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Abstract 

This dissertation summarizes original work relevant to product predictions for 

Cytochrome P450 (CYP450) catalyzed transformations using a combination of computationally 

affordable methods, specifically modern force field and semi-empirical methods and protein-

ligand docking.  Additionally, it highlights multiple applications of Density Functional Theory 

(DFT) in collaboration with our synthetic chemistry colleagues to explore and explain 

photoisomerization, redox chemistry, and reaction mechanisms. 

Firstly, Cytochrome P450s (CYP450) are metabolically and synthetically important 

enzymes, catalyzing an array of oxidative transformations across all kingdoms of life. The 

prediction of oxidative products resulting from CYP450 catalyzed transformations is historically 

challenging and often relies only on enzyme-substrate fit and binding affinity estimates while 

neglecting measures of reactivity. Herein we present computationally affordable methodology 

for estimating epoxidation and hydroxylation barriers.  When predicted hydroxylation barriers 

are paired with traditional protein-ligand docking, we improve on previously published 

prediction success rates and open the door to enzyme design in CYP450s for the purpose of 

achieving novel biosynthetic outcomes. 

In Chapter 1, epoxidation barriers were predicted using a multiple linear regression 

model with the fractional occupation number weighted density (FOD) and orbital weighted 

Fukui index (fw
+) as descriptors localized to the vinylic carbon atom involved in the initial C–O 

bond formation event during epoxidation. Relative to previously computed epoxidation barriers 

using density functional theory in a panel of 36 compounds, mean absolute errors of 0.66 and 

0.70 kcal/mol were achieved in the training and test sets, respectively, with coefficients of 
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determination of ca. 0.80 were. This was done at the GFN2-xTB//GFN-FF level of theory. By 

performing electronic structure calculations on force field generated geometries, this approach 

is highly scalable. 

In Chapter 2, a single linear regression model was built to predict hydrogen atom 

transfer (HAT) barriers following the formation of Compound I, relevant to CYP450-mediated 

hydroxylations. The C–H bond dissociation energy involving a “frozen radical” – that is the 

removal of a hydrogen atom from an sp3 hybridized carbon in the substrate followed by single 

point energy calculations as doublets for the resulting unoptimized substrate radical and 

hydrogen atom – was found to correlate well with hydrogen atom transfer barriers previously 

computed with density functional theory. At the GFN2-xTB//GFN-FF level of theory for a panel 

of 24 sp3 hybridized carbon atoms across 21 substrates, mean absolute errors of ca. 1 kcal/mol 

were achieved in both training and test sets.  By again leveraging force field and semi-empirical 

methods, this approach will scale to thousands of structures on even a modest computing 

resource. 

In Chapter 3, hydroxylation product predictions are made by combining enzyme-

substrate docking and HAT barrier regression modelling.  Hydroxylated product formation 

certainly relies significantly on the fit and binding affinity of a substrate with a CYP450 enzyme 

and not on the HAT barrier with Compound I alone. To this end, HAT barriers predicted using 

regression modeling were combined with Oheme–Hsubstrate constrained docking and pose 

clustering to make product predictions on a set of 25 substrates for the CYP101A1 camphor 5-

monooxygenase enzyme.  Using RxDock as an example utility used in high throughput virtual 

screening (HTVS), the prediction success rate for any hydroxylation product was 84% in the top 
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two predictions when HAT barriers were included, compared to only 80% without the inclusion 

of HAT barriers.  Combining HAT barriers and docking scores from Rosetta, any hydroxylation 

product was successfully predicted in the top two predictions in 92% of the 25 substrates 

studied.  More importantly, the primary hydroxylation product prediction success rate was 84% 

in the top two predictions.  Collectively, these findings meet or exceed the performance of 

previously published results in a non-parametric fashion.  More importantly, the performance 

using Rosetta indicates our combination of docking and HAT barriers holds tremendous promise 

in the application of enzyme design. 

In the second half of this work, theoretical calculations were employed to rationalize 

experimental outcomes. Such retrospective analysis tends to be employed when experimental 

observations fail to meet our preconceived chemical intuition. By coupling wet experiment with 

quantum chemical theory, we can gain insight into underlying electronic structures and, in 

doing so, better understand and even predict spectroscopic or thermochemical properties in 

our systems of interest.  To this end and in collaboration with the laboratory of David Olsen, we 

explored three series of experimental findings using Density Functional Theory in the sort of 

post-hoc fashion described above. These three efforts focused on the spectroscopic properties 

(and limitations) of azobenzene photoswitches,1 oxidation potentials relevant to Baeyer-Mills 

reactions,2 and the samarium-mediated rearrangement of vinyl aziridines to afford more 

complex heterocycles. In all three cases, computational efforts followed behind the experiment 

and aimed to generate models that explained the Olsen’s labs findings, as well as affording 

methodology that could be used to further expand their work ahead of experimental efforts.  
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In Chapter 4, the photoisomerization of acylhydrazone-functionalized azobenzene 

derivatives is explored.  With seemingly two photoswitchable motifs present, our collaborators 

only observed E to Z photoisomerization across the azobenzene substructure.  Using Time-

dependent Density Functional Theory (TD-DFT), the π to π* transition at approximately 380 nm 

is predicted to have a strongly localized electron density difference over the azo motif between 

the ground and excited state, with no discernable difference predicted over the acyl hydrazone 

functionality.  Additionally, substituent effects were studied for a handful of electron 

withdrawing and donating cases explored synthetically, all showing no π to π* transition near 

300 nm, inconsistent with other acylhydrazone photoswitches.  This study rationalized the 

findings of our collaborators, and while retrospective analysis is useful, this study further 

highlights the opportunity to leverage computational techniques prospectively to guide 

synthetic efforts. 

In Chapter 5, retrospective analysis of synthetic findings was again conducted.  In this 

application, the Bayer-Mills reaction is a traditional route to azobenzenes by way of a 

condensation reaction.  However, azoxybenzene side products are also formed.  Here, we 

attempted to correlate the formation of azoxybenzene with one electron oxidation potentials 

computed with DFT.  In this work, electron-rich aniline derivatives with low oxidation potentials 

were found to produce undesirable levels of the azoxybenzene product, and we demonstrate 

that the computed oxidation potential from DFT with implicit solvation is a useful descriptor in 

predicting the outcome of the Baeyer-Mills reaction for given reactants. 

Lastly in Chapter 6, access to vinyl aziridines is explored mechanistically using traditional 

stationary point searching with DFT.  Our collaborators discovered that vinyl aziridines could 
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undergo ring expansion in the presence of samarium (II) iodide.  While simple Lewis-acid 

promoted expansions are known, we explored a radical mechanism consistent with samarium 

(II) iodide mediated single electron transfer reactions observed in reductions and cross-

couplings of ketones.   From our analyses at the PBE0-D3BJ/def2-TZVP (ECP = Sm, I; SMD = 

toluene)//PBE0/def2-SVP (ECP = Sm, I) level of theory, a radical mechanism on the septet spin 

surface is achievable thermally at room temperature, with an overall free energy barrier of 25.1 

kcal/mol and a strong thermodynamic driving force to favor the product-catalyst complex by 

22.1 kcal/mol, both relative to the reactant-catalyst complex.  These findings corroborate those 

of our synthetic colleagues and suggest that the transformation occurs according to a single 

electron transfer mechanism.  This affords a mechanistically differentiated route to substituted 

3-pyrrolines. 

In all, this work showcases multiple applications of computational chemistry that are 

relevant to protein engineering and medicinal chemistry, with an aim toward increased 

prospective use in the design of experiments.  
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Chapter 1: Prediction of Epoxidation Barriers 

Introduction 

Of the multiple oxidative transformations that cytochrome P450s catalyze,3 

hydroxylation is best known and most widely studied. Often, hydroxylation is critical for the 

overall metabolism of xenobiotics within humans (and other organisms), where the increased 

hydrophilicity of the hydroxylated product is necessary for excreting downstream metabolites 

through the urine, or hydroxylated products are further functionalized and marked for removal. 

In addition to hydroxylation, other reactivities, such as N- or S-oxidation, dealkylation, and 

dehalogenation, are known to be catalyzed by P450s.4 Among these, epoxidation of alkenes 

(and arenes) is particularly common.5 

Safety profiling is important for epoxides as they are not typically innocuous. Given the 

intrinsic strain in the 3-membered ring, coupled with the strongly electronegative oxygen atom, 

the carbon atoms in an epoxide are considerably electrophilic, potentially making epoxide 

containing metabolites strong alkylating agents toward biologically important compounds such 

as DNA.6 For example, aflatoxin B1 exo-8,9-epoxide covalently binds to guanine residues at the 

N7 position, making aflatoxin B1 (via this epoxide) a known hepatocarcinogen.7 To this end, the 

prediction of epoxidation products from P450-catalyzed transformations is especially important 

for drug design and metabolism predictions, as such predictions could help elucidate the origins 

of, and even anticipate, off-target effects. 

To predict downstream metabolites, docking studies are often included in high 

throughput screening campaigns to evaluate binding modes and to predict associated binding 

affinities.8 However, docking alone neglects the importance of the electronic structure of a 
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substrate or residence time9 in determining its susceptibility toward epoxidation by Compound 

0 or 1 in the P450 catalytic cycle (Figure 1-1).4, 10, 11 

 

Figure 1-1 Structures of a) Compound 0 and b) Compound 1, the potential oxidants in the 

catalytic cycle of a cytochrome P450 enzymes. Each is shown ligated to a methyl thiolate axially 

and with both propionate substituents in their protonated form.  

The inclusion of reactivity information, particularly in the form of epoxidation barriers, 

alongside binding affinities from docking trials, could prove useful in assessing a docking pose 

as productive or unproductive. Traditionally, such barriers would be computed using density 

functional theory (DFT) through stationary point analyses using a truncated Compound 1 

model.4, 12 However, within high throughput virtual screening, such calculations are 

prohibitively expensive, creating a need for more affordable methods. Cheminformatics and 

regression approaches fit nicely in this space. 

Promising work by Zhang and Liu demonstrated a correlation between DFT-computed 

epoxidation barriers and ionization potentials for a panel of 36 alkenes with varying electron-

withdrawing and -donating groups present (Figure 1-2).13 In that study, computed adiabatic 
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ionization potentials (IP) in continuum solvent were used to build two linear models based on 

substrate polarity as determined by computed dipole moments. Because of the level of theory 

chosen and the geometry optimizations required for calculating non-vertical ionization 

potentials, Zhang and Liu’s exact approach is too expensive for routine use, though it is much 

faster than transition state searching methods. Moreover, a unified model that does not 

depend on a compound’s computed dipole moment would be preferable from a simplicity 

standpoint, if for no other reason. Additionally, setting an exact threshold for the molecular 

dipole moment to assess polarity is open to subjective assessment, and the calculation of the 

molecular dipole moment will vary with the selected level of theory. In their work, models for 

polar and non-polar compounds account for more than 95% of the variability in the epoxidation 

barrier by the IP alone.13 When polar and non-polar compounds were combined from the entire 

data set into a single model, however, the coefficient of determination was only 0.768 and a 

mean absolute error (MAE) of 0.96 kcal/mol was observed. Further, the removed electron in an 

IP calculation originates from a molecular orbital that may not correspond to a π-type bonding 

orbital localized to the alkene. For example, compounds containing aliphatic amines or 

thioethers would likely ionize by way of an electron being removed from a non-bonding (lone 

pair) orbital localized to such heteroatoms. An ionization involving a non-bonding electron from 

a heteroatom electronically isolated from the alkene of interest would not be a useful 

descriptor as it would fail to capture the electronic character of the alkene undergoing 

epoxidation. A more localized approach is required. 
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Figure 1-2 Training and test set compounds for which epoxidation barriers involving a truncated 

Compound 1 model were previously computed using DFT.13 

To address these challenges, we have developed a computationally affordable method 

to accurately estimate epoxidation barriers combining two local descriptors, the fractional 

occupation number weighted density (FOD)14 and the orbital weighted Fukui index (fw
+),15 

through a multiple linear regression (MLR) model. As true values, we reuse, in accordance with 

FAIR data principles,16 the computed zero-point energy corrected potential energy barriers on 

the quartet surface from Zhang and Liu’s work (which were provided in the supporting 

information while not utilized in their presented models) for those compounds in Figure 1-2.13 

Our work assumes Compound 1 to be the responsible oxidant, though we recognize the 

preceding hydroperoxo intermediate as a competent oxidant.17 This assumption is made as we 

employ single task regression models that we anticipate using alongside predictive models built 

for hydroxylation barriers following the hydrogen atom transfer mechanism between a 

substrate and Compound 1. Either a separate predictive model would need built for the 
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hydroperoxo mechanism or a multi-task learning approach would be required. By computing 

the required descriptors with Grimme’s GFN family of methods, we provide a validated and 

rapid approach for systematically estimating P450-mediated epoxidation barriers for inclusion 

in high throughput screening protocols.  The work presented in this chapter has been previously 

published,18 and the associated text and content is used with permission. 

Computational Methods 

All compounds were first prepared in Avogadro 1.2.019 and initially optimized using the 

MMF9420 force field. 

Grimme’s crest21 (version 2.11.1) and xtb22 (version 6.4.1) programs were used for all 

semi-empirical calculations. Conformer sampling was first done in crest using GFN2-xTB23 and 

resulting conformers were sorted according to their gas phase free energies using the “--prop 

hess” flag with the required thermochemical calculations performed at standard temperature 

and pressure. The lowest free energy conformer for each compound was then optimized using 

GFN1-xTB24 or GFN-FF25 to generate the equilibrium structures at those respective levels of 

theory for further use. All equilibrium structures were found utilizing the “vtight” convergence 

criteria and the absence of imaginary vibrational frequencies was confirmed following 

vibrational analyses. 

The lowest energy conformers were then used to compute the FOD on the sp2-

hybridized carbon involved in the initial C–O bond formation event during epoxidation in xtb 

using the “--fod” flag. Additionally, molden26 input files were generated using the “--molden” 

flag at the GFN1-xTB or GFN2-xTB level of theory for N, N+1, and N-1 electron states for 

Conceptual Density Functional Theory27 (CDFT) calculations. The molden input files were then 
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read with Multiwfn.28 Hirshfeld29 and Mulliken30 atomic charges were determined for the N-

electron state. Condensed traditional31 and orbital-weighted15 Fukui Indices were determined. 

Ordinary least squares linear regressions were performed in python, utilizing the scikit-

learn,32 pandas,33 and statsmodels34 packages. To create training and test sets, a random 50/50 

split was made to place 18 compounds in each set. Min-max scaling was used to scale the 

predictor variables between 0 and 1 according to the training set. To select features for 

multiple linear regression (MLR) modeling, a Lasso regression using k-fold cross validation for 

hyperparameter tuning was performed over the entire dataset. An ordinary least squares MLR 

model was then fit on the training set and evaluated on the test set. The variance inflation 

factor for each descriptor was computed in the case of MLR models to check for co-linearity 

between the descriptors.35 In the final regression analyses, residuals were verified to be 

normally distributed according to a Shapiro-Wilk normality test.36Stationary point analyses for 

the initial C–O bond formation event for ethylene, vinyl chloride, and nitroethylene were 

performed in Gaussian 1637 on the quartet surface at the B3LYP38, 39/LACVP**40, 41 level of 

theory in the gas phase. Default integration grids and geometry convergence criteria were 

utilized. Reaction complexes and intermediates were confirmed as adjoining minima through 

intrinsic reaction coordinate calculations. Equilibrium geometries for the reaction complex and 

first intermediate were confirmed as minima by the absence of imaginary frequencies, and 

transition state structures were verified to have a singular imaginary frequency corresponding 

to the C–O bond formation vibration. Hirshfeld29 charges were computed within Gaussian and 

summed over the substrate fragment. 



7 
 

Similarly, zero-point corrected potential energy barriers on the quartet surface for initial 

C–O bond formation events were computed using DFT. These were calculated at the 

B3LYP/Wachters+f42 (Fe)/TZVP43//B3LYP/LACVP** level of theory, with barrier values taken 

relative to the separated substrate and Compound 1 model. Subsequently, our MLR models 

using GFN2-xTB and GFN2-xTB//GFN-FF derived descriptors were validated using these DFT-

computed barriers. 

All semi-empirical calculations were performed on a workstation equipped with an Intel 

Core i7-4790 and 16 GB of RAM, highlighting the affordability of the methods herein. DFT 

calculations were performed on a 48 core Intel Xeon Gold 6126 processor with 128 GB of RAM. 

Results and Discussion 

To build our data set for model generation, we examined the difference between 

barriers on the doublet and quartet surfaces for our substrate panel as presented by Zhang and 

Liu.13 Figure 1-3 provides for a visual inspection of the barrier correlation between spin 

surfaces. For a more rigorous comparison, we performed a paired t-test between the zero-point 

corrected potential energy barriers on the doublet and quartet surfaces for all 36 substrates. 
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Figure 1-3 Correlation between zero-point corrected potential energy barriers on the doublet 

and quartet surfaces. Barriers were computed at B3LYP/Wachters+f (Fe)/TZVP// 

B3LYP/LACVP** for both spin states. Data reused from Zhang and Liu.13 

While no statistically significant difference could be found (p=0.095), the quartet surface 

gave an average barrier 0.36 kcal/mol lower than that on the doublet surface. For that reason, 

we used the quartet surface zero-point corrected potential energy barriers presented by Zhang 

and Liu as our “true” values. 

As previously mentioned, the π-type molecular orbital across an alkene of interest may 

not always be the HOMO associated with the calculation of the IP. To add localization 

information, we examined atom-centered descriptors that could be incorporated into either a 

single or multivariate regression model for barrier prediction.  

As it is widely held that alkene epoxidation occurs by a stepwise radical mechanism, a 

measure of radical character could provide a useful descriptor.3 One such descriptor is the 

fractional occupation number weighted density (FOD). As described by Bauer and co-workers, 

FOD is useful to identify statically correlated and chemically reactive (what the authors called 
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“hot”) electrons.14 For our panel of substrates, we computed the FOD at the sp2 carbon 

involved initially in C–O bond formation using Grimme’s GFN family of methods. Figure 2-4 

shows the univariate correlation between DFT-computed epoxidation barriers and the FOD on 

the alkene carbon involved in C–O bond formation at the GFN2-xTB level of theory. 

 

Figure 1-4 Correlation between GFN2-xTB fractional occupation number weighted densities on 

the vinyl carbon involved in C–O bond formation. 

An increase in the FOD corresponds to an increase in local radical character and to a 

decrease in the barrier to epoxidation. Provided a radical mechanism for epoxidation, the 

observed trend matches our chemical intuition. When applied in a single linear regression 

model, FOD as a descriptor afforded MAEs of 0.85 and 0.71 kcal/mol in the training and test 

sets, respectively, at the GFN2-xTB level of theory. This result alone affords a singular model 

(without regard for substrate polarity) that recapitulates DFT computed epoxidation barriers. 
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Additionally, it is worth noting that the computational cost per structure by this approach is 

measured in milliseconds, making the approach highly affordable.  

Still, to explore the possibility of further reducing the computational cost and/or 

improving our predictive power, we repeated the above analyses using GFN1-xTB, as well as 

utilizing GFN-FF generated geometries and then calculating the FODs with GFN1-xTB or GFN2-

xTB. These results are summarized in Table 1-1. In each model, good correlations between 

FODs and the DFT computed epoxidation barriers are observed with MAEs well below 1 

kcal/mol. Given the similarity between the metrics in Table 1-1 and the possibility that different 

training sets may result in improved performance, we would not conclude that one approach is 

definitively preferred over the other. The results originating for GFN-FF geometries show that 

highly comparable results are achievable at a significantly reduced computational cost, owing 

to the low cost of utilizing a force field for geometry generation. 

Table 1-1 Coefficients of determination and mean absolute errors for linear regression models 

between FOD values and DFT computed epoxidation barriers. 

 Training Set Test Set 

Method R2 
MAE 

(kcal/mol) R2 
MAE 

(kcal/mol) 

GFN2-xTB 0.80 0.85 0.79 0.71 
GFN1-xTB 0.82 0.71 0.83 0.59 
GFN1-xTB//GFN-FF 0.80 0.79 0.82 0.64 
GFN2-xTB//GFN-FF 0.76 0.88 0.78 0.81 

 

Traditional Condensed Fukui Indices 

Seeking further improvement, additional descriptors were examined for use in a 

multivariate regression. We surmised that Conceptual Density Functional Theory27 might be 



11 
 

useful and that, specifically, condensed Fukui indices would be physically relevant.44 Summarily, 

Fukui indices aim to quantify the local change in electron density as electron density is added to 

or removed from a system. The condensed indices assign the changes in electron density to 

atoms in the molecule as the number of electrons in the molecule is incremented by ± 1. In this 

way, the indices serve as descriptors of susceptibility of the atom to be attacked by 

nucleophilic, electrophilic, or radical species. These reactivities correspond to the f(-), f(+), and 

f(0) indices, respectively. In the context of cytochrome P450 mediated epoxidation, we consider 

the possible mechanisms in Figure 1-5.  

 

Figure 1-5 Possible mechanisms for the epoxidation of ethylene with the alkene treated as a a) 

radical, b) nucleophile, or c) electrophile. The protoporphyrin portion of Compound 1 has been 

abbreviated by the ring about the iron for simplicity. 



12 
 

While it is widely held (and we believe) that the epoxidation mechanism occurs 

according to a radical mechanism (Figure 1-5a), the alkene substrate could also be treated as a 

nucleophile (Figure 1-5b) or as an electrophile (Figure 1-5c). With these reactivity paradigms in 

mind, we are equipped to rationalize relationships between Fukui indices and epoxidation 

barriers. 

Assuming a radical mechanism, we expected the f(0) index to correlate with epoxidation 

barriers. However, the f(0) index for the sp2 carbon atom involved in initial C–O bond formation 

yielded a MAE of 1.19 kcal/mol compared to the computed epoxidation barriers in the test set. 

Even worse performance was realized with the f(-) index in the test set (MAE = 1.61 kcal/mol). 

The f(+) index, however, correlated reasonably with epoxidation barriers (Figure 1-6). In 

general, the predictive power of traditional condensed Fukui indices by a linear model went as 

f(+) > f(0) > f(-). 
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Figure 1-6 Correlation between the condensed f(+) Fukui index and computed epoxidation 

barriers. The remaining Fukui indices as computed at GFN2-xTB yielded MAEs of >> 1 kcal/mol.  

While the comparatively poor performance of f(0) for predicting epoxidation barriers is 

surprising, the findings regarding the remaining indices perhaps match our expectations. 

Treating the alkene as a nucleophile, as in Figure 1-5b, would generate a carbocation 

intermediate. For many of our substrates, this would be a secondary carbocation and be a 

generally unfavorable intermediate. An intermediate with cationic character may explain the 

lack of barrier correlation to f(-) in our data set containing principally electron withdrawing 

substituents. While our substrate panel is lacking strongly π-donating conjugated substituents, 

these also are not generally found among nature’s CYP450 substrates, perhaps due to 

competing dealkylation mechanisms.4 Alternatively, the alkene may be considered as an 

electrophile (Figure 1-5c). This viewpoint diverges from the dogma of a radical mechanism, with 

the intermediate following C–O bond formation being a carbanion. An intermediate with 
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anionic character will be reasonably stabilized by the substituents found in our dataset. Indeed, 

this trend is observed between the f(+) index and epoxidation barriers (Figure 1-6). Substrates 

such as acrolein and nitroethylene, among others, have epoxidation barriers ca. 5 kcal/mol less 

than that for ethylene. Additionally, it is documented that the axial thiolate ligand coordinated 

to the heme iron is a particularly strong donor.45 The removal of this electron “push” has been 

studied with neutral serine P450 mutants that exhibit altered reactivity (e.g., the carbene 

transferase).46 Considering this electron donating interaction alongside observed substituent 

effects, assigning electrophilic character to the alkene is reasonable in our assessment and 

rationalizes the observed correlation between epoxidation barriers and the f(+) index.  

To further examine this point, we investigated the charge evolution during the initial C–

O bond formation event using traditional stationary point analysis with B3LYP/LACVP**. Using 

ethylene, vinyl chloride, and nitroethylene, summed Hirshfeld charges in the substrate 

fragment were examined in the reaction complex, transition state, and intermediate structures. 
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Figure 1-7 Evolution of the summed Hirshfeld charges on the substrate fragment across the 

reaction coordinate for the initial C–O bond formation event in ethylene, vinyl chloride, and 

nitroethylene. 

As seen in Figure 1-7, there is discernable charge separation between the substrate 

fragment and the heme (given a total neutral charge for the modeled system) in the transition 

state for all three compounds. Additionally, the decrease in charge in the substrate fragment 

relative to the ethylene system in the transition state qualitatively follows the strength of the 

electron withdrawing substituents (perhaps as indicated by Hammett σp values47), with 

nitroethylene yielding the most negatively charged substrate fragment. While these data do not 

support, nor is it our aim to argue, that carbanions are intermediates in these reactions, these 

findings suggest the radical mechanism in Figure 1-5a involves significant charge separation, at 

least for those substrates described here. We believe the barrier correlation with the f(+) index 

indicates the ability of electron (and spin) density to be delocalized away from the carbon 
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involved in the C–O bond formation, rather than pointing toward the formation of a localized 

anion in the intermediate preceding epoxide ring closure. 

Orbital-Weighted Fukui Indices 

While reasonable, the predictive power of the traditional f(+) index only barely results in 

a MAE of less than 1 kcal/mol in the test set (Figure 1-6). It is known that traditional Fukui 

indices may be misleading in symmetric systems or those with nearly or fully degenerate 

frontier molecular orbitals, and orbital weighted Fukui indices are not susceptible to such 

issues.15 

As multiple substrates in our data set belong to higher order point groups and may have 

(quasi-)degenerate frontier molecular orbitals, we explored orbital weighted Fukui indices using 

the same combinations of geometries and electronic structure calculations as in Table 1-1. In 

doing so, the same trend for predictive performance (fw
+ > fw

0 > fw
-) was observed between the 

three indices, and the results for the fw
+ index are summarized in Table 1-2. Performance was 

slightly biased toward the training set. While reasonable structural diversity is present in both 

training and test sets, structural space is not comprehensively sampled. Nonetheless, fw
+ taken 

alone would lack broad applicability based on these findings. One noted benefit of orbital 

weighted Fukui indices is that their calculation does not require additional single point 

calculations for the N-1 and N+1 electron states, making orbital weighted Fukui indices more 

affordable computationally. 
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Table 1-2 Coefficients of determination and mean absolute errors for linear regression 

models between fw
+ indices and DFT computed epoxidation barriers. 

 Training Set Test Set 

Method R2 
MAE 

(kcal/mol) R2 
MAE 

(kcal/mol) 

GFN2-xTB 0.80 0.76 0.64 0.83 
GFN1-xTB 0.72 0.82 0.53 0.91 

GFN1-xTB//GFN-FF 0.74 0.78 0.54 0.90 
GFN2-xTB//GFN-FF 0.81 0.73 0.64 0.83 

 

Multiple Regression Analysis 

Lastly, we considered the application of a multiple regression model to further reduce 

MAEs for the test set by combining all Fukui indices, atomic charges, and FOD values. Through a 

Lasso regression for feature selection,48 we found both the FOD and fw
+ descriptors at the 

GFN2-xTB level of theory to be retained as important descriptors with non-zero coefficients 

amongst all sampled descriptors. After feature selection and through an ordinary least squares 

MLR built using the training set, both descriptors were found to be statistically significant 

(pFOD=0.024 and pfw+=0.019) when GFN2-xTB was employed for the required calculations. 

Similar statistical significance was obtained using GFN2-xTB//GFN-FF. However, when GFN1-xTB 

replaced GFN2-xTB for MLR model evaluation, the fw
+ index became insignificant (p = 0.702). 

Figure 1-8 depicts the correlation between Zhang and Liu’s DFT computed epoxidation barriers 

and those predicted by our MLR approach using descriptors generated using GFN2-xTB//GFN-

FF. Table 1-3 summarizes the performance metrics at all levels of theory. Again, both GFN2-xTB 

and GF2-xTB//GFNFF performed comparably. Using force field generated geometries has an 

obvious advantage with respect to computing time and for that reason might be the preferred 
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approach in high throughput screening. Upon evaluation, the variance inflation factor for each 

descriptor was found to be ~1.1 at all levels of theory, suggesting the absence of co-linearity 

between descriptors. This is expected following the Lasso regression for feature selection. 

 

Figure 1-8 Correlation between P450-mediated epoxidation barriers previously computed with 

DFT13 and those estimated by our MLR model in this work using substrate-centric descriptors at 

the GFN2-xTB//GFN-FF level of theory. 

Several key advantages are realized by our regression approach. First and most 

obviously, the amount of computing time to calculate the required substrate-centric descriptors 

using Grimme’s family of GFN methods is orders of magnitude faster than traditional stationary 

point analysis for the C–O bond formation event in a stepwise epoxidation mechanism. Those 

calculations would typically take hours (at least) with any reasonable level of DFT on the same 

computing resource using the typical truncated Compound 1 model. Because the required 

semi-empirical geometry optimizations take milliseconds with only modest computing 
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hardware, it is possible to apply these calculations to thousands of structures, such as would be 

generated from docking simulations. Consequently, we believe quantitative reactivity 

information can be coupled with binding affinity estimations from docking simulations. Lastly, 

our model is constructed without regard for substrate polarity as assessed by a compound’s 

overall dipole moment, providing for a simplified application. Polarity and shape are certainly 

important factors for substrate fit within the context of an enzyme active site, and such 

properties would be addressed when combining reactivity with accessibility (such as through 

docking).49 

Table 1-3 Adjusted coefficients of determination and mean absolute errors for MLR models 

using FOD values and fw
+ indices to predict epoxidation barriers. 

 Training Set Test Set 

Method R2 
MAE 

(kcal/mol) R2 
MAE 

kcal/mol) 

GFN2-xTB 0.83 0.68 0.76 0.67 
GFN2-xTB//GFN-FF 0.84 0.66 0.76 0.70 
GFN1-xTBa 0.79 0.70 0.81 0.59 
GFN1-xTB//GFN-FFa 0.81 0.70 0.78 0.66 

a The fw
+ index was statistically insignificant using GFN1-xTB or GFN1-xTB//GFN-FF, but the 

results above are presented for completeness. 
 

One shortcoming in this data set is the absence of tetrasubstituted alkenes. Our review 

of the literature failed to discover examples of tetrasubstituted alkenes that are epoxidized by 

P450s, and some literature suggests that tetrasubstituted alkenes are too sterically crowded to 

undergo epoxidation in a P450.50 Even peroxo ligated iron porphyrin catalysts, that may not 

have the same steric limitations as an enzyme active site, are unable to oxidize 

tetramethylethylene to the corresponding epoxide.51 As with any predictive model, the 

appropriateness of the model for a system of interest must be carefully evaluated. 
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Further Validation 

To that end, we further tested our approach by examining the compounds in Figure 1-9 

using GFN2-xTB and GFN2-xTB//GFN-FF. These eight compounds were selected as they are 

either known substrates of CYP101A152,53,54 (Figure 1-9a) that undergo epoxidation as well as 

electron-rich and/or sterically crowded alkenes (Figure 1-9b). Zero-point corrected potential 

energy barriers were computed at the B3LYP/Wachters+f (Fe)/TZVP//B3LYP/LACVP** level of 

theory on the quartet surface, with the relative zero taken as the separated substrate and 

Compound 1 model. To estimate the barrier for these eight compounds, a multiple linear 

regression model was trained on all 36 compounds in Figure 1-2. 

 

Figure 1-9 CYP101A1 epoxidation substrates and electron-rich alkenes used for further method 

validation. Electron-rich compounds were used to probe the limitations of the approach herein.  

 

 

 

 

 

 

 



21 
 

Table 1-4 DFT-computed and MLR-predicted epoxidation barriers (in kcal/mol) for validation 

compounds in Figure 1-9. 

Substrate DFTa 

MLR  
Predictionb 
(GFN2-xTB) 

MLR  
Predictionb 

(GFN2-xTB//GFN-FF) 

cyclohexene 13.5 13.5 13.5 
dehydrocamphor 11.9 11.1 11.2 

5-methylenecamphor 11.7 11.6 11.6 
2-methylpropene 12.6 13.5 13.6 
trimethylethylene 11.6 13.4 13.3 
tetramethylethylene 11.8 13.2 13.1 

vinyl methyl ether 9.8 13.4 13.4 
vinyl methyl thioether 8.5 11.3 11.3 

MAE n/a 1.42 1.40 
a Zero-point corrected potential energy barriers were computed using B3LYP/Wachters+f 
(Fe)/TZVP//B3LYP/LACVP** on the quartet surface. 
b A multiple linear regression model was fit on all 36 records in Figure 2 using the FOD and fw

+ 
index as descriptors. 
 

As seen in Table 1-4, performance consistent with the hold out validation above was 

observed in the case of the three known CYP101A1 substrates (MAE = 0.27 kcal/mol using 

GFN2-XTB//GFN-FF), while the more electron-rich compounds performed quite poorly (MAE = 

2.06 kcal/mol using GFN2-xTB//GFN-FF). While the models reasonably predicted the barrier for 

2-methylpropene epoxidation, trimethyl- and tetramethylethylene were poorly predicted. We 

surmise that steric hindrance about the alkene could explain this observation. The ethers 

included in the validation set are strongly electron donating and given such electron-rich 

alkenes are not represented in Figure 1-2, the inaccurate prediction of their epoxidation 

barriers is not surprising. These noted limitations further highlight the need to examine any 

model’s suitability for systems of interest prior to use. 

 



22 
 

Conclusions 

By coupling semi-empirical quantum chemical methods with linear regression modeling, 

it is possible to reliably estimate epoxidation barriers for alkene substrates in cytochrome P450 

catalysis. Compared to the use of IPs, we employ descriptors that are localized and describe the 

radical nature (FOD) and electron deficiency (fw
+) at the alkene carbon involved in C–O bond 

formation. With MAEs well below 1 kcal/mol and computational time requirements measured 

in milliseconds for each input structure, we believe this method is extensible for high 

throughput screening protocols and would fit nicely alongside protein-ligand docking where 

conformer ensembles are inexpensively generated using GFN-FF prior to docking. Docked poses 

could then be evaluated using GFN2-xTB to assess reactivity. In doing so, substrate fit data 

could be complimented by reactivity information, deepening data sets in efforts to make more 

reliable product predictions for P450-mediated catalysis. 
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Chapter 3: Hydrogen Atom Transfer Barrier Prediction 

Introduction 

Found across all kingdoms of life, cytochrome P450s play critical roles in metabolizing 

both exogenously (e.g., drugs) and endogenously (e.g., hormones) derived compounds. This is 

achieved through a number of possible oxidative transformations, including hydroxylation, 

epoxidation, sulfoxidation, aldehyde oxidation, and others.3 Among them, hydroxylation at 

saturated sp3 hybridized carbon atoms is perhaps the most widely studied. Mechanistically, the 

consensus is that hydroxylation occurs by way of an initial hydrogen atom transfer (HAT) event 

from a H–Csp3 in the substrate to Compound I, where Compound I is believed to be the most 

capable and ultimate oxidant.10, 55 We proceed forward using this mechanistic paradigm, 

though we acknowledge that oxidation by Compound 0 also has been shown to be energetically 

reasonable for hydroxylation by way of HAT.56 

The C–H bond cleavage event during HAT is predicted by theory to be the most 

energetically demanding event after formation of Compound I, with radical rebound occurring 

with a smaller barrier or without a barrier at all.57, 58 This model has been experimentally 

supported by kinetic isotope effect experiments.57, 59 Because of the energetic demand, the 

HAT step is of particular interest for computational modeling. Traditionally, potential energy 

surface (PES) stationary point analyses using Density Functional Theory (DFT) have been used to 

compute HAT barriers,60 with B3LYP being the most commonly employed functional.38, 61-64 
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Figure 2-1 The hydrogen atom transfer event between propane at the C2 position and the 

prototypically truncated model for Compound I. The computational expense for modeling this 

event originates, in part, from the required geometry optimizations of the structures above, as 

well as the transition state structure connecting them. The barrier for this event is the quantity 

of interest in this work. 

However, this approach is often not straightforward. First, the sheer size of the system 

(enzyme + substrate) makes such calculations prohibitively expensive for routine screening. 

Even the prototypical65 Compound I model (Figure 2-1) involving a truncated porphyrin ligated 

by a methylthiolate consists of 43 atoms and hundreds of electrons, while the inclusion of a 

substrate of biologic relevance, such as a steroid66 or terpene,67 can result in a system of 100 

atoms or more. Furthermore, substrate conformational flexibility must be considered; even 

largely rigid structures such as steroids may have multiple energetically accessible 

conformations that must be considered. Stationary point analyses for systems of this size with 

numerous heavy atoms can take days or even weeks to complete depending on multiple 

factors, including the intricacies of the system (e.g., subtleties of the PES), the quality of the 
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initial geometry guess (dependent on the modeler), the level of theory (the usual trade-off 

between accuracy and efficiency rears its head here), and the available computing hardware, to 

name a few. Consequently, computationally affordable statistical and informatics-based models 

can be tremendously useful, provided they are sufficiently accurate. 

 

Figure 2-2 A chemically diverse panel of 21 compounds provide a total of 24 unique C-H 

moieties for model development. The panel was broken into training and test sets as indicated. 

The hydrogen to be abstracted is shown explicitly at the associated sp3 hybridized carbon. 

Previously, Olsen and co-workers demonstrated that easily computed descriptors could 

be used to predict HAT barriers that were calculated with DFT for a panel of 24 different C–H 

bonds across 21 compounds (Figure 2-2).65 Among them, bond dissociation energies from a 

“frozen radical” (BDEfr) – that is, the removal of a hydrogen atom from a fully optimized 

substrate structure followed by a single point energy calculation for the resulting unrelaxed 
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radical structures (see Figure 2-3) – linearly correlated with the computed HAT barrier. 

Specifically, BDEfr values obtained with B3LYP/6-31G(d) yielded R2 values of ~0.9 and a mean 

absolute error (MAE) of ~1 kcal/mol versus “true” zero-point corrected potential energy HAT 

barriers computed at B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d) (Fe = SVP). The required BDEfr 

calculations took ~20 minutes per molecule, making such calculations still too costly for any 

high throughput computational screening workflow. Olsen attempted to reduce the cost of the 

BDEfr calculations by using the AM1 semi-empirical method,68 but with comparatively poor 

results (R2 = 0.68 and MAE ≈ 1.6 kcal/mol). 

 

Figure 2-3 To calculate the BDEfr value for propene, an allylic hydrogen atom is removed and an 

unoptimized (“frozen”) substrate radical is formed. The resulting potential energy difference is 

computed between these species as doublets and the equilibrium geometry of the substrate as 

a singlet. 
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Since 2006, computing hardware, computational chemistry software, and available 

computational methods have advanced, particularly for semi-empirical methods in recent 

years.22, 69 In this work, we apply recently developed methods in pursuit of more 

computationally affordable and accurate approaches for estimating HAT barriers in P450 

enzymes. In building on Olsen and co-workers’ seminal work, we deliver simple, systematic, and 

validated models for applications in high throughput screening workflows. The work presented 

in this chapter has been previously published,70 and the associated text and content is used 

with permission. 

Computational Methods 

All calculations were performed on a personal workstation equipped with an Intel Core 

i7-4790 with 16 GB of RAM and a solid state storage drive. All structures were prepared in 

Avogadro 1.2.019 and initially optimized using the MMF9420 forcefield. 

Grimme’s xtb program (version 6.4.1)22 was used for all GFN semi-empirical (or force 

field, in the case of GFN-FF), and Gaussian 1637 was used for all remaining calculations. Default 

integration grids and convergence criteria were used in all cases. Each optimized substrate 

geometry was verified as a minimum without any imaginary frequencies. Open Babel version 

2.3.271 and bash scripting was used for converting structures and generating radicals. Each 

substrate structure first was fully optimized using a given method. The hydrogen to be 

abstracted was then removed. The resulting substrate and hydrogen radicals were then 

submitted to single point energy calculations (i.e., without further optimization) as doublets to 

calculate the BDEfr.  
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Further descriptors were obtained using the GFN2-xTB.23 The C–H bond local mode 

force constant was calculated in the local vibrational mode from +/- 0.02 Å about the 

equilibrium bond length for each substrate, sampling 10 points. A quadratic regression was fit 

in python using numpy to recover the force constant from the second order term. The standard 

bond dissociation energy (BDE) was calculated by optimizing each frozen radical structure as a 

doublet. Mulliken charges30 and atomic polarizabilities72 for the abstracted hydrogen and the 

sp3 carbon were taken from optimized substrate structures, along with Wiberg bond orders.73 

The solvent accessible surface area for the abstracted hydrogen was computed using GFN2-

xTB(ALPB=benzene).74 

HAT barriers were computed in Gaussian 16 A.03.37 for several substrates of CYP101A1, 

specifically (+)-camphor, norcamphor, and (+)-α-pinene, at experimentally observed sites of 

hydroxylation. This was done at the B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d) (Fe = SVP) level 

of theory following the approach taken by Olsen and coworkers.41, 62, 65, 75 Summarily, the 

transition state was found on the quartet spin surface, and was confirmed as a transition state 

structure by the presence of a singular imaginary frequency corresponding to the hydrogen 

atom transfer motion. The barrier was taken as the zero-point corrected potential energy 

difference between the transition state structure and the separated reactants, with the 

Compound I model optimized as a quartet and the substrate as a singlet. These geometries 

were confirmed as true minima by the absence of any imaginary frequencies. Zero-point 

corrections were taken from the B3LYP/6-31G(d) (Fe=SVP) level of theory with the potential 

energy difference taken from the higher-level single point calculation. These barriers were then 
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predicted by the BDEfr value as described above according to a univariate linear regression to 

further validate the use of this descriptor. 

Ordinary least squares linear regressions were performed in python, utilizing the scikit-

learn,32 pandas,33 and statsmodels34 packages. The HAT barriers computed with DFT by Olsen65 

were used as the response variables in all statistical analyses, and for a more direct comparison 

to that work, the same training and test set split was used. Additionally, a repeated 3-fold 

cross-validation was performed, with the average of 10 repeats reported in Table 2-1. To select 

features for multiple linear regression (MLR) modeling, a Lasso regression using repeated k-fold 

cross validation for hyperparameter tuning was performed. An ordinary least squares MLR 

model was then fit on the training set and evaluated on the test set, with further reduction of 

descriptors performed sequentially by manual inspection on the basis on statistical significance 

or co-linearity. The variance inflation factor for each descriptor was computed in the case of 

MLR models to examine co-linearity between the descriptors.35 In the final regression analyses, 

residuals were verified to be normally distributed according to a Shapiro-Wilk normality test.36 

Lastly, the MLR model was cross-validated using 10 repeats of a 3-fold cross validation and the 

coefficient of determination and the mean absolute error were measured as the average over 

those 10 repeats. 

All substrate structures optimized at the GFN2-xTB level of theory have been provided in 

mol2 format. Likewise, a mol2 file is available of the DFT-generated transition state structures, 

substrates, and the Compound I model. Machine readable data files of computed descriptors 

and barriers are provided and python scripts for both feature selection and analysis are 

provided, as well.70  
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Results and Discussion 

As an initial check, we began with the AM1 method to ensure we returned comparable 

results to those reported by Olsen, since substrate geometries were not provided in that 

publication.65 Our returned coefficient of determination and mean absolute errors (Table 2-1) 

were similar to Olsen’s (vide supra).  

Employing the same hold out validation strategy depicted in Figure 2-2, we then turned 

our attention to sampling other semi-empirical methods, specifically PM3,76 PDDG/PM3,77 

PM6,78 PM6-D3,79, 80 and PM7.81 Unfortunately, none of these yielded sufficiently accurate 

correlations to HAT barriers (Table 2-1). As the target quantity for these parameterized 

methods is the heat of formation, this finding is perhaps not surprising. 
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Table 2-1 Coefficients of determination and mean absolute errors for linear regression models 

between BDEfr values and DFT computed HAT barriers by method. 

 Training Set 
(n=14) 

Test Set 
(n=10) 

Repeated 3-Fold 
Cross Validationa 

Method R2 MAEb R2 MAEb RCV
2 MAECV

b 

GFN-FF 0.77 1.39 0.93 0.91 0.71 1.24 
GFN2-xTB 0.87 1.01 0.88 0.97 0.80 1.06 
GFN2-xTB//GFN-FF 0.84 1.06 0.89 1.10 0.63 1.18 
GFN1-xTB 0.85 1.05 0.91 0.92 0.73 1.08 
GFN1-xTB//GFN-FF 0.88 1.05 0.95 0.72 0.85 0.96 
GFN0-xTB 0.43 1.94 0.66 2.05 0.12 2.28 
B3LYP/STO-3G 0.78 1.25 0.36 2.11 0.35 1.89 
B3LYP-D3/STO-3G 0.84 1.03 0.19 2.53 0.11 2.02 
HF/STO-3G 0.33 2.46 0.30 2.51 -0.17 2.80 
PM3 0.48 2.11 0.46 2.22 0.26 2.30 
PDDG/PM3 0.47 2.27 0.41 2.39 0.01 2.52 
PM6 0.38 2.37 0.51 2.32 -0.05 2.53 
PM6-D3 0.36 2.43 0.47 2.43 -0.55 2.68 
PM7 0.48 2.21 0.42 2.38 0.17 2.42 
AM1 0.72 1.58 0.63 1.61 0.51 1.78 

a The average metrics from 10 repeats are reported 
b Mean absolute error as measured in kcal/mol 

 Ab initio and DFT methods that would generally be considered computationally 

affordable were then examined. Olsen’s best correlation to computed HAT barriers was 

obtained with BDEfr values calculated with B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d). For this 

reason, B3LYP/STO-3G was used to retain the same functional while reducing the cost of the 

calculation through a substantially smaller basis set. A respectable correlation (R2 = 0.78) was 

returned for the training set but not for the test set (R2 = 0.36), making this model unsuitable.  
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Figure 2-4 Comparison of the average percent error in the predicted HAT barriers by BDEfr 

values in compounds with and without electronegative atoms in the entire compound panel. 

Error bars are reported as the standard error of the mean. 

HF/STO-3G was also considered but failed to produce reasonable results. We attributed 

the (expected) poor performance of these methods primarily to the limited basis sets that lack 

polarization and diffuse functions, which are generally needed for electronegative atoms and 

radicals.82 Figure 2-4 shows the mean absolute percent difference across the substrate panel 

between the predicted barriers by each method and Olsen’s computed barriers. In both cases, 

the presence of electronegative atoms (taken as N, O, and F) yielded higher absolute average 

errors. 

Grimme’s extended tight binding methods that focus on returning geometries, 

frequencies, and non-covalent interactions (GFN) were then explored.23, 83 This included GFN0-

xTB, GFN1-xTB, and GFN2-xTB. Additionally, the partially polarizable force field (GFN-FF)25 was 
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employed both as a standalone method and in conjunction with a semi-empirical method 

where substrate geometries (and by extension, the resultant frozen radical geometries) were 

generated with GFN-FF and the BDEfr was computed with GFN1-xTB or GFN2-xTB. GFN1-xTB 

and GFN2-xTB yielded good correlations (R2 > 0.80) and small mean absolute errors (MAE ≈ 1.0 

kcal/mol) (Table 2-1). The linear regression for GFN2-xTB is plotted in Figure 2-5 for both the 

training and test sets. Both methods gave correlations and mean absolute errors as good as 

those reported by Olsen using B3LYP61-63, 84 in conjunction with larger Pople basis sets.41 GFN0-

xTB failed to yield sufficient correlation between BDEfr values and computed HAT barriers in the 

substrate panel. GFN-FF performed less consistently between the training and test sets, 

suggesting it should be employed alone with caution, if at all.  

To better estimate the performance of these univariate models on new data points, 10 

repeats of 3-fold cross validatoin were performed. The cross validated performance metrics, as 

measured by the average of 10 random repeats, are presented in Table 2-1. All values were 

found to be consistent with the hold out strategy employed by Olsen and coworkers. All BDEfr 

values from all methods are available in the supporting information. 
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Figure 2-5 Linear regression in the training and test sets between computed DFT Barriers65 and 

GFN2-xTB generated BDEfr values. 

As our aim was to identify an approach that can systematically and efficiently predict 

HAT barriers in thousands of substrate structures, computing times were compared between 

approaches with an MAE of ca. 1 kcal/mol. Figure 2-6 shows that the presented methods 

perform at the millisecond timescale per input structure (within our computing environment) 

and that respectable reductions in computational cost can be achieved by employing force field 

generated structures without significantly increasing the MAE in each model. 
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Figure 2-6 Comparison of the required computing time for the determination of the BDEfr for p-

nitrotoluene and the mean absolute error in cross-validation by method. 

While the time savings enjoyed by force field generated geometries are not surprising, 

the low MAE values achieved with GFN1-xTB//GFN-FF and GFN2-xTB//GFN-FF were a welcome 

finding. Compared to GFN-FF alone, more consistent performance between the training and 

test sets were obtained when GFN1-xTB or GFN2-xTB was used for the required single point 

calculations in computing BDEfr values from GFN-FF geometries. As measured by the total time 

to perform all necessary calculations for p-nitrotoluene, 10-20% time savings were achieved 

with both GFN1-xTB//GFN-FF and GFN2-xTB//GFN-FF when compared to each tight binding 

method alone. Performing such barrier estimations with GFN1-xTB//GFN-FF or GFN2-xTB/GFN-

FF is particularly attractive where a compound of interest is conformationally flexible and a 
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conformational ensemble must be generated. In such cases, Grimme’s crest program could 

naturally be incorporated into a screening workflow, employing the force field for efficiency.85 

It is worth noting that the barriers computed by Olsen were from gas phase calculations 

without empirical dispersion included.86, 87 Later reports showed that including dispersion 

effects has significant bearing on hydroxylation (as well as epoxidation) barriers.88 As dispersion 

effects are included in all GFN methods, we surmised that dispersion corrections may 

contribute to the performance improvement over other semi-empirical methods sampled here. 

However, our B3LYP-D3/STO-3G and PM6D3 studies showed degraded performance compared 

to the respective methods without dispersion corrections. These findings, along with Olsen’s 

correlation with a large Pople basis set, would suggest that the basis set and the target 

quantities of semi-empirical methods are more important than dispersion effects for this 

regression approach. This is exemplified by the errors observed in B3LYP/STO-3G, B3LYP-

D3/STO-3G, GFN1-xTB, and GFN2-xTB. Both B3LYP approaches yielded absolute errors of ca. 9 

kcal/mol for the predicted HAT barrier for fluoroethane at C1, while both tight binding methods 

produced more reasonable errors of ~1.5 kcal/mol. We attributed this to the inclusion 

polarization functions in the basis sets used by both GFN methods. 

Other Descriptors 

Given the speed of the calculations using Grimme’s methods, more computationally 

demanding quantities, specifically standard BDE values and local mode C–H force constants, 

were examined for correlation to computed barriers using GFN2-xTB. Figure 2-7 shows that 

neither local mode force constants nor traditional BDEs correlated well with HAT barriers. The 
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finding of poor correlation with BDE values is consistent with Olsen’s findings at the level of 

theories explored in that work.65 

 

 

Figure 2-7 Linear regressions between DFT computed HAT barriers65 in the training set and 

GFN2-xTB computed A) C-H BDE values and B) local mode C-H force constants revealed poor 

correlations as compared to BDEfr values. 
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Multiple Linear Regression (MLR) Modeling 

Lastly, we employed multiple linear regression using descriptors generated with GFN2-

xTB. The descriptors screened for inclusion in a MLR model were the BDE, BDEfr, C–H local 

mode force constant, Wiberg C–H bond order, the Mulliken charges and atomic polarizabilities 

on the hydrogen and carbon atoms involved, and the solvent-accessible surface area (SASA) on 

the hydrogen obtained from a GFN2-xTB (ALPB=benzene) single point calculation on the gas 

phase optimized substrate structure.74 Employing a Lasso regression and k-fold repeated cross 

validation over the entire data set for feature selection, BDE, BDEfr, C–H force constant, C–H 

bond order, and the Mulliken charges and atomic polarizabilities on the carbon atoms were 

retained as possible features. With a training set of only 14 records, only three descriptors can 

reasonably be employed. From ordinary least squares MLR models, C–H bond order, BDE, and 

the hydrogen atom charges and polarizabilities were removed sequentially, constructing a new 

MLR model from the training set after each descriptor was removed. C–H bond order was 

removed as it is reasonably co-linear with the BDE values (R2=0.55). The Mulliken charge on the 

carbon atom was then dropped due to statistical insignficance (p=0.821), as was the BDE value 

(p=0.662). Ultimately, BDEfr, the local mode force consant, and the carbon atom polarizability 

were retained on both the basis of their physical relevance and/or their statistical significance 

within the model. BDEfr was retained due to its demonstrated performance in a univariate 

model both in our work and by Olsen.65 

The local mode force constant was selected given at least the qualitative correlation 

between with the HAT barrier (as shown in Figure 2-7) and our belief that smaller force 

constants should correspond to more easily abstracted hydrogens. Lastly, we surmised a larger 
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carbon atom polarizability may correlate with a relatively more stable radical following the HAT 

event and perhaps a lower HAT barrier. BDEfr and the local mode force constant were both 

found to be statistically significant at the 95% confidence interval in our model (p = 0.00 and 

0.01, respectively), while the carbon atom polarizability was less significant (p = 0.083). As 

shown in Figure 2-8, the coefficient of determination between the MLR predicted barriers and 

Olsen’s DFT computed barriers in both the training and test sets increased to greater than 0.9, 

and the MAE values were 0.62 kcal/mol and 0.83 kcal/mol in the training and test sets, 

respectively. 10 repeats of 3-fold cross-validation were performed for the MLR model, and the 

MAECV value was found to be 0.82 kcal/mol, consistent with the hold out strategy. The 

complete data set used for the MLR model exploration is included in the supporting 

information. 
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Figure 2-8 Correlation of MLR-predicted HAT Barriers from GFN2-xTB generated descriptors and 

DFT computed barriers. Descriptors include the BDEfr, the C–H local mode force constant, and 

the atomic polarizability of the carbon atom.  

While better performance was achieved by a multiple linear regression model, the 

improvement is modest as measured by the mean absolute error values. The MAECV value of 

0.82 kcal/mol for the MLR model decreased from a value of 1.06 kcal/mol for the univarate 

model based on BDEfr values, and in our opinion, such a limited performance improvement 

does not justify the added computational time required to scan the C–H bond length. While the 

additional sophistication may be useful in establishing correlative models to larger, more 

diverse data sets, the simplicity of the univariate approach is probably sufficient for 

systematically assessing reactivity, and we believe it will be easily scripted alongside docking in 

high throughpout virtual screening. 
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Further Validation: CYP101A1 Substrates 

As our aim is to apply these computationally efficient calculations and associated 

regression models to docked substrate poses, we evaluated the univariate linear regression 

model using BDEfr values to substrates of the CYP101A1 (P450cam) enzyme. Specifically, we 

examined (+)-camphor, norcamphor, and (+)-α-pinene at experimentally observed 

hydroxylation sites, providing for six unique HAT barriers. The experimentally observed 

outcomes are summarized in Figure 2-9. For (+)-camphor, hydroxylation occurs exclusively at 

the 5-exo position.89 Hydroxylation of norcamphor is less selective, occuring at the 3-exo, 5-exo, 

and 6-exo positions.90 Finally, (+)-α-pinene is hydroxylated at both allylic positions, yielding (+)-

cis-verbenol and (+)-myrtenol.91 Table 2-2 provides both the HAT barriers as computed by DFT 

and the predicted HAT barriers at the GFN2-xTB, GFN2-xTB//GFN-FF, GFN1-xTB, and GFN1-

xTB//GFN-FF levels of theory utilizing a univariate linear regression trained on all 24 records 

from Figure 2-2. The findings in Table 2-2 show that the MAE values from these six HAT events 

are consistent with the cross validated MAE values in Table 2-1. This suggests the approach is 

generalizable to experimentally interesting substrates. 
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Figure 2-9 Three substrates of CYP101A were used for further validation of a univariate linear 

model using BDEfr values generated using semi-empirical methods. The experimentally 

observed hydroxylations in the native enzyme are provided. 
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Table 2-2 Predicted HAT barriers for CYP101A1 substrates using BDEfr values computed by semi-

empirical methods and the linear models trained on the compounds from Figure 2-2. 

  BDEfr Method 

Substrate 
(position) 

DFT Barriera GFN2-xTB GFN2-xTB 
//GFN-FF 

GFN1-xTB GFN1-xTB 
//GFN-FF 

(+)-Camphor 
(5-exo) 

14.76 14.06 14.87 13.75 14.78 

Norcamphor 
(3-exo) 

14.07 11.17 12.46 11.10 12.47 

Norcamphor 
(5-exo) 

13.96 14.57 15.47 14.28 15.38 

Norcamphor 
(6-exo) 

12.73 12.37 13.89 12.26 13.99 

(+)-α-pinene 
(4-exo) 

10.85 9.79 10.18 8.69 9.45 

(+)-α-pinene 
(2-methyl) 

11.07 12.31 12.72 11.98 12.59 

MAE - 1.15 1.12 1.31 1.20 

a Reference HAT barriers were computed at the B3LYP/6-311++G(2d,2p)// B3LYP/6-31G(d) (Fe = 
SVP) level theory. Each barrier is expressed as the potential energy difference between the 
transition state structure and the separated reactants at the B3LYP/6-311++G(2d,2p) level of 
theory, with zero-point corrections applied from the lower level of theory. 
 

In the cases of norcamphor, (+)-α-pinene, and other compounds where multiple 

hydroxylation products are observed, other factors, notably residence time in a given 

conformation, can impact product ratios. Harris and co-workers computationally observed that 

norcamphor, owing to its smaller molecular volume in comparison to the native d-camphor 

substrate, is less rotationally encumbered in the active site, resulting in populated 

configurations that expose the C6 and C3 positions to the oxo ligand in Compound 1.92 While 

HAT barriers alone would predict C6 hydroxylation to dominate experimental outcomes for 

norcamphor (where C5 and C6 hydroxylation are observed experimentally in roughly equal 

proportions), Harris‘ work demonstrated the importance of residence time configurations 
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leading to hydroxylation at the C5 position being most populated. To summarize, HAT barriers 

taken alone to predict P450-mediated hydroxylation neglects residence time and protein-ligand 

interaction. To accentuate this point in P450cam, a worthwhile future study, which is currently 

absent from the literature, is a MD-based analysis of 5,5-difluorocamphor in P450cam where 

hydroxylation is observered exclusively at the C9 position experimentally.93   

Conclusions 

Herein we have expanded Olsen’s regression modeling approach for estimating 

hydrogen atom transfer barriers in the hydroxylation of substrates by cytochrome P450s using 

modern semi-empirical methods. Whereas other semi-empirical methods returned residuals 

upon cross-validation that were too large to be trustworthy, GFN1-xTB or GFN2-xTB performed 

well, with both single and multiple linear regression models returning mean absolute errors on 

the order of 1 kcal/mol or less. Furthermore, the utility of this method was further examined 

using HAT barriers computed with DFT for substrates of CYP101A1. In addition to adequately 

predicting HAT barriers, the employed methods are 2-3 orders of magnitude faster than the 

other “inexpensive” methods benchmarked in our work. As each GFN method performs the 

required calculations on the millisecond timescale with only modest computing hardware, this 

approach is extensible to high throughput screening workflows for examining hundreds to 

thousands of structures of interest with minimal computing resources.  
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Chapter 3: Hydroxylated Product Predictions in CYP101A1 

Introduction 

C–H bond activation remains one of the holy grails of organic chemistry.94 

Transformations of unactivated aliphatic C–H bonds are difficult, attributed in part to bond 

dissociation energies of approximately 100 kcal/mol. Despite bond dissociation being 

energetically demanding, CYP450s catalyze such transformations at room temperature with 

excellent regio- and stereoselectivity. For this reason, CYP450s are attractive biosynthetic tools 

and targets for enzyme design to achieve otherwise inaccessible transformations. Indeed, 

CYP450s have been engineered by directed evolution to modulate existing activity, as well as to 

produce novel ones, such as carbene and nitrene transferase activities.95 

 In humans, CYP450s in the liver are responsible for ~75% of xenobiotic metabolism, with 

the 3A4 isoform responsible for about half of such activity.96 Given the centrality of CYP450s in 

ADMET processes, understanding CYP450-mediated metabolism for drug candidate 

optimization is critical. For example, the replacement of aliphatic hydrogens at reactive sites by 

fluorine is commonly used to alter P450-mediated outcomes to decrease the rate of 

metabolism.97 Optimization efforts may also focus on improving the safety profiles of discovery 

leads. Off-target toxicological effects caused by oxidation products is known; the P450-

mediated conversion of acetaminophen to N-acetyl-p-benzoquinone imine under acute 

overdose conditions is the classical example, leading to drug induced liver injury.98 During drug 

discovery, an understanding of P450-mediated metabolism may facilitate inactivation efforts.99  

Between motivations in both synthesis and drug design, reliable predictions of CYP450 

oxidation products are necessary to accelerate discovery. Historically, several approaches have 
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been used. As described in Chapters 2, Density Functional Theory (DFT) calculations of 

hydrogen atom transfer (HAT) barriers using a truncated Compound I model have been 

performed, along with computing less expensive descriptors that can be used to predict HAT 

barriers.65 Subsequent informatics-based approaches, most notably SmartCYP,100 using such 

barrier estimates and making structural comparisons to compounds of interest have found 

utility while significantly reducing computational cost. The downfall of barrier calculations 

employing just the substrate and a reduced Compound 1 model is the absence of the enzyme’s 

influence, specifically steric and electrostatic effects within the enzyme active site. For example, 

the barrier for the 5-exo hydroxylation of d-camphor using this truncated model was previously 

computed at over 21 kcal/mol by Kamachi and Yoshizawa.101 A more complete model of the 

P450cam enzyme treated with a combined quantum mechanics/molecular mechanics (QM/MM) 

by Lonsdale and coworkers found the same barrier to be ~18 kcal/mol, while the inclusion of a 

Grimme’s D2 dispersion correction102 reduced the barrier even further to ~14 kcal/mol.103 

Jerome and coworkers found the same barrier to be 10 kcal/mol employing QM/MM with 

empirical dispersion and transition metal optimized localized orbital corrections, while the 

experimental barrier is known to be at most 10 kcal/mol.104   

Beyond barrier modulation, the enzyme is most assuredly responsible for the regio- and 

stereoselectivity observed during camphor hydroxylation, as an example. In addition to 

computing the HAT barrier for the 5-exo hydroxylation of camphor using the typical reduced 

Compound I model, Kamachi and Yoshizawa predicted that the intermediate substrate radical 

following the HAT event at the C5 position in camphor is notably less stable than the radical 

generated at the C3 and C6 positions.101 Based on their relative radical stabilities, we would 
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assume HAT events at the C3 and C6 positions would have lower HAT barriers than that 

predicted at the 5-exo position, yet only the 5-exo hydroxylated product is observed. B3LYP/6-

311++G(2d,2p)// B3LYP/6-31G(d) (Fe = SVP).  At the same level of theory in our own work 

exploring HAT barriers for norcamphor,70 the 6-exo and 5-exo hydroxylated products would be 

predicted in a ratio of roughly 90:10; however, norcamphor is known to be hydroxylated to 

these two products in almost equal parts as the major products.105 Collectively, all the above 

reports indicate the need to account for the enzyme. 

To affordably account for the contributions of the enzyme, protein-ligand docking is 

performed to evaluate possible substrate binding modes.9, 106 As a more costly option, 

molecular dynamics (MD) simulations using molecular mechanics (MM) force fields have been 

used to investigate substrate-enzyme interactions.10, 90, 107 In the case of cytochrome P450s, MD 

simulations have also helped to explain conformational changes that occur during the catalytic 

cycle.108 In the cases of docking and MM-based MD, reactivity information is absent. The 

computational cost for QM/MM/MD also is prohibitively high for routine analyses. Additionally, 

this approach requires carefully, and most often manually, assigning enzyme, substrate, and 

solvent atoms between the QM and MM layers. There exists a gap in reliable methodology that 

1) considers reactivity, 2) accounts for the protein environment, and 3) is computationally 

affordable. This gap is further widened by the lack of CYP450 design studies in the literature 

using Rosetta. We aim here to close this gap while eyeing enzyme design as a future effort. 

There is precedent in the literature for combining reactivity and binding mode 

predictions from docking. Specifically, Tyzack and co-workers combined bond order calculations 

at the B3LYP/6-31G(d,p) level of theory with tethered docking outcomes from GOLD through a 
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manually parameterized scoring approach.109 While straightforward to implement, the 

parameterization is purely empirical, with parameters varying by enzyme isoform. In addition, 

the tethering approach converted the abstracted hydrogen atom to an oxygen atom bound to 

both the heme iron atom and a carbon atom on the substrate. Such tethering is more akin to 

docking an unreleased product in complex with the enzyme.  Despite our perspective on their 

exact approach, the improvement in their predictions upon inclusion of bond order calculations 

was substantial and clearly demonstrates the value of combining electronic structure 

calculations with docking. 

To this end, we present a generalizable workflow for the prediction of P450 

hydroxylation products that combines docking and pose clustering with substrate-centric post-

docking calculations using highly scalable semi-empirical tight binding and force field 

calculations. CYP101A1 (camphor 5-monooxygenase) served as our development system given 

the abundance of readily available experimental data for the native sequences. Additionally, 

given its bacterial origin and the number of active mutants known in the literature, it is a good 

candidate for future enzyme engineering efforts. Experimental hydroxylation outcomes for 

substrates of CYP101A1, including product ratios where applicable, were gathered from the 

literature for the 25 substrates in Figure 3-1.  We demonstrate improved hydroxylation 

prediction performance over docking alone by combining reactivity information with docking in 

a way that will naturally extend to future enzyme design efforts. 
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Figure 3-1 Substrates utilized for method development. Positions corresponding to the major 

(green) and minor (blue then red) hydroxylation sites are circled.  

Computational Methods 

All software used herein is open source and free for use, at least within academia. 

Avogadro19 was used for initial substrate geometry generation along with the bundled MMF-94 

force field.20 In addition to Avogadro, PyMol110 was used for visualization and enzyme structure 

protonation. Grimme’s xtb22 and crest111 programs were used for substrate conformer 

generation at the GFN-FF level of theory. Docking was performed using RosettaScripts112 within 

Rosetta 3.13 and RxDock 0.1.0.113 Pose clustering was performed using Zhang’s DockRMSD 
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utility.114 All scripts were written in python or bash, and where possible, GNU parallel was 

utilized to parallelize docking operations.115 Within python, pandas116 was utilized for data 

filtering. Openbabel 3.1.1 was used throughout to convert between required file types.71 

Conformer-Rotamer Ensemble Generation for Substrates 

 Substrates were initially built and minimized in Avogadro as indicated above. Using xtb22 

and crest111 with GFN2-xTB23 as the level of theory and the default search algorithm within 

crest, a conformer-rotamer ensemble was generated, retaining conformers and rotamers 

within 12.0 kcal/mol of the best identified conformation. All structures were then reoptimized 

within xtb using GFN-FF25 using the “vtight” gradient convergence criterion. This was done as 

post-docking calculations for thousands of structures are more scalable with the force field 

than with GFN2-xTB. The resulting structures were sorted according to their potential energy 

and all those within a 3.0 kcal/mol window relative to the best structure were retained for 

docking. In this way, only conformations that should be reasonably populated will be docked 

into the receptor. This same conformer/rotamer ensemble was used for docking in both RxDock 

and Rosetta. 

Receptor Selection 

 The 1DZ8117 accession into the Protein Data Bank was used as the protein receptor. 

While it is possible, or even probable, that the 1DZ8 structure is the reduced hydroperoxyl form 

of the enzyme as suggested by Nagano and Poulos, the authors also acknowledge their own 

2A1M “… wild-type dioxygen complex structure is very much the same as reported 

previously…” by Sligar and co-workers.118  With this in mind, we proceeded with the 1DZ8 

structure as representing an oxygen bound, later-stage catalytic intermediate of the enzyme. 
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In this work, we worked mechanistically backwards from the peroxo-ligated 

intermediate to account for the space occupied by molecular oxygen upon binding to reduce 

the size of the search space during stochastic docking.  Our aim was to reduce the occurrence 

of poses that would not accommodate the binding of molecular oxygen and that, as a result, 

would not be hydroxylated according to our mechanistic paradigm. While a quality crystal 

structure the oxo-ligated complex is not available, future work could explore the utility of 

starting from a later catalytic intermediate once, specifically Compound I, should a quality 

structure become available. This would also require explicit modeling of catalytically important 

water molecules. 119 

Receptor Preparation for RxDock 

From the 1DZ8 structure, all hydrogens were added using PyMol. Additionally, D297 and 

H355 were protonated to complete the hydrogen bonding interactions to the propionate 

substituents on the heme. Each molecular oxygen atom was then assigned a formal charge of -

1, and this state will be referred to as the ferric-peroxo state hereafter. To generate a structure 

more consistent with the ferric/resting state of the heme prior to substrate binding, the 

dioxygen ligand was removed from the structure without any additional modifications. While 

we acknowledge a five-coordinate heme could be in the ferrous state following the first 

electron transfer to the enzyme and before the binding of molecular oxygen, this state is 

referred to as the ferric state from this point forward. 

 Cavities for each state of the receptor were prepared using the reference ligand method 

within RxDock. A radius of 6 Å around each atom of camphor in its native binding orientation in 
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the 1DZ8 structure was used, and a single cavity was prepared with a small sphere radius of 0.5 

Å with a minimum cavity volume of 100 Å3. 

Receptor Preparation and Parameter File Generation in Rosetta 

 From the 1DZ8 crystal structure in the Protein Data Bank, the dioxygen-ligated heme 

was extracted along with C357. The C357 residue was then truncated to a methylthiolate in 

PyMol. By default, Rosetta deprotonates aspartic acid residues to yield carboxylated and 

histidine residues to give their neutral form. Therefore, both proprionate substituents on the 

heme were protonated to account for Rosetta’s default handling of ionizable residues while 

also getting the overall local charge and proton accounting correct provided D297 and H355 will 

be deprotonated within Rosetta during docking. The remaining hydrogens were also added in 

PyMol. Within xtb, a constrained minimization was performed as a dianion with GFN-FF to 

consistently place hydrogens while fixing all heavy atoms. From this constrained geometry, a 

conformer/rotamer ensemble was not constructed because the local protein environment 

around the heme affords salt bridges to the propionate side chains and steric limitations on the 

vinyl substituents on the heme that restrict the over configuration of the heme. After removal 

of the methylthiolate ligand, the remaining structure was parameterized for Rosetta in standard 

fashion using the molfile_to_params.py script, using the “--recharge” flag to set the total charge 

to -1 (with the other negative charge being formally assigned to the thiolate residue).120 In this 

way, the charges on the heme should be consistent with the ferric-peroxo state of the enzyme 

following the second electron transfer event. In the resulting parameter file, the peroxo ligand 

oxygen atoms were converted to virtual atoms as the peroxo ligand was parameterized 
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separately. This heme structure was assigned a chain code of “H” and a three letter residue 

code of “HM3,” differentiating it from Rosetta’s native heme definition. 

 The peroxo ligand from the 1DZ8 structure was then also parameterized in standard 

fashion.120 The oxygen and iron atoms were extracted to a mol2 file and parameterized, with 

the iron atom converted to a virtual atom and assigned a partial charge of zero. The partial 

charges from the heme preparation above for the oxygen atoms were then manually assigned 

to the peroxo ligand here and the chain was assigned a three letter residue code of O2M and a 

chain identifier of “O.” 

 Finally for the enzyme, we generated a “noncanonical” amino acid (NCAA) 

representation of C357 as a thiolate anion as Rosetta will not deprotonate the thiol by default. 

Rather than the standard Rosetta protocol for NCAA parameterization, we utilized the 3-

chloroalanine NCAA already available in the Rosetta database. The acetylated N-methyl 

amidated cysteine thiolate was constructed from C357 in the 1DZ8 structure, as is typically 

done for NCAA generation in Rosetta, and was optimized at the GFN2-xTB level of theory as a 

singlet anion. Starting from the 3-chloroalanine parameter file, bond lengths and angles were 

manually copied from the SEQM-optimized structure to the parameter file. Mulliken charges 

from the optimized geometry were also assigned as the partial atomic charges in the parameter 

file. The rotamer library from 3-chloroalanine was not used, and a rotamer library was not 

generated since the cysteine side chain is not expected to occupy alternative conformations. 

This residue was assigned the three-letter code of “CYA” to differentiate it from other cysteine 

residues. 
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 Finally, each substrate was parameterized in standard fashion by converting the 

conformer-rotamer ensemble into a mol2 file and parameterizing the substrate in standard 

fashion. 120   

All four full-atom parameter files were provided to Rosetta by the “-extra_res_fa” flag 

and without modification of the default database. 

Constraint Generation and Implementation 

 Estimates of local geometric parameters of a substrate complexed with the ferric-

peroxo intermediate were made for use as pharmacophoric constraints during docking. Using a 

truncated heme model in the ferric-peroxo dianionic state and model substrates, potential 

energy surface scans using GFN2-xTB were performed along the Oproximal–Hsubstrate distance on 

the doublet surface. Ethane, propane, isobutane, and propene were used as models for 

primary, secondary, tertiary, and allylic hydrogens, respectively. The scan was performed from 

2.0 Å to 2.4 Å in 40 steps. The minimum identified along the scan coordinate was used to 

measure the Oproximal–Hsubstrate distance, Feheme–Oproximal– Hsubstrate angle, and the Oproximal– 

Hsubstrate– Csubstrate angle. 

Docking with RxDock  

A pharmacophoric constraint was used to ensure a nonpolar hydrogen atom docked 

within 2.22 Å of the proximal oxygen atom’s coordinates. RxDock only differentiates between 

polar and nonpolar hydrogen atoms and cannot limit the pharmacophoric constraint to only 

aliphatic hydrogen atoms. Additionally, RxDock only affords the ability to set an upper bound 

on the constraint distance, so the maximum value for the Oproximal–Hsubstrate distance from 

constraint generation was used. This constraint was applied in both the ferric-peroxo and ferric 
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states with a penalty weight of 100.0 arbitrary units per Å2 (although RxDock alleges energy 

units of kJ / mol). A quadratic penalty is the only option in RxDock. 

Each substrate was docked for a total of 1000 trials per conformer in the generated 

ensemble. With rotamers included in the conformer/rotamer ensemble, the total number of 

trials was divided over all rotamers in the ensemble and parallelized using GNU parallel.115 

Stochastic docking was first performed in the ferric-peroxo state using the default docking 

algorithm and desolvated scoring function in RxDock. Then, each pose was minimized in the 

ferric state using the pose minimization algorithm in RxDock with the desolvated scoring 

function. During docking, substrate dihedral angles were sampled ± 30° from the conformer 

provided for docking. 

Docking with RosettaScripts 

 Overall, docking in Rosetta was performed in a similar manner to RxDock, though many 

more options exist within Rosetta and those differences are annotated below. 

Match style pharmacophoric constraints121 were used with the range of all three 

geometric parameters described above. Specifically, the Oproximal–Hsubstrate distance was 

constrained between 2.08 and 2.22 Å, the Fe – O – H angle was constrained between 122.2° 

and 128.6°, and the O – H – C angle was constrained between 167.7° and 179.5°. During 

development, it was noted that the salt bridge between R112 and the heme propionate would 

frequently be lost during sidechain rotamer sampling. This interaction is highly conserved in the 

PDB, so a distance constraint of 2.0 ± 0.2 Å between a proton on the arginine residue and a 

propionate oxygen atom was set. Similarly, the salt bridge between H355 and the heme 

propionate were also routinely lost during side chain sampling, so again a distance constraint of 
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2.0 ± 0.2 Å was applied. For all constraints, a conservative penalty weight of 50 Rosetta Energy 

Units (REU) / Å was applied. 

Side chains were first saved using the SaveAndRetreiveSidechains mover. All side chains 

except prolines and glycines were then converted to alanine. The Transform mover was used to 

stochastically dock the substrate in the polyalanine active site using a box size of 5 Å, a step size 

of 0.1 Å, and a rotation angle of 360°. This was done with Rosetta temperature of 5.0 for at 

least 10 cycles or until a negative score was returned. The original side chains were then 

restored. After applying the match style constraints above, the substrate was minimized. Three 

rounds of side chain sampling of residues with 12 Å of the substrate, including minimization of 

side chains, backbone atoms, and the substrate.  Through this, the heme and peroxo ligand 

were treated rigidly to conserve the orientation of salt bridges and the peroxo ligand.  The 

peroxo ligand was then removed and the system within 12 Å of the substrate, including the 

heme, were minimized one last time.  The InterfaceScoreCalculator was used to compute the 

interface energy between the substrate and the enzyme. The number of docking trials per 

abstractable hydrogen bonded to an sp3 hybridized carbon was 50 times the number of 

conformers in the ensemble for no more than 250 trials. 

Post-Docking Calculations 

 An important limitation within RxDock is that explicitly tethering each hydrogen atom in 

the substrate to the proximal oxygen atom is not possible. Instead, a pharmacophoric distance 

constraint between the proximal oxygen atom and any hydrogen atom is possible, allowing 

potentially multiple hydrogen atoms to satisfy the constraint. To predict the HAT barrier for 

each pose, local geometric parameters between each hydrogen atom in the substrate and the 
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proximal oxygen atom were computed. First, only hydrogens with a Feheme–Oproximal–Hsubstrate 

angle of less than 150° but more than 100° were considered. Next, only hydrogens with a 

Oproximal–Hsubstrate distance at most 2.2 Å was considered. If a pharmacophoric constraint penalty 

was assess, the closest hydrogen was considered, while still minding the previously mentioned 

Feheme–Oproximal–Hsubstrate angle constraint. From these hydrogens in a geometrically reasonable 

orientation relative to the proximal oxygen atom, the one resulting in the lowest HAT barrier 

was taken as the abstracted hydrogen for that pose. In addition to recording this most reactive 

hydrogen and its associated HAT barrier, the closest hydrogen was also recorded for product 

prediction without using these post-docking descriptors. 

 Within Rosetta, explicit tethering of each hydrogen atom bonded to an sp3-hydridized 

carbon atom was performed. Therefore, the abstracted hydrogen atom in each pose was 

assigned according to which hydrogen atom was explicitly tethered. 

For both RxDock- and Rosetta-generated poses, the gas phase HAT barrier in kcal/mol 

for the pose was estimated using our regression model (Equation 3-1) at the GFN2-xTB//GFN-FF 

level of theory as previously described.70 

𝛥𝐸4,𝐻𝐴𝑇
‡  = (𝐵𝐷𝐸 𝐶−𝐻,𝐹𝑅 ∗ 0.5674 + 0.0956) ∗  627.5096  Eqn. 3-1 

In addition to estimating the HAT barrier, the single point potential energy of each pose 

was computed in the gas phase using GFN-FF to calculate the conformation’s relative potential 

energy as compared to the best conformer in the generated ensemble used for docking. Next, 

each pose was minimized using GFN-FF to estimate the distortion relative to the nearest 

adjoining minimum in the gas phase (ΔEdistortion). We assume, but cannot guarantee, that the 

adjoining minimum is a conformer in the initially generated ensemble. While not used in 
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analysis, this quantity was recorded.  Post-docking calculations could be accelerated by forgoing 

these geometry optimizations.  Prior to pose clustering, poses with a relative potential energy 

greater than 4.0 kcal/mol were filtered out as physically improbable. 4.0 kcal/mol was chosen 

to afford 1.0 kcal/mol of flexibility about substrate dihedral angles over the 3.0 kcal/mol energy 

window set in conformer/rotamer ensemble generation. In our view, this was particularly 

important for the analysis of Rosetta results as the ref2015 scoring function in Rosetta negates 

intramolecular repulsion for ligands. 

Pose Clustering 

 Clusters of substrate poses were generated using heavy atom pairwise root mean 

square deviation (RMSD) clustering using DockRMSD.114 All poses for each substrate were first 

sorted according to their interface score. In RxDock, the intermolecular score term was utilized, 

and for Rosetta, the interface score used was the “interface_delta_X” term from the 

InterfaceScoreCalculator mover.120 These will be generally and interchangeably be referred to 

as “interface scores” hereafter. The best (lowest) scoring pose served as the seed structure for 

the first cluster. The RMSDs between the seed and all other poses were determined, and those 

poses within 1.0 Å were assigned to the first cluster. Tukey’s fence method122 was used to 

remove high interface score outliers in each cluster, with an upper fence set to 3.0 times the 

interquartile range over the third quartile of interface score in the cluster. Removed outliers 

were recycled back into the remaining pose list for ultimate clustering. A second cluster was 

formed as above using the best scoring pose of the remaining poses as the seed structure, and 

clustering was repeated in this way until all poses were assigned to a cluster. Enzyme 

conformational differences and the total complex score from Rosetta were not considered. 
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Prediction Assignment 

 For RxDock, assignment of the abstracted hydrogen was first performed without the 

consideration of HAT barriers calculated for docked poses. Generated clusters for each 

substrate were rank ordered according to each cluster’s lowest interface score, and the 

hydrogen atom closest to the proximal oxygen atom in the peroxo ligand was assigned as the 

abstracted hydrogen. Where the closest hydrogen was bound to a sp2 hybridized carbon atom, 

that cluster was manually skipped over in rank ordering. This manual intervention was required 

due to the limitations of RxDock’s pharmacophoric constraint features. Such predictions in the 

absence of reactivity information were not performed using Rosetta. 

 For both Rosetta and RxDock results, prediction assignments were then made using the 

estimated HAT barrier of each pose during clustering. Once clustered as above, the abstracted 

hydrogen atom was assigned for the cluster according to the lowest estimated HAT barrier 

within a cluster. In this way, the assignment in the cluster was made.  

Lastly, clusters, and thus the abstracted hydrogen atom predictions, were rank ordered 

according to the best interface score in each cluster. For completeness in record keeping by 

both approaches, the RMSD between the top-ranked cluster and the remaining clusters were 

computed as previously described, using the seed structure within each cluster. Additionally, 

the number of poses in each cluster was recorded. 

Results and Discussion 

Pharmacophoric Constraint Generation 

 Relaxed surface scans of the O-H coordinate for four model substrates were performed 

at the GFN2-xTB23 level of theory. The O-H coordinate was chosen as the HAT event with 
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Compound 1 proceeds along this motion. We assess a minimum along this coordinate in this 

reduced model is representative of the Van der Waals complex between the substrate and the 

enzyme following the second electron transfer step and relevant as the substrate should be 

positioned to be product once Compound 1 is formed. The structure along each scan with the 

lowest potential energy was used to extract the geometric parameters indicated in Figure 3-2. 

 

Figure 3-2 Minima structures along relaxed surface scans of the O-H coordinate for a) ethane, 

b) propane, c) isobutane, and d) propene in complex with a truncated heme model in the ferric-

peroxo state. The Oproximal–Hsubstrate distance, Oproximal–Hsubstrate–Csubstrate angle, and Feheme–

Oproximal–Hsubstrate angle are labeled for each. Carbon, nitrogen, oxygen, sulfur, hydrogen, and 

iron atoms are green, blue, red, yellow, white, and bronze, respectively. 

  The generation of reasonable geometric parameters to use as pharmacophoric 

constraints during docking is necessary to limit the size of configurational space that is searched 

during any docking algorithm. While many QM studies focus on the HAT event between 

Compound 1 and the substrate, we are unaware of any studies that model the substrate in 

complex at the ferric-peroxo state in the catalytic cycle. To gauge the reasonableness of our 

constraints, we compared the Oproximal–Csubstrate distance of the propane complex above (Figure 

3-2b) with the Oproximal–Csubstrate distance in the 1DZ8 and 2A1M118 crystal structures. These 

comparisons were made as all three represent hydrogen abstraction at a secondary aliphatic 
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carbon. The Oproximal–Csubstrate distance for propane of 3.29 Å was approximately 0.2 Å longer 

than the 3.11 Å and 3.09 Å distances measured in the 1DZ8 and 2A1M structures, respectively. 

Additionally, the Feheme–Oproximal–Csubstrate angle in the propane complex was found to be 123.1°, 

which was bound by the angles of 122.8° and 126.1° in the 1DZ8 and 2A1M structures, 

respectively. Given both structures are assessed as the ferrous dioxygen complex following the 

first electron transfer step and not as the ferric-peroxo state, we assessed our geometric 

parameters as reasonable and continued. 

 Similar modeling of reduced systems could have likewise been performed using the 

ferric-hydroperoxo (the Compound 0) state. However, as we proceeded forward with docking, 

the location of the “catalytic” water119 implicated in protonating the ferric-peroxo state would 

need to be included. Incorporating explicit water molecules is an area of active research, both 

in docking algorithm development as in the recently released AutoDock Vina 1.2.0123 and in 

applications of machine learning to improve scoring functions and their handling of relevant 

entropic effects.124 However, the incorporation of explicit water within Rosetta for enzyme 

design is nontrivial, with the introduction of bias on part of the researcher being our chief 

concern. For this reason, our effort to consider late-stage catalytic intermediates only went as 

far as the ferric-peroxo state.  

Rigid Receptor Docking in RxDock 

While our aim is to build methodology that can be used for enzyme design within 

Rosetta, we first employed a more traditional docking utility that could find use in virtual 

screening and binding mode prediction. While AutoDock Vina is arguably (perhaps irrefutably) 

the most common with over 20,000 citations of the initial publication,125 the clustering 
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algorithm is run automatically, and we wished to recover all generated poses, not just the 

clustered results. Secondly, neither nonpolar hydrogen atoms nor bond orders, which could be 

used to replace hydrogens in post-processing, are retained in the output pdbqt file format used 

by AutoDock Vina, and ligand hydrogens are required for estimating HAT barriers. Lastly, 

pharmacophoric constraints during docking is not trivially performed within AutoDock Vina. 

While lesser known, RxDock113 overcomes each of these limitations. 

Traditionally, high throughput virtual screenings might only consider and dock into the 

ferric state of P450cam with all crystallographic waters removed. As our groups126 and others127 

have previously described for terpene synthases, the incorporation of mechanistic information 

by way of evaluating multiple catalytic intermediates yields improved predictions. The central 

premise of these studies is that docked poses of intermediates along a catalytic reaction 

coordinate must be consistent with the adjoining catalytic states for the pose in the initial state 

to be a productive binding mode. We extended this logic to this work in that poses in complex 

with the varied iron-oxygen intermediates of the heme must be configurationally consistent. 

We assume that drastic geometric differences in substrate orientation between catalytic 

intermediates are improbable and that a correct, productive binding mode in the ferric state is 

likely to accommodate the binding of molecular oxygen. 

To this end, we hypothesized that performing stochastic docking into the ferric-peroxo 

state followed by minimization of these poses after the removal of the peroxo ligand would 

afford poses in the ferric state of the enzyme that would accommodate molecular oxygen. 

While multiple electron transfer events occur following substrate binding,10 it is unlikely that 

any docking program and associated scoring function could reliably capture the nuanced 
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electronic differences between the ferric-peroxo and ferrous-dioxygen states and between the 

ferrous and ferric states of the enzyme. Therefore, we docked only into the ferric-peroxo state 

and worked backwards, minimizing in the ferric state. 

While RxDock allows for controlled sampling of dihedral angles to prevent gross 

deviations from input conformations, we additionally evaluated the need to incorporate post-

docking calculations of relative substrate potential energies affected product predictions. We 

visually examined the distribution of all intramolecular terms from RxDock and relative 

potential energies from post-docking calculations for the twelve substrates with rotatable 

dihedrals other than methyl rotations through a pairplot. 94% of the poses in this subset of 

substrates had distortion energies less than 4.0 kcal/mol, with the bicycloheptane and 

piperidine derivatives having the most poses with high relative potential energies as compared 

to the best discovered conformer as seen in Figure 3-3. The lack of correlation between force 

field-derived relative potential energies in post-docking calculations and the ligand 

intramolecular scoring term from RxDock agrees with Huang’s assessment of the challenges in 

considering ligand flexibility during virtual screening.128 These collective findings point to this as 

an area for improvement, at least in RxDock and those packages sampled by Huang (AutoDock 

Vina,125 DOCK,129 and MDock130). Because of this disagreement and the extensive benchmarking 

performed in the development of GFN-FF,25 we sought to apply a post-docking filter based on 

the GFN-FF computed relative potential energy of a pose, and we only considered the 

intermolecular score term from RxDock for our predictions. 
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Figure 3-3 Pairplot of RxDock intramolecular scores and GFN-FF relative potential energies for 

flexible substrates in the panel. Flexible substrates were taken as those with rotatable bonds 

other than methyl rotations. 

From our inspection, we established a post-docking filtering threshold of 4.0 kcal/mol 

using the relative potential energy of a pose prior to clustering. While a threshold selection of 

4.0 kcal/mol afforded conformers within 3.0 kcal/mol range of the lowest energy conformer to 

modestly distort further, we additionally assessed 4.0 kcal/mol as a reasonable threshold based 

on n-butane as a conformationally flexible model and known substrate of our system. Where 

previous studies have placed the syn conformation of butane ca. 5.5 kcal/mol higher in 

potential energy relative to the anti conformation,131 a threshold of 4.0 kcal/mol would allow 

for exploration of most of butane’s configurational space. 
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With a filter in place to remove unreasonable distorted compound poses, we gauged 

the benefit of incorporating estimated HAT barriers into our analysis by comparing the results 

from RxDock both with and without considering the HAT barrier during clustering as described 

in our methods. As shown in Figure 3-4 below, a substantive improvement in our prediction 

success rate for the primary hydroxylation product was observed when HAT barriers were used 

during pose clustering to assign the abstracted hydrogen.  These benefits were most notable in 

the top one and two ranked predictions, were prediction success rates increased by 20% and 

12%, respectively. This finding suggests that between clustered poses, the correct hydrogen to 

be abstracted is the one with the lower barrier to abstraction rather than the hydrogen closest 

to the proximal oxygen atom. 
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Figure 3-4 RxDock prediction success rates for primary hydroxylation products across the top 5 

ranked predictions, comparing the inclusion and exclusion of HAT barriers to assign the 

abstracted hydrogen. 

 To gauge the comparative performance of our approach, we examined our success rates 

alongside those of Tyzack.109 For a more direct comparison, we computed our success rate in 

predicting any experimentally observed product in the first five predictions across our substrate 

panel to compare to the success rate for the top two and three predictions reported by Tyzack. 

Our approach achieves performance on par with or modestly improved over the inclusion of 

bond order alone as employed in their work.109 

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

C
o

rr
ec

t 
P

re
d

ic
ti

o
n

 R
at

e
 w

it
h

in
 T

o
p

 X
 P

re
d

ic
ti

n
o

s

Top X Predictions

RxDock w/ HAT Barriers |
CYP101A1 (Major Product)

RxDock w/out HAT Barriers
| CYP101A1 (Major
Product)



67 
 

 

Figure 3-5 Prediction success rate comparison between work presented here and that 

previously reported in the literature.109 

 We further considered the improvement of each approach over the use of docking 

scores alone in the top 3 predictions. The incorporation of estimated HAT barriers yielded 

comparable improvements to those achieved with reactivity measured employed by Tyzack. In 

general, the agreement between our improvements promotes the importance of considering 

reactivity in addition to estimated binding affinities and substrate fit considered through 

docking alone. While comparable in performance, we propose our approach to be more 

generalizable given we do not employ scoring parameters or tethering distances that are varied 

according to the enzyme isoform in question. Additionally, our approach is more 

computationally affordable, relying on semi-empirical and force field methods as opposed to 

density functional theory is moderately sized Pople basis sets.41  
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Figure 3-6 Comparison of improvements to prediction success rates through the inclusion of 

reactivity measures over docking alone. Reactivity measures included estimated HAT barriers 

employed in this work alongside RxDock outputs and bond orders or SET scores in the work 

reported by Tyzack and co-workers.109 

 While perhaps critical of the exact approach taken by Tyzack and co-workers to re-

parameterize pose scoring using C–H bond orders for HAT reactivity, their work is undoubtedly 

inspirational and respectful of the need to consider electronic structure and reactivity alongside 

substrate fit and binding affinity estimates from docking. While their study examines a larger 

substrate panel in multiple human isoforms of cytochrome P450, ours focuses on the 

prototypical, bacterially originated CYP101A1 as an enzyme system that is known to be 

amenable to mutation for protein engineering.132 With our comparison to previously published 

work complete using a docking package more suited for virtual screening, we turned our 

attention to implementing this work within Rosetta with an ultimate goal of developing 

methodology for enzyme design. 
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Product Predictions in Rosetta 

 While pharmacophoric constraints were limited to the Oheme–Hsubstrate distance in 

RxDock, all distance and angular parameters between the heme, the proximal oxygen atom (or 

its coordinates) and a substrate hydrogen atom are accessible in Rosetta through match style 

constraints. Therefore, we employed all the geometric parameters recovered from SQM 

calculations above in Figure 3-2as a penalty-free range from the minimum to the maximum 

value for each parameter. Two additional parameters are notably absent. Both the Xsubstrate–

Csubstrate–Hsubstrate–Oheme and Hsubstrate–Oheme–Feheme–Nheme dihedrals were not restricted in our 

approach. We believe limitations about these degrees of freedom should be controlled by the 

scoring function within Rosetta. Specifically, the rigid body treatment of the ferric-peroxo heme 

should limit the accessible angular space within the active site with respect to the Hsubstrate–

Oheme–Feheme–Nheme dihedral. Likewise, the Xsubstrate–Csubstrate–Hsubstrate–Oheme dihedral, and the 

conformation of substrate in general, should controlled by the supplied conformer/rotamer 

ensemble and interactions in the enzyme active site. In general, we believe as few constraints 

as are a mechanistically relevant or physically reasonable should be included, with all remaining 

degrees of freedom controlled by the scoring function to reduce bias introduced by the 

modeler. However, as mentioned previously with regards to substrate flexibility, we expect the 

Rosetta framework and chosen scoring function to struggle with substrate intramolecular 

repulsion. As pointed out by Smith and Meiler,133 ref2015134 and three other scoring functions 

within Rosetta are not the top performers in the Comparative Assessment of Score Functions 

2016 (CASF-2016)135 benchmark with respect to recovering the native binding mode in top 

ranked predictions. While GALigandDock is the latest iteration in substrate pose prediction and 
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shows improvement native binding mode prediction,136 ref2015 was employed here as the 

default scoring function used for enzyme design efforts and our aims to apply this work in that 

area. 

 Again, we examined the distribution of relative potential energies for flexible substrates. 

23% of all flexible substrate poses are above ca. 4 kcal/mol, with 10% of poses above ca. 16 

kcal/mol (Figure 3-7).  These extremes are significant increases over our observations with 

RxDock. Where discrete control of ligand flexibility in RxDock is possible, the same degree of 

granular control is not available within the enzyme design framework in Rosetta. The 

generation of physically unreasonable poses, based on extremely high potential energies 

relative to the best discovered conformer for a substrate, was again most notable for the 

piperidine and bicycloheptane derivatives. While improvements have been made within 

Rosetta for docking specifically,136 such distorted structures highlight the need for further 

development in this area across the community, particularly for applications in enzyme design. 
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Figure 3-7 Pairplot of relative potential energies and substrate distortion energies as calculated 

with GFN-FF in post-docking for Rosetta-produced poses in flexible substrates.  Flexible 

substrates were again taken as those with rotatable dihedrals other than methyl rotations. 

 For consistency with our treatment of docked poses from RxDock, we proceeded with a 

threshold of 4.0 kcal/mol for relative potential energy as computed post-docking using GFN-FF. 

We applied our complete filtering and clustering approach as before. Figure 3-8 presents our 

prediction success rate for primary hydroxylation products in our substrate panel.  In our panel 

of 25 substrates, we achieved a correct prediction rate of 92% for any observed product in the 

top 2 ranked predictions.  While perhaps qualitatively improved over the findings of Tyzack and 

co-workers,109 we acknowledge the aim of their inspirational work was focused on enabled 

pharmacokinetic predictions rather than developing methodology to ultimately extend to in 

silico enzyme engineering. Additionally, our substrate panel is more modest in size as our 
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implemented protocol in Rosetta will not scale readily to hundreds or thousands of compounds 

given the degree of allowed protein flexibility. 

 

Figure 3-8 Hydroxylation product prediction performance using Rosetta in conjunction with 

post-docking ligand-centric calculations and clustering.  Previously published work is plotted for 

comparison. 

Binding Mode Prediction 

 The correct prediction success rates presented above are indeed encouraging.  While 

enthusiastic about correctly predicting any observed hydroxylation product with a high success 

rate in the top two and three ranked poses, the correct prediction of the major product is more 

relevant to enzyme engineering efforts, and we assess an 84% success rate as promising.  

However, equally important to the prediction success rate is that predicted poses for major 

product formation are consistent with experimentally observed orientations where data is 
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available.  Unfortunately, many CYP101A1 crystallographic structures are in complex with 

camphor or related analogs.  Still, making what limited comparisons are available is useful to 

assess, at least qualitatively, the performance of our approach with respect to binding mode 

prediction. Figure 3-9 presents our top generated pose consistent with major product 

prediction for camphor, camphane, (S)-nicotine, and thiocamphor as compared to experimental 

findings. 
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 Figure 3-9 Binding pose prediction (magenta) comparisons for select compounds where 

crystallographic data (green) is available.  A) Camphor in complex with CYP101A1 (2A1M).118 B) 

Camphane in complex with CYP101A1 (6CPP).137 C) (S)-nicotine in complex with CYP2A6 

(4EJJ).138  D) Thiocamphor in complex with CYP101A1 (8CPP).137 

 Perhaps unsurprisingly, camphor and its closely related analogs are predicted to bind in 

modes consistent with known structures.  As our ultimate aim is to leverage enzymes such as 

CYP101A1 to transform non-native substrates, we considered the binding mode of (S)-nicotine 
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in CYP2A6. 138 In our work here, we recovered a predicted binding mode that is qualitatively 

consistent with that in the CYP2A6 system but rotates the pyridinyl substructure to satisfy a 

hydrogen bond with the Y97 residue in CYP101A1.  While a quantitative comparison between 

the two structures would be preferable, differences in sequence identity around the active site, 

notably the absence of a hydrogen bond donor in CYP2A6 that maps to Y97 in CYP101A1, 

understandably results in a differed binding mode between the two complexes.  Lastly, 

experimental structures may not capture productive binding modes that lead to major 

hydroxylation product formation.  Such is the case for thiocamphor in CYP101A1 in the 8CPP 

structure137 wherein thiocamphor occupies two separate binding modes, neither being 

consistent with formation of the 5-exo hydroxylated major product.  Given the limited number 

of experimental comparisons that can be made to assess binding mode prediction performance 

in our panel of substrates, careful inspection of selected binding modes should be made with a 

critical eye.  Whether for the purpose of product prediction in virtual screening as immediately 

shown in this work or in projected enzyme design efforts, the employment of complimentary 

methods for quantitative assessment of the filtered results may be needed to further validate 

our performance.  Pose clustering followed by molecular dynamics simulations have been 

benchmarked in the literature and suggested for the reduction of false positive hits from 

docking.139 While too expensive for routine use early in a pipeline with many drug candidates or 

enzyme mutants to screen, our presented work may benefit from MD as a final step in a 

comprehensive pipeline to confidently predict product formation or to evaluate proposed 

mutants to focus wet lab efforts on those leads with the highest probability of success. 
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Conclusions 

The inclusion of a measure of HAT reactivity is critical in predicting hydroxylation 

outcomes from CYP450 enzymes. This is consistent between Tyzack and Glenn’s work in human 

CYP450 isoforms109 and our studies with both RxDock and Rosetta presented herein. We have 

demonstrated that systematic estimates of HAT barriers are useful in the prediction of CYP450-

mediated hydroxylation products for the CYP101A1 enzyme. Furthermore, our approach does 

not rely on parameterized rescoring and should generalize to other docking packages and the 

analysis of their outputs. In performing substrate-centric gas phase calculations with modern 

force field and semi-empirical methods, the computations required are affordable and scalable 

alongside docking and pose clustering, being orders of magnitude less expensive than even 

modest density functional theory on the same computing resource. 

Additionally, the importance of assessing and limiting substrate flexibility presented 

above is consistent with the generalized assessment from Huang.128 By systematically assessing 

substrate distortion, even if only in post-processing, we present a systematic approach to 

evaluating the reasonableness of docked ligand poses. Relative potential energies in our panels 

of more than 20 kcal/mol were observed, and while such gross deviations from the lowest 

energy conformer in the generated ensemble may at times be obvious, our implementation of 

post-hoc filtering using GFN-FF computed potential energies provides an affordable, 

quantifiable, and objective measure by which to remove unreasonable poses. 

In total, prediction success rates using both RxDock and Rosetta along with the 

additional descriptors, filtering, and clustering we have described rival or exceed those 

previously reported.109 As it specifically relates to enzyme design, our methodology is the first 
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reported utilizing Rosetta, with the explicit aim of engineering CYP450 enzymes. Given a 

primary product prediction success rate of over 90% in the top three predictions, we believe 

our approach within RosettaScripts will naturally lend itself to enzyme design as both leverage 

the same movers. Such protein engineering efforts are of immediate interest to our groups and 

our collaborators, and proof of concept studies to this end are forthcoming.   
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Chapter 4: Predicting Photoisomerization Under Biologically Relevant Conditions 

Introduction 

 Molecular photoswitches, molecules that photoconvert from one stable isomeric state 

to another (meta)stable state, are of significant interest in microscopy applications. In 

particular, those that undergo large conformational changes, that demonstrate fatigue 

resistance in an aqueous environment, and that possess a high quantum yield are attractive 

tools in to probe, and even perturb, biological systems.140 Among such biologically relevant 

photoswitches, azo compounds, particularly azobenzene, are perhaps the oldest known141 and 

most widely studied.142 In recent years, however, heteroaryl variants of azobenzene have 

gained increased interest to further tune the electronic properties of the photoswitch, 

extending beyond just substituent modifications as is the case of azobenzene.143 Nevertheless, 

azobenzenes remain relevant as important tools to probe biological systems, and further 

synthetic techniques are warranted to expand their utility. In addition, acylhydrazones have 

been developed as modular and tunable photoswitches.144 Acylhydrazones are generally 

hydrolytically stable and tunable, making them an attractive motif to couple with azobenzenes 

to create molecular photoswitches with multiple photo-induced isomerizations. 

 Zhu and co-workers expanded the viable synthetic routes to functionalized azobenzenes 

following a redox isomerization strategy that incorporate both the azobenzene and 

acylhydrazone functionalities.1 In doing so, the desire was to develop a selective multimodal 

photoswitch to target pharmacological targets according to the attached pharmacophore. 

Isomerization selectively was assumed based on the presence of two otherwise 

photoisomerizable functional groups, the azobenzene and the acylhydrazone motifs, being 
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present. Figure 4-1 shows their generalized product, where they sought to install 

pharmacophores (generalized below as R) proximally to the acylhydrazone.  

 

Figure 4-1 Proposed photoswitch containing two photoswitchable motifs. 

However, Zhu and co-workers were unable to isomerize the acylhydrazone moiety but 

showed excellent efficiency in isomerizing the azobenzene motif. To rationalize this 

observation, we employed time-dependent density functional theory (TD-DFT) to rationalize 

the inaccessible isomerization of the acylhydrazone functionality. The work presented in this 

chapter has been previously published,1 and the associated text and content is used with 

permission. 

Computational Methods 

DFT calculations were performed using Gaussian 16 Revision A.03,37 and surfaces and 

predicted absorption spectra were rendered using default settings GaussView 6. Figure 4-2 

provides the three structures for which calculations were performed as representative 

structures where electron-donating or electron-withdrawing groups were included by Zhu and 

co-workers proximal to the azobenzene motif to tune the photoswitch, and a phenyl group was 

included proximal to the acylhydrazone to represent a pharmacophore substituent. For 1, 2, 
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and 3 below (Figure 4-2), Z and E isomers of both the azo and acylhydrazone groups were 

modeled. 

 

Figure 4-2 Photoswitches of interest used to computationally explore the effects of electron donating 

and withdrawing groups. 

Ground state structures were first optimized at B3LYP38, 39, 61/3-21G PCM(DMSO). cam-B3LYP145-

GD3BJ146/6-311+G(d,p) PCM(DMSO) was then utilized for further geometry refinement and for 

TD-DFT calculations of the excited state. The coulomb-attenuating method was chosen due to 

the degree of conjugation in our systems. Grimme’s D3 empirical dispersion79 with Becke and 

Johnson damping147 was included as dispersion effects are likely important in Z-isomers of the 

switchable moieties given the steric crowding that prevents planarity of the system. PCM148 

solvation corrections were included in both the ground and excited states149 using the standard 

linear response solvation method within Gaussian, and DMSO was selected as the solvent to 
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mirror experimental conditions. Absorption spectra were predicted for the first 10 singlet 

excitations for each isomer. Overall, this level of theory accurately reproduced experimentally 

observed spectra for (E)-1,2-diphenyldiazene and (E)-N'-benzylidenebenzhydrazide (not 

presented) as a quality check. Excited state densities were calculated for the π to π* transition 

for E-azo isomers and for the n to π* transition for Z-azo isomers as the transitions most 

consistent with the excitation wavelength (365 nm) used experimentally. Differential electron 

densities between the excited and ground states were then visualized as a surface in GaussView 

to better understand the localization of electron density changes between states and the origin 

of the excited electrons. In this way, the observation of only isomerizing the azo group may be 

rationalized. 

Results and Discussion 

 Absorption spectra for 1, 2, and 3 are presented in Figure 4-3 for both the E-azo and Z-

azo isomers. Zhu and co-workers achieved an enriched 9:1 Z-azo:E-azo photostationary state 

upon excitation at 365 nm. Shorter wavelength excitations were not explored in their work due 

to the biological incompatibility of shorter UV wavelengths and the desired biological 

application of these compounds. As shown in Figure 4-3, TD-DFT calculations performed here 

predicted an excitation maximum at approximately 365 nm, coinciding with the Zhu’s findings. 

As expected, the inclusion of the nitro group modestly red-shifted the π to π* transition to a 

predicted wavelength of 381 nm, with the methoxy group not predicted to significantly shift 

this transition. Our calculations show that the π to π* transitions for the E-azo isomers of 1, 2, 

and 3 all have relatively poor spectral overlap with the n to π* transitions at ca. 453 nm for the 
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corresponding Z-azo isomers. This contributes to the ability to access photostationary states of 

1, 2, and 3 and selectively isomerize these compounds across the azo motif. 

 

Figure 4-3 Calculated electron absorption spectra from the first 10 predicted electronic 

transitions for the Z-azo and E-azo isomers of the compounds presented in Figure 4-2. 

 Still, our collaborators were surprised that no isomerization was observed across the 

acylhydrazone motif at the excitation wavelength of 365 nm. To explain this, electron density 

difference surfaces were computed for the E-azo and Z-azo isomers of 2 between the ground 

and first excited state for both the photostable Z-azo isomer and the E-azo isomer. 2 was 

selected for modelling as an electron donating group promotes the Baeyer-Mills 

condensation150 reaction in the synthesis of the azobenzene building dock used. For the E-azo 
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isomer, the π to π* transition at 365 nm was modeled. As shown in Figure 4-4a, the difference 

in electron density between the ground and excited state is greatest, and increased (red), over 

the azo motif. Upon visual inspection, a node is observed between the azo nitrogen atoms, 

consistent with the excitation to a π* type orbital. The occupation of such an antibonding 

orbital would correspond to a decrease in the bond order over the azo, facilitating the 

isomerization to the photostable Z-azo isomer. The absence of a significant difference in 

electron density over the acylhydrazone in Figure 4-4a is consistent with the lack of 

experimentally observed isomerization at that motif. For the Z-azo isomer, the n to π* 

transition at 450 nm was modeled (Figure 4-4b). The difference in electron density between the 

ground and excited states is well-localized to the azo motif. Zhu and co-workers were unable to 

experimentally test the Z-to-E isomerization photochemically. 
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Figure 4-4 Differential electron density surfaces for the methoxy substituted photoswitch in 

Figure 4-2. The difference is taken as the density in the excited state minus the density in the 

ground state.  Decreased electron density in the ground state is indicated by blue coloring, 

while increased density in the ground state is indicated by red coloring. 

Conclusions 

 While our computational findings rationalize the experimental observations of our 

collaborators, the significance of this work is that it affords a framework with which to 

computationally screen conceived photoswitches. These TD-DFT simulations could precede 

synthetic efforts and prioritize experimentally testing for only those leads that are predicted to 

photoisomerize as desired under the limitations of biologically compatible conditions. While the 
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level of theory used herein was chosen based upon replicating experimental findings for related 

compounds, an exhaustive benchmarking of various functionals and basis sets could be 

performed on these and other photoswitchable systems with the aim of reducing the 

computational cost. In reducing the computational cost, this approach could become more 

accessible to the synthetic chemistry community for affordable incorporation into design 

workflows. 
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Chapter 5: Predicting Baeyer-Mills Reaction Outcomes with Calculated Oxidation Potentials 

Introduction 

The Baeyer-Mills reaction is a common and important route to the diazene functionality 

as found in azobenzenes involving the condensation of an arylamine with a nitrosoarene.150, 151 

However, Baeyer-Mills reactions do not only result in the desired diazene moiety. Using 

nitrosobenzene as a starting material, the formation of azoxybenzene is observed as a side or 

major product. 

 Tombari and co-workers experimentally explored the dependence of azoxybenzene 

formation through substituent screening as depicted in Figure 5-1 below, where the substituted 

aniline was electronically modulated by varied electron withdrawing and donating groups.2 

They hypothesized that this modulation would result in systematically varied product of the 

undesired azoxybenzene product. 

 

Figure 5-1 The Baeyer-Mills reaction, leading to the formation of substituted azobenzenes, as 

well as azoxybenze as an undesired side product. 

 As indicated in Figure 5-1, the azoxybenzene side product was not substituted in any of 

the experimental conditions tested. This was confirmed by deuterium labeling the aniline 

derivative.2 Additionally, the reaction of N,N-dimethylaniline, which lacks exchangeable protons 

required for the condensation reaction with nitrosobenzene, led to formation of azoxybenzene 

in 52% yield.2 Based on these findings and collaboratively with Tombari and co-workers, we 

hypothesized that the oxidation potential of the supplied aniline derivative was an important 
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factor in predicting the experimental outcome, specifically for the production of the undesired 

azoxybenzene side product. Because the reaction is conducted in neat acetic acid, the 

experimental determination of the oxidation potential using cyclic voltammetry is not feasible, 

owing to electrode degradation. To this end, we computed oxidation potentials for substituted 

aniline and indole derivatives, with the aim of correlating azoxybenzene product to the 

predicted oxidation potential in acetic acid. The work presented in this chapter has been 

previously published,2 and the associated text and content is used with permission. 

Computational Methods 

 Single electron oxidation potentials for phenol and aniline derivatives using implicit 

solvation models have been reported previously in the literature152 using the B3LYP38, 39, 61//6-

311++G(2d,2p)41 level of theory and with solvation free energies computed for gas phase 

geometries using the Solvation Model based on Density (SMD).153 Summarily, neutral reactant 

geometries were constructed in Avogadro19 and optimized using the MMFF-94 force field.20 For 

computational speed in trend analysis, B3LYP/6-31+G(d,p) was used for both neutral and 

radical cation geometry optimization with default integration grids and convergence criteria in 

Gaussian 16 A.03.37 Frequency analyses were performed to verify the optimized geometries as 

minima by the absence of imaginary frequencies and to compute the gas phase free energy of 

each aniline derivative. Single point calculations were then performed for these geometries 

using B3LYP/6-31+G(d,p) with an implicit SMD solvation model of water or acetic acid to 

compute the solvation free energy in each medium. Using a traditional thermodynamic cycle to 

apply solvation corrections, the oxidation potential for each aniline or indole derivative of 
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interest was computed according to the Nernst equation154 using a Standard Hydrogen 

Electrode (SHE) voltage of 4.28 V, as done in previous work.155  

Results and Discussion 

 To benchmark our chosen level of theory against those values computed in the 

literature152 in an aqueous continuum, we computed the oxidation potential for the aniline 

derivatives in Table 5-1. B3LYP/6-311+G(2d,2p) (SMD=water)//B3LYP/6-311++G(2d,2p) has 

previously been used in the calculation of oxidation potentials and afforded a strong correlation 

(R2 = 0.835) between calculated152 and experimentally determined152, 156 oxidation potentials in 

a set of 25 aniline derivatives. As seen in Figure 5-2, excellent correlation to previously 

computationally oxidation potentials152 in water are observed when the level of theory is 

reduced to B3LYP/6-31+G(d,p) (SMD=Water)//B3LYP/6-31+G(d,p). From these correlations, we 

concluded that this level of theory is appropriate for computing oxidation potentials in acetic 

acid, for which there are no experimentally determined oxidation potentials. 
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Table 5-1 Computed oxidation potentials in acetic acid for analines of interest to benchmark 

previously computed oxidation potentials against a less expensive level of theory. 

Compounds 
Eox (V vs SHE) 

Calculated in this worka 

Eox (V vs SHE) 
Previously calculated152,b 

aniline 0.88 1.02 
2,6-dimethoxyaniline 0.39 0.47 
4-ntitroanline 1.53 1.64 

4-aminophenol 0.54 0.49 
4-mtethoxyaniline 0.50 0.64 
4-methylaniline 0.70 0.84 
4-chloroaniline 0.95 1.05 
4-cyanoylaniline 1.24 1.35 
2,6-dinitro-4-methylaniline 1.82 1.91 
2,4-dinitroaniline 2.05 2.20 

a B3LYP/6-31+G(d,p) (SMD=Water)//B3LYP/6-31+G(d,p) 
b B3LYP/6-311+G(2d,2p) (SMD=water)//B3LYP/6-311++G(2d,2p) 

 

 

Figure 5-2 Correlation between single electron oxidation potentials computed at B3LYP/6-

31+G(d,p) (SMD=Water)//B3LYP/6-31+G(d,p) in this work and B3LYP/6-311++G(2d,2p) 

(SMD=Water)//B3LYP/6-311+G(2d,2p) previously.152 
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 Provided the strong correlation with previously computed values in an implicit water 

model, we computed the single electron oxidation potentials for the aniline derivatives in Table 

5-2, implicitly modeling acetic acid as the solvent used experimentally.  The computed oxidation 

potentials, Hammett σp
+ values,47 and the experimental findings2 of our collaborators are 

presented below. 

Table 5-2 Computed oxidation potentials in acetic acid for analine derivatives screened in the 

Baeyer-Mills condensation with nitrosobenzene, along with associated Hammett σp
+ values and 

experimental outcomes. 

Compounds 
Eox, calc 

a
 

(V vs SHE) σp
+ 47 

Azobenzene  
% Yield2 

Azoxybenzene 
% Yield2 

aniline 1.2 0 ≥95 ≤5 

4-iodoaniline 1.16 0.14 ≥95 ≤5 

methyl 4-aminobenzoate 1.49 0.49 82 6 

4-trifluoromethylaniline 1.67 0.61 ≥95 ≤5 

4-cyanoaniline 1.63 0.66 64 7 

4-nitiroaniline 1.9 0.79 19 ≤5 

4-methylaniline 0.97 −0.31 95 ≤5 

4-methoxyaniline 0.77 −0.78 ≥95 5 

4-aminophenol 0.83 −0.92 34 69 

4-aminoaniline 0.38 −1.30 28 43 

4-dimethylaminoaniline 0.18 −1.70 34 45 

2-aminoaniline 0.73 N/A 8 91 

2,6-dimethoxyaniline 0.77 N/A 46 35 

t-butyl (4-aminophenyl)carbamate 0.8 N/A 87 6 

2-methoxyaniline 0.93 N/A 82 13 

t-butyl (2-aminophenyl)carbamate 1.04 N/A 85 12 

2-ethylaniline 1.08 N/A 77 20 

2-bromoaniline 1.46 N/A 49 8 

2,6-difluoroaniline 1.55 N/A 12 ≤5 

2-nitroaniline 1.88 N/A ≤5 ≤5 

a B3LYP/6-31+G(d,p) (SMD=Water)//B3LYP/6-31+G(d,p) 
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The yield of both azobenzene and azoxybenzene were examined visually as a function of 

the oxidation potential (Figure 5-3). No quantitative relationship (linear or otherwise) between 

the predicted oxidation potential and either product’s yield is apparent, but inferences may be 

made to inform further investigation and to qualitatively predict the formation of the desired 

product. First, the proposed mechanism of azoxybenzene formation first includes a reduction of 

nitrosobenzene, presumably by the single electron oxidation of the accompanying aniline 

derivative. The results in Figure 5-3 would suggest that aniline derivatives with oxidation 

potentials higher than ca. 0.9 V cannot be oxidized by nitrosobenzene, preventing the 

formation of azoxybenzene in any appreciable yield. More electron-rich aniline derivatives with 

more negative oxidation potentials, such as amino-substituted anilines, are required. 

Additionally, electron deficient anilines, such as the nitroanilines sampled here, produce poor 

yields of the desired azobenzene product.  This is likely owed to the reduced nucleophilicity of 

the amino group required in the initial Naniline–Nnitrosobenzene formation event.  
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Figure 5-3 Azobenzene and azoxybenzene yields versus computed oxidation potential for 

compounds listed in Table 5-2. 

Hammett σp
+ values were also compared against our computed oxidation potentials as a 

parameter more commonly used by synthetic chemists for rationalizing observed reactivity in 

conjugated systems owing to electron donating and withdrawing groups. Figure 5-4 shows that 

excellent correlation exists between the computed oxidation potentials and σp
+ values. This 

finding matches our intuition as strongly electron donating or withdrawing groups should 

reduce or increase the oxidation potential, respectively. This is also in agreement with 

previously published findings wherein single electron oxidation potentials in water were 

strongly correlated with σp
+ values.157 These correlations are useful and compliment the utility 

of Hammett constants that is commonplace in substituent screening. 
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Figure 5-4 Correlation between computed oxidation potentials in acetic acid and σp
+ values 

presented in Table 5-2. 

 While Hammett constants are widely used and easily interpreted, they are not available 

for all substituents and not applicable to compounds with core structures that are more 

complex than a benzene ring.  To that end, our collaborators also explored the N1-substituted 

5-aminoindoles in Table 5-3. 

Table 5-3 Computed oxidation potentials in acetic acid for aniline derivatives screened in the 

Baeyer-Mills condensation with nitrosobenzene, along with associated Hammett σp
+  values and 

experimental outcomes. 

Compounds Eox, calc (V) a σp
+  

Azoheteroarene  
% Yield2 

Azoxybenzene 
% Yield2 

1H-indol-5-amine 0.7 N/A 6 42 

t-butyl 5-amino-1H-indole-1-

carboxylate 
0.89 N/A 58 18 

1-acetyl-1H-indol-5-amine 0.99 N/A 72 17 

1-tosyl-1H-indol-5-amine 1.01 N/A 63 10 

 
a B3LYP/6-31+G(d,p) (SMD=Water)//B3LYP/6-31+G(d,p) 
 

y = 1.5438x - 1.9203
R² = 0.9667

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

σ
p

+

Eox, calc (V vs SHE)



94 
 

 

Figure 5-5 Azoheteroarene and azoxybenzene yields versus computed oxidation potential for 

compounds listed in Table 5-3. 

As seen in Figure 5-5, reduced azoxybenzene formation was again observed for those 

indoles with oxidation potentials greater than ca. 0.9, with respectable azoheteroarene yields 

observed for those same compounds.  While the dataset is limited with only four compounds, 

these data do suggest broader utility for utilizing computed oxidation potentials to predict 

Baeyer-Mills reaction outcomes where Hammett constants are not available. 

Of note for this work, protonation states were not considered in this study as the aniline 

derivative must have a deprotonated primary amine to undergo the desired Baeyer-Mills 

condensation reaction. However, we acknowledge that both the nucleophilicity of the 

deprotonated amine involved in N–N bond formation in the Baeyer-Mills reaction and the 

acidity of its conjugate acid are likely to influence reaction outcomes. Additionally, the 

protonation state of the primary amine will certainly modulate the oxidation potential of the 

aniline derivative. This collection of factors is deserving of further investigation and will require 
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computational benchmarking and further mining of the literature for comparative experimental 

data. 

Conclusions 

 Oxidation potentials computed using Density Functional Theory with an implicit 

solvation model afforded a useful metric to predict the formation of both azobenzene in the 

Baeyer-Mills condensation of aniline or indole derivatives with nitrosobenzene, as well as 

predict the formation of azoxybenzene as a side product. A slightly reduced basis set still 

resulted in excellent correlation compared to the levels of theory previously benchmarked 

against experimental values. This reduced the computational cost of the calculations while still 

allowing trend analysis alongside experimental data, making this a useful approach for the 

predominantly synthetic chemist where Hammett parameters are not available or applicable.  
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Chapter 6: Samarium Promoted Rearrangement of Vinyl Aziridines 

Introduction  

From amino acids to nucleic acids, heterocycles are prevalent in biology, with a believed 

85% of biologically active chemical species containing a heterocycle.158 For this reason, the 

synthesis of functionalized heterocycles is an area of active interest in medicinal chemistry for 

both therapeutic and diagnostic applications. Among nitrogen-containing heterocycles, the 5-

member class of pyrrolines is of interest, both as a terminal synthetic motif and as they can be 

readily transformed into pyrrolidines or pyrroles.159 

 Synthetic routes to pyrrolines have been recently reviewed,160 but of particular interest 

to our synthetic collaborators, David Olson and colleagues, was the ring expansion of a vinyl 

aziridine (Figure 6-1). Such ring expansions have been catalyzed by Lewis acids such as 

Cu(hfacac)2, with the aziridine commonly being phthalimide-protected.159 While Lewis acid 

catalysts have competently facilitated this transformation, increasingly specific catalysts are 

needed in multistep syntheses to conserve yields and improve stereochemical outcomes. 

Cheung and co-workers, while screening available Lewis acids in the Olson lab, screened 

samarium (II) iodide and found quantitative yields for a small panel of phthalimide-protected 

vinyl aziridines to afford expanded heterocycles. Samarium (II) iodide is known to catalyze 

cross-couplings through radical intermediates in carbonyl compounds,161 and its use in the 

synthesis of nitrogen-containing heterocycles is known,162 although that work did not include 

aziridine ring expansion and still promoted C–C coupling. Cheung’s experimental findings 

prompted our groups to ask whether the transformation in Figure 6-1 occurred by traditional 

Lewis acid/base chemistry or by a radical mechanism. To understand this and to compliment 
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any further spectroscopic or radical clock studies, we performed stationary point analyses using 

DFT for the reaction in Figure 6-1 to propose a reasonable mechanism for the observed 

transformation under the given experimental conditions. 

 

Figure 6-1 Samarium (II) iodide catalyzed ring expansion of a phthalimide-protected vinyl 

aziridine. 

Computational Methods 

 The prototypical vinyl aziridine of interest in the reaction complex with SmI2 in Figure 6-

1 was first constructed in Avogadro19 and optimized using MMFF-94.20  Guesses for the 

subsequent intermediates as shown in Figure 6-2 were then also made, as well as the 

associated transition state structure for each event. The gas phase geometry for each minimum 

and saddle point was optimized in Gaussian A.0337 at PBE0163/def2-SVP164, using core potentials 

on both samarium and iodine, and vibrational analyses were performed. This was performed 

for both the quintet and septet spin states. Minima were confirmed as true minima by the 

absence of imaginary frequencies and transition state structures were confirmed as first order 

saddle points by the presence of a single imaginary frequency corresponding to the bond 

breaking or forming motion being modeled. Intrinsic reaction coordinate calculations were 

performed, confirming that the discovered transition state structures indeed connected the 

two adjoining minima. Solvated,153 single point energies with empirical dispersion86, 147 
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corrections were then computed on both spin surfaces at the PBE0-D3BJ/def2-TZVP (ECP = Sm, 

I; SMD = toluene)//PBE0/def2-SVP (ECP = Sm, I) level of theory. Spin density surfaces on the 

septet surface at the lower level of theory were generated in GaussView, and Natural Bond 

Orbital165 analysis was also performed. 

Results and Discussion 

 To start, we proposed the mechanism below (Figure 6-2) to explain the SmI2-catalyzed 

ring expansion of the protected vinyl aziridine of interest (Figure 6-1). This was based on known 

radical chemistry initiated by samarium (II) iodide in carbonyl-containing compounds. 

 

Figure 6-2 Proposed mechanism for the ring expansion of a phthalimide-protected vinyl 

aziridine as catalyzed by SmI2. 

From the stationary point analysis, the free energy diagram corresponding to the 

mechanism in Figure 6-2 was constructed (Figure 6-3). From this, reactivity was predicted to 

occur principally on the septet spin surface, with both spin states being comparable in energy 

for intermediate 2. This is consistent with Hund’s Rule of Maximum Multiplicity and given 

iodine is a weak field ligand. Afforded this observation, the free energy change along the 

reaction coordinate on the septet surface was replotted at the PBE0-D3(BJ)/def2-TZVP (ECP = 

Sm, I; SMD = toluene)//PBE0/def2-SVP (ECP = Sm, I) level of theory to account for solvation and 

dispersion effects. From these findings and given quantitative yields were achieved in 24 hours 
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at 150 °C, we concluded that the proposed mechanism was consistent with the experimental 

conditions given the computed free energy barriers for both events. 

 

Figure 6-3 Gas phase free energy diagram for the mechanism shown in Figure 6-2 on both the 

quintet and septet surfaces at the PBE0/def2-SVP (ECP = Sm and I) level of theory. 

 

Figure 6-4 Solvated and dispersion corrected free energy diagram for the ring expansion 

mechanism proposed in Figure 6-2. Spin density surfaces for each structure show the evolution 

of spin and radical localization across the reaction coordinate. 
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 Further consideration was then given to spin density localization visually as shown in 

Figure 6-4, as well as plotting the condensed spin densities on several key atoms across the 

reaction coordinate in Figure 6-5. Specifically, the samarium atom was followed given its 

catalytic role. Carbons 1, 3, and 9 were also considered as localized radical character would 

exists on those atoms provided the Lewis structures as drawn in the mechanism in Figure 6-2. 

Visually, the accumulation of spin density (and radical character) is predicted over the vinyl 

carbons as ring expansion progress through intermediate 2, with spin density returning 

principally to the samarium atom and the proximal carbonyl carbon in product complex 3. In 

the transition state structures, spin delocalization is predicted in the conjugated phthalimide 

protecting group, consistent with the belief that the formation of a radical in the aziridine 

fragment would be stabilized by the presence of the protecting group. Additionally, the 

condensed spin densities along the reaction coordinate are in quantitative agreement with our 

visual inspection. As seen in Figure 6-5, spin density decreases on samarium progressing from 

reactant complex 1 to intermediate 2, but then rises back to approximately the reactant-

complex density in the product complex 3. Accordingly, spin density rises on C1 and C3 

progressing to intermediate 2, and then declines as ring expansion completes. While there is 

visible spin density on C9 in Figure 6-4, there is relatively little spin density predicted on C9 over 

the course of the reaction coordinate. We attribute this in part to the delocalization into the 

aromatic phthalimide substructure. Additionally, a radical on C9 would require a one electron 

transfer between the reactant fragment and samarium, which would yield an unfounded 

samarium (IV) subsequently upon Sm–C3 bond formation. Samarium (II) and samarium (III) are 

the only known charged oxidation states of samarium. Figure 6-5 is consistent with oxidation 
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states proposed in Figure 6-2. In reactant complex 1, samarium (II) would be assigned 6 

unpaired electrons, consistent with the predicted total spin density. In intermediate 2, 

samarium (III) would have five unpaired electrons, with a delocalized radical shared over the 

allylic fragment. Our computational finding is consistent with a samarium (III). As ring expansion 

completes in product complex 3, spin density should return principally to the samarium atom, 

which is what was predicted computationally.  

 

Figure 6-5 Condensed spin densities for select atoms in the ring expansion mechanism 

proposed in Figure 6-2. 

Lastly, we examined the Wiberg Bond Indices originating from NBO165 analysis on the 

septet surface at the PBE0/def2-SVP level of theory. As seen in Figure 6-6, at least a partial 

covalent bond with an Wiberg Bond Index of > 0.5 is predicted between Sm and the aziridinyl 

nitrogen. Also, the interactions between Sm, C1, C2, and C3, coupled with the planar 

orientation of the attached hydrogen atoms indicates an η-3 orientation of the allylic 
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substructure donating to the samarium (III) ion. Given the positive bond indices between the 

allylic fragment carbon atoms and samarium, we might predict that intermediate 2 is a quintet, 

owing to the spin pairing of the electron density from the allylic fragment and the density being 

contributed to the covalent interaction from the samarium atom. Based solely on 

computational predictions in the absence of spectroscopic data, further studies with all 

electron basis sets for samarium and iodine and/or coupled cluster single point calculations on 

DFT geometries could be conducted to confidently assign the multiplicity of intermediate 2. 

 

Figure 6-6 Wiberg Bond Indices for select bonds across the reaction coordinate, showing a 

significant and increasing Sm–N interaction leading into intermediate 2 and an overall decline in 

bonding character in the catalyst-product complex for all annotated interactions. 

 Conclusions 

 Summarily, we have proposed and computationally explored a mechanism for the 

samarium-mediated ring expansion of vinyl aziridines that is consistent with the currently 

available experimental findings of our collaborators. Based on local condensed spin density 
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differences at each evaluated stationary point, we predict the ring expansion of this, and other 

structurally similar, phthalimide-protect vinyl aziridines to occur according to a single electron 

transfer mechanism that is consistent with samarium (II) iodide’s known reactivity in carbonyl 

containing compounds. The phthalimide protecting group allows for spin density delocalization 

across the reaction coordinate and, in conjunction with the aziridinyl nitrogen’s covalent 

interactions with the samarium atom, orients the samarium such that ring expansion may occur 

via a radical pathway. Additional experimental work, specifically the design and execution of a 

radical clock experiment, should be performed to confirm a radical mechanism. Our 

computational findings along with the preliminary experimental work of our collaborators 

suggests this approach is a promising synthetic route to functionalized pyrrolidines and other 

heterocycles with, potentially, interesting biological applications. 
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