proposes that there should be less emphasis on body weight
as a diagnostic criterion as measured BMI mediates a significant
portion of this link.
We provide evidence that suggests that the association

between AN and anthropometric factors is potentially driven by
the genetic predisposition of an individual to present with a low
body weight (but that the PRSBMI is not necessarily involved in
other aspects of AN symptomatology). In other words, PRSBMI may
contribute to the AN diagnosis by decreasing the body’s “set-
point” BMI, thus increasing the likelihood that extremely low body
weight will be observed in addition to the other AN symptoms,
thereby increasing odds of receiving an AN diagnosis. This finding
has two important implications. First, it suggests that individuals
with cognitive-behavioral symptomatology suggestive of AN, but
with a higher genetically predicted BMI, may be under-diagnosed
given current diagnostic criteria. Second, it suggests that the
PRSBMI may be an important independent risk factor in the life-
threatening consequences of extremely low BMI in the
context of AN.

Fig. 1 Schematic representation of the associations tested. Arrows between boxes denote associations tested. Beta values and significance
(**p < 6.25 × 10−3) (*p < 0.05) are reported for associations with mean/lowest BMI, while odds ratios and significance are reported for
associations with AN diagnosis.
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Fig. 2 PheWAS analysis showing shared genetic associations between risk for anorexia nervosa and other phenotypes in females.
Significant positive correlations are shown between psychiatric conditions and significantly negative correlations are shown with metabolic
phenotypes (upper panel). After controlling for PRSBMI, most of the metabolic phenotypes were attenuated (lower panel), while the psychiatric
phenotypes remained relatively unchanged.
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We found that PRSAN and PRSBMI were strongly associated with AN
diagnosis and measured BMI, respectively, highlighting the validity of
the EHR for genetic analysis for both traits. Intriguingly, PRSAN was
not associated with mean BMI but was associated with lowest BMI,
suggesting that some of the genetic factors involved in the diagnosis
of AN may also contribute (behaviorally or otherwise) to loss of body
weight [1], even in individuals who do not have a diagnosis of AN.
Both PRSBMI and PRSAN were associated with AN diagnosis, as

previously speculated, but in this study, we were able to further
dissect the contributions of PRSBMI. While initial results showed that
PRSBMI was associated with AN diagnosis, the conditional analysis
demonstrated that PRSBMI was not associated with AN diagnosis
outside of its effect on BMI. In contrast, PRSAN remained robustly
associated with AN diagnosis even after adjusting for the lowest
BMI. We speculate that these results suggest that the PRSBMI mostly
contributes to the severe consequences of AN (low body weight),
which often bring people to clinical attention, while the PRSAN may
represent an increased risk for the cognitive behavioral processes
that lead to the development of AN. Analyses from our mediation
analyses showed that the lowest BMI almost entirely accounted for
the association between PRSBMI and AN diagnosis, but only
partially accounted for the association between PRSAN and AN
diagnosis. This is further evidence for our hypothesis that
individuals with higher PRSBMI may be underdiagnosed given the
current diagnostic criteria for AN. These findings are consistent
with a recent study that did not find any significant associations
between eating disorder symptoms and metabolic PRSs, suggest-
ing that the metabolic genetic factors could distinguish between
symptoms of disordered eating and a clinical eating disorder
diagnosis [28]. There is a well-documented association between
PRSBMI and disordered eating behaviors, which has been shown to
be mediated by measured BMI. Individuals with higher PRSBMI

show both higher measured BMI and weight loss behaviors [29].
Additionally, higher PRSAN has been linked to weight loss trajectory
in individuals without a clinical diagnosis of AN, and this
association is not mediated through genetic risk for obesity, which
likely has shared genetic architecture with PRSBMI [30].
In the PheWAS analyses, PRSAN was associated with numerous

health outcomes, and metabolic conditions were strongly impli-
cated. This replicates and augments recent evidence showing
positive correlations for AN with psychiatric phenotypes and
negative correlations with diabetes and metabolism phenotypes
[1, 13, 16, 18]. Chronic hepatitis and chronic renal failure were also
significantly associated with the PRSAN, as these conditions are
associated with poor appetite [31, 32]. However, when we controlled
for genetically predicted BMI (i.e., PRSBMI), the associations between
PRSAN and metabolic factors significantly weakened. This is in
contrast to a previous study that did not observe significant
attenuation of the correlation between genetic associations of
metabolic factors and AN when controlling for genetic associations
of BMI [1]. Our findings further signal that the association between
genetic risk for AN and metabolic outcomes is potentially largely
attributable to BMI, which is difficult to disentangle since low BMI is
a diagnostic criterion of AN. This is important because metabolic
dysregulation in individuals with AN and low BMI may further
increase difficulty in maintaining a healthy BMI [1].
In addition to phenotypes directly related to AN symptomatol-

ogy, other phenotypes continued to be associated with PRSAN after
adjustment for PRSBMI in the PheWAS analysis. Notably, chronic
hepatitis was negatively associated with PRSAN. While reversible
severe hepatitis is sometimes observed in severe AN [33], chronic
hepatitis is novel. Additionally, fractures and back pain were
positively associated with PRSAN, which may reflect both increased
physical activity and decreased bone density observed in AN
patients [34]. Further studies are needed to investigate these
associations and their role in the genetic architecture of AN.
These findings of decreased metabolic condition correlations

when controlling for BMI are consistent with a recent study that

stratified individuals into high, normal, and low BMI groups and
performed three separate PheWAS analyses [35]. There were
observed differences in the association between AN and BMI, with
the strongest negative association in the high BMI group,
demonstrating that measured BMI plays a role. However, our
study controlled for PRSBMI rather than measured BMI, which
allowed us to dissect the components of AN risk that are solely due
to genetic body composition differences between individuals. This
means that the collider effect of BMI on the correlation between
AN risk and metabolic conditions extends farther than weight bias
and extends into the realm of entangled genetic etiology.
Although the AN underweight diagnostic criteria were recently

expanded upon the release of the DSM-5 in 2013, low body weight
still remains a hallmark feature. Our findings emphasize that there
needs to be a shift away from body weight as an important
diagnostic criterion for AN, particularly in individuals with
subsyndromal forms of AN (atypical AN), because it can lead to
underdiagnosis and makes it difficult to disentangle the true
genetic contributions to AN. Instead, low PRSBMI should be used to
predict an increased risk of being underweight while exhibiting AN
symptoms, consistent with research showing individuals with high
PRSAN and low PRSBMI had significantly slower growth trajectories
than those with high PRSAN and PRSBMI [36]. Additionally, results
from a recent study suggest that the use of PRSBMI in addition to
PRSAN could be a useful method to predict individuals that will
develop severe and enduring eating disorders [37].
These ideas have been shown in clinical settings. A recent study

on hospitalizations from AN and atypical AN (non-underweight
patients) found that patients displayed similar medical complica-
tions regardless of weight and that duration of illness was a much
stronger predictor for severity than body weight [38]. When
present alongside AN behaviors, weight suppression of even five
percent can be clinically significant [39]. Atypical AN occurs in up
to 3% of the population, meaning that these “atypical” individuals
represent the majority of cases by far [40]. In fact, under the DSM-
IV, over half of all patients diagnosed with an eating disorder were
given an ED-NOS (Eating Disorder Not Otherwise Specified)
diagnosis due to the absence of one or more of the stringent
criteria for the established disorders [41]. This may bias AN
diagnoses towards only those with the most extreme BMI
manifestations of the disease [42]. Patients with the same severity
of symptoms who present at higher weights may not be able to
receive insurance coverage/treatment due to inherent bias among
health professionals [43, 44]. We predict that risk scores for AN will
improve in the future if the focus continues to shift away from low
body weight, due to the fact that more cases will be identified.
It is worth acknowledging the limitations of our study. First, larger

sample sizes are still needed as well as provide validation across
other populations and sample section schemes. For example, it is
possible that the observed trends are unique to AN diagnosis in an
academic medical center and may be different in a community care
setting [45]. Additionally, this study focused on individuals of
European ancestry leaving a research gap that needs to be filled
with studies from diverse populations [46, 47]. The use of ICD codes
as a diagnostic tool is also challenging. Because ICD codes are
primarily used for billing, they do not always serve as an accurate
predictor of a patient’s specific medical diagnosis [48]; however, we
have shown strong genetic correlations between ICD codes and
clinical diagnosis, and note that ICD codes were also used to define
cases in the recent large GWAS of AN [1]. Lastly, it is difficult to
assess the true BMI history of an individual through medical
records. Lowest BMI based on a lifetime lowest BMI may not
necessarily represent the BMI during the active illness period.
Therefore, more comprehensive, or ideally, prospective studies on
BMI that involve more frequent measurements would be an
improvement [49, 50]. Gathering longitudinal data and performing
a mediation analysis taking the underlying timeline into account
may help us further examine whether PRSBMI significantly
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contributes to AN beyond its effects on BMI. Future GWAS of AN
symptomatology would allow us to test whether PRSBMI is
associated with low body weight over the other symptoms.
Overall, there is a clear relationship between AN diagnosis and

body composition. Our work speaks to the importance of
exploring potential hypotheses to explain this complex
relationship.
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