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Multiscale dynamics in the atmosphere-ocean system is ubiquitous from

dust devils in the garden to tropical cyclones to mesoscale eddies in the ocean and

deep ocean circulation. The purpose of this thesis is to advance ocean-atmosphere

general circulation modeling and methodologies for data assimilation in order to

resolve more pieces of the climate modeling puzzle than before. Specifically, it fo-

cuses on modeling the Madden-Julian Oscillation in a climate model and modeling

mesoscale eddies in a regional ocean model with data assimilation. While most

climate models today fail to simulate even the large-scale features of the MJO,

we find that CCSM4 reproduces many realistic aspects of MJO behavior. CCSM4
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produces coherent, broadbanded and energetic patterns in eastward propagating

intraseasonal zonal winds and OLR in the tropics with MJO-like characteristics.

Broadscale patterns, as revealed in combined EOFs of U850, U200 and OLR, are

remarkably consistent with observations and indicate that convective coupling oc-

curs in the simulated MJOs. Relations between the MJO in the model and its

concurrence with other climate states reveal that higher amplitude MJO activity

occurs during weak warm ENSO events and during periods of weak meridional

shear and negative zonal shear during the Indian Monsoons. MJO response to an-

thropogenic climate change is assessed using CCSM4 in a second study. In global

warming scenarios, the model simulation indicates an increase in the number of

days with higher amplitude MJOs and also a higher number of active MJO days

in the Indian and West Pacific Ocean. These findings are consistent with MJO

activity observations of the present and past.

The second half of this thesis discusses the implementation of assimilation

methodologies in physical oceanography. It presents the mathematical recipe of

the assimilation method adapted in the present study and also illustrates the im-

plementation of assimilation of observed data over the oceans in a regional ocean

model (ROMS) in the Southeast Pacific region. Fifteen-day ROMS I4D-VAR data

assimilation fits are performed successfully. The normalized absolute misfit be-

tween the observations and the corresponding model states is reduced close to the

observational error range. Eddies are identified from the ocean state estimate along

the track of the VOCALS-Rex cruise of 2008 and studied for their hydrography and

velocity structure. Cyclonic eddies (sea level anomaly lows) are characterized by

shoaling isopycnals in the upper 300 m, colder temperature cores and a shallower

salinity minima. It is also observed that the water mass properties of the core

of the eddy has similar properties to that in the subantarctic water close to the

coast. A heat budget analysis for the period of the cruise reveals that the advection

is the predominant process that balances the surface heat flux and temperature

tendency. Vertical diffusion is the second highest term balancing the heat budget

with the horizontal diffusion being an order of magnitude smaller.

Lastly, the role of the linear analysis step of the ensemble Kalman filters
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(EnKF) in disrupting the balanced dynamics in a simple atmospheric model is

investigated and compared to a fully nonlinear particle-based filter (PF). Identi-

cal twin experiments show that EnKF and PF capture the variables on the slow

manifold well as the dynamics is very stable. PFs, especially the SKRF, capture

slaved modes better than the EnKF implying a full Bayesian analysis estimates the

nonlinear model variables better. The PFs perform significantly better in the fully

coupled nonlinear model where fast and slow variables modulate each other. This

suggests that the analysis step in the PFs maintains the balance in both variables

much better than the EnKF.
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Chapter 1

Prolegomenon

This chapter serves as an introduction to the thesis. The purpose is to motivate the

discussion on the advances in ocean-atmosphere general circulation modeling and

the data assimilation problem. Specifically, it focuses on modeling the Madden-

Julian Oscillation in a climate model and modeling mesoscale eddies in a regional

ocean model with data assimilation. It introduces in broad brush-strokes, a pic-

ture of the development in climate modeling, regional ocean modeling and data

assimilation fields of research and their main motivations. It illustrates the objec-

tives of combining fully complex ocean general circulation models (OGCM) and

oceanographic data. It also depicts the difficulties in modeling the Madden-Julian

Oscillation and improvements achieved by a state-of-the-art climate system model.

An overview of these problems studied in this thesis is presented. This chapter

also has a road-map of the thesis, which should serve as a reader’s guide.

1.1 Background

he earth is the only place in the universe known by humankind that

supports life. Covered by a thin blanket of air, a thinner film of water

and a thin veneer of soil, the three combine to support a web of life

of wondrous diversity and continual change. The unique characteristics of the

earth in order for it to support life is its climate. The very fine balance of the

1
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Earths climate provides just the necessary condition required to support life. The

impact of a changing climate on such a fine balance could be profound. Hence,

an indepth study of the climate system and its component subsystems is essential

for humans to find a roadmap for sustaining the diverse life forms on this planet

without spoiling its fine balance.

Since ancient times, humans have been trying to satisfy their curiosity about

earth’s climate by studying various aspects of it. Here is a brief history of man’s

study of earth’s climate and weather. The Babylonians studied cloud patterns

to predict the weather in the 6th century B. C.. The Greek philosopher Aristo-

tle described weather patterns in Meteorologica. Theophrastus, one of Aristotle’s

student, published the Book of Signs which dealt with weather forecasting. The an-

cient civilizations of China and India also included different approaches to weather

prediction extending from astronomy to studying the changes in animal behavior

during different weather.

The greatest minds of the Renaissance were also intrigued by the possibility

of weather prediction. The thermometer was invented by Galileo Galilei in the 16th

century, and a mercury barometer was invented by Evangelista Torricelli in the 17th

century. These were the first few steps taken to make quantitative observations

of weather and study Earth’s atmosphere scientifically, especially its weather and

climate. Modern weather forecasting methods began with the invention of the

electric telegraph in 1835. The telegraph facilitated an instantaneous collection of

observations of weather conditions from a larger area than ever before.

Great progress was made in the science of meteorology during the 20th

century. The possibility of numerical weather prediction was proposed by Lewis

Fry Richardson in 1922, (Lynch, 2006) though computers did not exist to complete

the vast number of calculations required to produce a forecast before the event had

occurred. The first computerized weather forecast was performed by a team led

by the mathematician John von Neumann.

Jules Charney, John von Neumann, Eliassen and Smagorinsky pioneered

the field of numerical weather prediction, which was the first foray into a compu-

tational framework of weather and climate studies. As a natural extension to Jules
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Charney’s work, Norman Philips completed in mid-1955, his monumental general

circulation experiment [N. Philips, 1960]. Despite the simplicity of the model he

used, the results were remarkable in their ability to reproduce the salient features

of the general circulation. With this, he began a new era in mankind’s quest to

understand the earth’s climate system. The ensuing five decades have seen a rev-

olutionary change in both the fields of computers and the field of computational

modeling of earth’s weather and climate.

1.1.1 General circulation models

General Circulation Model (GCM) is a mathematical model of the general

circulation of the atmosphere or ocean and is based on the Navier-Stokes equations

on a sphere along with the thermodynamic terms for various energy sources. The

solution of a series of equations that describe the movement of energy, momentum

and various tracers (e.g. water vapor in the atmosphere and salt in the oceans) and

the conservation of mass is therefore satisfied by these equations. The accuracy of

the model partly depends on the spatial resolution of the grid points and the length

of the timestep. A compromise must be made between the resolution desired, the

length of integration and the computational facilities available. A climate model

must be a simplification of the real world since there are several complex climate

processes that are yet to be understood, and also many of the feedbacks between

the climate processes are computationally very intensive and challenging. The

dynamics in the earth’s atmosphere-ocean system ranges in length and time from

micro to climate timescales as shown in Figure 1.1

1.1.2 Present challenges in climate modeling

The complexity of earth’s climate system presents a challenge to climate

theory. Today we try to simulate the climate by capturing as much of the dynam-

ics as we can in comprehensive numerical models. We also try to understand the

climate using observations and idealized models. As our comprehensive models

improve, they more and more become the primary tools by which theory confronts
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observations. The study of global warming is an especially good example of this

trend. A handful of major modeling centers around the world compete in cre-

ating the most convincing climate simulations and the most reliable forecasts of

climate change, while large observational efforts are mounted with the stated goal

of improving these comprehensive models.

The complex system of earth’s climate is associated with a wide range of

physical, biological and chemical feedbacks which together occur in a continuum of

temporal and spatial variability. The traditional boundaries of weather, seasonal

prediction, regional and global climate are strictly artificial. The scale interactions

between the large-scale climate and the microscale to mesoscale processes that

govern weather and regional climate cannot be treated as independent phenomena.

Today’s global coupled climate system models take into account the whole

climate system (Figure 1.2). The accurate representation of the continuum of

variability in numerical models is a challenging but essential goal. For example,

the effects of changes in deep ocean stratification will play an important role in the

change of earth’s climate averaged over decades to centuries, while local changes

in windstress or solar forcing may not play a role at these timescales. Yet, on

timescales shorter than a season, the relative importance could be reversed.

In the equatorial troposphere, the Madden-Julian Oscillation is a plane-

tary scale wave envelope of complex multiscale convection. The Madden-Julian

Oscillation (MJO) has long been an aspect of the global climate that has pro-

vided a challenging test for the climate modeling community. There have been

numerous studies of simulation of the MJO and boreal summer intraseasonal vari-

ability (BSISV) in general circulation models (GCMs), since the 1980s, ranging

from Hayashi and Golder (1986, 1988); Lau and Lau (1986), through to more re-

cent studies by Zhang et al. (2006b); Sperber and Annamalai (2008b); Kim et al.

(2009b). Over the past two decades developments in our understanding of what

the MJO is and what drives it have parallelled attempts to reproduce the MJO

in climate models. In fact, many advances in understanding the MJO have come

through modeling studies. In particular, the failure of climate models to simulate

various aspects of the MJO has prompted investigations into the mechanisms that



5

are important to its initiation and maintenance, leading to improvements both in

our understanding of, and ability to simulate, the MJO.

Chapters 2 and 3 of this thesis present results from the analysis of an

improved Madden Julian Oscillation simulation using the new Community Climate

System Model version 4 (CCSM-4). Most GCMs still suffer from poor simulations

of the MJO. There have been many improvements in the simulations of the MJO

over the last decade. Yet it is still a mystery why most climate models have a

difficult time simulating a realistic MJO or forecasting one. Only recently has the

link between MJO simulations and convection parameterization been explored.

(Zhou et al., 2011b; Kim et al., 2009b).

We assess the ability of the Community Climate System Model-4 (CCSM-

4) to represent the Madden Julian Oscillation, the dominant form of intraseasonal

variability in the tropical atmosphere. We use the US CLIVAR MJO Working

Group prescribed diagnostic tests to evaluate the models mean state, variance and

wavenumber-frequency characteristics in a 20-year simulation of the intraseasonal

variability in zonal winds at 850 hPa (U850) and 200 hPa (U200) and Outgoing

Longwave Radiation (OLR). While most climate models today fail to simulate

even the large-scale features of the MJO, we find that CCSM4 reproduces many

realistic aspects of MJO behavior.

The mesoscale variability is the dominant signal in the global ocean circu-

lation variability. The advent of satellite oceanography in the 1970s revealed the

ubiquity of the so-called mesoscale phenomena (gyres, eddies, jets, fronts, mean-

ders) in the world’s oceans. This discovery triggered observational and modeling

efforts that have shown the mesoscale to be a very important component of dy-

namical oceanography at all scales (e.g. in transporting momentum, heat, mass,

energy, chemical and biological properties). Thus, resolving the mesoscale vari-

ability is crucial to correctly understand the dynamics of the ocean circulation and

to estimate the associated heat transport, even at climatic scales (Stammer and

Wunsch, 1999).

Mesoscale dynamics encompasses oceanic phenomena with a horizontal

scale ranging approximately from 10 to 100 km and an associated time scale of
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a few days. The mesoscale phenomena from the dynamical perspective concerns

processes with timescales ranging from the buoyancy oscillation (2π/N, where N

is the buoyancy (Brunt-Vaisala) frequency) to a pendulum day (2π/f, where f is

the Coriolis parameter), encompassing mesoscale eddies and the full spectrum of

inertia-gravity waves but stopping short of synoptic-scale phenomena which have

Rossby numbers less than 1 in atmospheric dynamics.

Chapters 4 and 5 of this thesis focus on studying mesoscale eddies in the

upwelling regions along the west coast of South America. These eddies affect the

distribution of sea-surface temperature (SST) in the South East Pacific (SEP) in

two major ways. Eddy heat fluxes drive SST changes that affect the atmospheric

boundary layer (ABL) by altering its stability and consequent heat, momentum

and moisture fluxes at the air-sea interface. Eddies also affect nutrient transport,

which controls ocean biology. The main focus of this research is aligned with one

of the scientific goals of VAMOS 1 Ocean Cloud Atmosphere Land Study-Regional

Experiment(VOCALS-REx). VOCALS is an international CLIVAR program, the

major goal of which is to develop and promote scientific activities leading to im-

proved understanding of the South East Pacific (SEP) coupled ocean-atmosphere-

land system on diurnal to inter-annual timescales.

The dynamics of mesoscale ocean eddies during an observational campaign

in November 2008 in the SEP region will be explored in this modeling and data

assimilation study that will aid in the diagnosis of the VOCALS-REx observations.

Observed mesoscale oceanic surveys of the VOCALS campaign will be used in data

assimilation experiments to diagnose the dynamics and sensitivities of the ocean

circulation fields. Data assimilation fits of the VOCALS hydrographic surveys (and

concomitant data) will provide crucial dynamically consistent diagnostics of the

circulation for interpreting the relation between physical variables, atmospheric

variables and biology. Most ocean models still suffer from a poor simulation of the

ocean eddy field. Although there have been improvements in the simulations of

ocean eddies over the last decade, it is still unknown why most numerical models

1 VAMOS is the Variability of the American Monsoon Systems, which is a CLImate VARiabil-
ity Working Group (CLIVAR) multidisciplinary international program that addresses monsoonal
flows over both North and South America.



7

have a difficult time simulating ocean eddies realistically. Only recently has the link

between ocean mesoscale modeling and data assimilation been explored (De Mey,

1997; Powell et al., 2008, 2009; Moore et al., 2011; Song, 2011).

Eddies in the SEP form near the coasts and propagate westward, resulting

in narrow bands of high eddy kinetic energy (EKE) in the coastal region and a

broader, weaker EKE tongue stretching out beyond 90o W in the offshore region

(Chaigneau and Pizarro, 2005; Johnson and McTaggart, 2010). The hydrographic

and velocity structures of cyclonic and anticyclonic eddies in the SEP are first

characterized using data from VOCALS-REx, an extensive field campaign that

surveyed upper-ocean and atmospheric properties in the SEP (Wood et al., 2011).

Cyclonic eddies were associated with cooler surface temperatures than the mean

conditions, whereas anticyclonic eddies were associated with warmer surface tem-

peratures. The mean temperature signals were of opposite sign but equal magni-

tude for each type of eddy.

1.1.3 Limitations in modeling scale interactions

One of the primary simplifications in global circulation models (GCMs)

is the resolution of the model in both time and space. Although the sole rea-

son for this simplification is our limitations in computational resources, too fine

a resolution may be inappropriate because processes acting on a smaller scale

than the model is designed to resolve may be inadvertently incorporated. The

climate research community is beginning to use higher-resolution models that are

mesoscale-process permitting. Much research has to be done to reformulate pa-

rameterizations for the subgrid scale processes in these higher resolution models.

Current parameterization schemes do not adequately handle the mesoscale orga-

nization of convection, which is a critical missing link in scale interaction process.

The limited representation of convection and cloud processes is likely a major fac-

tor in the inadequate simulation of tropical oscillations, primarily the challenge

in modeling Madden Julian Oscillations well in any present-day climate models

(Slingo et al., 1996b).

Another scale interaction problem is the challenge in modeling the sub-
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tropical eastern boundary regimes off the coasts of southwest Africa, Peru-Chile,

and Baja-southern California. These regimes are marked by marine stratus, equa-

torward alongshore winds, and ocean upwelling. Large and Danabasoglu (2006)

suggest that a better resolution of these features improves both the regional cli-

mate and also the large-scale climate system reducing rainfall biases across the

tropical oceans (Figure 1.3, First figure from Dai (2006)).

Other examples of limitations of today’s climate models in modeling scale

interactions include modeling the Asian summer monsoon which is influenced by

steep topographical gradients, mesoscale processes and mesoscale convective com-

plexes. Clearly, addressing these errors is critical to climate prediction at all time

scales.

Two of these many problems with today’s climate models are addressed in

this thesis. The first third of the thesis presents improvements achieved in modeling

Madden Julian Oscillations in a state-of-the-art climate model of present day,

the Community Climate System Model version 4 (CCSM-4). The second third

of the thesis illustrates an experiment in ocean modeling and data assimilation

of oceanic mesoscale eddies in the South East Pacific region. The last third of

the thesis is a presentation of results from a data assimilation experiment in a

simplified geophysical fluid dynamics model to show the importance of preserving

balance during data assimilation which remains a challenging problem in today’s

assimilation models for GCMs.

1.2 Objectives of this dissertation

One can see from the above discussions that the modeling of the MJO in

a climate model and ocean eddies in an ocean model realistically are challenges

still being tackled by today’s state-of-the-art ocean-atmosphere circulation models.

In this context, this dissertation aims at improving our understanding and capa-

bility to simulate mesoscale and synoptic scale motions in the atmosphere and

ocean. Specifically it documents an effort to model mesoscale eddies realistically

in a regional ocean model with data assimilation. It also presents improvements in
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modeling the MJO in CCSM4 more coherently than achieved in the previous ver-

sion of CCSM. The last section in this thesis is the presentation of results from an

experiment showing the benefits of nonlinear data assimilation methods over us-

ing a linear-based data assimilation method in a simplified geophysical dynamical

model.

The objectives of this dissertation are threefold:

The first primary objective of this thesis is to present results from the as-

sessment of the Community Climate System Model-4 (CCSM- 4) to represent the

Madden Julian Oscillation, the dominant form of intraseasonal variability in the

tropical atmosphere. The US CLIVAR MJO Working Group prescribed diagnos-

tic tests is used to evaluate the models mean state, variance and wavenumber-

frequency characteristics in a 20-year simulation of the intraseasonal variability

in zonal winds at 850 hPa (U850) and 200 hPa (U200) and Outgoing Longwave

Radiation (OLR). While most climate models today fail to simulate even the large-

scale features of the MJO, we find that CCSM4 reproduces many realistic aspects

of MJO behavior.

A second primary goal of this thesis is to better understand the structure

and properties of eddies and the processes contributing to the ocean heat budget

in establishing the SST distribution in the Southeast Pacific region. The climate

of the Southeast Pacific (SEP) involves important feedbacks between atmospheric

circulation, sea-surface temperature (SST), clouds, ocean heat transport, aerosols,

and coastal orography, bathymetry and geometry (Ma et al., 1996a). The equator-

ward Peru-Humboldt Current is a geostrophic flow that is baroclinically unstable

and develops nonlinear mesoscale eddies that extend the current system far off-

shore through squirts, jets, filaments, and westward Rossby wave propagation. The

eddies result in exchanges of heat, salt, momentum and nutrients that balance the

upwelling water and the local air-sea fluxes. A central goal of the second study

in this thesis is to assimilate the VOCALS-Rex enhanced observations into a re-

gional ocean model of the region and characterize the hydrographic and velocity

structures of cyclonic and anticyclonic eddies in the SEP during this observation

campaign. Another main goal of this thesis is to better understand the regulation
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of SST across the SEP, specifically during the VOCALS-REx experiment using the

ocean state estimate.

The third primary objective of this thesis is to document results from an

investigation of the role of the linear analysis step of the ensemble Kalman filters

(EnKF) in disrupting the balanced dynamics in a simple atmospheric model and

compare it to a fully nonlinear particle-based filter (PF). The filters have a very

similar forecast step but the analysis step of the PF solves the full Bayesian fil-

tering problem while the EnKF analysis only applies to Gaussian distributions.

We compare the EnKF to two flavors of the particle filter with different sampling

strategies, the Sequential Importance Resampling Filter (SIRF) and the Sequen-

tial Kernel Resampling Filter (SKRF). The model admits a chaotic vortical mode

coupled to a comparatively fast gravity wave mode. Identical twin experiments

show that EnKF and PF capture the variables on the slow manifold well as the

dynamics are very stable. The PFs perform significantly better in the fully coupled

nonlinear model where fast and slow variables modulate each other.

1.3 Summary of results

MJO in CCSM4

CCSM4 produces coherent, broadbanded and energetic patterns in east-

ward propagating intraseasonal zonal winds and OLR in the tropical Indian and

Pacific Oceans that are generally consistent with MJO characteristics. Broadscale

patterns, as revealed in combined EOFs of U850, U200 and OLR, are remarkably

consistent with observations and indicate that convective coupling occurs in the

simulated MJOs.

MJO and Earth’s Climate

A tendency for MJO to be more energetic during weak warm ENSO con-

ditions, negative Monsoon Hadley flow, and positive zonal shear, was noted. A

model simulation of a global warming scenario reveals that an increase in Tropi-
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cal temperatures leads to an increase in the number of days with higher amplitude

MJOs and also a higher number of active MJO days in the Indian and West Pacific

ocean.

ROMS data assimilation in the Southeast Pacific

The 15-day ROMS I4D-VAR simulations successfully improve the state es-

timation of the Southeast Pacific ocean mesoscale eddies by adjusting the initial

conditions and the surface forcing. The normalized absolute misfit between the

observations and the corresponding model states is reduced close to the observa-

tional error range. Other statistical measures comparing model with observations

are also improved.

Eddies and heat budget in the Southeast Pacific

Eddies are identified from the ocean state estimate along the track of the

VOCALS-Rex cruise of 2008 and studied for their hydrography and velocity struc-

ture. A cyclonic eddy (sea level anomaly low) is characterized by shoaling isopyc-

nals in the upper 300 m, colder temperature cores and a shallower salinity minima.

The cyclonic eddy was observed to have a subsurface velocity core diameter of

about 50 km, as well as a cooler, salty core at a depth of about 150 m.

Measurements and analyses show a mean net warming heat flux from the

atmosphere to the ocean of 40-80 W m−2 over a wide cross-shore swath in the

Southeast Pacific, and this warming has to be compensated by cooling since this

region has one of the coldest temperatures at comparable latitudes around the

globe. A heat budget analysis for the period of the cruise reveals that the advection

is the predominant process that balances the surface heat flux and temperature

tendency. Vertical diffusion is the second highest term balancing the heat budget

with the horizontal diffusion being an order of magnitude smaller.

Balanced dynamics in a linear vs nonlinear filter

Ensemble Kalman Filter (EnKF) and Particle Filters (PFs) (explained in

the next section) capture the variables on the slow manifold of the Lorenz-86
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mode well as the dynamics is very stable. PFs, especially the SKRF, capture

slaved modes better than the EnKF implying a full Bayesian analysis estimates

the nonlinear model variables better. The PFs perform significantly better in

the fully coupled nonlinear model where fast and slow variables modulate each

other. This suggests that the analysis step in the PFs maintain the balance in

both variables much better than the EnKF. It is also shown that increasing the

ensemble size generally improves the performance of the PFs but has less impact

on the EnKF after a sufficient number of members has been used.

1.4 Essentials

What is the MJO?

The Madden-Julian Oscillation (MJO) is the dominant form of intrasea-

sonal variability in the tropical atmosphere. Typically, their region of genesis is

over the western Tropical Indian Ocean and remain pronounced over the eastern

Indian Ocean and the western Pacific Ocean as they propagate eastward (Figure

1.4). The MJO is characterized by large-scale, eastward-propagating, equatorially-

trapped, baroclinic oscillations in the tropical wind field (Madden and Julian,

1971b, 1994b). Over the warmest tropical waters, in the Indian and west Pacific

Ocean, there is considerable interaction between these wind field oscillations and

anomalies in atmospheric deep convection. In these regions, where the convective

coupling is strong, the oscillation propagates rather slowly, about 5-10 m/s. Several

studies suggest that the MJO propagates slowly during its convective phase due to

a coupling between Kelvin and Rossby waves brought about by the strong latent

heating (Wang and Rui, 1990; Salby et al., 1994) as well as a tighter coupling to the

underlying warm SST (Flatau et al., 1997; Wang and Xie, 1997; Waliser and Lau,

1999). Once the disturbances reach the vicinity of the dateline, and thus cooler

equatorial waters, the convection subsides and the disturbances behave much like

a damped Kelvin wave with a faster propagation speed, about 15-20 m/s (Hendon

and Salby, 1994). The above characteristics are most strongly exhibited during
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the boreal winter and spring when the Indo-Pacific warm pool is centered near

the equator. In addition to this eastward-moving, equatorially-trapped form of

tropical intraseasonal variability (TISV), the other most prolific form propagates

northeastward from the equatorial Indian Ocean into Southeast Asia during the

northern hemisphere summer (Wang and Xie, 1997; Wang and Rui, 1990).

What is VOCALS?

The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) is an in-

ternational CLIVAR program. The major goal of VOCALS is to develop and

promote scientific activities leading to improved understanding of the Southeast

Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual

timescales (Figure 1.5). One of the principal program objectives is the elimination

of systematic errors in the region of coupled atmospheric-ocean general circulation

models, and improved model simulations and predictions of the coupled climate in

the SEP and global impacts of the system variability.

What are ocean mesoscale eddies?

Mesoscale eddies occur when there is a balance of two major forces - one is

a horizontal pressure gradient force arising from differences in water density and

the other is an “apparent” force associated with the Earths rotation. This is called

the Coriolis force. Eddies occur virtually everywhere in the ocean, including Arctic

regions and even off the coast of Antarctica in the Southern Hemisphere. But, there

is a twist - the Coriolis effect causes cold-core eddies in the southern hemisphere

to rotate clockwise (cyclonic) and warm-core eddies rotate counterclockwise (anti-

cyclonic). The size of eddies and rings vary as do their lifetimes - a month or so

to more than a year, with an average of a few months. The largest scale eddies

are caused due to instabilities of strong horizontal sheared motions, particularly

in western boundary currents, and they are important in shaping the pathways

and intensity of the most intense ocean currents. These eddies often take the

form of well defined rings extending to great depth. At slightly smaller scales, of

order tens of kilometers, eddies are generated by the slumping of horizontal density
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gradients. These baroclinic eddies with strongly rotating flows and are important

in the movement of watermasses from near the surface into the ocean interior and

for the dynamical balance governing some of the major ocean currents such as, the

Antarctic Circumpolar Current.

What is the Ensemble Kalman Filter?

The Ensemble Kalman Filter (EnKF) is a Monte Carlo implementation of

the Bayesian update problem: Given a probability density function (pdf) of the

state of the modeled system (the prior, called often the forecast in geosciences)

and the data likelihood, the Bayes theorem is used to obtain the pdf after the data

likelihood has been taken into account (the posterior, often called the analysis).

This is called a Bayesian update. The Bayesian update is combined with advancing

the model in time, incorporating new data from time to time.

The basic idea behind this filter is to combine the optimal forecast step of

the PF with a KF correction of the particles. The weights are then kept uniform.

The algorithm of the EnKF can be summarized as follows:

• Prediction step: As in the PF, the analyzed particles, xa,ik−1 are advanced in

time with the model to compute the forecast particles xf,ik .

• Correction step: A KF correction step is applied to every forecast particle as

xa,ik = xf,ik + Ge
k

(
yik −Hk(x

f,i
k )
)
. (1.1)

The gain matrix Ge
k is the same as the Kalman gain but is computed from

the sample covariance matrix of the xf,ik as described by (Evensen, 2003)

In Eq. (6.7), the observation was assigned a superscript index associated

with each particle. This is because the observation needs to be perturbed

by noise sampled from the PDF of the observational error (Burgers et al.,

1998).

The correction step of the EnKF uses only the first two moments of the

particle ensemble and is thus suboptimal for non-Gaussian systems. In practical
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situations, however, the EnKF was found to be more robust than the PF when

small-size ensembles were used because the Kalman update of the particles is

applied using the forecast error covariance matrices estimated from the particle

ensemble. This made the implementation of the Bayesian filtering feasible with

high dimensional systems, as in meteorology and oceanography. The KF correction

reduces the collapse of the ensemble by ‘pulling’ the particles toward the true

state of the system, allowing the filter to operate with a reasonable number of

particles (Kivman, 2003; Hoteit et al., 2008; Van Leeuwen, 2009). With large

enough ensembles, however, the PF was shown to outperform the EnKF (Nakano

et al., 2007; Jardak et al., 2010).

What is the Particle Filter?

The PF provides a discrete solution of the Bayesian filtering problem using

point-mass representations
∑N

i=1wiδxi , of the state PDFs (Doucet et al., 2000).

The vectors xi are called particles and the wi are their associated weights. N is

the number of particles (or the size of the ensemble). After a forecast or analysis

step, the minimum variance estimate of the system state is then obtained as the

weighted-average of the ensemble
∑N

i=1w
ixi. Starting from an initial ensemble

of particles xi0, i = 1, . . . , N , the PF algorithm consists of a prediction step to

integrate the particles in time and a correction step to update the weights as

follows:

• Prediction step: At time tk−1, the particles xik−1 are integrated forward with

the model to the time of the next available observation tk.

• Correction step:: The new observation is used to update the weights with

wik =
1

ck
wik−1φ

(
yk −Hk(x

i
k); Rk

)
, (1.2)

where ck is a constant normalizing the total weight. The particles remain

unchanged. Thus a particle receives more/less weight proportional to its

distance from the most recent observation normalized by the observational

error covariance matrix Rk.
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1.5 A reader’s guide to the thesis

Chapter 2 investigates the nature of the Madden-Julian Oscillation simu-

lated in the current version of the Community Climate System Model version 4.

We use the US CLIVAR MJO Working Group prescribed diagnostic tests to eval-

uate the models mean state, variance and wavenumber-frequency characteristics

in a 20-year simulation of the intraseasonal variability in zonal winds at 850 hPa

(U850) and 200 hPa (U200) and Outgoing Longwave Radiation (OLR). While most

climate models today fail to simulate even the large-scale features of the MJO, we

find that CCSM4 reproduces many realistic aspects of MJO behavior.

Chapter 3 considers the relations between MJO in the model and its con-

currence with other climate states. Higher amplitude MJO activity occurs during

weak warm ENSO events and during periods of weak meridional shear and neg-

ative zonal shear during the Indian Monsoons. MJO response to anthropogenic

climate change is assessed using CCSM4. The 20th century ensemble is compared

with the 21st century projection for a 8.5 W/m−2 forcing scenario by the end of

21st century. Observations suggest that warming in the tropical Indian and Pacific

Oceans in recent decades may have contributed to increased trends in the annual

number of MJO events.

Chapter 4 builds the background for the second half of this thesis and

discusses the development of assimilation methodologies in physical oceanography.

It presents the mathematical recipe of the assimilation method adapted in the

present study and also illustrates the implementation of assimilation of observed

data over the oceans in a general circulation ocean model (ROMS) for the Peruvian

Current system. Mesoscale eddies generated in the upwelling regions in the South

East Pacific are studied. Data assimilation of the sea state observations from

satellites and ships for a period of a month in 2008 is achieved. The one-month

ROMS I4D-VAR simulations successfully improve the state estimation by adjusting

the initial conditions and the surface forcing. The normalized absolute misfit

between the observations and the corresponding model states is reduced close to

the observational error range. Other statistical measures comparing model with

observations are also improved.
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Chapter 5 presents results from the diagnosis of the ocean state achieved

from the data assimilation experiment. Eddies are identified from the ocean state

estimate along the track of the VOCALS-Rex cruise and studied for their properties

and structure. Structure and properties of the measured eddy and also a heat

budget analysis of the upper ocean during the cruise period is presented.

Chapter 6 investigates the role of the linear analysis step of the ensemble

Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmo-

spheric model and compare it to a fully nonlinear particle-based filter (PF). The

filters have a very similar forecast step but the analysis step of the PF solves the

full Bayesian filtering problem while the EnKF analysis only applies to Gaussian

distributions. We compare the EnKF to two flavors of the particle filter with differ-

ent sampling strategies, the Sequential Importance Resampling Filter (SIRF) and

the Sequential Kernel Resampling Filter (SKRF). The PFs perform significantly

better in the fully coupled nonlinear model where fast and slow variables modulate

each other. This suggests that the analysis step in the PFs maintain the balance

in both variables much better than the EnKF. It is also shown that increasing the

ensemble size generally improves the performance of the PFs but has less impact

on the EnKF after a sufficient number of members has been used.
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Figure 1.1: Scales of motion across time and space that exist and interact in the

global climate system
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Figure 1.2: Schematic of the various processes involved in the Global Climate Sys-

tem (Source: http://www.meted.ucar.edu/tropical/textbook_2nd_edition/

media/graphics/climate_sys_ncdc.jpg)

http://www.meted.ucar.edu/tropical/textbook_2nd_edition/media/graphics/climate_sys_ncdc.jpg
http://www.meted.ucar.edu/tropical/textbook_2nd_edition/media/graphics/climate_sys_ncdc.jpg
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Figure 1.3: 1979-99 mean annual precipitation from observations (CMAP; Xie

and Arkin 1997) and twentieth-century climate simulations by CCSM3 coupled

climate model.(Dai, 2006)
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Figure 1.4: Schematic of different development stages of the MJO along the

equator. Cloud symbols indicate the center of deep convective activity, and arrows

represent zonal circulations, and curves above and below cloud symbols signify

tropopause height and sea-level pressure perturbations, respectively. (Taken from

Madden and Julian 1972a.)
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Figure 1.5: Key features of the southeast Pacific (SEP) coupled climate system

being explored in the VOCALS Program.(Taken from Wood et al., 2011)



Chapter 2

The Madden Julian Oscillation in

CCSM4

We assess the ability of the Community Climate System Model-4 (CCSM-

4) to represent the Madden Julian Oscillation, the dominant form of intraseasonal

variability in the tropical atmosphere. We use the US CLIVAR MJO Working

Group prescribed diagnostic tests to evaluate the model’s mean state, variance and

wavenumber-frequency characteristics in a 20-year simulation of the intraseasonal

variability in zonal winds at 850 hPa (U850) and 200 hPa (U200) and Outgo-

ing Longwave Radiation (OLR). While most climate models today fail to simulate

even the large-scale features of the MJO, we find that CCSM4 reproduces many

realistic aspects of MJO behavior. CCSM4 produces coherent, broadbanded and en-

ergetic patterns in eastward propagating intraseasonal zonal winds and OLR in the

tropical Indian and Pacific Oceans that are generally consistent with MJO char-

acteristics. Strong peaks occur in coherence spectra with periods between 20-100

days and zonal wavenumbers between 1 and 3. Model MJO’s, however, tend to be

more broadbanded in frequency than in observations, with higher frequencies being

associated with zonal wavenumbers in the MJO band. But broadscale patterns, as

revealed in combined EOFs of U850, U200 and OLR, are remarkably consistent

with observations and indicate that convective coupling occurs in the simulated

MJOs.

23
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2.1 Introduction

Four decades have passed since Madden and Julian made the pioneering

discovery of a 40-50 day oscillation in the zonal winds in the tropics Madden and

Julian (1971a, 1972). This discovery has led to numerous studies into a phe-

nomenon now aptly called the Madden-Julian Oscillation (MJO). Although MJO

dynamics are still not fully understood (Madden and Julian, 1994a; Zhang, 2005a),

MJOs are known to interact with a panoply of climate phenomena across different

spatial and temporal scales. Examples of MJO interactions with some of these

phenomena include its feedbacks with El Niño events (e.g., Marshall et al., 2009;

Hendon et al., 2007; Zavala-Garay et al., 2005; Bergman et al., 2001; Kessler, 2001;

Takayabu et al., 1999), its feedbacks with the North Atlantic Oscillation (Cassou,

2008), its impact on the onset and break of the Indian and Australian summer

monsoons (e.g., Yasunari, 1979; Wheeler and McBride, 2004), its impact on the

formation of tropical cyclones (e.g., Liebmann et al., 1994; Maloney and Hartmann,

2000a,b) and its impact on the mean climate state (Sardeshmukh and Sura, 2007).

Practically, studying these various climate phenomena, modeling them and being

able to predict these climate events would be impossible without understanding

and simulating MJOs accurately in models.

In order to fully understand these important components of earth’s climate

we need a better knowledge of how MJOs interact with these components at various

temporal and spatial scales (Lau and Waliser, 2005a). Yet current climate models

still have difficulty representing MJOs realistically. Numerous multi-model inter-

comparison studies of their ability to capture MJOs have been published (Slingo

et al., 1996a; Waliser et al., 2003; Lin et al., 2006a; Zhang et al., 2006a; Sperber and

Annamalai, 2008a; Kim et al., 2009a) revealing how GCMs continue to struggle to

represent MJOs.

Slingo et al. (1996a) have shown in their study of the tropical intrasea-

sonal variability using atmospheric GCM simulations forced by observed monthly

mean sea surface temperature (SST) that the Atmospheric Model Intercompari-

son Project (AMIP) models were unable to simulate the observed spectral peak in

the 30-70 day period band of the global (zonal wavenumber 1) equatorial 200-hPa
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velocity potential. In another paper, Lin et al. (2006a) analyzed MJO variability

in 14 Coupled Model Intercomparison Project-3 (CMIP3) models elucidating that

only two models had MJO variance comparable to observations but that many

other MJO features were lacking realism. Kim et al. (2009a) studied an improved

set of global coupled models and noted that even in these models only two of them,

SPCAM and ECHAM4/OPYC, yielded a respectable representation of MJO.

The aforementioned multi-model studies attempted to provide insight into

what is important for MJO simulation by comparing the different physical parame-

terizations employed by models of differing MJO verisimilitude. A common theme

throughout these studies is that good MJO representation is strongly dependent

on the convection parameterization and cloud scheme employed in the model, al-

though many other factors come into play. As established global climate models

continue to be improved with better parameterizations and physics packages, they

need to be validated for their performance in representing MJO variability because

of its importance in influencing other climate phenomena.

Here we document how altered parameterizations in the NCAR CCSM af-

fect resulting MJO activity in long-term climate simulations. The latest version,

CCSM4, has a novel deep convective momentum transport scheme, which may

profoundly alter the behavior of MJO events in the model. Our primary goal is to

quantify the characteristics of MJO activity in the CCSM4 according to the set of

diagnostics that has been developed to compare MJO simulations in climate mod-

els with observations (CLIVAR Madden-Julian Oscillation Working Group 2008,

hereafter CL-MJOWG08; Waliser et al., 2008).

Recent work by Zhou et al. (2011a) with CCSM3 showed that MJO’s were

more realistic when the model included a Convective Momentum Transport term

and a dilute plume approximation in the convective parameterization scheme. In-

clusion of the dilute plume approximation improves the correlation between in-

traseasonal convective heating and intraseasonal temperature, which is critical for

the buildup of the available potential energy. More realistic low-level background

zonal winds over the Indo-Pacific warm pool improve the propagation speeds of

intraseasonal variability in the convecting systems. We will show that MJOs are
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further improved in CCSM4 compared to previous versions of CCSM studied in

Kim et al. (2009a) and Zhou et al. (2011a).

Since MJO is found here to be well represented in CCSM4, we also explore

its interaction with ENSO and the Indian Monsoon. Although no strong relation

arises, we demonstrate that MJOs have a tendency to be more energetic during

warm ENSO time periods. While this is consistent with what can be gleaned from

observations on MJO variability, further analysis will be required to solidify this

relationship in terms of causal linkages.

2.2 Model simulations and validation data

The CCSM is a general circulation climate model that couples the atmo-

sphere, land, ocean, and sea ice components. Gent et al. (2010) gives an overview

and a description of the CCSM version 4 climate simulation with 26 levels in the

vertical, 0.9x1.25 degree horizontal atmosphere and land resolution, and nominally

1o ocean (with enhancement to 0.5 deg near the equator) and sea ice resolution.

This version has numerous changes and improvements compared to version 3, as

briefly documented here.

The core of the Community Atmosphere Model (CAM) version 4 has been

changed from the spectral core used in CAM 3 to the Lin-Rood finite volume core

(Lin, 2004). The CAM 4.0 is the sixth generation of the NCAR atmospheric GCM

and has again been developed through a collaborative process of users and devel-

opers in the Atmosphere Model Working Group (AMWG). In CAM 4.0, changes to

the moist physical representations center on enhancements to the existing Zhang

and McFarlane (1995) deep convection parameterization.

The calculation of Convective Available Potential Energy (CAPE) assumes

an entraining plume to provide the in-cloud temperature and humidity profiles

used to determine buoyancy and related cloud closure properties. The modifica-

tion is based on the conservation of moist entropy and mixing methods of Ray-

mond and Blyth (1986, 1992). It replaces the standard nondilute non-entraining

plume method used in CAM3 with this dilute plume approximation in order to
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increase convection sensitivity to tropospheric moisture and reduce the amplitude

of the diurnal cycle of precipitation over land. Sub-grid scale Convective Momen-

tum Transports (CMT) have been added to the deep convection scheme following

Richter and Rasch (2008) and the methodology of Gregory et al. (1997). CMT

affects tropospheric climate mainly through changes to the Coriolis torque. These

changes result in improvement of the Hadley circulation during northern Winter

and it reduces many of the model biases. In an annual mean, the tropical easterly

bias, subtropical westerly bias, and the excessive southern hemisphere mid-latitude

jet, seen in CCSM3, are improved. In combination these modifications to the deep-

convection lead to significant improvements in the phase, amplitude and spatial

anomaly patterns of the modeled El Niño, as documented in Neale et al. (2008)

and Zhou et al. (2011a).

There also have been a number of changes to the ocean component of

CCSM4, which will be documented in (Danabasoglu et al., 2011). For the tropical

air-sea interface, the only change of relevance is the use of observed background

diffusivities, which significantly reduces the tropical precipitation biases (Jochum,

2009).

The NCAR CCSM4 group provided a 500-year simulation as a Control run

under 1850 preindustrial conditions. Output from that run is saved as monthly

means. Since MJOs have time scales comparable to that sampling, it was necessary

to re-run CCSM4 and save the fields as daily means. Due to computational resource

limitations, we were unable to re-run the model for the entire 500 years. Since large

ENSO events may influence the development and evolution of MJO, we decided

to use two extreme 10-year periods of ENSO behavior during the 500-year run,

and then combine the analysis results for the two periods. One period has the

maximum ENSO variance and the other has the minimum ENSO variance during

the 500-year base run. We treat the two 10-year runs as independent realizations of

MJO behavior and compare them jointly (as a 20-year model dataset) with NCEP

observations, thereby avoiding biasing the results towards the model’s response

in one state of ENSO variability. Additionally, we examine differences in MJO

behavior in the two extreme ENSO regimes in section 4.
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To establish the extreme ENSO regimes, we compute the ENSO Niño 3.4

Index for the 500 years from the CCSM base run monthly mean model output.

Then a sliding 10-year window is employed to compute a time-varying variance

for these 500 years. The two 10-year periods with highest and lowest variability

of ENSO are then identified, as shown in Fig. 2.1. Each case contains roughly

2.5 El Niño to La Niña transitions, with the amplitude of ENSO in the strong

case being 2-3 times that of the weak variance case. CCSM4 was reinitialized

from the base run CCSM4 for these periods (with perfect restarts) and output was

saved as 1-day averages in order to explore the high frequency content of MJO

in CCSM4. Saved fields included zonal and meridional winds, vertical velocity,

specific humidity, relative humidity, temperature, geopotential, precipitation, and

cloud fraction at all levels, plus net longwave, shortwave, latent and sensible fluxes

at the surface and large-scale (liquid plus ice) precipitation rate. Hereafter, when

necessary, the two 10-year simulations of CCSM4 will be labeled HENSO for the

High ENSO variability case and LENSO for the Low ENSO variability case. The

combined 20-year run forms the basis for our MJO analysis

2.2.1 Observational data

We validate the MJO characteristics in the 20-year CCSM simulation against

the Advanced Very High Resolution Radiometer (AVHRR) Out-going Longwave

Radiation (OLR) (Liebmann and Smith, 1996), which is a proxy for convective

activity. We use rainfall from the Climate Prediction Center Merged Analysis of

Precipitation (CMAP) (Xie and Arkin, 1997) and the Global Precipitation Clima-

tology Project (GPCP) (Huffman et al., 2001). The upper (200 hPa) and lower

(850 hPa) tropospheric zonal winds are from National Centers for Environmental

Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis

data (Kalnay et al., 1996).
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2.3 MJO characteristics in CCSM4

2.3.1 MJO diagnostics

The MJOWG has established a set of MJO diagnostics that are accepted

by the MJO community as the benchmark of MJO model performance (Waliser

et al., 2008). They include 2 levels of MJO diagnostics for both winter (November

to April) and summer (May to October), plus the evaluation of mean state variables

that have been implicated as being directly related to MJO simulation skill. We

adopt this strategy here and compute diagnostics for both boreal summer and

winter intraseasonal variability and mean state. The MJO band is isolated by

running all fields through a 20-100 day Lanczos bandpass filter, following Waliser

et al. (2008).

As an important starting point, the mean state of relevant variables are

first validated. We did several comparisons of background state during the 20-year

model run versus observed climatology. For example, a comparison of the mean

zonal 850 hPa winds in NCEP (observations) with the mean zonal 850 hPa winds

for the CCSM runs reveals that the model simulations have structures that are

comparable to the observed winds from NCEP. But the magnitude of the mean

easterlies in the Pacific is 50% greater than observed and the westerlies over the

Maritime Continent are somewhat weaker than observed (Fig 2.2). These results

are consistent with those of Zhou et al. (2011a) for CCSM-3.5.

2.3.2 Level 1 diagnostics

Level-1 diagnostics assess the dominant spatial and temporal scales, as well

as propagation direction of convection and 850-hPa zonal wind. These diagnostics

provide a general evaluation of the broadband intraseasonal variability associated

with MJO.

We first consider the winter 20-100 day variance of the zonal 850 hPa winds.

The color contours in Figure 2.3, which show the percentage of intraseasonal vari-

ance of zonal 850 hPa winds, in NCEP is comparable to that of the model simula-

tion. The structure of the intraseasonal variance pattern in the model is consistent
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with MJO characteristics, bearing minima in zonal wind variance along the equator

in both the Indian and Pacific Oceans and a maximum variance over the maritime

Continent. The total variance of these winds in CCSM4, shown as line contours

in Fig. 2.3, is also reasonably consistent with observations. Note, however, that

at least at the air-sea interface the Qscat observations suggest that in the equato-

rial east-Pacific NCEP winds are approximately 30% too weak (Large and Yeager,

2009).

Total OLR variance in CCSM4, shown by the line contours in Figure 2.4,

tends to be higher than in observations, especially over the Maritime Continent.

The percentage of winter 20-100 day variance in model OLR has comparable values

to observations over the Maritime Continent and in the western equatorial Pacific.

However, the model has much weaker intraseasonal OLR variance than observed

in the central Indian Ocean. Taken together with the zonal wind results, this may

be indicative of a weaker coupling between the dynamic fields and convection in

the MJO initiation regions of the Indian Ocean.

Hovmöller diagrams for zonal winds (averaged from 5oN to 5oS) are used

to visually illustrate the eastward propagation of MJO signals. We chose one year

from the model run with strong MJO activity and compared it to one observed year

with strong MJOs to highlight the propagation characteristics (Fig. 2.5). These

years both included La Niña events, when the western tropical Pacific SST was

anomalously warm. In the model, eastward propagation is evident during winter

at speeds of roughly about 5 - 7 ms−1, which is comparable to the observed phase

speeds. Events in both the model and the observations originate in the Indian

Ocean region and propagate around the globe. As also seen in observations, these

events tend to weaken over the Maritime Continent and strengthen again in the

western Pacific Ocean. Similar to observations, albeit more pronounced, the model

MJO eastward propagating activity in summer months is much weaker than in

winter.

Power spectra of the wavenumber-frequency characteristics of observed win-

ter MJOs reveal a dominant peak for zonal wavenumber 1 and period 60 days, with

a broadbanded structure that extends to zonal wavenumbers 2 and 3 over periods
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of 30-80 days (Fig. 2.6). The model contains peaks in this band, but the dominant

peak at 60 days is somewhat stronger and more broadbanded than observations

and additional peaks occur at higher frequencies that suggest the model MJOs

are not as coherent as observations. Overall, CCSM4 contains significant eastward

propagating energy in the same frequency range for wavenumbers in the MJO band

during the winter season, but the signals have more energy than observations.

2.3.3 Level 2 diagnostics

Level-2 diagnostics assess the coupling between the dynamic and thermody-

namic variables. In addition to single variable spectral calculations, cross-spectral

calculations are computed to quantify the coherence and phase relationships be-

tween different variables. The cross-spectral plots demonstrate that the thermo-

dynamic and dynamic effects are coupled.

Fig. 2.7 shows the coherence squared and phase between equatorial OLR

and 850-hPa zonal winds for the symmetric components of the two fields (Hendon

and Wheeler, 2008). The symmetric component physically represents the symmet-

ric dynamics about the equator, which is a first-order characteristic of the observed

MJO. The left panels show the spectrum across a broad range of scales, while the

right panels show a more detailed view of the scales of the MJO.

Observations exhibit a high degree of coherence and an approximately 90-

degree phase lag between convection and 850 hPa winds for zonal wavenumber

1-3 in the 30-80 day band (Fig. 2.7 a,b). Although climate models are well

known to have difficulty simulating this feature (e.g., Zhang et al., 2006a; Zhou

et al., 2011a), CCSM4 exhibits strong coherence in this low-wavenumber band,

with lags similar to observations. For wavenumber 1, model coherency peaks at

higher frequencies, however, near 30-day periods compared to the 40-day peak for

observations (Fig. 2.7 c,d). This modeled coherency relation suggests that convec-

tively coupled MJO’s occur in the model for wavenumber 1. The model’s spread of

coherency into higher frequencies at wavenumber 1, however, suggests that more

linear Kelvin wave activity, with a convective signature, is present in CCSM4 than

in observations (Roundy, 2008). To distinguish whether the coherency peak at
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wavenumber 1 is due to a simple Kelvin wave, Figure 2.8 shows the antisymmetric

part of the coherency relationship for the MJO band, which should have no imprint

of a linear Kelvin wave. Observations reveal significant coherency (0.15-0.35) for

wavenumber 1. The model also has significant coherency (0.05-0.15) in this band,

although somewhat weaker than observations. This antisymmetric structure is

clearly indicative of convectively coupled MJO behavior at wavenumber 1.

At wavenumbers 2 and 3 in Fig. 2.7 (c,d), CCSM4 has much lower conver-

gence - convection coherency in the MJO 40-80 day period band than observations.

Instead, CCSM4 exhibits high convergence - convection coherency for these two

wavenumbers at 10 - 15 day periods, which is is indicative of Kelvin waves bearing

a convective signature, since the coherence falls along the linear dispersion curves.

The antisymmetric part of the model spectrum (Fig. 2.8) has no significant coher-

ence at these periods and wavenumbers, supporting this interpretation. This part

of the response is associated with intraseasonal oscillations that travel at speeds of

10-22 m/s, which are faster than the typical observed MJO phase speed of 5 ms−1.

This weakly energetic and fast propagation at wavenumbers 2 and 3 in CCSM4

may be associated with a lack of coupling between MJO and oceanic Kelvin waves

in the central equatorial Pacific, which Roundy and Kravitz (2009) identified as

an important mechanism for slowing and amplifying higher-wavenumber observed

MJO in this region.

The faster phase speed of MJO in CCSM is also evident in Fig. 2.9b,

which shows the lag correlation between the convection and the dynamic winds

for observations and model. Model MJO activity tends to propagate to the Mar-

itime Continent where it breaks up and then reorganizes over the western Pacific

and continues propagating across the Pacific slightly faster and even further than

observations suggest.

We next use the Wheeler and Hendon (2004), (hereafter WH04) technique

to extract the dominant MJO spatial and temporal modes. Combined EOFs (CE-

OFs), using OLR, U850 and U200, each bandpassed to the 20-100 period band,

are computed. This multivariate approach isolates the convective and baroclinic

zonal wind signature of the MJO. We specifically focus on the evaluation of the 1)
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vertical baroclinic structure in the winds and the lag in OLR and convection with

the winds depicting a moving convection and convergence system, 2) evolution of

the MJO life cycle in the model simulations, 3) MJO life cycle composite depict-

ing the various phases in the MJO evolution with respect to convection and the

convergence zone.

The two leading modes in both model and observations correspond to MJO

patterns and timescales. Fig. 2.10 shows the 15oN-15oS average of the CCSM-4

MJO CEOF 1 and 2 for all three variables. Compared to the observed modes shown

in Fig. 2.11, Mode 2 from observations corresponds to Mode 1 of the CCSM4.

The longitudinal location of the maxima, minima and zero crossings of all three

variables correspond well between model and observations. Likewise, observational

Mode 1 corresponds well to the structures seen in Mode 2 of the CCSM. The

magnitudes of the CEOFs in the model are about 40% smaller than the same in

the observed fields. We conclude that in this period band, MJO phasing between

physical variables in CCSM4 is remarkably consistent with observations but are

weaker in magnitude. The partitioning of variance in the Combined EOF analysis

is - OLR (18%), U200(37%), U850(50%) for the first two combined EOFs. The

variance explained by the PCs individually are : PC1 - OLR (10%), U200(21%),

U850(26%), PC2 - OLR (8%), U200(16%), U850(24%). This too is remarkably

consistent with the observed values of Waliser et al. (2008), viz., PC1 obs - OLR

(13%), U200(22%), U850(32%), PC2 obs - OLR (16%), U200(24%), U850(23%).

The lag correlation between PC-1 and PC-2 provides a measure of temporal

coherency for the eastward propagating MJO. These are calculated for year-round

fields for CCSM4 and shown in Fig. 2.12a. The familiar S-shape found in observa-

tions occurs (Waliser et al., 2008), with peak correlations of roughly 0.6 occurring

at ± 8 day lags in CCSM4, compared to 0.7 peak at ± 10 day lags in observations.

This indicates the dominant period is roughly 32 days in the model, but roughly 40

days in the observations, consistent with the higher power seen at high frequencies

in CCSM4 in the the power spectra of Fig. 2.6. The phase relationship indicates

that the multivariate EOF-1 and EOF-2 are a quadrature pair. This pair of lead-

ing EOFs represents coherent eastward propagation of MJO. It is a well-known
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challenge for GCMs to properly represent this coherent quadrature pair. Further,

to verify whether the extracted MJO modes are a physically meaningful mode of

variability and are distinct from noise, we project the leading EOFs derived from

filtered data onto unfiltered data (after only removing the seasonal cycle). The

power spectrum of the unfiltered PCs, shown in Fig. 2.12b, yields a prominent

peak at MJO time scales, very similar to Waliser et al. (2008) except for the higher

energy in the model spectral “shoulder” at 20-30 day periods. This increases our

confidence in the diagnostics that the modes of variability obtained are indeed

meaningful.

The two leading multivariate EOFs can also be used to derive a composite

MJO life cycle for boreal summer or winter, following WH04. The composite

is constructed by selecting full fields of U850, U200 and OLR during the time

intervals when MJO is strongly excited. The amplitude of the MJO is defined by

PC12 + PC22 after PC1 and PC2 are normalized to unit standard deviation. The

time intervals for the composite fields are defined as times when the MJO index

exceeds 1.5 (Fig. 3.1). The amplitudes for the MJO Index during the two model

time periods HENSO and LENSO are shown in Fig. 3.1. The phase of the MJO

is defined as atan(PC2/PC1). For each of eight phases, composites are generated

by averaging across all days that exceed the specified amplitude threshold. The

composite life cycle for the boreal winter MJO in the CCSM4 simulation is shown

in Fig. 2.13. The same for observations is shown in Fig. 2.14.

In general, the CCSM4 generates a realistic succession of phases associ-

ated with MJO (Fig. 2.13), very similar to those from observations (Fig. 2.14)

in many respects. The model phases differ from those in observations in a few

details. The convection in phase 3 in the model composite occurs off the equator

rather than over it as in observations (consistent with the variance plots of OLR

in Fig. 2.4). From phase 3 to phase 5, westerlies increase in the eastern Indian

Ocean and intensify convection over the Maritime continent, but not as strongly

as observations. The intensity of the OLR in the model is also lower and more

widespread in model phases 3 - 6 compared to those in observations. Compared to

a similar composite shown by Zhou et al. (2011a) for CCSM3.5, CCSM4 exhibits
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a more realistic OLR pattern over the Indian Ocean region during the initiation

phase and more coherent propagating components across the Maritime Continent.

Likewise, the phase composites for CCSM4 exhibit much more organized patterns

of MJO propagation than found by Zhang and Mu (2005) for CCM3.

We next consider the nature of the precipitation in the intraseasonal band.

Fig. 2.15 shows the variance in the intraseasonal precipitation from the model and

GPCP observations. The model precipitation variance is about 50% greater than

that in the observations, suggesting that the convectively coupled intraseasonal

bands of MJO generate excessive precipitation in the model. The intraseasonal

variance of the diabatic heating caused by convection parameterized in the model

has a spatial pattern that is similar to the variance of the precipitation (Fig. 2.16).

This supports the idea that the excessive precipitation in the model is due to large

scale convective systems (such as the MJO) in the intraseasonal band. In the

Indian Ocean initiation region of MJO, during phase 2 and 3 of the composite

MJO, the ratio of large-scale precipitation resolved by the model to the Zhang-

McFarlane parameterized precipitation is shown in Fig. 2.17. Roughly 30-35 %

of the precipitation during MJO initiation in the Indian Ocean is resolved by the

model and hence is consistent with a large scale intraseasonal convective system

propagating rather the small-scale convection dominating the precipitation.

In summary, CCSM4 exhibits an energetic eastward propagating signal

with MJO-like properties in the 20-100 day period band and 1-3 zonal wavenum-

ber band. The model MJO has somewhat stronger amplitudes and faster prop-

agation speeds than observations. For wavenumber 1, cross-spectral measures

of convergence-convection relationships in the MJO period band are similar in

strength to observations and indicate convectively coupled MJO is occurring. The

more broadbanded coherency in frequency suggests that additional activity as-

sociated with Kelvin waves with a convective signature also occur in the model.

This interpretation is even more evident for wavenumbers 2 and 3, which exhibit

convergence-convection coherency for high frequencies that are outside the MJO

band.

Compared to other global coupled models, CCSM4 exhibits relatively high
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skill in simulating these intraseasonal oscillations. As compared to the models

analyzed by Kim et al. (2009a), CCSM4 has pronounced energy in the MJO band

and is comparable to the best models listed, viz., ECHAM4 and SPCAM. Also, the

period and energy of the simulated ENSOs in CCSM4 are much improved compared

to its previous CCSM versions. As shown by Kim et al. (2009), the period with

maximum energy has shifted from 200 days for CCSM3.5 to the intraseasonal

period of 70 days for CCSM4. Additionally, the intraseasonal wavenumber peak has

broadened to include wavenumbers 1 - 3 from mainly being at wavenumber 1, with

intraseasonal spectral power levels increased by about 50% in CCSM4 compared

to CCSM-3.5. Besides improved parameterizations, some of the improvement over

the results of Kim et al. (2009a) is likely due to the higher resolution used here (1

deg versus 2 deg) and the inclusion of full ocean coupling (rather than prescribed

SST).

Since the phase of the OLR and winds in CCSM correspond well with the

structure of MJO, the simulations of MJO can therefore be analyzed for relations

with other climate phenomena such as the ENSO and the monsoons to attempt

to understand their dynamical interactions. We next execute some preliminary

attempts at addressing these issues in the following chapter.

2.4 Summary

Simulating and forecasting the MJO is of central importance to the global

climate and weather community, especially as models continue to increase resolu-

tion and resolve the various processes that contribute to intraseasonal variability.

Yet most climate models today fail to simulate even the large-scale features of the

MJO. In this study, we evaluate the performance of a 20-year run of CCSM4 in

reproducing the primary characteristics of MJO, based on diagnostics established

by the MJOWG.

CCSM4 produces coherent, broadbanded and energetic patterns in eastward

propagating intraseasonal zonal winds and OLR in the tropical Indian and Pacific

Oceans that are generally consistent with MJO characteristics. Strong peaks occur
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in coherence spectra with periods between 20-100 days and zonal wavenumbers be-

tween 1 and 3. Model MJO’s, however, tend to be more broadbanded in frequency

than observation, with higher frequencies being associated with zonal wavenum-

bers in the MJO band. But broadscale patterns, as revealed in combined EOFs of

U850, U200 and OLR, are remarkably consistent with observations and indicate

that convective coupling occurs in the simulated MJOs.
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Figure 2.1: 10-year sliding window variance of monthly-mean Niño 3.4 Index for

the 500-year climate simulation of CCSM-4.
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(a) Mean U850 - NCEP

(b) Mean U850 - CCSM4

Figure 2.2: (a) NCEP(20 years) and (b) CCSM4 (20 years) annual mean zonal

850 hPa Winds in m/s. The period used in the calculations for NCEP is 1981-

2000. The period used in the model is the 20 years combined from the high ENSO

variance (HENSO) and low ENSO variance (LENSO) 10-year runs.
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(a) Variance in U850 - NCEP

(b) Variance in U850 - CCSM

Figure 2.3: (a) NCEP and (b) CCSM4 variance (line contours) in zonal 850 hPa

winds in m2/s2 and the percentage ratio of the intraseasonal bandpassed (20-100

day) daily fields to the total variance (color contours). The period used in the

calculations is 20 yr (1981-2000 for NCEP).
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(a) Variance in OLR - NOAA

(b) Variance in OLR - CCSM

Figure 2.4: (a) NOAA AVHRR satellite OLR and (b) CCSM4 variance (line

contours) in Outgoing Longwave Radiation in W2/m4 and the percentage ratio

of the variance in the intraseasonal bandpassed (20-100 day) daily OLR fields to

the total variance (color contours).The period used in the calculations is 20 yr

(1981-2000 for NCEP).
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(a) 1997 - NCEP 850 hPa U anomalies (b) Year 3 - CCSM4 850 hPa U anomalies

Figure 2.5: Hovmöller plot of the intraseasonal (20-100 day) zonal 850 hPa winds

of (a) NCEP in 1997 compared to that of intraseasonal zonal 850 hPa winds of

year 3 of the (b) CCSM-4 run. The arrow which is meant to represent 8 ms−1 is

meant to guide the eye showing eastward propagation.
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(a) 2D Power Spectrum - NCEP U850(b) 2D Power Spectrum - CCSM4

U850

(c) 2D Power Spectrum - NOAA OLR(d) 2D Power Spectrum - CCSM4 OLR

Figure 2.6: November-April wavenumber-frequency spectra of 10oN-10oS-

averaged daily zonal 850 hPa winds of (a) NCEP (1981 - 2000) and (b) CCSM4

(20 years of HENSO and LENSO run) and daily OLR fields of (c) NOAA Satellite

OLR (1981 - 2000) and (d) CCSM4. Individual spectra were calculated for each

year, and then averaged over 20 years of data. Only the climatological seasonal

cycle and time mean for each November-April segment were removed before calcu-

lation of the spectra. Units for the zonal wind spectrum are m2 s−2 per frequency

interval per wavenumber interval. The bandwidth is (180 day)−1
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(a) NCEP Winds and Satellite OLR (b) NCEP

(c) CCSM4 Winds and OLR (d) CCSM4

Figure 2.7: Symmetric spectrum of coherence squared (colors) and phase lag

(vectors) between zonal winds at 850 hPa winds and OLR are shown for (a) NCEP

winds and satellite OLR (c) CCSM4 winds and OLR; (b) and (d) are expanded

views of the MJO-relevant parts of the spectra. Cross spectra are calculated using

daily data during all seasons on 256-day-long segments, with consecutive segments

overlapping by 206 days. A phase of 0o is represented by a vector directed upward.

Dispersion curves for the (n = −1) Kelvin, n = 1 equatorial Rossby (ER) and

(n = 1) Inertia-Gravity waves corresponding to three equivalent depths (h = 12,

25, and 50 m) in the shallow water equations are overlaid (black contours).
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80 days80 days

20 days20 days

(a) NCEP

20 days20 days

80 days80 days

(b) CCSM4

Figure 2.8: Antisymmetric spectrum of coherence squared (colors) and phase

lag (vectors) between zonal winds at 850 hPa winds and OLR are shown for (a)

NCEP winds and satellite OLR (b) CCSM4 winds and OLR as expanded views

of the MJO-relevant parts of the spectra. Cross spectra are calculated using daily

data during all seasons on 256-day-long segments, with consecutive segments over-

lapping by 206 days. Colors represent coherence squared between OLR and U850,

and vectors represent the phase by which wind anomalies lag OLR anomalies, in-

creasing in the clockwise direction. A phase of 0o is represented by a vector directed

upward. MJO is defined as the spectral components within zonal wavenumbers 1

to 3 and having periods 20 to 80 days as marked by the black box in the right

panels.
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(a) Winter Lag Correlation in NCEP Winds and

Satellite OLR

(b) Winter Lag Correlation in CCSM4 Winds and

OLR

Figure 2.9: November-April lag-longitude diagram of 10oN-10oS-averaged in-

traseasonal OLR anomalies (colors) and intraseasonal 850-hPa zonal wind anoma-

lies (contours) correlated against intraseasonal OLR at the Indian Ocean reference

box (10oS-5oN, 75o-100oE) for (a) observations and (b) CCSM4.
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Figure 2.10: All-season multivariate (a) first and (b) second combined EOF

(CEOF) modes of 20-100 day 15oS-15oN-averaged zonal wind at 850 hPa and 200

hPa and OLR from the 20 yr CCSM4 run. The total variance accounted for by

each mode is shown in parenthesis at top of each panel.
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Figure 2.11: All-season multivariate (a) first and (b) second combined EOF

(CEOF) modes of 20-100 day 15oS-15oN-averaged zonal wind at 850 hPa and 200

hPa from NCEP and OLR from the NOAA satellite for 1980 - 1999. The total

variance accounted for by each mode is shown in parenthesis at top of each panel.
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(a) Lag correlation in PC1 and PC2 for CCSM4 run and Observations.
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(b) Spectrum of the unfiltered PC derived by projecting CEOF1 onto

the unfiltered data.

Figure 2.12: (a) Lag correlation between PC1 and PC2 of Multivariate EOF

analysis of the intraseasonal zonal winds at 850 hPa, 200 hPa and intraseasonal

OLR anomalies from the CCSM4 run and the Observations. (b) Power spectral

density of the CCSM4 PC projected onto the unfiltered data. The dashed lines

show the red noise spectrum and upper 90% and 95% confidence limits on this red

noise spectrum.
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Figure 2.13: Composite November-April 20-100-day OLR (color, in Wm−2) and

850 hPa wind anomalies (vectors) as a function of MJO phase for the 20 year

CCSM run. The reference vector in units of m s−1 is shown at the top right. The

number of days used to generate the composite for each phase is shown to the

bottom right of each panel.
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Figure 2.14: Composite November-April 20-100-day OLR (color, in Wm−2) and

850 hPa wind anomalies (vectors) as a function of MJO phase for observations

from 1980-1999. The reference vector in units of m s−1 is shown at the top right.

The number of days used to generate the composite for each phase is shown to the

bottom right of each panel.
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Figure 2.15: Variance in (20-100 day) intraseasonal precipitation averaged over

5oN to 5oS for 20 years of the CCSM4 run and GPCP observations (1996 - 2006).
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Figure 2.16: Variance in (20-100 day) intraseasonal diabatic heating due to deep

convection parameterized by the Zhang-McFarlane scheme in CCSM4 averaged

over 5oN to 5oS
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Figure 2.17: Percentage ratio of large scale (non-parameterized) precipitation to

total precipitation in CCSM4 averaged over 5oN to 5oS during the phase 2 and 3 of

MJO when (20-100 day) intraseasonal convection is predominantly in the Indian

Ocean



Chapter 3

The MJO and Earth’s Climate

The Madden-Julian Oscillation (MJO) is the most prominent form of trop-

ical intraseasonal variability in the climate system. Relations between MJO in

the model and its concurrence with other climate states are explored. Higher am-

plitude MJO activity occurs during weak warm ENSO events and during periods

of weak meridional shear and negative zonal shear during the Indian Monsoons.

MJO response to anthropogenic climate change is assessed using CCSM4 in a sec-

ond study. A 50-year model run with the 20th century forcing is compared to a

50-year run with 21st century forcing projection of a 8.5 W/m2 increase. Obser-

vations from other studies suggest that warming in the tropical Indian and Pacific

Oceans in recent decades may have contributed to increased trends in the annual

number of MJO events. Similar results suggesting an increase in the number of

days with higher amplitude MJOs, and also a higher number of active MJO days

in the Indian and West Pacific ocean are observed from the model simulation of

global warming.

3.1 Introduction

The Madden-Julian Oscillation (MJO) is the most prominent form of trop-

ical intraseasonal variability in the climate system (Madden, 1994; Zhang, 2005b).

The influential nature of the MJO has been noted on monsoon systems (Car-

valho and Jones, 2002; Carvalho et al., 2002; Lau and Waliser, 2005b), occur-

55
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rences of extreme precipitation (Jones, 2000; Jones et al., 2004b), weather fore-

cast accuracy Jones et al. (2004a,b); Jones and Carvalho (2011), interactions with

El Niño/Southern Oscillation (McPhaden, 1999; Lau and Waliser, 2005b), deep

ocean variability (Matthews, 2004; Matthews et al., 2007), distributions of tropi-

cal cyclones and hurricanes (Maloney, 2000; Kim et al., 2008) and surface chloro-

phyll variations in tropical oceans and coastal areas (Waliser et al., 2005; Isoguchi

and Kawamura, 2006). The oscillation exhibits important seasonal changes and

pronounced interannual variations (Jones and Carvalho, 2006, 2011; Pohl and

Matthews, 2007).

Since the phase of the OLR and winds in CCSM correspond well with the

structure of the MJO, the simulations of the MJO can therefore be analyzed for re-

lations with other climate phenomena such as ENSO and the monsoons to attempt

to understand their dynamical interactions. We next execute some preliminary at-

tempts at addressing these issues.

3.2 Relations of MJO to other climate variables

3.2.1 MJO-ENSO relations

El Niño Southern Oscillation is the strongest interannually varying phe-

nomenon in the tropical coupled ocean-atmosphere system. The MJOs are the

strongest intraseasonal varying phenomena in the tropical coupled ocean-atmosphere

system. Although both these phenomena have most of their energy in widely sep-

arated timescales, they have been shown to interact and modulate each other since

both of them involve large-scale tropical convection, large-scale atmospheric cir-

culation changes and teleconnections to other global weather phenomena (Hendon

et al., 2007; Kessler and Kleeman, 2000; Marshall et al., 2009; Pohl et al., 2010).

The strength of the MJO varies year-to-year and some of this variability

has been linked to ENSO (Kessler, 2001; Hendon et al., 2007; Tang and Yu, 2008).

In nature, MJOs have been noted to be most active during neutral and weak

ENSO years. To address this issue in CCSM4, Figure 3.1 shows MJO amplitude

vs ENSO index for both the model run and observations. CCSM4 has a propensity
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for stronger MJOs to occur during weak warm event conditions. Both model and

observations exhibit the tendency for MJOs to occur more frequently and more

energetically during warm conditions. This relation appears to hold for both winter

and summer MJO periods. Since the 20 years of model output contains only five

El Niño to La Niña transitions, however, the results are only suggestive.

Recent studies by Zhou et al. (2011a) show the importance of the back-

ground state of the winds in the tropical Indian Ocean and western tropical Pacific

Ocean in the organization of intraseasonal perturbations to the mean background

state of convection. The presence of a weak El Niño event establishes favorable

conditions for MJOs to propagate further to the east in the western and central

Pacific, thereby sustaining MJOs. This effect can be clearly seen in the model

simulations, but is not so evident in the observations (Figure 3.1). On the other

hand, comparing extreme ENSO conditions, there is a drop-off of the amount of

MJO activity in both strong El Niño states and strong La Niña states. This is

physically consistent with the idea that a strong reduction in SST in the western

Pacific warm pool or the central Pacific can suppress MJO activity (Hendon et al.,

2007).

There is also evidence from other studies that MJO influences the ENSO

cycle (Kessler and Kleeman, 2000; Marshall et al., 2009; Lau, 2005). These studies

have shown that the MJOs do not cause El Niño or La Niña, but they can change

development and intensity of El Niño and La Niña episodes by significantly altering

the low-level wind field that in turn, can result in variations in the ocean sub-surface

conditions and later sea surface temperature (Newman et al., 2009). In our model

runs, most of the MJO events were during weak warm events, which indicates that

the strong ENSO events do not contemporaneously occur with strong MJOs and

hence do not influence each other simultaneously.

We studied and compared the two 10-year model cases with high ENSO

variance (HENSO) and low ENSO variance (LENSO), but the MJO variability in

these two runs was not significantly different. The mean fields of the zonal winds,

meridional winds and OLR were nearly indistinguishable. Minor differences were

found in the variance of 850 hPa zonal winds, which tended to peak in the Maritime
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Continent and the Central Pacific region during the HENSO period whereas during

the LENSO episode the peak is constrained to the Maritime Continent. The Indian

Ocean zonal winds and OLR had somewhat weaker intraseasonal variance during

LENSO as compared to the HENSO period. The power spectral density of the

zonal 850 hPa winds in the Indian Ocean contained higher peaks in the 20-100 day

band in the HENSO case. In the western Pacific region, the power spectral density

of the zonal 850 hPa winds contained broader and higher peaks in the LENSO case.

The wavenumber frequency spectra revealed more power in the 30-40 day winds

in the LENSO case, and less power in the 60-100 day winds. The phase speed of

propagation of the MJO along the equator, gauged by the lag correlation plots of

OLR and U850 as in Fig 2.9, was closer to that observed for HENSO. But our

results for high and low ENSO variance cases did not appear to be statistically

significant, given the short 10-year record length and small number of ENSO events

that occurred within them.

3.2.2 MJO-Monsoon relations

MJOs interact considerably with the circulation and variability of Asian

summer monsoon (Annamalai and Slingo, 2001; Waliser et al., 2003)). In the mon-

soon season, intraseasonal disturbances associated with the MJO tend to propagate

in a northeast direction and strongly influence the active and break monsoon rain-

fall cycles over the South and East Asian continent (Yasunari, 1979; Annamalai

and Slingo, 2001), including the genesis of synoptic systems (Goswami et al., 2003).

Although it is still an area of research whether most of the intraseasonal variabil-

ity associated with the northward propagating ISOs are independent of the MJOs

or are generated by them, it is known that the MJOs during boreal summer do

influence other weather phenomena in the South Asian region such as generating

hurricanes (Camargo et al., 2009; Bessafi and Wheeler, 2006). Since the early work

of Yasunari (1979), our knowledge about the MJO influence on the boreal summer

monsoon has been enhanced many fold due to the availability of satellite data.

Indices have been defined to quantify Monsoon variability such as the pre-

cipitation indices averaged over the subcontinent and the dynamical monsoon in-
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dices Webster-Yang Index (U∗850-U
∗
200, where U∗ is the zonal wind anomaly, aver-

aged over the region from 40oE to 110o E, 0o - 20oN) (Webster and Yang, 1992) and

the Monsoon Hadley Index (V∗850-V
∗
200, where V∗ is the meridional wind anomaly,

averaged over the region from 70oE to 110o E, 10oN - 30oN) (Goswami et al.,

1999). These two indices measure the variability in the dynamical zonal shear and

meridional shear over the North Indian Ocean respectively.

The possible relationships between MJO Index vs the strength of the merid-

ional shear are explored by relating the time periods when MJO index exceeds 1.5

to three states of the MHI depending on whether the MHI is greater than 1, be-

tween 1 and -1 or less than -1 for the positive, neutral and negative states respec-

tively. Fig. 3.2 shows these results for both model and observations, along with

(a) the percentage of time MJO is active during the MHI states and (b) the aver-

age strength of MJO during the MHI states when MJO is active. The results, for

both model and observations, show that MJO preferentially occur during negative

MHI conditions. MJO amplitudes does not show any consistent relationship with

MHI state in either model or observations. We also explored the relation between

MJO Index and strength of the zonal shear, based on the WYI, but no consistent

relation occurred between the model and observations in the results (Table 3.1).

The reason for the stronger activity of MJO during periods of negative

meridional shear (northerly winds aloft and southerly winds below) is likely due

to the enhanced vertical motion in the Hadley circulation over the Indian Ocean

(Annamalai et al., 2003). In this situation, MJO is sustained and energized by

the anomalous updrafts and convection over the warm equatorial Indian Ocean

waters. Positive meridional shear, in contrast, implies increased subsidence and

reduced convective activity, which suppresses MJO generation.

The role of Indian Ocean SST anomalies on the South Asian Monsoons

has been a topic of several studies (e.g. Yuan et al., 2008; Krishnamurthy and

Kirtman, 2003; Goswami and Mohan, 2001). Indian Ocean variability is known

to be strongly seasonal and is related to ENSO variability. Many studies have

focused on the role of the Indian Ocean Zonal Mode (IOZM) and its potential

effect on the Asian monsoon (Saji et al., 1999; Webster et al., 1999; Annamalai
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et al., 2003). The IOZM defined in Annamalai et al. (2003) is shown to correlate

significantly with the Asian summer monsoon in a few studies (Behera et al., 1999;

Yuan et al., 2008). Yet it is still an area of intense debate. Studies show that the

IOZM is most significantly correlated with the Local Hadley cell which influences

the Asian monsoons (Slingo and Annamalai, 2000). The IOZM has been noted to

influence MJO activity, as well (Rao et al., 2007; Ajayamohan et al., 2008). Kug

et al. (2009) showed that the high frequency atmospheric variability in the Indian

Ocean is modulated by IOZM events and that MJO and synoptic eddies become

significantly energetic during negative IOZM events.

The possible relationships between MJO and IOZM states are explored

here by relating the time periods when MJO index exceeds 1.5 to three states of

IOZM index (positive, neutral and negative phases when the IOZM index is greater

than 1, between 1 and -1 and less than -1 correspondingly), defined by Annamalai

et al. (2003), as shown in Fig. 3.3. Both the model and observations reveal a

tendency for higher MJO activity during negative IOZM states. The model also

has higher amplitude MJO during these times, but this aspect of the relationship

is not found in the observations. These results are consistent with the idea that a

negative IOZM event, which has anomalously warm ocean surface in the eastern

and central Indian Ocean, would set up anomalous westerlies in the equatorial

Indian Ocean and enhanced convection in the eastern Indian Ocean. Both of these

processes sustain and support strong MJO activity (Inness et al., 2003; Zhou et al.,

2011a; Waliser et al., 2008). However, since the run is of limited duration, this

result is only suggestive of the dynamic interplay between MJO and IOZM, and it

motivates further research on the issue.

After looking at contemporaneous relationships between the MJO and other

climate phenomena such as the monsoons, ENSO and IODZ, the change in MJO

activity due to global warming is studied using the CCSM4. The next section

presents a preliminary discussion on this change.



61

3.3 MJO in a global warming scenario

While progress to understand the mechanisms of the MJO has improved

over the years, global climate models still do not realistically reproduce all char-

acteristics of the MJO (Zhang, 2005b; Lin et al., 2006b). Therefore, the question

of how global warming will further impact the MJO has not been explored. The

objective of this note is to show projections of possible changes in the activity of

the MJO under one particular climate warming scenario.

There have been numerous studies of Tropical dynamics which are likely to

be affected by global warming (Schneider, 2009; Vecchi et al., 2006; Soden, 2007;

Allan and Soden, 2008). The physical changes such as increasing the heat content

of the Tropical oceans, expansion of the Hadley cell and increase in volume of the

global water cycle must necessarily impact MJO and intraseasonal dynamics in the

Tropics eventually. Understanding how and when this impact will be realized is

not often discussed in the context of global climate model results. While progress

to understand the mechanisms of the MJO has improved over the years, global

climate models still do not realistically reproduce all characteristics of the MJO

(Zhang, 2005b; Lin et al., 2006b; Kim et al., 2009b). Therefore, the question of

how global warming will further impact the MJO has not been explored.

The objective of this note is to show projections of possible changes in the

activity of the MJO under one particular climate warming scenario. We look at

two CCSM4 simulations of the MJO in two greenhouse forcing scenarios. One

is in the present climate and the other is in an extreme global warming climate.

The extreme global warming climate is defined as the Representative Concentra-

tion Pathways (RCP) 8.5 scenario which reflects the socio-economic pathway that

reaches a radiative forcing of 8.5 W/m2 by the year, 2100 [CMIP5 Report]. Here,

the new version of the NCAR Community Climate System Model (CCSM4: Gent

et al. 2011), with its improved representation of 20th century tropical variability

(Deser et al., 2011), provides a case study for the MJO response to climate change.
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3.3.1 Changes to Mean Circulation

The atmospheric overturning circulation is expected to weaken in response

to climate change (Vecchi et al., 2006; Held and Soden, 2006) due to an imbalance

between increases in the evaporative flux and convective precipitation. A similar

signal of a weakening atmospheric circulation is seen in CCSM4. Figure 3.4 shows

that the Inter-Tropical Convergence Zone (ITCZ) strengthens somewhat in the

RCP8.5 simulation relative to the 20th century, especially in the southern branch

South Pacific CZ (SPCZ). Figure 3.5 show the changes to wind stress magnitude:

there is a strengthening of τ at 5oN and S, which comes primarily from increased

meridional wind stress. Reductions in τ are roughly 5-10% of the 20th century

trade wind strength along the equator (Figure 3.5). Note the strong hemispheric

asymmetry in the Pacific trade wind shifts, with the Northern Hemisphere trades

(between 10-20oN) reduced by 2-3 times as much as their Southern Hemisphere

counterparts, possibly due to the higher air-sea contrast created by the larger

Northern Hemisphere land masses. The trade wind asymmetry is consistent with

the hemispheric asymmetry in overall warming, which has been shown to be 2-

3x stronger in the Northern Hemisphere in CCSM4. From geostrophy, a stronger

reduction in the meridional temperature gradient in the Northern Hemisphere will

in turn lead to a greater weakening of the trade winds.

Changes to ocean surface temperature are shown in Figure 3.4. Warming

is most pronounced along the equator, consistent with predictions of enhanced

meridional SST gradients from previous analyses (Gastineau and Soden, 2009;

Liu et al., 2005; Xie et al., 2010). Stronger warming is seen in response to CO2

increases in the eastern Pacific than in the west, which has been seen in multi-

model experiments (DiNezio et al., 2009) as well as stabilized climate experiments

with the CCSM3.5 (Stevenson et al., 2011). The mean zonal winds at 850 hPa do

not change significantly in both the simulations as seen in Figure 3.6. The main

change is witnessed as a decrease in the westerlies in the Indian Ocean indicating

a weaker atmospheric circulation as shown by Vecchi et al. (2006) and Held and

Soden (2006). The mean OLR decreases spatially in both the eastern and western

Pacific Ocean indicating a weaker circulation over the region in a warmer Tropics.
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A decreased east-west gradient in zonal surface temperature as seen in Figure 3.4

also indicates this weakening in zonal overturning in the atmosphere. The rest of

the Tropics have similar mean OLR magnitudes for the two forced runs as seen

in Figure 3.7. A weaker Tropical zonal circulation would mean weaker easterlies

and stronger westerlies, which is a favorable background mean condition for the

MJOs to initiate and propagate as shown in several previous studies (see Biello

and Majda (2005) and references therein).

3.3.2 Trends in MJO amplitude

Trends in MJO amplitude and change in phase is studied in this section.

The changes in the variance in zonal 850 hPa winds, precipitation and amplitude

of MJOs in the two forced runs are studied and presented. The MJO is the most

important mode of tropical intraseasonal variability. Observational studies based

on reanalysis data indicate that the MJO shows regime changes on low-frequency

time-scales (i.e. variations longer than 2 years) (Jones and Carvalho, 2011). In

addition, the MJO exhibits a long-term trend in activity (Jones and Carvalho,

2006) including a trend toward greater event frequency after the mid-1970s (Jones

and Carvalho, 2006; Pohl and Matthews, 2007). These changes in the MJO coincide

with the long-term warming in the Indian Ocean and western Pacific warm pool.

A possible linkage between increased MJO activity and warming in the tropical

oceans is in agreement with the study of Slingo et al. (1999), although dynamical

mechanisms remain to be demonstrated. Slingo et al. (1999) performed general

circulation model experiments forced with observed SSTs and partially reproduced

the positive trends in tropical intraseasonal amplitudes since the mid-1970s.

One significant challenge in the development of a comprehensive theory of

the MJO has been to determine what dynamical mechanisms control the initiation

of the oscillation. Kemball-Cook and Weare (2001), for instance, analyzed ra-

diosonde data in the Indian Ocean, maritime Continent and western Pacific Ocean

to investigate three possible mechanisms of MJO initiation: (i) extratropical trig-

gering, (ii) tropical circumnavigating triggering and (iii) recharge - discharge. They

used an instability index defined as moist static energy (h) at 1000 hPa minus that
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at 500 hPa. (h = cpT + Lq + gz; cp = specific heat at constant pressure, T =

temperature, L = latent heat of condensation, g = gravity acceleration, z = geopo-

tential height). They showed that the instability index was well correlated with

convective available potential energy (CAPE) and found support for the recharge

- discharge mechanism. In this case, the initiation of organized convection during

the MJO is initiated by a combination of low-level moist static energy build-up and

concurrent drying of the mid-troposphere associated with subsidence from a previ-

ous cycle of MJO convection. Thus, a possible hypothesis for the observed positive

trend in MJO activity is that warming of the tropical Indian Ocean and western

Pacific increases the background CAPE necessary for triggering MJO events.

Hence it is important to mention other possible impacts that global warming

might have on the MJO. These might include changes from longitudinal gradients

of SST in the tropical Indian and Pacific Oceans, modifications in the mean state

(Slingo et al., 2003) or changes in extratropical stochastic forcing on the MJO (Ray

and Zhang, 2010). Lastly, it is relevant to note that this study investigated one

aspect of a very complicated problem. Additional studies need to be developed to

examine likely modifications in structure and differences in mechanisms associated

with primary and successive MJO events.

Jones and Carvalho (2006) show that the activity of the MJO is lower in

years prior to the mid-1970s, suggesting that the MJO may indeed become more

active as tropical SSTs become warmer with implications for the effects of global

warming on the coupled tropical atmosphere-ocean system. Zveryaev (2002) also

notes interdecadal changes in intraseasonal variability during the Asian summer

monsoon. Slingo et al. (1999) analyzed the NCEP/NCAR reanalyses and present

very similar results to those obtained from the ECMWF 40-year reanalysis (ERA-

40) adding more validity to the decadal variability identified by Zveryaev (2002).

The total variance in the zonal 850 hPa winds seen as line contours in

Figure 3.8 shows a small decrease in the RCP8.5 forced run in the Pacific Ocean

region. This would again indicate a weaker variation in the overturning circula-

tion in the equatorial Pacific Ocean region.The intraseasonal variance in the zonal

winds explains a higher percentage of the total variance indicating the strength
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of the ISO winds to be either the same or slightly stronger in the warmer atmo-

sphere than in the present day climate. Analysis of the intraseasonal precipitation

shows a much stronger net increase in the variance of the total precipitation and

also an increase in the percentage variance explained by ISOs (Figures 3.9,3.10).

This shows that the wet events in present day climate are likely to be wetter in

the warmer atmosphere and also dry spells are likely to be drier. This not only

happens in the total precipitation but also in the intraseasonal events. This was

the strongest indication of amplification of the water cycle in a global warming

scenario in CCSM4 which has been studied earlier in idealized GCMs and climate

models (Allan and Soden, 2008; Schneider et al., 2009; Schneider, 2009, 2010).

Computing the MJO Index for both the forced runs, the frequency of MJO

amplitude occurrence in the 20th century and the RCP8.5 forced case is presented

in Figure 3.11. The number of days of high MJO amplitude events in the global

warming scenario is significantly higher than the 20th century run. The weaker

MJOs of about the amplitude 2 (mean amplitude for both the periods) decreases

in the global warming scenario. This is consistent with previous studies showing

that the extreme events are amplified in a more active hydrological cycle due to a

warmer atmosphere (Allan and Soden, 2008; Schneider et al., 2009). The changes

in the MJO active days (when the MJO amplitude is greater than 1) in different

regions around the world (identified from the MJO phases) are shown in Figure

3.12. The mean amplitude of the MJO events in different phases in the RCP8.5

case is always greater than the mean amplitude in the 20th century climate. A

significant increase in the number of active MJO days is also seen in the Indian

Ocean region, where the mean amplitude increases by 0.1, and the number of days

increases by about 500. This is consistent with the large increase in variance of

the intraseasonal precipitation observed in the Indian Ocean in the RCP8.5 case.

There is a net decrease in the number of active MJO days over the Maritime

Continent. The number of active MJO days in the Western Pacific also increases

by about 100 days. This indicates higher amplitude MJO events occurring mostly

in the Indian Ocean and some of them also propagating over into the W. Pacific.

A detailed study of the propagation and structural changes in the MJOs between
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the two climates is beyond the scope of this study and is proposed as future work.

3.4 Conclusion

The mechanism involved in the intiation, propagation and non-periodicity

of the MJO continue to present a major challenge to develop a complete theory

of the oscillation. Many previous studies have improved our understanding of the

characteristics of the MJO on seasonal to interannual time scales. In contrast, the

behavior of the MJO on time scales longer than interannual has been unknown,

largely due to a lack of data records long enough to resolve intraseasonal vari-

ations. Only climate modeling studies which are yet to resolve very good MJO

characteristics or reanalysis products are useful tools currently for such analysis.

The reanalysis products are still developing in terms of having a good long term

continuous time series overcoming the large data shortage in the early part of the

previous century. Only now have climate models improved their skill in simulating

MJOs sufficiently that they can be used for studies such as long term variability

of the MJO reasonably.

Relations between MJO and other climate phenomena were explored as well,

but no overwhelmingly strong links between ENSO state, Monsoonal flow or Indian

Ocean Dipole mode were identified. In these short, 20-year runs, a tendency for

MJO to be more energetic during weak warm ENSO conditions, negative Monsoon

Hadley flow, and positive zonal shear, was noted. But longer runs and more

detailed dynamical analysis will be needed to better understand what processes

control MJO and what climate processes respond to MJO in CCSM4.

Increase in variance of precipitation and especially the variance in the in-

traseasonal precipitation indicates a more active hydrological cycle in global warm-

ing scenarios as seen in several previous studies. A histogram plot of the MJO

amplitude and number of days shows an increase in the higher amplitude MJO

active days and also in the very low or no MJO days. The net number of days

with average MJO amplitude reduces in the global warming scenario. This is con-

sistent with previous studies showing extreme precipitation events amplify in a
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warmer atmosphere (Allan and Soden, 2008). It is also observed that the model

MJOs are active (with amplitude greater than one) for significantly higher number

of days in the Indian Ocean and W. Pacific with higher amplitudes in the warmer

atmosphere.

The results from this study raise some important questions that deserve

future investigation. Since summer and winter MJO activity involves significant

feedbacks between convection and large-scale circulation, one can expect that low-

frequency changes in the basic state will change the intraseasonal oscillations such

as MJOs. Further studies with idealized GCMs and climate scale models need

to be done to tease out the dynamical mechanisms forcing regime changes in the

MJO. Links between regime changes in the MJO and other low-frequency modes of

the coupled ocean-atmosphere system (ex: ENSO and Pacific Decadal Oscillation)

need to be investigated further.

This study was based on a 100 year simulation of the MJO in a 20th century

forcing scenario and a RCP8.5 forcing scenario. Ideally, a much longer data record

would be necessary to reach definitive conclusions on the behavior of the MJO on

long time scales. Unlike other phenomena such as ENSO, proxy records do not

provide enough temporal resolution to resolve intraseasonal variability which vary

at timescales of months. Hence studies of low-frequency changes in MJOs from

proxy data records are not possible with current understanding and treatment of

proxy records. Hence, coupled ocean-atmosphere simulations with numerical mod-

els that realistically represent the MJO might be able to provide further insight on

the low-frequency variations in the MJO. Since the MJO is a critical component

in modulating weather variability in the Tropics and extratropics of both hemi-

spheres, knowledge of the long-term behavior of the MJO is very important in

having a good understanding of future global climate change scenarios.
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Figure 3.1: Daily MJO Index and ENSO Niño 3.4 Index in the (a) 20 years

simulations compared to (b) observed MJO Index and ENSO Niño 3.4 Index (from

NOAA). Warm(cold) events are defined as being persistently above(below) 0.5(-

0.5) for atleast 3 months. During the observation period there were a total of 2400

El Niño days (1299 MJO active days), 3390 neutral days (1593 MJO days), 1410

La Niña days (646 MJO days). During the 20 years of CCSM4 simulations, there

were a total of 1950 El Nino days (1437 MJO days), 3420 neutral days (1646 MJO

days), 1830 La Nina days (784 MJO days).
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Figure 3.2: MJO Index shaded by the intensity of the Monsoon Hadley Index in

(a) CCSM4 in the 20 years simulations and in (b) Observations from 1980 - 2000.

The shades indicate periods corresponding to different MHI states as indicated by

the colorbar. The neutral periods are when the absolute value of the MHI index

is less than 1.
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Figure 3.3: MJO Index shaded by the intensity of Indian Ocean Zonal Mode

Index in (a) CCSM4 in the 20 years simulations and in the (b) observations (1980

- 1999). The shades indicate periods corresponding to different IOZM states as

indicated by the colorbar. The neutral periods are when the absolute value of the

IOZM index is less than 1.
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0

Figure 3.4: Surface Temperature change of RCP8.5 - 20th century simulation in

CCSM4 (deg C) (Stevenson et al., 2011)

Figure 3.5: Change in wind stress of RCP8.5 - 20th century simulation in CCSM4

(N/m2) (Stevenson et al., 2011)
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(a) 20th century forced CCSM4 run

(b) RCP8.5 21st century forced CCSM4 run

Figure 3.6: Annual mean zonal winds at 850 hPa for (a) the 20th century forcing

simulation and (b) RCP8.5 21st century simulation. The period used to calculate

for both cases were the last 50 years from each century.
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(a) 20th century forced CCSM4 run

(b) RCP8.5 21st century forced CCSM4 run

Figure 3.7: Annual mean Outgoing Longwave Radiation for (a) the 20th century

forcing simulation and (b) RCP8.5 21st century simulation. The period used to

calculate for both cases were the last 50 years from each century.



75

(a) 20th century run

(b) 21st century run

Figure 3.8: Total variance in the zonal 850 hPa winds (line contours) and per-

centage variance explained by the Intraseasonal Oscillations (color contours) for

(a) the 20th century simulation and (b) the 21st century simulation.
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(a) 20th century run

(b) RCP8.5 21st century run

Figure 3.9: Total precipitation variance for 50 years of (a) 20th century simulation

(b) 21st century simulation (RCP8.5 case).
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(a) 20th century run

(b) 21st century RCP8.5 run

Figure 3.10: Percentage variance of Intraseasonal precip in the (a) 20th century

run and (b) 21st century run. The contours are drawn for every 10 % increase in

variance explained by the intraseasonal precipitation.
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(a)

(b)

Figure 3.11: MJO Activity in the present vs future climate of RCP8.5 scenario.

The number of days that the MJO is active at a certain MJO amplitude is plotted

as a line histogram in (a). The difference between the Present and Future MJO

active days for each amplitude is plotted in (b).
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(a) Number of MJO active days in CCSM4 (blue : present climate , red : future

climate)

Figure 3.12: Number of MJO active days in CCSM4, present climate (blue)

compared to the future climate (red). The difference in mean amplitude (RCP8.5

- 20th century) is indicated on top of the red bars. The change in amplitude is

always positive indicating that the average amplitude of the MJO is increasing in

the future climate.
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Table 3.1: Percentage of days of active MJO during different phases of the zonal

shear (quantified by Webster-Yang Index) in the Northern Indian Ocean and the

average amplitude of the MJO is shown during these different phases.

% MJO Days (Obs.) MJO avg. amp. (Obs.)
(CCSM4) (Obs.) (CCSM4) (Obs.)

Positive WYI 48 58 2.9 3.0
Neutral 40 36 2.7 2.7

Negative WYI 65 51 2.7 2.8

Table 3.2: Regression coefficient for MHI and Nino 3.4 and WYI and Nino 3.4

Reg. Coeff. Intercept R2

(CCSM4) (Obs.) (CCSM4) (Obs.) (CCSM4) (Obs.)
MHI -0.4 -0.2 0 0 0.4 0.3



Chapter 4

State Estimation applied to the

Oceanic Mesoscale in the South

East Pacific

This chapter builds the background for the second half of this thesis and dis-

cusses the development of assimilation methodologies in physical oceanography. It

presents the mathematical recipe of the assimilation method adapted in the present

study and also illustrates the implementation of assimilation of observed data over

the oceans in a general circulation ocean model (ROMS). The Peruvian Current

system plays a key role in the climate variability of the Eastern Tropical Pacific and

also has teleconnections to other regions of high climate impact like the Tropical

Pacific. The oceanic circulation is characterized by strong eddy activity with short

zonal scales. Mesoscale eddies generated in the upwelling regions in the South East

Pacific are studied in an ocean data assimilation framework. Data assimilation

of the sea state observations from satellites and ships for a period of a month in

2008 is achieved by using the inverse Regional Ocean Modeling System (iROMS), a

4D-variational data assimilation system. The 15-day ROMS I4D-VAR simulations

successfully improve the state estimation by adjusting the initial conditions and the

surface forcing. The normalized absolute misfit between the observations and the

corresponding model states is reduced close to the observational error range. Other

statistical measures comparing model with observations are also improved.

81
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4.1 Introduction

“Assimilate” is a word that conjures up diverse meanings ranging from

physiological metabolism to absorption of knowledge into the mind. Its usage

in all contexts is in the sense of absorption of knowledge/nutrients external to

the system into the present state of the system. In recent years, interest in data

assimilation into ocean models has increased dramatically after the increase in

available observational data of oceanic fields and the concomittant development

of more accurate ocean general circulation models. In this new age sophisticated

theories about ocean circulation developed up till now from very little field infor-

mation, will be tested against the incoming data, new theories will be developed

to explain the varied phenomena transpiring from the more plentiful data and in-

creased understanding of ocean circulation will be translated into prediction. The

concept of data assimilation was developed in meteorology about 50 years ago as

the methodology in which observations are used to improve the forecasting skill

of operational meteorological models. In operational meteorology, all the obser-

vational data available at a given time are assimilated into numerical prediction

models by melding them with the model-predicted values of the same variables in

order to prepare initial conditions for the forecast model run.

In the ocean state estimation context, the term “data assimilation” has

acquired a much broader meaning. Data assimilation in ocean state estimation

pertains to various different methodologies, originating not only from meteorology

but also from solid earth geophysics inverse theories and in engineering control the-

ories. All these methods attempt to constrain a dynamical model with the available

data. Oceanographic data assimilation has three main objectives. One goal is to

quantitatively use the data in order to improve the ocean model parameterizations

of subgrid scale processes, boundary conditions, etc. A second goal is to obtain a

four-dimensional realization of the oceanic flow that is simultaneously consistent

with the observational evidence and with the dynamical equations of motion. This

realization can be used for detailed process studies of ocean dynamics of a region.

A third major motivation of ocean data assimilation, the closest to the meteorolog-

ical one, is to provide initial conditions for predictions of the oceanic circulation.
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In this chapter, we intend to illustrate the data assimilation scheme used in the

study of this thesis along with certain illustrations of the landmarks in the develop-

ment of ocean data assimilation. The data assimilation scheme used in this study

is termed as Incremental Strong-constraint 4 Dimensional Variational (IS4DVAR)

assimilation. Our main focus here is the mathematical framework based on which

the IS4DVAR methodology was developed and the objective of using data assimi-

lation in a ocean general circulation model. Two major differences still prevent the

simple “borrowing” of techniques from meteorology. The first is the motivation

for oceanic data assimilation which is not as narrowly focused towards short term

prediction as are most meteorological efforts. The second reason resides in the

major differences between the meteorological and oceanographic data sets. The

available oceanographic data are sparse in the interior of the ocean where as the

surface measurements of oceans are much more spatially dense. This is not the

same in the case of meteorological observations. This implies that the assimila-

tion methodologies, far from being blindly applied to oceanic dynamical problems,

must be revisited and sometimes profoundly modified to make them feasible and

successful for physical oceanography.

4.2 Historical Perspective

The first data assimilation methods were called the “objective analysis”

(Cressman, 1959). The idea of applying objective analysis was first proposed by

Kibel. In a lecture in 1949, Kibel pointed out that calculations of barometric

and thermal tendencies according to the forecasting scheme developed by him

at that time could be carried out quiet conveniently, provided the pressure and

temperature fields were first represented by polynomials. In subsequent works,

Kibel made use of formulae which described a plane field by means of a quadratic

and third order polynomials, on the basis of the method of least squares and using

data from points on a square grid.

At the end of 1949, Panofsky’s article (Panofsky, 1949) appeared, in which

the term “objective analysis” was apparently used for the first time. He used a
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technique of fit by least squares in two dimensions. This technique consists ba-

sically in expanding the fields (variables), which are to be analyzed, in a series

of polynomials about the observation point, minimizing the square of their differ-

ences with the observed values. The expansion coefficients are then determined by

inverting a matrix.

The studies described above were carried out before numerical prediction

by means of electronic computers began to be used in meteorology. The introduc-

tion of the latter provided a powerful stimulus to the developement of objective

analysis methods. Consequently, the main attention began to be focused just on

obtaining values of the analyzed elements at regularly spaced grid points (values

to be used afterwards as initial data for the numerical prediction) rather than on

a construction of the whole field.

This was followed by the developement of two fundamentally different meth-

ods of objective analysis for the purpose of numerical weather prediction. One

was developed by American investigators Gilchrist and Cressman (Cressman and

Gilchrist, 1954) and the other by Bergthorsson and Döös (Bergthorsson and

Döös, 1955). Gilchrist and Cressman developed a polynomial interpolation scheme

termed as ”successive correction scheme”. It achieves its results by forcing conver-

gence of data to observed, interpolated values using multiple iterations.

Swedish investigators Bergthorsson and Döös developed a completely dif-

ferent method of objective analysis. The information used in this method includes

not only observational data but also the results of a numerical prediction for the

given time and the average climatological values of the analyzed elements.

The breakdown in the field of data assimilation was achieved independently

by Ed Lorenz (1956) and L. S. Gandin (1965) who introduced the “statistical

interpolation” (or “optimal interpolation”) method. This method is a 3D data

assimilation scheme and is a kind of “regression analysis”, which utilizes the infor-

mation about the spatial distributions of covariance functions of the errors of the

“first guess” field (previous forecast) and “true field”. These functions are never

known. However, different approximations were assumed.

The optimal interpolation algorithm is the reduced version of the Kalman
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filtering algorithm, when the covariance matrices are not calculated from the dy-

namical equations, but are pre-determined in advance.

When this was recognised, the attempts to introduce the Kalman Filtering

algorithms as a 4D data assimilation tool for Numerical Weather Prediction mod-

els were tried. However, this was (and remains) a very difficult task, since the full

version of Kalman Filtering algorithm requires solution of the enormous number of

additional equations. In connection with that, the special kind of Kalman Filter-

ing algorithms (sub optimal Kalman Filtering) for Numerical Weather Prediction

models were developed (Dee, 1991a).

Over the past 25 years or so, since the initial efforts to develop three di-

mensional ocean circulation models (Bryan, 1969), ocean modeling has made a

very significant progress. In parallel, oceanic observational techniques have been

thoroughly revolutionized. However, the lack of a single focusing motivation of

oceanic data assimilation such as provided by the need for Numerical Weather

Prediction (NWP) in meteorology, caused ocean models and observational tech-

niques to develop quiet independently from each other. When oceanic models and

observations started converging, it happened in different paths, depending on the

specific objectives of each effort (Emery and Thomson, 1998).

The early days of oceanography saw dynamic calculations as the main quan-

titative tool to combine data (temperature and salinity) with the then present

ocean models. From this modest beginning, relying on highly simplified models

and on no formal assimilation procedure, the next step was to introduce a formal

least square inverse methodology imported from solid earth geophysics and add the

tracer conservation constraints in order to solve the problem of level of no motion

(Wunsch, 1977; Wunsch and Grant, 1982). This was done in the framework of

coarse resolution box models whose dynamics were still very simple although the

inverse methodology used was very general. Much of the work done at present on

the combination of OGCMs and data stems from the experience obtained in the

pioneering work on oceanographic box inverse models.

As the complexities of the models grew, equally more sophisticated assim-

ilation methods needed to be developed. Efforts towards this began with the



86

diagnostic models in which temperature and salinity data were simply inserted

into the dynamical equations of fairly complex ocean models in order to evaluate

the velocity field (Holland and Hirschman, 1972). The results were very poor

due to model-data-topography inconsistencies, and at the next stage, a very sim-

ple assimilation methodology was introduced into OGCMs and became known in

the oceanographic context as the “robust diagnostic” approach (Sarmiento and

Bryan, 1982). The same approach had actually been introduced earlier in mete-

orology as the “nudging” technique (Anthes, 1974) and the term “nudging” has

by now become commonly used in oceanography as well. In this approach, there

is no effort to introduce least-square optimality, and the data are just used to

nudge the model solution towards the observations at each time step through a

relaxation term added to the model equations. The result is far superior to simple

diagnostic models, but leaves much to be desired due to the inability to use the

information about data uncertainty or to estimate the errors in the solution ob-

tained (Holland and Malanotte-Rizzoli, 1989; Malanotte-Rizzoli and Tziperman,

1996; Malanotte-Rizzoli and Young, 1995; Lermusiaux and Robinson, 1999; Lu and

Browning, 1998).

As the objectives of modeling and observational oceanography began to

converge, more formal least-square methods taken from meteorology were also used

in ocean models, in particular the Optimal Interpolation (OI) method (Mellor and

Ezer, 1991; Derber and Rosati, 1989; Ezer and Mellor, 1994). OI may be viewed

as a nudging technique in which the amount of nudging of the model solution

towards observations depends on the data errors, while also allowing to make error

estimates for the solution. This approach, developed in meteorology for NWP, is

not capable of improving model parameters or parameterizations, nor is it capable

of fitting the entire four dimensional distribution of observations simultaneously

to the model solution.

Carrying the least squares approach for a time dependent model to its

rigorous limit, leads to the “Kalman filter/smoother” assimilation methodology,

which is capable of assimilating data into a time dependent model while assuring

least-square optimality, full use of a priori error estimates, and calculation of the
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covariance error matrix for the model outputs. Apart from the fact that the

Kalman filter is a formally optimal technique in the least-square sense only for

linear models, its high computational cost limits its use at present to simple models,

or very coarse OGCMs. Recent developements are directed at developing efficient,

even though sub optimal, variants of the Kalman filter that allow the use of a full

nonlinear OGCM with this method (Lewis et al., 2006).

The ultimate goal of combining a formal least-square optimization approach

with a full complexity OGCM requires the simultaneous solution of hundreds of

thousands of coupled nonlinear equations (the model equations at all grid points

and all time steps), and therefore requires an efficient approach which can be found

in the “optimal control” engineering literature.

The development of assimilation methods in physical oceanography has

always seemed to trail behind meteorology by a few years. This lag is in spite of the

fact that the ocean and atmosphere, even though characterized by some important

differences, are at the same time similar enough that they can be treated with

the same theoretical approaches and methodologies. It is important, therefore,

for the ocean modeler to try and understand the reason for this difference in rate

of developement of data assimilation methodologies in order to be able to isolate

potential obstacles for their future use in oceanography.

Clearly, a primary reason for the delayed developement of oceanic data

assimilation was the lack of urgent and obvious motivation such as the need of

forecasting the weather and of producing better and longer forecasts as in meteo-

rology. This situation has changed rapidly over the last few years with the role of

oceans in the climate being understood better which entailed a better ocean state

estimation. This in turn necessitated a systematic model improvement. This has

become the main motivation to develope a robust data assimilation platform for

ocean models. The need for ocean prediction is also arising now on various tempo-

ral and spatial scales, from climate change predictions, through regional forecasts

of the large scale ocean climate variability, e.g. of the North Atlantic thermo-

haline circulation (Carton and Hackert, 1990; Gordon, 1986) or El Nino in the

Pacific Ocean, to a few weeks regional mesoscale ocean forecasts in frontal regions
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such as the Gulf Stream system that are required for example by various Naval

applications.

The most profound limitation on the developement of oceanic data assim-

ilation may have been, however, the lack of adequate data sets. The number of

available oceanographic observations is far smaller than the number of meteoro-

logical observations, especially when the different temporal and spatial scales are

considered. It is estimated, in fact, that the number of presently available oceano-

graphic observations is smaller that its meteorological counterpart by several orders

of magnitude (Ghil et al., 1997; Ghil and Malanotte-Rizzoli, 1991).

New oceanographic data sets, nearly comparable to the meteorological one,

i.e. synoptic and with global coverage, are however becoming available. This

oceanographic observational revolution of the 90’s has been made possible by the

advent of satellite oceanography. A second worldwide major source of oceano-

graphic observations is the World Ocean Circulation Experiment and the Argo

project that, through basin wide hydrographic sections, meridional and zonal,

should provide us with a picture of the large scale global circulation in the World

Oceans in the 90’s and the first decade of the 21st century.

Thus, the increased availability of observational data and increased need

for data assimilation has necessitated and expedited the process of developing

advanced data assimilation techniques to reap the full benefits of the data sets

and models combinedly (Bennett, 1992; Anderson et al., 1996; Malanotte-Rizzoli

and Tziperman, 1996; Anderson and Willebrand, 1988; Tziperman et al., 1992;

McIntosh, 1977).

4.2.1 Objectives of Oceanographic Data Assimilation

The three main objectives of combining data and complex OGCMs are:

model improvement, study of the dynamical processes through state estimation,

and, finally, ocean/climate forecast. Each of these objectives has been met with

relevant assimilation methodologies respectively. Even the highest resolution ocean

circulation models cannot resolve all of the dynamically important physical pro-

cesses in the ocean, from small scale turbulence to basin scale currents. There
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will always be processes that are not represented directly, but rather are param-

eterized. These parameterizations are sometimes simple, often complicated, and

always uncertain both in form and in the value of their tunable parameters. The

models are very sensitive to even small changes in these parameterizations. A few

examples of such parameterizations are that of the small scale vertical mixing in

the ocean interior (Bryan, 1987), the mesoscale eddy parameterizations in coarse

ocean models used in climate studies, of mixed-layer dynamics (Mellor and Ya-

mada, 1982), and of deep water formation (Schott and Send, 1994). Another

set of uncertain yet crucial parameters corresponds to the poorly known surface

forcing by wind stress, heat fluxes and evaporation and precipitation, all of which

are subject to typical uncertainties of 30-50% (Trenberth, 1989; Trenberth and

Solomon, 1993).

One of the most important goals of ocean data assimilation is to use avail-

able observations of the oceans systematically and quantitatively in order to test

and improve the various uncertain parameterizations used in OGCMs. A good es-

timate of these parameters would allow the models to predict the ocean state more

accurately in the absence of available data, which is the ultimate goal of ocean

models: To be able to forecast the ocean state in the absence of any available

observational data during forecast runs.

Improvement of internal model parameters and boundary conditions via

data assimilation can be complemented by the state estimation of the ocean via

data assimilation (Killworth et al., 2001). In ocean state estimation via data

assimilation, the model deficiencies are compensated for by using data to force

the model nearer to observations during the model run (Woodgate and Killworth,

1997).

4.2.2 The data assimilation model

Data assimilation of the VOCALS-REx cruise time intervals will be achieved

using the Incremental Strong-constraint 4D-variational (IS4DVAR) data assimila-

tion system for high-resolution basin-wide and coastal oceanic flows (Moore et al.,

2004). The assimilation is performed under the perfect model assumption (strong
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constraint) as we intend to diagnose physical balances during the VOCALS cruise

survey period. IS4DVAR has been tested by Di Lorenzo et al. (2007) in an ide-

alized 3D double gyre circulation and in a realistic application for the geometry

and bathymetry of the Southern California Bight (SCB), a region characterized

by strong mesoscale eddy variability like the SEP. Synthetic data for sea surface

height, upper ocean (0-500m) temperatures, salinities and currents were assimi-

lated over a period of 3 days. The model first guess, prior to assimilation, was

initialized using climatological conditions. The assimilation solution for the strong

constraint experiment successfully reduced the initial model observation misfit by

75% and improves the model fields also at locations where observations are not

assimilated.

The goal is to, in a least-squares sense, perturb the circulation to minimize

the difference between the observations and model circulation in the new estimated

state of the ocean. IS4DVAR produces a new state by correcting the initial con-

ditions. The evolution of the model state is seen to be close to the observations

in the assimilation window and to be dynamically consistent at the same time. In

order to get the new initial ocean state, x (0) = xb (0) + δx (0), we first define the

cost function in terms of δx (0), which is the combination of two terms; changes

in the initial model states (Jb) and residuals from observations (Jo). It is defined

below.

J (δx (0)) =
1

2

N∑
i=1

(Hi (xb (0) + δx (0))− yi)
T O−1i (Hi (xb (0) + δx (0))− yi)︸ ︷︷ ︸
Jo

+

1

2
δx (0)T B−1δx (0)︸ ︷︷ ︸

Jb

, (4.1)

where B is the background error covariance matrix, vector y is observations, H is

the tangent linear model which integrates the states linearly and then projects to

the observational space, O is the observational error covariance matrix and N is

the number of observation time steps.

The solution will minimize the cost function. This means that it will make
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both the residuals and the changes in the initial states small. The optimal solution

for δx (0) satisfies

∇δxJ = B−1δx (0) +
N∑
i=1

HT
i O−1i (Hi (xb (0) + δx (0))− yi) = 0. (4.2)

This solution of δx (0) will give us the optimal initial condition that can be used

to derive the model state evolution with the least misfit with observations.

4.3 Ocean dynamics in the Southeast Pacific

The dynamics of mesoscale ocean eddies in the SEP region are explored in

this modeling study which will aid in the diagnosis of the VOCALS observations

and will help us to understand the mechanisms that control the interactions of

the variability of the ocean eddy fields and heat fluxes in the VOCALS domain.

Observed mesoscale oceanic surveys of the VOCALS campaign are used in data

assimilation experiments to diagnose the dynamics and sensitivities of the ocean

circulation fields. Data assimilation fits of the VOCALS hydrographic surveys (and

concomitant data) will provide crucial dynamically consistent diagnostics of the

circulation for interpreting the relation between physical variables, atmospheric

variables and biology.

This research focuses on the mesoscale dynamics of the ocean in the South

East Pacific (SEP). Mesoscale eddies generated in the upwelling regions along the

west coast of South America, which affect the distribution of sea-surface temper-

ature (SST) in the SEP are studied in an ocean data assimilation framework.

The Andes mountains channel strong southerly winds along the coast gener-

ating vigorous coastal upwelling (Garreaud and Muñoz, 2005). Complicated ocean

currents, eddies, and waves re-distribute the cold water more than a thousand kilo-

meters offshore. The cool water helps maintain the low-level clouds, whose shade

helps keep the waters cool (Klein and Hartmann, 1993). The cloud formation

depends on aerosols, which are produced both by ocean biology (which is depen-

dent on upwelled, recycled and transported nutrients) and by human industrial
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activities along the coast (Bretherton et al., 2004). Some of these feedbacks are

common to other subtropical stratocumulus regions, such as the California Coast.

But these feedbacks are of particular interest in the SEP because of this regions

importance in controlling the mean and transient properties of equatorial climate,

and its consequent teleconnections to midlatitudes (Xie et al., 2007). Indeed, the

climate biases that occur in global coupled climate models are especially severe

here in the SEP. For example, warm biases of 2-4K occur along the west coast

of South America in the NCAR CCSM3 (Fig 4.1), and similar biases occur in

other eastern boundary currents regions. Our imperfect understanding of these

feedbacks and of how to represent them in large-scale numerical models affects the

skill of climate predictions on all time scales (Mechoso et al., 1995).

4.4 Model configuration and experimental setup

The Regional Ocean Modeling System (ROMS) four-dimensional varia-

tional data assimilation (4DVAR) system (Moore et al., 2011) was used to estimate

the ocean states for August to November 2008. The model domain covers 13S to

27S and 67W to 90W with an approximately 7km grid interval. Figure 4.2 shows

bathymetry in the domain with a tall ridge in the middle of the domain that makes

the water depth as shallow as 1500 - 2000 m. The model has 32 terrain-following

vertical levels that are concentrated more at the surface as shown in the Figure 4.2.

Background initial were extracted from the ocean model data set by Combes et al.

(2009), for August 2008 and the lateral boundary conditions were given from the

OCCA data set (Forget, 2010). The surface boundary conditions were given from

ECMWF Interim air-sea flux data using bulk formulation (Fairall et al., 1996) and

QuikSCAT wind data, which has a resolution of 25 km.

The ROMS 4DVAR collects observations over a defined assimilation time

window and can adjust the initial condition, surface forcing, boundary condition

and model itself with given errors. In this experiment, data assimilation has been

done using SST data from the 10 km resolution blended Advanced Very-High-

Resolution Radiometers (AVHRR) on the Polar Operational Environmental Satel-
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lite (POES) and Advanced Microwave Scanning Radiometer (AMSR-E) on Aqua,

SSH anomaly data produced by Ssalto/Duacs and distributed by AVISO, hydro-

graphic T and S from the VOCALS program CTD casts (Figure 4.3), Argo profiles.

The fit is achieved by adjusting the initial condition and surface forcing to allow

the model simulation to fit the observed data in a least square sense.

We set the assimilation window to be two fifteen day periods, which guar-

antees a dynamically balanced ocean state for the experiment time period. The

4DVAR in most realistic atmospheric and oceanic models uses iterative methods

to find the optimal states because the size of dimension often prohibits the matrix

inverse calculation in the solution. In these experiments, we used 45 iterations

total, and this was adequate for the convergence of the solutions. Figure 4.4 shows

the reduction of the cost function after each loop (outer and inner) during the

two 15 day fits respectively. Normalized absolute error (NAE) reduction for the

total assimilation period is shown in Figure 4.5. If the NAE is one, it means the

misfit between the observation and the interpolated model states is the same as

the observational error. This would mean that the model state at the observation

locations is indistinguishable from the observations within its error bar. In the

Nov 15 - Nov 30th 2008 ocean state estimate the mean NAE became roughly one

after ROMS 4DVAR system decreased the normalized misfit by 70% on average.

4.5 Observational data

Remotely sensed data

Sea Surface Temperature (SST) data are obtained from the 10km resolution

blended product which combines Japan’s Advanced Microwave Scanning Radiome-

ter (AMSR-E) instrument, a passive radiance sensor carried aboard NASA’s Aqua

spacecraft, NOAA’s Advanced Very High Resolution Radiometer, NOAA GOES

Imager, and NASA’s Moderate Resolution Imaging Spectrometer (MODIS) SST

data set. Those satellites measure the SST twice a day, but the exact time of

the measurement is obscured after the merging process. The minimum of the es-

timated observational error is set as 0.01oC. Sea Surface Height (SSH) anomaly



94

observations are obtained from the data set produced by Ssalto/Duacs and dis-

tributed by AVISO. In the experiments, the assimilation efforts go to SSH anomaly

correction for eddy activities instead of adjusting SSH. Thus, the along-track SSH

anomaly data are added to the mapped temporal mean dynamic topography from

the model. Then, the spatial mean of the observation is set to be the same as the

model spatial mean. If the estimated observational error is smaller than 0.01m, it

is fixed to 0.01m.

Hydrographic data

The subsurface temperature (T) and salinity (S) data are provided by CTD

casts from the VOCALS cruise (Wood et al, 2008), and figure 4.3 shows the spatial

coverage of the subsurface observations. The VOCALS program has measured T

and S from the surface down to about 3500m or to the bottom if the ocean depth is

shallower than 3500m for about 38 days. The measurement occurs roughly along

the 20 S latitude with meridional cross sections in some places. The Continuous

Underway CTD measures T and S at the same time. Argo floats can measure

T and S from the surface down to 2000m. The horizontal distributions of the

Argo floats keep changing as the floats drift freely in the currents. Except for the

Argo floats that have their own error estimation, the observational errors for T

are estimated in the same manner as the SST data. The observational errors for S

are also one-quarter of the size of the model standard deviation, but the minimum

value is set as 0.01 psu.

Processing of observations

If the observations have features whose scales are smaller than the model

can represent, the reduction of the misfit may not be achieved through data as-

similation. Hence, all observations inside of a certain number of grid cells are

averaged with respect to the errors if they occur in the same time period. This su-

per observations process eliminates all small-scale features in the observations that

cannot be resolved by the model. Both super observations agree well with large-

scale patterns in the SST with similar observation coverage, although the sharp
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SST changes are only shown in the super observation with 1 x 1 grid cell. This

also enables the assimilation window to be extended, because the highly nonlinear

features by small scales are omitted in the fitting.

4.6 Assimilation results

Linearity

The ROMS 4D-VAR system is based on the tangent linear approximation.

Thus, the length of the assimilation window is determined as the period when the

linear assumption is valid. One of the possible tests for validation is to compare

two model states: one is when δz is integrated by a tangent linear model M, and

the other is the difference between two trajectories when z and z + δz are inte-

grated by a fully nonlinear model. If these two states are near, the tangent linear

approximation is valid. As expected, the smaller δz is, the longer the assimilation

period that can be achieved (Veneziani et al., 2009b). Another possible test is to

compare the cost function of the final inner-loop and the nonlinear cost function

of the following outer-loop. If the system is linear, those two cost functions are

identical. Figure 4.4 shows the changes in the cost function with iterations from

the data assimilation experiment. The cost function J(n) at nth iteration is nor-

malized by the initial cost function J(1). Although JNL are higher than J at the

previous iteration in all assimilation periods, the degree is negligible compared to

the reduction of the cost function. The cost function converges. This indicates

that the model state is close to the solution for the optimization problem. Hence,

an additional iteration after the convergence of the cost function does not give

much improvement.

Normalized absolute error reduction

The normalized absolute error (NAE) is useful to evaluate the ROMS I4D-

VAR performance. It is a quantity to measure the distance between the observa-

tions and the model states normalized by the errors in the observations. If the NAE

is below one, it means that the distance between the observation and the model
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state is within the observational error range. It is worth noting that the optimal

solution can have NAE > 1, because the solution is determined by the relative

weight of the model and observation errors. The NAE changes for each variable

are plotted in figure 4.5. The reductions of the NAE is shown in all variables from

the assimilation experiment. The percentages of the reduction averaged over all

variables are different in this period and is about 50 - 30 % for the variables. In

general, the reductions of the NAE are greater when the initial errors are bigger .

The SST has the biggest NAE both before and after the assimilation for the first

15 days and the SSH has the biggest error in the second 15 days. NAEs for other

variables are reduced to approximately the observational error level. The updated

model trajectory by ROMS I4D-VAR yields the least square-error over time and

the variation of NAE should reduce after DA loops.

Taylor diagram

Taylor diagrams (Taylor, 2001) offer a way to compare the performances

of several models with respect to the observations by showing their standard de-

viation, correlation, and the centered root-mean-square (RMS) difference. The

centered RMS difference E’ is given by

E ′ =
[
1/N

∑
(fn − f̄)− (rn − r̄)

]
(4.3)

n = 1 where N is the total number of observation, r and f are the observation

state and model state at the observations location respectively. f̄ and r̄ represent

the mean of f and r, respectively. If the model represents the observed states

perfectly, it should have the same standard deviation as the observations. Also,

the correlation between the model and the observation should be one, and the

difference in RMS should be zero. Figure 4.6 shows the changes in normalized

statistics for SSH, T and S on the Taylor diagrams for each assimilation period. In

the diagrams, the observations are placed at the bottom of the diagram where the

correlation coefficient is 1 and the normalized standard deviation is 1. The arrows

indicate the changes in normalized statistics after data assimilation with the start

of the arrow indicating the initial model state and the end of the arrowhead at the
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location of the final model state after assimilation. SSH, T and S are shown with

arrows in red, black and blue, respectively. The statistics for the background states

show a few patterns that are consistent in both periods. The standard deviations

of SSH and S are smaller than the ones in the observations, while the standard

deviation of T is greater than the one in the observations. SSH has the smallest

correlation coefficient in all periods. T and S have correlation coefficients higher

than 0.8 in all periods. The RMS differences are smaller than 1 for all variables

in all periods with the greatest value in SSH. The data assimilation improved

the statistics for all variables in all periods. The arrows for all variables head

to the observation point, meaning the statistics of variables become more similar

to the observations. The improvements are obvious in the correlation coefficient

and the RMS difference. In all cases, the correlation coefficients approach 1. The

correlation coefficients for T and S are greater than 0.95 after data assimilation in

all cases. The improved correlation coefficient for SSH is close to 0.9. The RMS

difference improvements are also clearly seen in all cases. After data assimilation,

the RMS differences for T and S are reduced to under 0.25 in all cases. Similar

to the case of correlation coefficient, the improvements of RMS difference in SSH

are not as great as in other variables, and the final normalized RMS differences

are greater than 0.5. The standard deviations of the data-assimilated variables

approach 1 in most cases, meaning their variabilities are similar to those of the

observations. The standard deviations of T become close to 1 in both assimilation

periods. The improvements of the standard deviation for S are seen in all periods.

SSH standard deviation was improved in second half of the cruise period more

than in the first half. It is interesting to observe that the final statistics for each

variable have similar patterns in all cases independent of the background statistics.

4.6.1 Corrections to ocean state after assimilation

The previous sections showed the reduction in misfit of the model from

observations through statistical quantities. Here a few figures depict the change in

state after assimilation. Figure 4.7 and Figure 4.8 show the reduction in the misfit

between the assimilated model and observations on the right panels compared to
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the misfit of the initial model state before assimilation (shown on the left panel).

The upper panels show the model temperature at the observation locations for

the initial run without assimilation (left top panel), the observations (top middle

panel) and the model temperature at the observation locations for the model run

after assimilation. It can be seen that the upper level temperatures, especially

close to the surface are improved much more than the ones below. This could be

due to the increased constraint at the surface from surface observations too.

Figure 4.9 shows the improvement in the SSH and SST for Nov 10th, 2008

of the ocean state estimate after assimilation (on the bottom panels) compared

to the initial state before assimilation. The SSH features, especially eddy-like sea

level anomalies are changed drastically after assimilation. The ocean state before

assimilation has much smaller features and eddies at different places compared to

the observations. After assimilation, the negative and positive sea level anomalies

in the model are roughly in the same place as in the observations. This indicates a

marked change in dynamics of the ocean state estimate after assimilation. The SST

features are also changed to reveal cooler SSTs over the low sea level anomalies in

the assimilated ocean state estimate indicating cold core cyclonic eddies which are

co-located along the same longitude and latitude as the ones in satellite altimetry.

The SST after assimilation in the region of the cruise doesn’t correlate very well

with observations, since this temperature is also constrained by the subsurface

profiles from the cruise tracks. The SST observations in this region, specifically

derived from Infrared satellites are very sparse and have higher error in them due to

the persistence of the stratus deck in the region preventing infrared measurements

of SST. Hence, the ocean model is constrained more to the subsurface temperature

data where both SST and subsurface temperature profiles are available.

4.7 Discussion

The powerful ROMS DA packages perform data assimilation on both model

and observation space. The ROMS I4D-VAR used in fitting two 15-day periods

in assimilation experiments searches for the solution of the optimization problem



99

in the primal space. Although dual space assimilation provides more diagnostic

tools, the I4D-VAR allows us to do more effective computation as it has proven to

give faster convergence of the cost function (Moore et al., 2011c).

15 day DA experiments over the PCCS have been successfully conducted

for Nov 2008 using the observations from both remotely sensed data and in situ

data. ROMS I4D-VAR reduced the normalized absolute error (NAE) near the

observational error level for all variables except for the upper level temperature.

The statistical information of SSH, T and S plotted in the Taylor diagram showed

the improvement of the correspondence between the data-assimilated model states

and observed states.

Data-assimilated ocean states have several applications. DA provides the

estimations of the variables that cannot be measured directly. The estimations

are from the dynamically balanced states and are expected to be more accurate

than the one from the simulation without data assimilation. For instance, the

heat transport, which has extreme importance in understanding the global heat

budget, or the upwelling rate that significantly affects the ecosystem are both easily

computed using the data-assimilated data set.

We assimilated the data from the VOCALS-REx cruise into a regional ocean

model to derive an ocean state estimate of the structure of cyclonic and anticyclonic

eddies in the SEP. VOCALS-REx UCTD profiles, Argo profiles, and satellite data

were assimilated to derive an ocean state estimate during the cruise period.

Long term data assimilation fits have to be achieved for a more robust

statistical study of the heat balance in the region. With only about 2 score CTD

casts and 240 UCTD casts, constraining the whole 3 dimensional ocean for a long

period was not feasible. We had to break up the one month of November 2008

into 2 15 day periods since the model does preserve linearity for the period of a

month. Future assimilation experiments should consider having more subsurface

observations available over a long time period to achieve a reliable long term ocean

state estimate. This data set can then be used to look at eddy statistics and ocean

heat balance and derive a more concrete result than achieved in this study.
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Figure 4.1: Mean SST differences from observations for a) CCSM4 1o 1850 con-

trol, b) CCSM4 2o 1850 control and c) CCSM3 T85 1870 control. [Gent et al.,

2011]
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(a) Bathymetry

Figure 4.2: (a)Horizontal domain with the model bathymetry used for this ex-

periment. (b) Vertical ROMS grid along 20 S in the domain with the upper panel

showing a zoom in until 400 m and the lower panel showing the grid all the way

to the bottom.
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(a) Ron Brown Cruise track and SST

Figure 4.3: SST from merged satellite product during VOCALS cruise period.
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(a) Nov 1 - Nov 15

(b) Nov 16 - Nov 30

Figure 4.4: Cost Function for convergence for the two 15 day assimilation fits.

(a) For the first 15 day fit for Nov 1 - Nov 15, 2008. (b) For the second 15 day fit

for Nov 16 - Nov 30, 2008
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(a) Nov 1 - Nov 15

(b) Nov 16 - Nov 30

Figure 4.5: Normalized Absolute Error for the two 15 day assimilation fits. (a)

For the first 15 day fit for Nov 1 - Nov 15, 2008. (b) For the second 15 day fit for

Nov 16 - Nov 30, 2008
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(a) Nov 1 - Nov 15

(b) Nov 16 - Nov 30

Figure 4.6: Taylor Diagram for the two 15 day assimilation fits. (a) For the first

15 day fit for Nov 1 - Nov 15, 2008. (b) For the second 15 day fit for Nov 16 - Nov

30, 2008
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(a) Initial Profile Temp. in

ROMS

(b) Observed CTD profiles of

Temp.

(c) Final Profile Temp. in

ROMS

(d) Initial Misfit in Temp.

Profiles in ROMS

(e) Horizontal positions of

Profiles

(f) Final Misfit in Temp.

Profiles in ROMS

Figure 4.7: Initial and Final Model temperature values before and after assimi-

lation compared to the assimilated profiles of temperature.
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(a) Initial Profile Temp. in

ROMS

(b) Observed CTD profiles of

Temp.

(c) Final Profile Temp. in

ROMS

(d) Initial Misfit in Temp.

Profiles in ROMS

(e) Horizontal positions of

Profiles

(f) Final Misfit in Temp.

Profiles in ROMS

Figure 4.8: Initial and Final Model temperature values before and after assimi-

lation compared to the assimilated profiles of temperature.
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(a) SLA Before Assim. (b) SST Before Assim

(c) SLA Observations (d) SST Observations

(e) SLA After Assim. (f) SST After Assim.

Figure 4.9: Initial and Final Model Sea Level Anamoly (SLA) and Sea surface

Temperature (SST) values before and after assimilation compared to the assimi-

lated maps of Observed SLA and temperature.



Chapter 5

Structure and properties of eddies

and a heat budget analysis in the

Southeast Pacific ocean during

VOCALS-Rex

Eddies are identified from the ocean state estimate along the track of the

VOCALS-Rex cruise of 2008 and studied for their hydrography and velocity struc-

ture. Anticyclonic eddies (sea level anomaly highs) are characterized by depressed

isopycnals within the eddy (in the upper 300m) and a warmer core in temperature

than the surrounding waters. Cyclonic eddies (sea level anomaly lows) are char-

acterized by shoaling isopycnals in the upper 300 m, colder temperature cores and

a shallower salinity minima. An intensively surveyed cyclonic eddy was observed

to have a subsurface velocity core diameter of about 50 km, as well as a cooler,

salty core at a depth of about 150 m. The net temperature anomaly of the eddy

was negative, including an anomaly of approximately -1 deg C at 100 m depth due

to the doming of isopycnals within the eddy. A relationship between the eddy SLA

and upper ocean temperature was sought from the model eddies during the cruise

period. It is observed that all the model cyclonic eddies, the cores are significantly

cooler than the anticyclonic eddies. It is also observed that the water mass prop-

110
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erties of the core of the eddy has similar properties to that in the undercurrent

close to the coast. Measurements and analyses show a mean net warming heat flux

from the atmosphere to the ocean of 40-80 W m−2 over a wide cross-shore swath

in the Southeast Pacific, and this warming has to be compensated by cooling since

this region has one of the coldest temperatures at comparable latitudes around the

globe. A heat budget analysis for the period of the cruise reveals that the advection

is the predominant process that balances the surface heat flux and temperature ten-

dency. Vertical diffusion is the second highest term balancing the heat budget with

the horizontal diffusion being an order of magnitude smaller.

5.1 Introduction

The climate in the Southeast Pacific (SEP) near the coast of Peru and Chile

is controlled by complex upper-ocean processes, marine boundary layer and land

processes and their interactions. Coupled ocean-atmosphere processes involved in

this tightly coupled system, and their variations have significant impacts on the

global climate (Ma et al., 1996b; Miller, 1997; Gordon et al., 2010; Xie, 2004;

Wood et al., 2011). For example, strong winds parallel to the coast generate

intense coastal upwelling, bringing cold water to the ocean surface. This cool

upper ocean water helps to maintain the persistent stratus/stratocumulus cloud

decks by stabilizing the lower troposphere. These persistent stratus decks have a

substantial impact on the surface energy budget in the tropics and subtropics by

reflecting sunlight back to space.

Coupled atmosphere-ocean general circulation models (CGCMs) are well-

known to have systematic errors in the SEP region, including a warm bias in SST

and too little cloud cover (Mechoso et al., 1995; Ma et al., 1996b; Miller, 1997; Gor-

don et al., 2010; Kiehl and Gent, 2004; Large and Danabasoglu, 2006; Lin, 2007).

These biases have important impacts on the simulated earth’s radiation budget

and climate sensitivity. Zheng et al. (2011) found that all 19 GCMs used in the In-

tergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report had

warm SST biases in the SEP. This bias limits models’ abilities to simulate Earth’s
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climate. These biases are likely due in part to poor model representation of both

upper-ocean heat transport and the surface heat budget (Large and Danabasoglu,

2006; de Szoeke et al., 2010; Zheng et al., 2010; Colas et al., 2011).

The main feature in the Southeast Pacific region is the Peru-Chile Cur-

rent System (PCCS), also known as the Humboldt Current System. It is relatively

complex, exhibiting several surface and subsurface currents. Its dynamics are prin-

cipally controlled by the atmospheric South Pacific Anticyclone through Sverdrup

dynamics. Near the South American coast, persistent equatorward winds drive

upwelling cells leading to the highest biological productivity of the world ocean

in terms of fish (Wood et al., 2011). Over the continental shelf, the upwelling of

relatively cold deep water also gives rise to intense thermal fronts which separate,

over short distances, cold coastal water from warmer and saltier subtropical wa-

ter of the offshore ocean (Wyrtki, 1967; Strub et al., 1998). The PCCS is also

characterized by two major subsurface poleward currents (Figure 5.8): the Peru-

Chile Countercurrent and the Peru-Chile Undercurrent (PCU) which have been

both traced back to the equatorial current system (McCreary Jr, 1985; Lukas,

1986; Tsuchiya, 1985; Strub et al., 1998; Montes et al., 2010a). The PCU which

transports relatively warm and salty equatorial sub-surface water from the east-

ern tropical Pacific to at least 48oS (Montes et al., 2010b) along the continental

slope and shelf is a major source of the coastal upwelling off Peru and north-

ern Chile (Leetmaa et al., 1987; Montes et al., 2010a). The oceanic circulation

along the South American coast is also characterized by energetic mesoscale struc-

tures, the oceanic cyclonic and anticyclonic eddies (CEs and AEs, respectively).

Such eddies have been mostly observed from altimeter data (Chelton et al., 2007;

Chaigneau et al., 2008, 2011a), but they also have a signature in color satellite

images (Correa-Ramirez et al., 2007) or in surface-drifter trajectories (Chaigneau

and Pizarro, 2005). In the PCCS, CEs and AEs, which have a typical diameter of

150-300 km, are principally formed near the South American coast where they lo-

cally impact the heat and salt budgets through lateral turbulent fluxes (Chaigneau

and Pizarro, 2005; Colbo and Weller, 2007). Then, CEs and AEs, which acquire

a water mass structure typical of their formation region, propagate seaward with
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translation velocities of few cm s−1 owing to a combination of mean flow advection

and self-propagation. In this new environment, eddies appear as anomalous water

masses with surface or subsurface temperature and salinity anomalies (Johnson

and McTaggart, 2010) which are progressively redistributed to surrounding water

during eddy decaying phase (Swart et al., 2008).

Although the main horizontal structure and kinematic properties of the

PCCS eddies were investigated during the last decade, very little is known about

their vertical structure and their impact on the heat and salt transports. Chaigneau

and Pizarro (2005) have briefly examined the vertical structure of a particular CE

sampled by the World Ocean Circulation Experiment (WOCE) P19 hydrographic

section along 88oW, showing that the subsurface CE core have typical temperature

and salinity anomalies of around ≈1oC and ≈0.1psu, respectively. More recently,

Johnson and McTaggart (2010) used Argo float profile data to characterize AEs of

the PCCS, showing that their core is located in the subthermocline and contains

anomalous signature of the Equatorial Subsurface Water originating from the PCU.

5.2 Eddies in SEP: VOCALS Observations and

Model Results

Data from the VOCALS-REx field program were used to characterize the

hydrographic and velocity structure of the eddies. Anticyclonic eddies (sea level

anomaly highs) are characterized by depressed isopycnals within the eddy (in the

upper 300 m), deepened salinity minimum layer (SML), and low stratification be-

neath the mixed layer. Cyclonic eddies (sea level anomaly lows) were characterized

by shoaling isopycnals in the upper 300 m, shoaling SML, and higher stratification

beneath the mixed layer (Wood et al., 2011). An intensively surveyed cyclonic

eddy was observed to have a subsurface velocity core diameter of 50 km, as well

as a warm, salty, and highly stratified anomaly at its core at about 150 m depth.

The net temperature anomaly of the eddy was negative, including an anomaly of

approximately -1oC at 100 m depth due to the doming of isopycnals within the

eddy. A relationship between eddy SLA and upper-ocean temperature was sought
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in a variety of in-situ and remote sensing data, including VOCALS-REx profiles,

Argo profiles, drifter observations, and satellite fields. In all of the data sources

cyclonic eddies were significantly colder than anticyclonic eddies. The magnitude

of the mean temperature signal was of opposite sign but equal magnitude for each

type of eddy.

Figure 5.2 shows the Sea Level Anomaly (SLA) for days Nov 10th and Nov

20th during the cruise period for satellite observations and model results. The

top two panels compare the satellite SLA with the model SLA showing similar

large scale features in both. The model has finer scale structures due to a higher

resolution than satellite observations. It can be seen that the intensively surveyed

eddy at 76 W and 19.5 S has a low SLA signature evident in both observations and

model. The currents from the model plotted as vectors also reveal a cyclonic eddy

at this location and much finer scale structures around it. Figure 5.3 shows the SST

on Nov 10th and 20th during the Ron Brown cruise period. During the month of

November, SST in this region increases as the rate of upwelling decreases. Figures

5.2 and 5.3 reveal considerable mesoscale eddy variability qualitatively similar to

that observed. SSH is a good surrogate for surface geostrophic currents and reveals

eddy structures of length scale of 30 - 80 km. These can be considered the smallest

well resolvable mesoscale features, and they are analyzed further in the following

sections. Figure 5.4 shows the temperature at 250 m for 3 days , Nov 10th, Nov

14th and Nov 20th during the middle of the cruise period.

Many methods have been used in the past to detect eddies from satellite

altimetry and infrared imagery. One such method is to use closed contours of

vorticity. This has restrictions in geographical locations such as boundary layers

where large ambient vorticity not associated with eddies is present (Isern-Fontanet

et al., 2003). Another method is to search for geometric properties from sea surface

height, such as extrema points and closed isolines, and then detect areas of zero

geostrophic velocity; but for an eddy embedded in a background flow this is not in-

variant. The Okubo-Weiss (O-W) parameter (Okubo, 1970; Weiss, 1991) describes

the relative dominance of strain and vorticity, and bypasses the two problems listed

above. It is defined as:
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W = S2
n + S2

s − ζ2, (5.1)

where Sn,Ss,ζ are the normal and shear components of strain and the relative

vorticity of the flow respectively. These components are defined as:

Sn =
∂u

∂x
− ∂v

∂y
, Ss =

∂v

∂x
+
∂u

∂y
, ζ =

∂v

∂x
− ∂u

∂y
(5.2)

The O-W parameter separates 2-D flows into different regimes (McWilliams,

1984): elliptic (OW < -OW0), hyperbolic (OW > OW0) and a background field

(|OW | ≤ -OW0), where OW0 is a small threshold magnitude (Pasquero et al.,

2001). A threshold for OW must be set so as to distinguish coherent structures

from the background field. Previous studies with satellite altimetry data have

used OW0 = 0.2σ OW where σOW is the spatial standard deviation of OW. In

an elliptic regime rotation dominates deformation (and vice versa for hyperbolic).

Eddy cores can therefore be identified as connected regions with negative values

of OW. This criteria for eddy identification has been used successfully with data

from sea level altimetry maps (Isern-Fontanet et al., 2003; Morrow et al., 2004).

The last panel on Figure 5.4 shows the SLA with the contours of the Okubo-

Weiss parameter plotted over it. The Okubo-Weiss parameter is a measure of

vorticity vs shear in the fluid flow and hence closed contours of this parameter

indicate closed circulating cells like eddies in the flow. This also highlights the

eddy at 76 W which was measure intensively during the VOCALS-REx cruise. It

also highlights the two CEs at 80 W and 84 W albeit not as strong as the one at

76 W. Closed contour structures with length scales greater than 10 - 20 km are

indicative of eddy like structures. The 250 m temperature shows the doming of

the isotherms beneath the cyclonic eddies. This is consistent with previous studies

of eddy structure in this region (Chaigneau et al., 2011a; Holte et al., 2012).

Figure 5.5 shows eddy kinetic energy averaged for a week during the cruise

period when the eddy was surveyed. The top panel overlays the SLA contours from

satellite altimetry and the bottom panel shows the contours of model SLA overlaid

on the same. It again reveals the intensity of the eddies (cyclonic and anticyclonic)

showing that the CE at 78 W 18.5 S was the strongest and then the one at 84 W
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19 S. The cyclonic eddy at 76W 19.5 S is of medium strength compared to the

other eddies in this region. Figure 5.6 shows the snapshot of meridional velocity

as a function of depth along 20 S revealing the doming isopycnals at 76 W and

the strong positive and negative velocities on either side of the core of the eddy.

The velocities are strongest at a depth of 200 m, showing a similar subsurface core

cyclonic eddy as evident in previous studies of CEs in this region (Chaigneau and

Pizarro, 2005; Chaigneau et al., 2011a). Figure 5.7 reveals the zonal velocities

along 20S overlaid on salinity color shading. This shows the subsurface salinity

minima layer within the eddy and the velocities being strongest at 200 m depth.

Observations of the PUC suggest that the undercurrent is narrow (10-40

km), flowing poleward over the continental slope, with peak speeds of 0.3-0.5 m

s−1 in the depth range 100-300 m. Figure 5.8 shows the undercurrent meridional

velocities in the model. The model undercurrent peaks at about 500m which is

deeper than the observed peak range. A shallow salinity minimum layer (SML)

characteristic of the Eastern South Pacific Intermediate Water (ESPIW), exists

below the surface layer and shoals towards the shore. This feature has been long

been observed and studied in profiles from the SEP (Tsuchiya and Talley, 1998).

This low salinity water is formed in the eastern South Pacific from the subantarctic

surface waters subducting below higher salinity waters to the north (Reid, 1973;

Schneider et al., 2003; Karstensen, 2004).

5.3 Cyclonic and anticyclonic eddies along 19S

In this section we analyze the properties of the eddy at the surface and

subsurface, identified from the ocean state estimate during the VOCALS-REx

period. A detailed description of eddy properties is provided. Eddy properties such

as velocities and hydrographic structure for both surface and subsurface levels are

presented. Eddies form near the coast and propogate westward (Chaigneau and

Pizarro, 2005; Johnson and McTaggart, 2010). Eddies have been linked to high

sardine catches off of northern Chile due to increased nutrient supply to the surface

layer (Hormazabal et al., 2004; Yáñez et al., 2001).
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5.3.1 Horizontal and vertical structure

Eddies show a strong tendency for westward propagation, with cyclones

exhibiting a poleward deflection and anticyclones exhibiting a equatorward deflec-

tion from their due west path, as noted in previous studies (Morrow et al., 2004;

Chelton et al., 2007, 2011). This meridional deflection arises mainly from the beta

effect and self-advection (Mcwilliams and Flierl, 1979). To study the westward

propagation characteristics, only the cyclonic eddy and its propagation direction

is considered.

We also analyzed the salinity (S) anomaly to study the water mass proper-

ties of eddies. The cyclonic eddy tracked at the subsurface shows a well defined S

minima between 100-200 m, with two maxima of 0.031 psu at 150 m and 0.024 psu

at 500 m. This positive anomaly, although weak, clearly shows that these eddies

have their origin in the undercurrent or from the subantarctic subducting water

with its salinity minima. In the composite of the actual S field, the eddy core is

only visible as a general doming of isohalines (Figure 5.8c). This is likely due to

the undercurrent water mixing with surrounding water during their journey. A

similar tilting in isohalines in cyclonic eddies is observed in the California Current

system (Reed and Halpern, 1976) and the undercurrent-generated eddies in this

region do not always have a well defined S signature (Cornuelle et al., 2000). The

cyclonic eddy intensively observed during the VOCALS-REx cruise has a salinity

minima in its core at around 150 m which is anomalously fresher than any of its

surrounding waters. The salinity in the core is similar to that in the cold fresher

water flowing from the southern boundary and subducting below the salty warm

water from the equator. The high gradients of S over the PCCS domain considered

here make the S signatures less visible in Figure 5.8c. A recent study using Argo

profiling floats in the eastern south Pacific also shows similar salinity structure for

undercurrent generated anticyclones (Chaigneau et al., 2011b). The high-S core

of the undercurrent off Chile is well distinguishable with low-S water above and

below it.
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5.4 Upper Ocean Heat Budget

In the PCCS, as in other eastern boundary regions, the mean flow is weaker

than its mesoscale eddy velocities, and the eddy fluxes are cited to be important

contributors to momentum and tracer balances (Marchesiello et al., 2003; Capet

et al., 2008). As yet few modeling studies have covered the entire PCCS with

a horizontal resolution high enough to resolve the mesoscale. In this section, a

regional heat balance in a high-resolution ocean state estimate is studied of the

PCCS circulation for a period of a month. The methodology and results are

extensions of previous PCCS simulations by (Penven, 2005; Colas et al., 2011).

Xie et al. (2007) and Toniazzo et al. (2009) are recent coupled-model simulation

studies of the PCCS with marginal eddy resolution (i.e., 0.5 in a large-regional

domain and 0.33 in a global domain, respectively). Zheng et al. (2010) is an

oceanic simulation study with high resolution (i.e., < 1/12o in a nearly global

domain).

Measurements and analyses show a mean net warming heat flux from the

atmosphere to the ocean of 40-80 W m−2 over a wide cross-shore swath in the

Southeast Pacific, and this warming has to be compensated by cooling through

oceanic lateral transport. At an offshore buoy site (20oS, 85oW), Colbo and Weller

(2007) estimate that the oceanic eddy flux divergence has an important contribu-

tion to the heat balance, comparable to the cooling by large-scale advection that

includes Ekman transport, which by itself is insufficient for equilibrium balance.

The time-mean oceanic heat balance integrated over the upper ocean is

∫ η

z0

ρ0Cp∂tTdz = −
∫ η

z0

ρ0Cp∇ · uTdz +Qnet − ρ0Cpκν∂zT |z0 −
∫ η

z0

ρ0Cpκh∇2T,

(5.3)

where Qnet is the net surface heat flux, Cp is the specific heat of seawater at con-

stant pressure, ρ0 is the density of seawater, u is the total velocity vector, T is

temperature and κν and κh are the subgrid-scale horizontal and vertical eddy dif-

fusivity parameters. The first term on the left hand side is the rate of temperature

change (or temperature tendency), the first term on the right-hand side is the tem-
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perature advection followed by the terms for net surface heat flux and horizontal

and vertical diffusion, respectively. In this study, we mainly focus on the discussion

of horizontal advection and diffusion terms balancing the temperature tendency of

the upper ocean. Colbo and Weller (2007) suggest that the divergence of the eddy

heat flux, horizontal advection and the horizontal and vertical diffusion terms are

significant and are the dominant terms that are in mean balance.

Although a heat balance in long term steady state is not achieved due to

the relative short periods of the data assimilation fits, the ocean state estimate can

still be analyzed to understand the key mechanisms which are in balance during

the period of the cruise. The solution is integrated until 400 m depth and hence,

the vertical advection from below this layer is assumed to be small, due to very

small vertical velocities at this level. Hence, the advection term in the heat balance

equation vertically integrated is dominantly the horizontal advection term.

5.4.1 Spatial distribution of the upper-ocean heat budget

In this section, the spatial distribution of major contributing terms, dis-

cussed in the previous section, is examined for region around the VOCAL-REx

cruise track. We explore how advection and diffusion terms contribute to the

upper-ocean heat budget by analyzing the model output around the 20o S region.

We also analyze the structure of the heat advection terms with respect to the lo-

cation of the eddies in the model and qualitatively assess the importance of eddies

for the horizontal advection. Previous modeling studies have shown that the eddy

heat flux divergence is not spatially coherent, so eddies likely do not impact the

heat budget in the southeast Pacific contrary to the findings of Colbo and Weller

(2007) (Zheng et al., 2010).

The spatial pattern of each term of equation 5.3 in the model heat balance

for the period during the which the eddy was observed intensively is shown in

Figure 5.9. The advection term is the dominant term with an order of magnitude

similar to that of the temperature tendency. The pattern of the mean sea level

anomaly during the period is plotted as contours over the advection color contours

in Figure 5.9b. Around the cyclonic eddies, to the south of the eddy, it advects
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cold water from the south to the warmer waters to the north and hence has a net

cold advection. Similarly to the northern boundary of the eddy, it advects warmer

water from the north towards the colder waters in the south and hence advects

warm water southward. As the eddy evolves and mixes with the surrounding

water, it would eventually warm up the cold core it is carrying within from the

undercurrent or subantarctic water. Yet this is estimated to happen at a much

longer timescales (of the order of 90 - 150 days) than can be observed with short

term assimilation fits. In this model heat balance, the eddy does not have a net

effect on the heat advection when averaged over space and time. The vertical

diffusion term seen in Figure 5.9c, is three times smaller than the temperature

advection term or the temperature tendency term. The vertical diffusion term has

a net cooling effect over the entire domain. The horizontal diffusion term has a

smaller magnitude and has much smaller spatial scale structures than the vertical

diffusion as seen in Figure 5.9d and mainly is seen to play a role in smoothing

strong gradients of temperature across fronts from eddy boundaries or nonlinear

fronts. Unlike the theory expounded by Gill and Niller (1973) of large-scale heat

balance in the ocean being such that the heat input is mainly stored locally and

horizontal advection by the mean flow not playing an important role, it appears

that the horizontal advection is the dominant term in the coastal PCCS region

and the vertical diffusion, which would store the heat input from the surface in

the deeper ocean layers, plays a smaller role albeit not insignificant in cooling the

surface.

5.5 Summary and Discussion

This study examines the upper-ocean processes in the stratus cloud deck

region explored during the VOCALS-REx cruise of 2008 using the eddy-resolving

ROMS ocean state estimate after data assimilation of cruise track CTD casts.

The structure and properties of eddies in the upper-ocean during this period is

examined using the eddy-resolving ROMS and observational data. A compari-

son of eddy activity in ROMS with that derived from satellite observations (i.e.,



121

AVISO) indicates that ROMS is capable of simulating the realistic eddies in the

stratus cloud region. A substantial amount of data in the upper ocean and at-

mospheric boundary layer had been collected in the southeast Pacific during the

VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) Regional Experiment

(Wood et al., 2011).

Eddy properties in the PCCS are studied with a high-resolution (dx = 7

km) regional model ocean state estimate and an altimetry analysis, using eddy

tracking methods. Eddy identification is made using a closed contour method on

the SSH anomaly field (SSH method).

The major properties of the PCCS eddies from the model eddy analysis are

the following:

The analysis of model eddies show that eddy signals penetrate to 800-1500

m in depth. Cyclonic eddies featured a shoaling salinity minimum layer (SML),

doming isopycnals near the surface. Anticyclonic eddies were characterized by

a depressed SML and depressed isopycnals in the upper ocean. An intensively

surveyed cyclonic eddy was characterized by high salinity as predicted by John-

son and McTaggart (2010). The eddy had an average temperature anomaly of

approximately -0.4oC over a depth range from 100 - 700 m and features a cold

anomaly of approximately -1oC near 150 m depth. The net temperature anomaly

of the eddy depends on the depth to which it is integrated, though it is nega-

tive overall. The cold near-surface anomaly, caused by the doming of near-surface

isopycnals, is likely more relevant than the net anomaly for assessing the effect of

eddies on upper-ocean temperature, as it is more likely to be incorporated into the

mixed layer. The vertically-integrated heat content of anticyclonic eddies deter-

mined from the ocean state estimate is only slightly different from that of cyclonic

eddies.

The ability to identify and track eddies in space and time opens up many

new possibilities in the study of mesoscale eddies, in the context of PCCS and

other similar eddy active regions, too. In the present study we address only the

general properties (e.g., radius, shape, propagation characteristics, nonlinearity,

and vertical structure) of the PCCS eddies. Many aspects of the PCCS eddies
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have yet to be explored. For example, with space-time information about eddies,

estimates of offshore heat and mass transport by mesoscale eddies can be made

more precisely. A study in this direction by Treguier et al. (2003), shows that

transport estimates by Agulhas rings using a conventional method (perturbation

to the time-mean flow) and by an eddy method (based on the water trapped inside

the eddy) show significant differences, with the latter always being higher. The

role of mesoscale eddies in various biological processes in the PCCS, like injection

of nutrients into the euphotic zone and offshore transport of biogenic material, can

be better addressed with physics-biology coupled models and eddy tracking tools.

The PCCS region is known to exhibit strong interannual variability (e.g., El Niño

- Southern Oscillation) and hence is expected to have a signature in eddy activity,

too.

A relationship between eddy SLA and upper-ocean temperature was com-

puted. Cyclonic eddies (SLA < -5 cm) were characterized by cooler upper-ocean

temperatures relative to mean conditions and anticyclonic eddies (SLA > 5 cm)

were characterized by warmer upper-ocean temperatures in all of the data sources.

T-tests performed on the eddy temperature distributions confirmed that the mean

temperature anomalies of cyclonic and anticyclonic eddies were significantly differ-

ent. The cooler surface temperatures associated with cyclonic eddies could be due

to the uplift of isopycnals near the eddy cores. The SML coincides with a large ver-

tical temperature gradient. In cyclonic eddies, this temperature gradient is raised

toward the surface, allowing for easier entrainment of deeper, colder waters into the

mixed layer. Any ocean feature that uplifts the SML and its associated tempera-

ture gradient could result in colder surface temperatures. In anticyclonic eddies,

the SML is depressed, isolating the mixed layer from the colder water at depth.

The observed uplift of near-surface isopycnals in cyclonic eddies is not necessarily

due to eddy transport at that depth; rather, it could be due to deformation of the

near-surface isopycnals caused by eddy transport in deeper levels. Cyclonic and

anticyclonic eddies are observed to occur with similar frequency and have opposite

effects on the surface layer temperature; because of this symmetry, we conclude

that eddy temperature transport likely has minimal net effect on the upper-ocean
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temperature in the SEP.

The heat balance for the period of the cruise from the ocean state estimate

reveals that the mean horizontal advection is the dominant term that balances the

temperature tendency of the upper layer of the ocean. The vertical diffusion is

secondary and is about 30% of the advection magnitude. One of the major sources

of cooling that balances the positive surface heat fluxes is advection dominated

by geostrophic transport. These results are partially consistent with those from

observations described in Colbo and Weller (2007). Major terms of the heat equa-

tion in the upper 400 m were also calculated over the region of the cruise. The

heat transport produced by geostrophic transport is one of the primary sources of

cooling in the entire stratus region because of its spatial coherence (Zheng et al.,

2010).
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Figure 5.1: Locations of the 438 UCTD profiles collected during VOCALS-REx

(black dots). The underway ADCP velocities (black arrows) are averaged over 50 -

650 m depth. The background colored contours represent the mean SLA during the

cruise; the ±5 cm SLA contours are highlighted by black contours. The locations

of three cyclonic eddies (C1,C2, and C3) and two anticyclonic eddies (A1 and

A2) are labeled. The bathymetry is plotted at 1000-m intervals (black contours).

(Holte et al., 2012)
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(a) Obs: Nov 10th

(b) ROMS: Nov 10th

(c) Obs: Nov 20th

(d) ROMS: Nov 20th

Figure 5.2: Sea level anomaly from AVISO mapped fields in the panels (a) and

(c) and from the ROMS ocean state estimate in panels (b) and (d). The velocities

from the model are overlaid the sea level anomaly contours to reveal cyclonic and

anticyclonic eddies.
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(a) Obs: Nov 10th

(b) ROMS: Nov 10th

(c) Obs: Nov 20th

(d) ROMS: Nov 20th

Figure 5.3: SST from NOAA Optimally Interpolated observations in panel (a)

and (c) and SST from ROMS with the model velocities overlaid for the days 10th

Nov and 20th Nov
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(a) ROMS:10th Nov

(b) ROMS:14th Nov

(c) ROMS:20th Nov

(d) ROMS SSH:10th Nov

Figure 5.4: Temperature at 250 m Depth in the ocean state estimate for three

different days (a) 10th Nov, (b) 14th Nov and (c) 20th Nov showing the evolution

of the eddy in time in the model. The last panel (d) is the color contours of SLA

with the Okubo-Weiss parameter overlaid on top to show eddy like structures.
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(a) EKE with Obs. SLA Contours for Nov 1 - 15th

(b) EKE with ROMS SLA Contours for Nov 1 - 15th

Figure 5.5: Eddy Kinetic Energy averaged for the first two weeks of November

from the model overlaid with the (a) AVISO SLA and (b) ROMS SLA.
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Figure 5.6: Vertical temperature profiles (color) and meridional velocity (line

contours) for Nov 10th revealing the eddy structure in depth. The profile is plotted

at 20o S from 86 o W to 69oW
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Figure 5.7: Zonal velocities of eddy at 20 S on the same day Nov 10th with the

color contours showing salinity. The cross-section is from 20S to 19 S.
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(a) SLA and Density profiles

(b) Meridional velocity from 74W to 69W

(c) Salinity from 86 W to 69 W

Figure 5.8: Vertical Profiles at 20 deg S of (a) Sea level anomaly and density

profiles (b) Meridional velocity averaged over 7 days and (c) Salinity depicting the

subsurface salinity minima layer
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(a) Temp. Tendency

(b) Advection with SLA contours overlaid

(c) Vertical Diffusion

(d) Horizontal Diffusion

Figure 5.9: Spatial maps of heat budget terms from the model for 86 W:69W

and 22S:18S. The heat budget terms are integrated to the depth of about 400 m

and for a period of two weeks when the eddy was strongest.



Chapter 6

Linear vs Nonlinear Filtering

with scale selective corrections for

balanced dynamics in a simple

atmospheric model

We investigate the role of the linear analysis step of the ensemble Kalman filters

(EnKF) in disrupting the balanced dynamics in a simple atmospheric model and

compare it to a fully nonlinear particle-based filter (PF). The filters have a very

similar forecast step, but the analysis step of the PF solves the full Bayesian

filtering problem, while the EnKF analysis only applies to Gaussian distributions.

We compare the EnKF to two flavors of the particle filter with different sampling

strategies, the Sequential Importance Resampling Filter (SIRF) and the Sequential

Kernel Resampling Filter (SKRF). The model admits a chaotic vortical mode

coupled to a comparatively fast gravity wave mode. It can also either be configured

to evolve on a so-called slow manifold, where the fast motion is suppressed or

such that the fast-varying variables are diagnosed from the slow-varying variables

as slaved modes. Identical twin experiments show that EnKF and PF capture

the variables on the slow manifold well as the dynamics is very stable. PFs,

especially the SKRF, capture slaved modes better than the EnKF implying a

133
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full Bayesian analysis estimates the nonlinear model variables better. The PFs

perform significantly better in the fully coupled nonlinear model where fast and

slow variables modulate each other. This suggests that the analysis step in the

PFs maintain the balance in both variables much better than the EnKF. It is also

shown that increasing the ensemble size generally improves the performance of the

PFs but has less impact on the EnKF after a sufficient number of members has

been used.

6.1 Introduction

The quality of the forecasts of the state of the atmosphere and ocean de-

pends on the accuracy of the solutions of the partial differential equations (PDEs)

describing these systems. Various data assimilation techniques have been devel-

oped over the last three decades to improve upon these solutions of the PDEs

and to constrain the solutions to the ever increasing number of observations. This

helps in reducing the uncertainties in the forecast of these highly chaotic sys-

tems. The most popular data assimilation schemes in operational forecasts are the

four-dimensional variational assimilation (4D-VAR) approach (Lewis and Derber,

1985; Le Dimet and Talagrand, 1986) and the ensemble Kalman Filter approach

(Evensen, 1994; Tippett et al., 2003).

The oceanic and atmospheric systems have multiple scales of dynamics in-

teracting nonlinearly in time and space. For instance, the atmospheric system

varies on timescales from climate to weather. The weather is fast-varying, non-

linear and chaotic and is known as an initial value problem, while the climate is

slowly varying and is known as a boundary value problem (Lorenz, 1991). Ocean

physics also involve multiple processes on multiple scales, from a few millimetres

to thousands of kilometers in space and from seconds to decades in time. These

are characterized by small-scale turbulent processes, mesoscale variability, decadal

and climate changes, all interacting with each other (Robinson and Lermusiaux,

2004).



135

4DVAR and EnKF-based assimilation schemes have addressed the problem

of forecasting multi-scale systems to some extent. They have many associated

problems with regard to the nonlinearity of the models and assimilating observa-

tions with dynamics at various timescales and measures of nonlinearity (Bennett,

2002; Hoteit and Köhl, 2006; Van Leeuwen, 2010). In meteorological and climato-

logical applications, “balance” generally refers to the dominance of vortical motion

over inertia-gravity waves. In multi-scale systems like the ocean or atmosphere in

which modeled flows in certain regimes are expected to be balanced, it has been

found that current 4D data assimilation techniques, as the EnKF and 4DVAR,

could cause the excitation of spurious unbalanced motion (Polavarapu et al., 2000;

Houtekamer and Mitchell, 2005; Neef et al., 2006). This has been known to happen

due to the development of unphysical correlations. Solutions to this problem have

been attempted by imposing balance constraints on the analysis (Courtier and

Talagrand, 1990; Dee, 1991b; Todling and Cohn, 1994; Polavarapu et al., 2000;

Kepert, 2004) or by filtering out fast modes. Imbalance in the flow due to the

assimilated data cannot be completely corrected for even with such adjustments

(Neef et al., 2009). Gershgorin and Majda (2010) show that a linear Kalman filter

with model error performs better than an exact Nonlinear Extended Kalman Filter

(NEKF) for large enough observation times in a nonlinear slow-fast system, yet

they also show that the NEKF is stable for the case of strong fast forcing and hence

for strong non-Gaussianity unlike the linear KF. The application of the EnKF is

still largely in a discussion/testing phase (Lorenc, 2003; Houtekamer and Mitchell,

2005). The ability of this method to capture unbalanced motion is, however, still

poorly understood (Neef et al., 2009). Szunyogh et al. (2005) is an example of

a case in which an EnKF-type assimilation method was able to capture a fast

varying gravity wave mode that was present in observations and not in the model

forecast indicating that flow-dependent covariance models can potentially capture

unbalanced motion. Neef et al. (2006) reported similar results where the EnKF

was able to provide better estimates of the fast varying modes than the linearized

(extended) kalman filter. Other techniques such as scale dependent modeling and

assimilation using the ensemble Kalman Filter have been attempted too (Zou and
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Ghanem, 2005) in engineering applications. This would be a more appropriate

solution if the coupling between the scales were not highly nonlinear and chaotic

as in the ocean or atmosphere dynamics.

4DVAR and the EnKF are equivalent when the system is Gaussian and

linear (Kalnay et al., 2007), but both do not fully address the nonlinear estimation

problem (Van Leeuwen, 2010). The 4DVAR solution requires solving a non-convex

optimization problem while the EnKF analysis is still based on the linear correction

step of the Kalman filter (Le Dimet and Talagrand, 1986; Anderson, 2001; Hoteit

et al., 2008). For nonlinear data assimilation problems, the optimal solution is

believed to be the solution of the Bayesian estimation problem which involves

the estimation of the conditional probability distribution function (PDF ) of the

system state given all available measurements up to the estimation time (Doucet

et al., 2000). Knowledge of the state PDF allows determining different estimates

of the state, such as the minimum variance (MV) estimate (Todling, 1999). The

particle filter (PF) uses point-mass representation of the state PDF to provide

a discrete approximation of the optimal nonlinear filter (ONF) (Doucet et al.,

2000). In the PF, the particles are integrated forward with the numerical model

to propagate the state PDF in time, and their assigned weights are updated every

time new observations are available. The PF, however, suffers from the degeneracy

phenomenon of its particles when most weights become concentrated on very few

particles. Tackling this problem would require using resampling and a very large

number of particles (Doucet et al., 2000). To alleviate this problem, Evensen

(1994) proposed the EnKF while replacing the weight correction step by the linear

Kalman correction step for each particle. This was shown to significantly enhance

the robustness of the filter and allowed the implementation of the Bayesian filtering

theory with small size ensembles of particles (Kivman, 2003; Hoteit et al., 2008;

Van Leeuwen, 2010).

Despite recent successful implementations of the EnKF with various atmo-

spheric and oceanic assimilation problems (Houtekamer and Mitchell, 2005; Hoteit

et al., 2005; Pu and Hacker, 2009), it is still not clear to what extent the linear

correction step affects the accuracy of the filtering solution. Kivman (2003) com-
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pared the performances of the EnKF and the PF for the parameter estimation

problem and found that the linear correction step of the EnKF fails to provide

accurate estimates of the system parameters because of the strong nonlinear re-

lation between the parameters and the observations. More recently, Jardak et al.

(2010) compared the performances of the same filters in the presence of linear and

nonlinear observation operators and concluded that the nonlinear filters are supe-

rior in the latter case. In this work, we are interested in assessing the impact of

the linear correction step on the estimation of the different scales of the studied

system. Following Neef et al. (2006), we address this problem using the simplified

dynamical model of Lorenz (1986) which admits one nonlinear vortical mode and

one inertia-gravity wave. We study the performance of the linear-based EnKF and

two kinds of nonlinear filters, the Sequential Importance Resampling Filter (SIRF)

and the Sequential Kernel Resampling Filter (SKRF). A similar problem has been

considered by Neef et al. (2006) but studying the impact of linearization in the

extended Kalman filter versus the ensemble approach, and by Neef et al. (2009)

studying the impact of flow-dependent covariance evolution in the ensemble KF

vs a static covariance model in an OI. In the Lorenz-86 model, we are mainly in-

vestigating whether the EnKF fails to capture the nonlinear coupling between the

slow variable and the fast variable due to its linear correction step. This coupling

between the slow and fast variable is preserved in the forward integration of the

PFs and hence, we show that they perform better in preserving the balance in the

model as compared to the EnKF. When the dynamics lie on the slow manifold, we

show that the EnKF performs as well as the PFs since the dynamics are approxi-

mately linear. We are particularly interested to see if the nonlinear correction step

captures the fast growing modes better compared to the EnKF, and if so whether

it still maintains the improvement in the analysis of the slow evolving mode. The

second focus is to study the behavior of two different nonlinear filters compared to

the EnKF for data assimilation in this model with varying observation frequencies

and varying scales.

In the first set of experiments of this study we will evaluate the performance

of the three different filters in the slow manifold framework of the Lorenz-86 model.
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The model is configured in the Slow Manifold with the fast modes set to zero and

only the slowly varying vortical mode evolving in time. We test and show that the

EnKF performs well compared to the two types of particle filters. In the second set

of experiments we address the balanced flow problem, or flow where the vortical

motion dominates and the inertial/gravitational motion is ‘slaved’ to the dominant

vortical mode flow. In the third set of experiments we will evaluate the accuracy

of the three different filter analyses with a fully nonlinear model with the slowly

varying vortical mode coupled to the fast inertia-gravity wave mode and each of

them evolving in time independently.

The chapter is organized as follows. The algorithms of the ensemble Kalman

filter and the two types of particle filters are described and their characteristics

compared in Section 6.2. Section 3 describes the different configurations of the

extended Lorenz-86 model used in these experiments. The experimental setup

describing the different model configurations and observation schemes used for

experiments are presented in Section 4. Section 5 contains discussion and conclu-

sions.

6.2 Linear and Nonlinear Bayesian Filtering

The Bayesian filtering approach is presented first and then approximations

for its Monte Carlo implementation are presented in the forms of the PF and the

EnKF.

To describe the Bayesian Filtering algorithm, consider the following non-

linear stochastic discrete-time dynamical system

xk = M k(xk−1) + ηk, (6.1)

yk = Hk(xk) + εk, (6.2)

where xk is the state vector (to be estimated), of dimension n, yk is the observation

vector, of dimension p, M k and Hk are two continuously differentiable maps from

IRn to IRn and from IRn to IRp respectively representing the transition and the

observational operators, and ηk and εk denote the dynamical and the observational
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noise, respectively. The conditional distributions of ηk and εk, given x0, . . . ,xk

are assumed to be Gaussian with zero mean and non-singular covariance matrices

Qk and Rk, respectively.

Starting from a random initial condition with a known probability density

function, the Bayesian filter provides the conditional density function of the system

state given all available measurements up to the estimation time. To simplify

the notation, we define y1:k as a shorthand for the set of observations y1, . . . ,yk

previous to time tk. Let pfk( · | y1:k−1) be the conditional (predictive) density of

xk given y1:k−1 and pak( · | y1:k) be the conditional (analysis) density of xk given

y1:k, both determined at time tk. The Bayesian filter recursively operates with a

succession of prediction and correction steps as summarized below. The reader is

referred to Doucet et al. (2000) for an extensive description of the filter.

• Prediction step: The predictive density pfk( · | y1:k−1) is obtained by integrat-

ing pak−1( · | y1:k−1) with the model (6.1) to the time of the next available

observation tk. The conditional density of the state vector xk to be at x at

time tk given that it was at u at time tk−1 is φ (x−M k(u); Qk), where

φ(x; Σ) =
1√

det(2πΣ)
exp

(
−x

TΣ−1x

2

)
(6.3)

denotes the Gaussian density of zero mean and covariance matrix Σ. Thus,

pfk(x | y1:k−1) =

∫
IRn

φ (x−M k(u); Qk) p
a
k−1(u | y1:k−1)du. (6.4)

• Correction step: After a new observation yk is made, the analysis density

pk( · | y1:k) at time tk is determined by “correcting” the predictive density

with the new observation using the Bayes rule,

pak(x | y1:k) =
1

bk
pfk(x | y1:k−1)φ (yk −Hk(x); Rk) . (6.5)

The analysis density is therefore obtained by multiplying the prior predic-

tive density by the observation density and normalizing by bk =
∫
IRn p

f
k(u |

y1:k−1)φ (yk −Hk(u);Rk) du to ensure a probability density.
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While the expressions of the state PDF can be easily obtained, determining

the value of the predictive density at each point of the state space is practically im-

possible for large dimensional systems (Doucet et al., 2000). This actually requires

the evaluation of the model M k(x) for a prohibitive number of values of x, know-

ing that even one single evaluation can be computationally prohibitive in realistic

atmospheric and oceanic applications (Snyder et al., 2008). The particle filter and

the ensemble Kalman filter are two discrete approximations of the Bayesian filter.

Here we describe the characteristics of these two Monte Carlo implementations of

the Bayesian filter.

6.2.1 The Particle Filter (PF)

The PF provides a discrete solution of the Bayesian filtering problem using

point-mass representations
∑N

i=1wiδxi , of the state PDFs (Doucet et al., 2000).

The vectors xi are called particles and the wi are their associated weights. N is

the number of particles (or the size of the ensemble). After a forecast or analysis

step, the minimum variance estimate of the system state is then obtained as the

weighted-average of the ensemble
∑N

i=1w
ixi. Starting from an initial ensemble

of particles xi0, i = 1, . . . , N , the PF algorithm consists of a prediction step to

integrate the particles in time and a correction step to update the weights as

follows:

• Prediction step: At time tk−1, the particles xik−1 are integrated forward with

the model to the time of the next available observation tk.

• Correction step:: The new observation is used to update the weights with

wik =
1

ck
wik−1φ

(
yk −Hk(x

i
k); Rk

)
, (6.6)

where ck is a constant normalizing the total weight. The particles remain

unchanged. Thus a particle receives more/less weight proportional to its

distance from the most recent observation normalized by the observational

error covariance matrix Rk.
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In practice, the PF suffers from a major problem known as the degeneracy

phenomenon (Doucet et al., 2000); after several iterations most weights become

concentrated on very few particles. This happens because the particles drift away

from the true state with the observations exerting no feedback on the particles.

The “effective” size of the ensemble decreases over time and after few assimilation

steps only a small fraction of the ensemble contributes to the filter solution, causing

very often the divergence of the filter. Resampling was introduced as a way to get

around this problem. This Monte-Carlo technique basically consists of drawing

new particles according to the PDF of the ensemble and then reassigning them

the same weights (Doucet et al., 2000). In most applications, the new particles

are drawn from the discrete approximation of the state PDF. This is known as

the Sequential Importance Resampling Filter (SIRF). To avoid drawing similar

particles when the system noise is absent or insignificant, the particles might be

also resampled from an approximating continuous PDF (Pham, 2001). This is

known as the Sequential Kernel Resampling Filter (SKRF). Moreover, even with

resampling, the PF would still require a large number of particles to provide an

accurate solution (Doucet et al., 2000). This makes brute-force implementation of

the PF with computationally demanding atmospheric and oceanic models quite a

challenging problem (Anderson, 2003; Snyder et al., 2008; Van Leeuwen, 2009).

6.2.2 Ensemble Kalman Filtering (EnKF)

To avoid the problems associated with the application of the PF and the

KF with large dimensional nonlinear problems, (Evensen, 1994) introduced the

EnKF as a hybrid approach between the KF and the PF. The basic idea behind

this filter is to combine the optimal forecast step of the PF with a KF correction

of the particles. The weights are then kept uniform. The algorithm of the EnKF

can be summarized as follows:

• Prediction step: As in the PF, the analyzed particles, xa,ik−1 are advanced in

time with the model to compute the forecast particles xf,ik .
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• Correction step: A KF correction step is applied to every forecast particle as

xa,ik = xf,ik + Ge
k

(
yik −Hk(x

f,i
k )
)
. (6.7)

The gain matrix Ge
k is the same as the Kalman gain but is computed from

the sample covariance matrix of the xf,ik as described by (Evensen, 2003)

In Eq. (6.7), the observation was assigned a superscript index associated

with each particle. This is because the observation needs to be perturbed

by noise sampled from the PDF of the observational error (Burgers et al.,

1998).

The correction step of the EnKF uses only the first two moments of the

particle ensemble, and is thus suboptimal for non-Gaussian systems. In practical

situations, however, the EnKF was found to be more robust than the PF when

small-size ensembles were used because the Kalman update of the particles is

applied using the forecast error covariance matrices estimated from the particles

ensemble. This made the implementation of the Bayesian filtering feasible with

high dimensional systems, as in meteorology and oceanography. The KF correction

reduces the collapse of the ensemble by ‘pulling’ the particles toward the true

state of the system, allowing the filter to operate with a reasonable number of

particles (Kivman, 2003; Hoteit et al., 2008; Van Leeuwen, 2009). With large

enough ensembles, however, the PF was shown to outperform the EnKF (Nakano

et al., 2007; Jardak et al., 2010). It is still an active area of research as to the defects

of a Kalman filter type linear correction that can be overcome by using the fully

nonlinear (non-Gaussian) Bayesian correction in filtering highly nonlinear systems

such as the ocean or the atmosphere.

6.3 Lorenz-86 Model Description

6.3.1 Lorenz-86 Model

The model used in this study is that of Lorenz (1986), as modified by

Wirosoetisno and Shepherd (2000) (hereafter WS00), and will be referred to here
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as the extended Lorenz (1986) model or exL86. It has only 4 degrees of freedom, but

admits both a fast gravity wave and a chaotic vortical mode, with an asymptotic,

nonlinear balance between fast and slow variables. The advantage of models such

as exL86 is that the balance between fast and slow variables is well understood, and

the assimilated analysis can thus be easily interpreted in terms of the balanced and

unbalanced components of the motion. The fact that this model is conservative

does not pose a great difficulty, since the intention here is to use it to study

assimilation algorithms in the context of the slow versus the fast variables. As

pointed out by Lorenz (1986) and WS00, dissipation of gravity waves is not the

cause of the existence of a slow manifold, and therefore models such as this one

can be quite representative of realistic balanced dynamics.

The basic equations of the model are as follows:

dφ

dt
= w (6.8)

dw

dt
= −C

2
sin(2φ+ 2εbx) (6.9)

dx

dt
= −z

ε
(6.10)

dz

dt
=

x

ε
+
bC

2
sin(2φ+ 2εbx) (6.11)

where C = 1 + 0.8cos(0.92t), with t as time. ε = 0.1 and b = 0.71 are two other

constants.

Equations (8)-(11) describe a chaotic vortical mode in φ and w, coupled to

a linear gravity wave in x and z. The four variables are the spectral coefficients

of potential vorticity φ and w, geostrophic imbalance z, and divergence x. . Note

that φ is actually related to the phase of two potential vorticity coefficients from

the original derivation Lorenz (1986). The parameter b, which couples the fast

and slow normal modes, corresponds to the rotational Froude number and the

parameter ε is related to the parameter b and the Rossby number by the following

equation:

ε ≡ RoB√
1 +B2

(6.12)

where Ro = U/fL is the Rossby number and B = fL/
√
gH is the rotational
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Froude number. Ro is the ratio of the inertial timescale to the advective timescale

of the flow. B is ratio of the Coriolis force to the gravitational restoring force. The

value of these parameters indicates a timescale of separation between the different

normal modes (Saujani and Shepherd, 2006). The model can be run in various

configurations to mimic the dynamics of coupled and uncoupled scales of motion

with only the slow varying mode active or in a slaved configuration with the fast

varying mode slaved to the slow manifold.

6.3.2 Slow Manifold Initialization

The model can be configured in a slow manifold such that two variables

vary at a slow time scale and the fast varying variables are set to be zero. The

lowest order approximation to a slow manifold in the exL86 system is found by

setting x = z = 0 and evolving only φ and w. For ε = 0 or b = 0, this manifold is

exact, and results in the single-timescale system

dφ

dt
= w (6.13)

dw

dt
= −C

2
sin(2φ) (6.14)

This system is analogous to a chaotic pendulum when C is still time de-

pendent in this configuration. This corresponds physically to the quasigeostrophic

equations as in both systems the fast gravity waves are filtered out. To establish

how nonlinearity of the slow mode affects data assimilation, experiments with this

model are performed using the Ensemble Kalman Filter and the two flavors of the

Nonlinear Particle Filter. Results are presented in section 6.4.

6.3.3 Second-order slaving relations

The model can also be configured in a slaved relations mode such that

the fast varying modes are only dependent on the slow variables and are time

independent.
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x = − ε
2
Cbsin2φ+O(ε3) (6.15)

z = ε2(Cbwcos2φ+
C ′

2
bsin(2φ))

+O(ε3) (6.16)

where C ′ is the time derivative of C.

To assess the efficiency of the nonlinear analysis step in enhancing the dy-

namical balance of the filter solutions, identical twin assimilation experiments were

designed such that the true state was balanced, but the observational errors pro-

jected onto all degrees of freedom, including the fast modes. Results are presented

in section 6.4

6.3.4 Experiments setup and objectives

We set up experiments to test the performance of the EnKF compared to

the two flavors of particle filters, the SIRF and the SKRF. The ExL86 model is

configured in 3 different modes. The first configuration used is the slow manifold

configuration of the model in which the fast variables were set to zero and only the

slow variables were allowed to evolve in time. This model configuration is weakly

nonlinear in its dynamics.

The second configuration considered is the slaved mode with the fast vari-

ables depending completely on the evolution of the slow variables and not evolving

in time independently. This configuration of the model has the slow variable evolv-

ing in time uncoupled to the fast variable. Filtering on this configuration will help

us understand how the linear vs the nonlinear filter improves the slow mode and

hence also influences the evolution of the fast mode without coupling back to the

slow mode.

The third configuration is the fully nonlinear mode with the slow and the

fast variables coupled and evolving in time separately as the full dynamics dictates.

This model configuration enables us to assess whether the filters are improving the

fully nonlinear coupled dynamics of the model or only the slow or fast modes



146

individually. This would give us an insight into how important it is to have a

linear vs a nonlinear correction step to capture the dynamics of a fully nonlinear

coupled model.

In all experiments presented here, we chose a trajectory of the model start-

ing from the same initial conditions of φ = -6.617, w = -0.449, x = 0 and z = 0.

In all these three configurations with 3 different types of filters, we investigated

two different sets of observation schemes. One observation scheme was to observe

all variables at all time. This observation scheme is called the All observation

experiment (AOEx hereafter). The second observation scheme was to observe only

the first (slow) variable and the third (mixed) variable every 8 time steps. This

observation scheme is referred to as the Sparse observation experiment (hereafter

SpOEx). All assimilation experiments were done with 10 and 25 ensemble mem-

bers. Results from the experiments with 25 ensemble members are presented in

this study for the different filter solutions. An inflation factor of 1.01 was used

for the EnKF simulations to account for subsampling errors in the EnKF (Hamill

et al., 2001)

6.4 Results from experiments

Results from the experiments with the three separate modes of the model

are presented in this section.

6.4.1 Slow Manifold

To separate the problem of balance from that of general nonlinearity and

chaos, we establish how well the EnKF, SIRF and SKRF estimate the model state

in the single-time-scale slow manifold configuration of the model. In the slow

manifold case, only the variables φ and w are varying in time and variables x and

z are zero at all time. When all variables at all time are observed in the assimilation

experiments, the EnKF estimates the slow variable with low error comparable to

that of the nonlinear filters’ solutions as shown in Fig 6.1. This shows that when

the model has only a slowly varying single time scale which is weakly nonlinear,
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the nonlinear filters are comparable in estimating the state to the EnKF, which is

based on Gaussianity assumptions. Similarly, in Fig 6.2, we see the solutions from

the three assimilation schemes for the SpOEx. This experiment shows that the

SKRF estimates the variable w with lesser RMSE than SIRF and is comparable

to the EnKF RMSE (after a few timesteps of assimilation). The advantage of the

PFs is that the balance of the dynamic variables relies only on a balanced forecast

ensemble which is not changed by a linear correction step such as in an ensemble

Kalman Filter. Neef et al. (2006) show that a more balanced error covariance in

an EnKF is the reason it captures the dynamics better than an Extended Kalman

Filter (EKF). They also argue that over-observing can lead to a more unbalanced

forecast ensemble and thus to an unbalanced analysis, yet in our experiments,

reduced observations lead to great errors in all three filters, and more so in the

EnKF and SIRF.

6.4.2 Second-order slaving relations

In Fig 6.3, the model was configured as an approximation to the slow mani-

fold, where the evolution of the system depends on the slow variables only. The fast

variables are found diagnostically as functions of the slow variables, and the gravity

wave is suppressed. It can be seen that the EnKF estimate does not capture the

transition between the peaks in the variable z. The reason for this failure could be

that the EnKF updates the ensemble trajectories using a linear analysis estimate

and hence could destroy the nonlinear interactions between the variables, while the

SIRF and SKRF only change the ensemble probabilities but do not modify their

trajectory. Hence, the nonlinear filters could retain the balance relationship to the

extent that ensemble members themselves are balanced and the forecasts in the

ensemble use the full nonlinear model and the gravity wave is therefore bounded.

This could be destroyed in the EnKF when, at every analysis step, the ensemble

members themselves are updated using a linear correction step. The RMSE for

variable z (fast variable) is lowest for the SKRF. The peaks in variable z are cap-

tured well by both the SKRF and SIRF estimates. The total RMSE is lowest for

SKRF.
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Fig 6.4 shows the model estimates for the same slaved mode configuration

with sparse observations. Again, SKRF state estimates have the lowest RMSE

compared to the SIRF and EnKF state estimates. As in Fig 6.3, the EnKF state

estimate is unable to infer the transition between peaks in the variable z which is

inferred better in the SIRF and SKRF solutions. Although variable w is estimated

well by all three filters, the SKRF performs better with this variable. Hence,

the nonlinear filter, especially with particles sampled from a continuous PDF,

estimates the solutions to the highly nonlinear model with scale separation better

in both slow and fast time scales. The balance relationship between the slow modes

and fast modes are simulated better by the nonlinear filters with better-estimated

fast-slow statistics used to update the fast variables with observations of the slow

variables. This is also in agreement with the results of Neef et al. (2009) where it

is shown that an estimate of the fast variables from observations of a slow variable

alone requires the fast-slow error covariances to capture the balance relationship.

6.4.3 Nonlinear Mode

Fig 6.5 shows the total root mean-square error (RMSE) and the RMSE

for variable w and z. The RMSE for all three filters, EnKF, SIRF and SKRF

are comparable and low. This shows that when assimilating observations of all

variables and at all timesteps in a nonlinear model with interacting slow modes

and fast modes, all three filters capture the variables well and maintain the balance

among the variables. The slow mode is captured better by the EnKF than the fast

mode as seen in Fig 6.6, where we assimilate sparse observations. The EnKF state

estimate of the unobserved slow mode variable w and fast variable z are worse

than the estimates by the nonlinear filters SIRF and SKRF. The nonlinear filters

are comparable to each other and perform well in estimating both the slow and

fast variables. The transition between peaks in the fast variable are still not well

captured in these two schemes, yet they do capture them well in time as compared

to the EnKF solutions. This is consistent with results from Neef et al. (2006)

where it is shown that a nonlinear evolution in the model such as in PFs slows the

growth in imbalance in the model analysis and also allows for efficient assimilation
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of sparser observations without a great loss of balance. Neef et al. (2006) also show

that the ensemble averaging in the EnKF helps in keeping a balanced state over an

Extended Kalman Filter-like approach. This advantage is even better preserved in

the weighted mean of the PFs.

We have also tested the assimilation experiment with various ensemble sizes

from 10 to 100 and have shown the total RMS error for each variable in each

of the ensemble size cases in Figure 6.7. This figure shows that for the EnKF,

increasing the ensemble size from 10 to 100 does not significantly change the skill

of the filter. For the PFs, increasing the ensemble size from 10 to 50 improves the

skill of the filters but further increase in the ensemble size does not gain much in

terms of reducing the RMS error. Even an ensemble size of 50 is much above the

dimension of the problem being solved. Yet to model the PDFs of each variable

appropriately and integrate it forward in time, it is necessary to sample the variable

PDFs sufficiently in order to capture the most information.

One of the main properties of this model is the nonlinearity in the inter-

action of different modes and the non-Gaussianity of the fast mode. Both the

nonlinear coupling and the fast forcing imply non-Gaussian PDFs for the fast vari-

able. Hence, the model was run for all three filters with 1000 ensemble members

so as to get a good estimate of the prior and posterior estimate for the PDFs of

the model variables for the fully nonlinear configuration. The PDFs of the state

are estimated using a Gaussian Mixture Model (GMM), a parametric probability

density function represented as a weighted sum of Gaussian component densities.

(McLachlan and Peel, 2000; Anderson and Moore, 1979). Plotting the PDFs of the

variables shows the non-Gaussian nature of the PDFs of the variables in the fully

nonlinear case. Doucet et al. (2000) show theoretically that the estimated PDF

from the PFs converge to the Bayesian PDF as the number of samples tend to

infinity. The EnKF always approximated the PDF to be Gaussian but the particle

filters are able to capture a non-Gaussian PDF and evolve it forward in time. This

could be a critical reason for the PFs to perform better than the EnKF.

Fig 6.8 shows that in the forecast and the analysis, the particle filters cap-

ture the non-Gaussian PDFs in their ensemble spread. When we reduce the number
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of observations in time, both the forecast and analysis PDFs conditioned on the

observations increase in their spread, yet the PFs do have a non-Gaussian PDF

which is likely to represent the non-Gaussianity of the system better as shown in

Fig 6.9.

Neef et al. (2009) show that the EnKF analysis cycle can cause the ensemble

to lock onto a gravity wave of the wrong amplitude, causing filter divergence in the

analysis of the fast mode, even in regimes where it converges for the slow mode.

Fast-mode filter divergence comes about because the linear gravity wave ensemble

does not spread between observations. This drawback is not overcome even when

observations are very frequent. In realistic applications it is possible that gravity

waves that are present in the truth may not be represented in the observations,

perhaps because of filtering or averaging of observations. In that case, only the

component that is slaved to the slow mode can be controlled by observations,

which requires the filter to simulate the balance relationships between slow and

fast model variables.

Hence, the above experiments show that in estimating states with various

timescales interacting and in balance, both the nonlinear filters give better esti-

mates than the EnKF which is based on a linear Kalman correction. Estimates

of both the slow varying variables and fast varying variables are improved by the

nonlinear filters over the EnKF solutions. These solutions show that even with

a weakly nonlinear model or a highly nonlinear model with interactions between

the fast and slow variables, the nonlinear filters unequivocally give lesser error in

estimates of the state variables.

6.5 Discussion and conclusions

Kalman filtering since its introduction five decades ago has been adapted

as one of the most promising tools for data assimilation. The Kalman filter is

an optimal linear filter. Hence, two different approaches are generally used for

the implementation of this estimation technique to nonlinear models. The first

approach consists of linearizing the model equations leading to the so-called ex-
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tended Kalman filter. This approach has been shown to be either too prohibitive

computationally or have limitations in reduction in error of estimation for strongly

nonlinear systems with simplified versions of the filter. Another approach is to

use linear-analysis based Kalman Filter for nonlinear estimation and is based on

the ensemble approach and the use of nonlinear Monte-Carlo ensemble forecasting

methods to represent estimation errors with an ensemble of state vectors. Until

recently, these linearized filters have been shown to perform relatively well in state

estimation of multi-dimensional nonlinear problems compared to other approxi-

mate methods like optimal interpolation. The two main disadvantages that plague

all Kalman filter based approaches are that they do not produce the variance-

minimizing estimate in the analysis step for nonlinear models and they initialize

the Fokker-Planck-Kolmogorov equation with an ensemble that preserves only the

first two moments of the analysis error statistics. It is also not completely under-

stood how these filters influence the state estimation of different scales of dynamics.

Particle filters, on the other hand, are fully nonlinear in both model evolu-

tion and analysis steps (Doucet et al., 2001; Gordon et al., 1993). They use the

full error statistics in filtering and hence minimize the true variance and not an

assumed Gaussian variance. They are more suited for nonlinear estimation and

nonlinear Monte-Carlo ensemble forecasting of highly nonlinear processes such as

ocean-atmosphere dynamics than linear-based Kalman filter. Yet, a fundamental

problem with PFs is the so-called curse of dimensionality, which is related to the

fact that a relatively small number of model ensemble runs trying to estimate the

a large-dimensional system space is very unlikely to be close to the set of observa-

tions from this system (Snyder et al., 2008). More complicated particle filters have

been proposed that can overcome the ‘curse of dimensionality’ , but haven’t been

used in geoscience applications very much (Van Leeuwen, 2009). We have tested

two such modified PFs, the SIRF and the SKRF to understand how these filters

influence the estimation of different scales of dynamics.

In this chapter, we have compared the efficiency of the EnKF with the two

flavors of nonlinear particle filters, the SIRF and the SKRF, for problems (i) where

there exists a separation of time scales between relatively fast and slow motions,
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(ii) where the free fast motion is oscillatory, and (iii) where the evolution of the fast

variables in the true state is slaved to that of the slow. These experiments showed

that the SKRF, SIRF and EnKF have quite different properties when it comes

to preserving balance in the assimilated analysis. The PFs always outperformed

the EnKF with any of the tested schemes of observation frequencies or modes of

the model. This strongly suggests that a filter preserving the nonlinearity in the

forward model tends to also preserve the balance in the model.

Application of particle filters is attractive from the viewpoint that they

use the full error statistics to integrate the Fokker-Planck-Kolmogorov equations

of the system unlike a Kalman filter which uses only the first two moments in

its integration. Hence, they are a truly variance minimizing scheme. Numerical

results from experiments with the exL86 show that nonlinear filters behave much

better than the ensemble Kalman filter methods with strongly nonlinear systems.

The nonlinear filters also better preserve the dynamical balance of the system

state resulting in more stable predictions in the slow and fast variables. Particle

Filters, esp. SKRF, capture slaved modes better implying nonlinear jumps in

dependent variables are simulated better. When the observation frequency and

the number of variables observed are decreased, the nonlinear filters show a very

clear improvement in performance compared to the linear-analysis-based Kalman

filter estimations for both the slow and fast variables in all configurations of the

model. This is very important for atmospheric and oceanic data assimilation where

only a small fraction of the system state is observed.

This study is intended as a complement to similar studies such as Neef et al.

(2006) and studies involving larger, more complicated models, such as Mitchell

et al. (2002). Key points of the balance problem and drawbacks of linear assump-

tions in estimation theory compared to nonlinear filters highlighted in this study

add to the research in the still-evolving field of 4D data assimilation. This research

can be extended to study the balance dynamics in more complicated models to un-

derstand the behavior of nonlinear filters in systems with strong nonlinearity.
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Figure 6.1: Slow Manifold : Every variable at all time steps is observed. The

system is known perfectly. It can be observed that both EnKF and PFs capture

the slow manifold well when all variables are observed.
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Figure 6.2: Slow Manifold : First and third variable at every 8th timestep is

observed. Here we observe that the system is not well captured by the EnKF

analysis where as the PFs capture the system well.
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Figure 6.3: Slaved Manifold : Every variable at all time steps is observed. The

system is known perfectly. It can be observed that both EnKF and PFs capture

the slow manifold well when all variables are observed.
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Figure 6.4: Slaved Manifold : First and third variable at every 8th timestep is

observed. Here we observe that the system is not well captured by the EnKF

analysis where as the PFs capture the system well.
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Figure 6.5: All Modes : Every variable at all time steps is observed. The system

is known perfectly. It can be observed that both EnKF and PFs capture the slow

manifold well when all variables are observed.
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Figure 6.6: All Modes : First and third variable at every 8th timestep is observed.

Here we observe that the system is not well captured by the EnKF analysis where

as the PFs capture the system well
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Figure 6.7: Comparison of average error for all the four variables in the All

Modes configuration of the model with observations taken at every 8th timestep.

Top panel shows the errors for the EnKF, middle panel for the SIRF and the

bottom panel for the SKRF filters.
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Chapter 7

Concluding remarks

In this concluding chapter we summarize the results of the Dissertation, with an

emphasis on novelties, and new problems suggested by this research.

7.1 Final Remarks

Lewis Fry Richardson once had a dream : “ Perhaps some day in the dim

future it will be possible to advance the computations faster than the weather ad-

vances and at a cost less than the saving to mankind due to the information gained

. But that is a dream.” (Richardson, 1922). That dream had been fulfilled within

the last few years of Richardson’s life. Numerical models integrated on the first

ENIAC machine were able to time step the equations forward to generate a forecast

although erroneous due to the the huge approximations made for the computation

to be feasible. Much of a similar battle is being fought even today in climate

modeling. Although the computational resources have grown exponentially with

Moore’s law, since the 1950s, our modeling of the climate system and its interlinked

processes are still wrought with many approximations and parameterizations due

to lack of enough resources to resolve all scales of the dynamics.

At the outset of this Dissertation, we noted that the main challenges in nu-

merical atmosphere-ocean modeling today are to resolve dynamics that are possible

with today’s synoptic scale resolution atmosphere models and mesoscale resolving
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ocean models. The primary challenge in today’s climate models is to resolve the

MJO characteristics well, which lies at the interface of dynamics and thermody-

namics and between seasonal and annual time periods. The primary challenge in

ocean modeling with regional ocean models is to resolve ocean mesoscale eddies

accurately and realistically. In this thesis, we investigated some properties of the

improved MJO simulations in CCSM4 and then went on to study MJO’s concur-

rence with various other climate phenomena. We also studied the change in MJO

response in a warmer world. Next we assimilate ship cruise and satellite observed

data to capture mesoscale features in a high resolution region ocean model of the

Southeast Pacific region. After getting a state estimate of the ocean, we study the

properties of the eddy and also analyze the heat budget in the region during the

period of the cruise. Lastly we study how linearized filters can disrupt balance

in atmosphere-ocean models by using a simplified proxy model for the same. We

show that using a nonlinear filter which preserves the nonlinearity in the filtering

step helps preserve the balance better.

7.2 Contributions of the Dissertation

The main contributions from the thesis can be summarized in the following

paragraphs.

MJO in CCSM4

Simulating and forecasting the MJO is of central importance to the global

climate and weather community, especially as models continue to increase resolu-

tion and resolve the various processes that contribute to intraseasonal variability.

Yet most climate models today fail to simulate even the large-scale features of the

MJO. In Chapter 2, we evaluate the performance of a 20-year run of CCSM4 in

reproducing the primary characteristics of MJO, based on diagnostics established

by the MJOWG.

CCSM4 produces coherent, broadbanded and energetic patterns in eastward
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propagating intraseasonal zonal winds and OLR in the tropical Indian and Pacific

Oceans that are generally consistent with MJO characteristics. Strong peaks occur

in coherence spectra with periods between 20-100 days and zonal wavenumbers be-

tween 1 and 3. Model MJO’s, however, tend to be more broadbanded in frequency

than observation, with higher frequencies being associated with zonal wavenum-

bers in the MJO band. But broadscale patterns, as revealed in combined EOFs of

U850, U200 and OLR, are remarkably consistent with observations and indicate

that convective coupling occurs in the simulated MJOs.

MJO and Earth’s Climate

Relations between MJO and other climate phenomena were explored as well,

but no overwhelmingly strong links between ENSO state, Monsoonal flow or Indian

Ocean Dipole mode were identified. In these short, 20-year runs, a tendency for

MJO to be more energetic during weak warm ENSO conditions, negative Monsoon

Hadley flow, and positive zonal shear, was noted. But longer runs and more

detailed dynamical analysis will be needed to better understand what processes

control MJO and what climate processes respond to MJO in CCSM4.

Increase in variance of precipitation and especially the variance in the in-

traseasonal precipitation indicates a more active hydrological cycle in global warm-

ing scenarios as seen in several previous studies. A histogram plot of the MJO

amplitude and number of days shows an increase in the higher amplitude MJO

active days and also in the very low or no MJO days. The net number of days

with average MJO amplitude reduces in the global warming scenario. This is con-

sistent with previous studies showing extreme precipitation events amplify in a

warmer atmosphere (Allan and Soden, 2008). It is also observed that the model

MJOs are active (with amplitude greater than one) for significantly higher number

of days in the Indian Ocean and W. Pacific with higher amplitudes in the warmer

atmosphere.



166

ROMS Data Assimilation: VOCALS fits

15 day Data assimilation fits over the PCCS region have been successfully

conducted for Nov 2008 using the observations from both remotely sensed data and

in situ data. ROMS I4D-VAR reduced the normalized absolute error (NAE) near

the observational error level for all variables except for the upper level temperature.

The statistical information of SSH, T and S plotted in the Taylor diagram showed

the improvement of the correspondence between the data-assimilated model states

and observed states.

Eddy structure, properties and heat content in the SEP

Eddy properties in the PCCS are studied with a high-resolution (dx = 7

km) regional model ocean state estimate and an altimetry analysis, using eddy

tracking methods. The analysis of model eddies show that eddy signals penetrate

to 800-1500 m in depth. Cyclonic eddies featured a shoaling salinity minimum

layer (SML), doming isopycnals near the surface. Anticyclonic eddies were char-

acterized by a depressed SML and depressed isopycnals in the upper ocean. An

intensively surveyed cyclonic eddy was characterized by high salinity as predicted

by Johnson and McTaggart (2010). The eddy had an average temperature anomaly

of approximately -0.4oC over a depth range from 100 - 700 m and features a cold

anomaly of approximately -1oC near 150 m depth. The net temperature anomaly

of the eddy depends on the depth to which it is integrated, though it is nega-

tive overall. The cold near-surface anomaly, caused by the doming of near-surface

isopycnals, is likely more relevant than the net anomaly for assessing the effect of

eddies on upper-ocean temperature, as it is more likely to be incorporated into the

mixed layer. The vertically-integrated heat content of anticyclonic eddies deter-

mined from the ocean state estimate is only slightly different from that of cyclonic

eddies. The heat balance for the period of the cruise from the ocean state estimate

reveals that the mean horizontal advection is the dominant term that balances the

temperature tendency of the upper layer of the ocean. The vertical diffusion is

secondary and is about 30% of the advection magnitude. One of the major sources

of cooling that balances the positive surface heat fluxes is advection dominated
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by geostrophic transport. These results are partially consistent with those from

observations described in Colbo and Weller (2007). Major terms of the heat equa-

tion in the upper 400 m were also calculated over the region of the cruise. The

heat transport produced by geostrophic transport is one of the primary sources of

cooling in the entire stratus region because of its spatial coherence (Zheng et al.,

2010).

Balanced Dynamics in a Linear vs Nonlinear Filtering problem

Kalman filtering since its introduction five decades ago has been adapted

as one of the most promising tools for data assimilation. The Kalman filter is

an optimal linear filter. Hence, two different approaches are generally used for

the implementation of this estimation technique to nonlinear models. The first

approach consists of linearizing the model equations leading to the so-called ex-

tended Kalman filter. This approach has been shown to be either too prohibitive

computationally or have limitations in reduction in error of estimation for strongly

nonlinear systems with simplified versions of the filter. Another approach is to

use linear-analysis based Kalman Filter for nonlinear estimation and is based on

the ensemble approach and the use of nonlinear Monte-Carlo ensemble forecasting

methods to represent estimation errors with an ensemble of state vectors. Until

recently, these linearized filters have been shown to perform relatively well in state

estimation of multi-dimensional nonlinear problems compared to other approxi-

mate methods like optimal interpolation. The two main disadvantages that plague

all Kalman filter based approaches are that they do not produce the variance-

minimizing estimate in the analysis step for nonlinear models and they initialize

the Fokker-Planck-Kolmogorov equation with an ensemble that preserves only the

first two moments of the analysis error statistics. It is also not completely under-

stood how these filters influence the state estimation of different scales of dynamics.

Particle filters, on the other hand, are fully nonlinear in both model evolu-

tion and analysis steps (Doucet et al., 2001; Gordon et al., 1993). They use the

full error statistics in filtering and hence minimize the true variance and not an

assumed Gaussian variance. They are more suited for nonlinear estimation and
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nonlinear Monte-Carlo ensemble forecasting of highly nonlinear processes such as

ocean-atmosphere dynamics than linear-based Kalman filter. Yet, a fundamental

problem with PFs is the so-called curse of dimensionality, which is related to the

fact that a relatively small number of model ensemble runs trying to estimate the

a large-dimensional system space is very unlikely to be close to the set of observa-

tions from this system (Snyder et al., 2008). More complicated particle filters have

been proposed that can overcome the ‘curse of dimensionality’ , but haven’t been

used in geoscience applications very much (Van Leeuwen, 2009). We have tested

two such modified PFs, the SIRF and the SKRF to understand how these filters

influence the estimation of different scales of dynamics.

In chapter 6, we have compared the efficiency of the EnKF with the two

flavors of nonlinear particle filters, the SIRF and the SKRF, for problems (i) where

there exists a separation of time scales between relatively fast and slow motions,

(ii) where the free fast motion is oscillatory, and (iii) where the evolution of the fast

variables in the true state is slaved to that of the slow. These experiments showed

that the SKRF, SIRF and EnKF have quite different properties when it comes

to preserving balance in the assimilated analysis. The PFs always outperformed

the EnKF with any of the tested schemes of observation frequencies or modes of

the model. This strongly suggests that a filter preserving the nonlinearity in the

forward model tends to also preserve the balance in the model.

7.3 Future Directions

Frontiers in modeling multi-scale interactions in the climate system are

being addressed by the climate modeling now that the capability to model scales

of 10s of kilometers are slowing being tested and tuned for in the global climate

models. Using these high resolution climate models or regional downscaled high

resolution numerical models, dynamical features of ocean-atmosphere flow never

modeled before can be studied and learnt from in a unique way.

One of the challenging problems still is to model a realistic MJO event
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with all the scales of motion more realistic than any of the current climate models

are able to achieve. The best climate models today can model the large scale

features of the MJO well with modified convective parameterization schemes and

higher resolution grids. Yet, they still seem to lack some fundamental physical,

thermodynamical or a coupled process that is key to model the MJO. A large

field campaign to observe a live MJO was launched a few months ago. The field

campaign called DYNAMO, which stands for ”DYNAmics of the MJO” was lucky

enough to witness atleast a couple of MJOs and gather rich data of the vertical

and horizontal structure of the MJO. It should be very educational to study the

key processes that were active during an active MJO and study how the global

climate models can be improved to include these processes and hence a better MJO

simulation.

Another open problem is to model ocean mesoscale eddies with or with-

out data assimilation, realistically so as to be able to understand various physics

associated with ocean eddies such as mixing up nutrients for biological activity

or transporting heat and changing the physical structure of the ocean. Hence,

being able to model ocean eddies better in regional and global models will im-

prove our capabilities to understand the impact of small scale dynamics on large

scale changes such as the global heat budget or impacts on water mass movements

around the globe.

A third open problem with regard to studying balance preserving data as-

similation techniques is to user higher hierarchical models and understand which

part of the dynamics are being lost or destroyed by using data assimilation tech-

niques of today which are not formulated to preserve balance in the dynamics.

7.4 Concluding Thought

Although, our understanding of the climate system will steadily increase

with increased capabilities of climate modeling in the coming decades, this is

threatened by a growing gap between high resolution simulations and understand-
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ing the physics behind certain complex ocean-atmospheric phenomena. In order

to fill this gap, climate scientists must study the system using a suite of hierar-

chical models of varying complexity. Thus we can work towards a goal of having

a deeper understanding of the fundamental processes which interact and control

our Earth’s climate and simultaneously have capability to numerically model and

predict changes that could occur (some devastatingly so). While climate modelers

and theorists lay the foundations for the future generations of climate models, the

study of the various interlinked processes of the climate system must continue and

form the pillars on which one can develop the generalized theory of earth’s climate

system. The ultimate fruits of this labour include, a better understanding of the

baffling complexity around us, better solutions for related practical problems such

as climate prediction - and perhaps, as Wigner (1960) called it - “unreasonable

effectiveness of mathematics” - and finally, its own beauty.
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Isern-Fontanet, J., Garćıa-Ladona, E., and Font, J. (2003). Identification of marine
eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology.

Isoguchi, O. and Kawamura, H. (2006). MJO-related summer cooling and phyto-
plankton blooms in the South China Sea in recent years. Geophysical Research
Letters, 33(16):L16615–.

Jardak, M., Navon, I., and Zupanski, M. (2010). Comparison of Sequential data as-
similation methods for the Kuramoto-Sivashinsky equation. International Jour-
nal for Numerical Methods in Fluids, 62:374–402.

Jochum, M. (2009). Impact of latitudinal variations in vertical diffusivity on cli-
mate simulations. Journal of Geophysical Research, 114(C1):C01010.

Johnson, G. C. and McTaggart, K. E. (2010). Equatorial Pacific 13 ◦C Water
Eddies in the Eastern Subtropical South Pacific Ocean*. Journal of Physical
Oceanography.

Jones, C. (2000). The influence of intraseasonal variations on medium-to extended-
range weather forecasts over South America. Monthly Weather Review.

Jones, C. and Carvalho, L. (2006). Changes in the Activity of the Madden-Julian
Oscillation during 1958-2004. Journal of Climate.

Jones, C. and Carvalho, L. (2011). Will global warming modify the activity of
the Madden–Julian Oscillation? Quarterly Journal of the Royal Meteorological
Society.

Jones, C., Carvalho, L., and Higgins, R. W. (2004a). A statistical forecast model
of tropical intraseasonal convective anomalies. Journal of . . . .

Jones, C., Waliser, D. E., and Lau, K. (2004b). Global occurrences of extreme pre-
cipitation and the Madden-Julian Oscillation: Observations and predictability.
Journal of Climate.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R.,
Chelliah, M., Ebisuzaki, W., WHiggins, Janowiak, J., Mo, K. C., Ropelewski,



179

C., Wang, J., Jenne, R., and Joseph, D. (1996). The NCEP/NCAR 40-year
reanalysis project. Bulletin of the American Meteorological Society, 77(3):437–
471.

Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., and Ballabrera-Poy, J. (2007). 4-D-Var
or ensemble Kalman filter? Tellus A, 59(5):758–773.

Karstensen, J. (2004). Formation of the South Pacific Shallow Salinity Minimum:
A Southern Ocean Pathway to the Tropical Pacific. Journal of Physical Oceanog-
raphy.

Kemball-Cook, S. R. and Weare, B. C. (2001). The Onset of Convection in the
Madden–Julian Oscillation. Journal of Climate, 14.

Kepert, J. D. (2004). On ensemble representation of the observation-error covari-
ance in the Ensemble Kalman Filter. Ocean Dynamics, 54(6):561–569.

Kessler, W. (2001). EOF representations of the madden–julian oscillation and its
connection with enso. J Climate, 14(13):3055–3061.

Kessler, W. and Kleeman, R. (2000). Rectification of the Madden–Julian oscillation
into the ENSO cycle. Journal of Climate, 13:3560–3575.

Kiehl, J. and Gent, P. (2004). The community climate system model, version 2.
Journal of Climate.

Killworth, P. D., Dieterich, C., Le Provost, C., Oschlies, A., and Willebrand, J.
(2001). Assimilation of altimetric data and mean sea surface height into an eddy-
permitting model of the north atlantic. Progress in Oceanography, 48:313–335.

Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I., Maloney, E., Wang, W.,
Weickmann, K., Benedict, J., Khairoutdinov, M., Lee, M. I., Neale, R., Suarez,
M., Thayer-Calder, K., and Zhang, G. (2009a). Application of MJO simulation
diagnostics to climate models. J. Clim, 22:6413–6436.

Kim, D., Sperber, K., Stern, W., Waliser, D. E., Kang, I., Maloney, E., Wang, W.,
Weickmann, K., Benedict, J. J., Khairoutdinov, M., Lee, M. I., Neale, R. B.,
Suarez, M., Thayer-Calder, K., and Zhang, G. (2009b). Application of MJO
simulation diagnostics to climate models. J. Clim.

Kim, J.-H., Ho, C.-H., Kim, H.-S., Sui, C.-H., and Park, S. K. (2008). Systematic
Variation of Summertime Tropical Cyclone Activity in the Western North Pacific
in Relation to the Madden–Julian Oscillation. Journal of Climate, 21(6):1171–
1191.

Kivman, G. (2003). Sequential parameter estimation for stochastic systems. Non-
linear Processes in Geophysics, 10:253–259.



180

Klein, S. and Hartmann, D. (1993). The seasonal cycle of low stratiform clouds.
Journal of Climate.

Krishnamurthy, V. and Kirtman, B. (2003). Variability of the Indian Ocean: Re-
lation to monsoon and ENSO. QJR Meteorol. Soc, 129(590):1623–1646.

Kug, J., Sooraj, K., Jin, F., and Luo, J. (2009). Impact of Indian Ocean Dipole
on high-frequency atmospheric variability over the Indian Ocean. Atmospheric
research, 94:134–139.

Large, W. G. and Danabasoglu, G. (2006). Attribution and Impacts of Upper-
Ocean Biases in CCSM3. Journal of Climate.

Large, W. G. and Yeager, S. (2009). The Global Climatology of an Interannually
varying Air-Sea Flux Dataset. Clim. Dyn., 33(2):341–364.

Lau, N. and Lau, K. (1986). The structure and propagation of intraseasonal oscil-
lations appearing in a GFDL general circulation model. Journal of the Atmo-
spheric Sciences.

Lau, W. (2005). El nino southern oscillation connection. In Lau, W. and Waliser,
D., editors, Intraseasonal Variability in the Atmosphere-Ocean Climate System,
pages 271–305. Praxis. Springer Berlin Heidelberg.

Lau, W. and Waliser, D. (2005a). Intraseasonal variability in the atmosphere-ocean
climate system. Springer-Praxis.

Lau, W. and Waliser, D. E. (2005b). Intraseasonal variability in the atmosphere-
ocean climate system. Springer.

Le Dimet, F. and Talagrand, O. (1986). Variational algorithms for analysis and as-
similation of meteorological observations: Theoretical aspects. Tellus, 38(2):97–
110.

Leetmaa, A., Behringer, D., Huyer, A., Smith, R., and Toole, J. (1987). Hydro-
graphic conditions in the Eastern Pacific before, during and after the 1982/83
El Niño. Prog. Oceanogr.

Lermusiaux, P. F. J. and Robinson, A. R. (1999). Data assimilation via error
subspace statistical estimation.part i: Theory and schemes. Monthly Weather
Review, 127:1385–1407.

Lewis, J., Lakshmivarahan, S., and Dhall, S. (2006). Dynamic Data Assimilation:
A Least Squares Approach. Cambridge University Press, Cambridge.

Lewis, J. M. and Derber, J. (1985). The use of adjoint equations to solve a varia-
tional adjustment problem with advective constraints. Tellus A.



181

Liebmann, B., Hendon, H., and Glick, J. (1994). The relationship between trop-
ical cyclones of the western Pacific and Indian Oceans and the Madden–Julian
oscillation. J. Meteor. Soc. Japan, 72(41):1–412.

Liebmann, B. and Smith, C. (1996). Description of a complete (interpolated)
outgoing longwave radiation dataset. Bulletin of the American Meteorological
Society, 77(6):1275–1277.

Lin, J., Weickmann, K., Kiladis, G., Mapes, B., Sperber, K., Lin, W., Wheeler, M.,
Schubert, S., Genio, A. D., Donner, L., Emori, S., Gueremy, J.-F., Hourdin, F.,
Rasch, P. J., Roeckner, E., and Scinocca, J. F. (2006a). Tropical intraseasonal
variability in 14 IPCC AR4 climate models. Part I: Convective signals. J Climate,
19(12):2665–2690.

Lin, J., Weickmann, K., Kiladis, G., Mapes, B., Sperber, K., Lin, W., Wheeler, M.,
Schubert, S., Genio, A. D., Donner, L. J., Emori, S., Gueremy, J.-F., Hourdin,
F., Rasch, P. J., Roeckner, E., and Scinocca, J. F. (2006b). Tropical intraseasonal
variability in 14 IPCC AR4 climate models. Part I: Convective signals. Journal
of Climate, 19(12):2665–2690.

Lin, J.-L. (2007). The Double-ITCZ Problem in IPCC AR4 Coupled GCMs:
Ocean–Atmosphere Feedback Analysis. Journal of Climate.

Lin, S. (2004). A “vertically Lagrangian” finite-volume dynamical core for global
models. Monthly Weather Review, 132:2293–2307.

Liu, Z., Vavrus, S., He, F., Wen, N., and Zhong, Y. (2005). Rethinking Tropi-
cal Ocean Response to Global Warming: The Enhanced Equatorial Warming*.
Journal of Climate, 18(22):4684–4700.

Lorenc, A. (2003). The potential of the ensemble Kalman filter for NWP-a com-
parison with 4D-Var. Quarterly Journal of the Royal Meteorological Society,
129(595):3183–3203.

Lorenz, E. (1986). On the existence of a slow manifold. Journal of the Atmospheric
Sciences.

Lorenz, E. (1991). Dimension of weather and climate attractors. Nature, 353:241–
244.

Lu, C. and Browning, G. L. (1998). The impact of observational errors on objective
analyses. Journal of Atmospheric Sciences, 55:1791–1807.

Lukas, R. (1986). The termination of the Equatorial Undercurrent in the eastern
Pacific. Progress in Oceanography.



182

Lynch, P. (2006). The emergence of numerical weather prediction: Richardson’s
dream. Cambridge University Press.

Ma, C., Mechoso, C. R., and Robertson, A. (1996a). Peruvian stratus clouds
and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study.
Journal of Climate.

Ma, C., Mechoso, C. R., Robertson, A., and Arakawa, A. (1996b). Peruvian stratus
clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM
study. Journal of Climate.

Madden, R. and Julian, P. (1971a). Detection of a 40–50 day oscillation in the zonal
wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28:702–708.

Madden, R. and Julian, P. (1972). Description of global-scale circulation cells
in the tropics with a 40-50 day period. Journal of the Atmospheric Sciences,
29(6):1109–1123.

Madden, R. and Julian, P. (1994a). Observations of the 40–50-day tropical
oscillation—A review. Monthly Weather Rev, 122:814–837.

Madden, R. A. (1994). Observations of the 40-50-day tropical oscillation-A review.
Monthly Weather Review.

Madden, R. A. and Julian, P. (1971b). Detection of a 40–50 day oscillation in the
zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences.

Madden, R. A. and Julian, P. (1994b). Observations of the 40–50-day tropical
oscillation—A review. Monthly Weather Review.

Malanotte-Rizzoli, P. and Tziperman, E. (1996). The oceanographic data assim-
ilation problem: Overview, motivation and purposes. In Malanotte-Rizzoli, P.,
editor, Modern Approaches to Data Assimilation in Ocean Modeling, pages 3–17.
Elsevier Science B. V., Amsterdam, The Netherlands.

Malanotte-Rizzoli, P. and Young, R. E. (1995). Assimilation of global versus local
data sets into a regional model of the gulf stream system: 1. data effectiveness.
J. Geophys. Res., 100:24,773–24,796.

Maloney, E. and Hartmann, D. (2000a). Modulation of eastern North Pacific
hurricanes by the Madden–Julian oscillation. Journal of Climate, 13:1451–1460.

Maloney, E. D. (2000). Modulation of Hurricane Activity in the Gulf of Mexico
by the Madden-Julian Oscillation. Science, 287(5460):2002–2004.

Maloney, E. D. and Hartmann, D. (2000b). Modulation of hurricane activity in
the Gulf of Mexico by the Madden-Julian oscillation. Science, 287:2002–2004.



183

Marchesiello, P., McWilliams, J., and Shchepetkin, A. (2003). Equilibrium struc-
ture and dynamics of the California Current System. Journal of Physical
Oceanography.

Marshall, A., Alves, O., and Hendon, H. (2009). A coupled GCM analysis of
MJO activity at the onset of El Nino. Journal of the Atmospheric Sciences,
66:966–983.

Matthews, A. (2004). Atmospheric response to observed intraseasonal tropical sea
surface temperature anomalies. Geophysical Research Letters.

Matthews, A., Singhruck, P., and Heywood, K. J. (2007). Deep ocean impact of
a Madden-Julian oscillation observed by Argo floats. Science, 318(5857):1765–
1769.

McCreary Jr, J. (1985). Modeling equatorial ocean circulation. Annual Review of
Fluid Mechanics.

McIntosh, P. C. (1977). Oceanic data interpolation: Objective analysis and splines.
J. Geophys. Res., 95:13,529–13,541.

McLachlan, G. and Peel, D. (2000). Finite mixture models. John Wiley & Sons,
Inc.

McPhaden, M. (1999). Genesis and evolution of the 1997-98 El Niño. Science.

McWilliams, J. C. (1984). Emergence of isolated coherent vortices in turbulent
flow. Journal of Fluid Mechanics.

Mcwilliams, J. C. and Flierl, G. (1979). On the evolution of isolated, nonlinear
vortices. Journal of Physical Oceanography.

Mechoso, C. R., Robertson, A., Barth, N., and Davey, M. (1995). The seasonal
cycle over the tropical Pacific in coupled ocean–atmosphere general . . . . Monthly
Weather Review.

Mellor, G. and Yamada, T. (1982). Developement of a turbulence closure model
for geophysical fluid problems. Rev. Geophys. Space Phys., 20:851–875.

Mellor, G. L. and Ezer, T. (1991). A gulf stream model and an altimetry assimi-
lation scheme. Journal of Geophysical Research, 96:8779–8795.

Miller, R. (1997). Tropical thermostats and low cloud cover. Journal of Climate.

Mitchell, H., Houtekamer, P., and Pellerin, G. (2002). Ensemble size, balance,
and model-error representation in an ensemble Kalman filter. Monthly Weather
Review, 130:2791–2808.



184

Montes, I., Colas, F., Capet, X., and Schneider, W. (2010a). On the pathways
of the equatorial subsurface currents in the eastern equatorial Pacific and their
contributions to the Peru-Chile Undercurrent. Journal of Geophysical Research.

Montes, I., Colas, F., Capet, X., and Schneider, W. (2010b). On the pathways
of the equatorial subsurface currents in the eastern equatorial Pacific and their
contributions to the Peru-Chile Undercurrent. Journal of Geophysical Research.

Moore, A., Arango, H. G., Di Lorenzo, E., Cornuelle, B., Miller, A., and Neilson,
D. (2004). A comprehensive ocean prediction and analysis system based on the
tangent linear and adjoint of a regional ocean model. Ocean Model.

Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B.,
Foley, D., Doyle, J., Costa, D., and Robinson, P. (2011). The Regional Ocean
Modeling System (ROMS) 4-dimensional variational data assimilation systems.
Part II: Performance and Application to the California Current System. Prog.
Oceanogr.

Morrow, R., Birol, F., Griffin, D., and Sudre, J. (2004). Divergent pathways of
cyclonic and anti-cyclonic ocean eddies. Geophysical Research Letters.

Nakano, S., Ueno, G., and Higuchi, T. (2007). Merging particle filter for sequential
data assimilation. Nonlinear Processes in Geophysics, 14:395–408.

Neale, R., Richter, J., and Jochum, M. (2008). The impact of convection on ENSO:
From a delayed oscillator to a series of events. J Climate, 21(22):5904–5924.

Neef, L. J., Polavarapu, S., and Shepherd, T. (2009). A low-order model investi-
gation of the analysis of gravity waves in the Ensemble Kalman Filter. Journal
of the Atmospheric Sciences, 66(6):1717–1734.

Neef, L. J., Polavarapu, S. M., and Shepherd, T. G. (2006). Four-Dimensional Data
Assimilation and Balanced Dynamics. Journal of the Atmospheric Sciences,
63(7):1840.

Newman, M., Sardeshmukh, P., and Penland, C. (2009). How important is air-sea
coupling in ENSO and MJO evolution? Journal of Climate, 22:2958–2977.

Okubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of ve-
locity singularities such as convergences. Deep Sea Research and Oceanographic
Abstracts.

Panofsky, R. A. (1949). Objective weather-map analysis. Journal of the Atmo-
spheric Sciences, 6(6):386–392.

Pasquero, C., Provenzale, A., and Babiano, A. (2001). Parameterization of disper-
sion in two-dimensional turbulence. Journal of Fluid Mechanics.



185

Penven, P. (2005). Average circulation, seasonal cycle, and mesoscale dynamics
of the Peru Current System: A modeling approach. Journal of Geophysical
Research.

Pham, D. (2001). Stochastic methods for sequential data assimilation in strongly
nonlinear systems. Monthly Weather Review, 129.

Pohl, B., Fauchereau, N., Reason, C., and Rouault, M. (2010). Relationships
between the Antarctic Oscillation, the Madden-Julian Oscillation, and ENSO,
and consequences for Rainfall Analysis. J Climate, 23(2):238–254.

Pohl, B. and Matthews, A. (2007). Observed changes in the lifetime and amplitude
of the Madden-Julian oscillation associated with interannual ENSO sea surface
temperature anomalies. Journal of Climate.

Polavarapu, S., Tanguay, M., and Fillion, L. (2000). Four-Dimensional Variational
Data Assimilation with Digital Filter Initialization. Monthly Weather Review,
128:2491–2510.

Powell, B., Arango, H., Moore, A., Di Lorenzo, E., Milliff, R., and Foley, D.
(2008). 4DVAR data assimilation in the intra-Americas sea with the Regional
Ocean Modeling System (ROMS). Ocean Model.

Powell, B., Moore, A., Arango, H., Di Lorenzo, E., Milliff, R., and Leben, R.
(2009). Near real-time ocean circulation assimilation and prediction in the Intra-
Americas Sea with ROMS. Dyn. Atmos. Oceans.

Pu, Z. and Hacker, J. (2009). Ensemble-based Kalman filters in strongly nonlinear
dynamics. Advances in Atmospheric Sciences, 26(3):373–380.

Rao, S., Masson, S., Luo, J., Behera, S., and Yamagata, T. (2007). Termination
of Indian Ocean Dipole events in a coupled general circulation model. Journal
of Climate, 20:3018–3035.

Ray, P. and Zhang, C. (2010). A Case Study of the Mechanics of Extratropical
Influence on the Initiation of the Madden–Julian Oscillation. Journal of the
Atmospheric Sciences, 67(2):515–528.

Raymond, D. and Blyth, A. M. (1986). A stochastic mixing model for nonprecipi-
tating cumulus clouds. Journal of the Atmospheric Sciences, 43(22):2708–2718.

Raymond, D. and Blyth, A. M. (1992). Extension of the stochastic mixing model to
cumulonimbus clouds. Journal of the Atmospheric Sciences, 49(21):1968–1983.

Reed, R. and Halpern, D. (1976). Observations of the California Undercurrent off
Washington and Vancouver Island. Limnology and Oceanography.



186

Reid, J. (1973). The shallow salinity minima of the Pacific Ocean. Deep Sea
Research and Oceanographic Abstracts.

Richardson, L. (1922). Weather prediction by numerical process. Dover.

Richter, J. and Rasch, P. J. (2008). Effects of convective momentum transport on
the atmospheric circulation in the Community Atmosphere Model, version 3. J
Climate, 21:1487–1499.

Robinson, A. R. and Lermusiaux, P. (2004). Prediction systems with data assimila-
tion for coupled ocean science and ocean acoustics. In Tolstoy, D. A., Shang, E.,
Teng, Y.-C., and Tolstoy, A., editors, Theoretical and Computational Acoustics.
World Scientific Publishing Co. Pte. Ltd.

Roundy, P. (2008). Analysis of convectively coupled kelvin waves in the indian
ocean mjo. Journal of Atmospheric Sciences, 65(4):1342–1359.

Roundy, P. and Kravitz, J. R. (2009). The association of the evolution of intrasea-
sonal oscillations to ENSO phase. Journal of Climate, 22:381–395.

Saji, N., Goswami, B., Vinayachandran, P., and Yamagata, T. (1999). A dipole
mode in the tropical Indian Ocean. Nature, 401(6751):360–363.

Salby, M., Garcia, R., and Hendon, H. H. (1994). Planetary-scale circulations in the
presence of climatological and wave-induced heating. Journal of the Atmospheric
Sciences.

Sardeshmukh, P. and Sura, P. (2007). Multiscale impacts of variable heating in
climate. J Climate, 20(23):5677–5695.

Sarmiento, J. and Bryan, K. (1982). An ocean transport model for the north
atlantic. Journal of Geophysical Research, 87:394–408.

Saujani, S. and Shepherd, T. G. (2006). A unified theory of balance in the extra-
tropics. Journal of Fluid Mechanics, 569:447.

Schneider, T. (2009). Scaling of precipitation extremes over a wide range of climates
simulated with an idealized GCM. Journal of Climate.

Schneider, T. (2010). The hydrological cycle over a wide range of climates simulated
with an idealized GCM.

Schneider, T., O’Gorman, P. A., and Levine, X. (2009). Water vapor and the
dynamics of climate changes. arXiv.org, physics.ao-ph.
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Yáñez, E., Barbieri, M., Silva, C., Nieto, K., and Espindola, F. (2001). Climate
variability and pelagic fisheries in northern Chile. Prog. Oceanogr.

Yasunari, T. (1979). Cloudiness fluctuations associated with the Northern Hemi-
sphere summer monsoon. J. Meteor. Soc. Japan, 57:227–242.

Yuan, Y., Yang, H., Zhou, W., and Li, C. (2008). Influences of the Indian Ocean
dipole on the Asian summer monsoon in the following year. International Journal
of Climatology, 28(14):1849–1859.

Zavala-Garay, J., Zhang, C., Moore, A., and Kleeman, R. (2005). The linear
response of ENSO to the Madden-Julian Oscillation. J Climate, 18(13):2441–
2459.

Zhang, C. (2005a). Madden-Julian Oscillation. Rev. Geophys., 43(2):1–36.

Zhang, C. (2005b). Madden-Julian Oscillation. Reviews of Geophysics, 43(2).

Zhang, C., Dong, M., Gualdi, S., Hendon, H., and Maloney, E. (2006a). Simulations
of the Madden–Julian oscillation in four pairs of coupled and uncoupled global
models. Climate Dynamics, 27:573–592.

Zhang, C., Dong, M., Gualdi, S., Hendon, H. H., and Maloney, E. (2006b). Simu-
lations of the Madden–Julian oscillation in four pairs of coupled and uncoupled
global models. Climate Dynamics.

Zhang, G. and McFarlane, N. A. (1995). Role of convective scale momentum
transport in climate simulation. Journal of Geophysical Research, 100:1417–
1426.



192

Zhang, G. J. and Mu, M. (2005). Convective quasi-equilibrium in the tropical
western Pacific: Comparison with midlatitude continental environment. Journal
of Geophysical Research, 18:4046–4063.

Zheng, Y., Shinoda, T., Kiladis, G., Lin, J., and Metzger, E. (2010). Upper Ocean
Processes Under the Stratus Cloud Deck in the Southeast Pacific Ocean. Journal
of Physical Oceanography.

Zheng, Y., Shinoda, T., Lin, J.-L., and Kiladis, G. N. (2011). Sea Surface Tem-
perature Biases under the Stratus Cloud Deck in the Southeast Pacific Ocean in
19 IPCC AR4 Coupled General Circulation Models. Journal of Climate.

Zhou, L., Neale, R., Jochum, M., and Murtugudde, R. (2011a). Better Madden-
Julian Oscillations with better physics: the impact of improved convection pa-
rameterizations. J Climate (sub judice).

Zhou, L., Neale, R. B., Jochum, M., and Murtugudde, R. (2011b). Better Madden-
Julian Oscillations with better physics: the impact of improved convection pa-
rameterizations. Journal of Climate.

Zou, Y. and Ghanem, R. (2005). A multiscale data assimilation with the ensemble
Kalman filter. Multiscale Modeling and Simulation, 3(1):131–150.

Zveryaev, I. I. (2002). Interdecadal changes in the zonal wind and the intensity
of intraseasonal oscillations during boreal summer Asian monsoon. Tellus A,
54(3):288–298.


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Prolegomenon
	Background
	General circulation models
	Present challenges in climate modeling
	Limitations in modeling scale interactions

	Objectives of this dissertation
	Summary of results
	Essentials
	A reader's guide to the thesis

	The Madden Julian Oscillation in CCSM4
	Introduction
	Model simulations and validation data
	Observational data

	MJO characteristics in CCSM4
	MJO diagnostics
	Level 1 diagnostics
	Level 2 diagnostics

	Summary
	Acknowledgements

	The MJO and Earth's Climate
	Introduction
	Relations of MJO to other climate variables
	 MJO-ENSO relations
	 MJO-Monsoon relations

	MJO in a global warming scenario
	Changes to Mean Circulation
	Trends in MJO amplitude

	Conclusion
	Acknowledgements

	State Estimation applied to the Oceanic Mesoscale in the South East Pacific
	Introduction
	Historical Perspective
	Objectives of Oceanographic Data Assimilation
	The data assimilation model 

	Ocean dynamics in the Southeast Pacific
	Model configuration and experimental setup
	Observational data
	Assimilation results
	Corrections to ocean state after assimilation

	Discussion

	Structure and properties of eddies and a heat budget analysis in the Southeast Pacific ocean during VOCALS-Rex
	Introduction
	Eddies in SEP: VOCALS Observations and Model Results
	Cyclonic and anticyclonic eddies along 19¡S
	Horizontal and vertical structure

	Upper Ocean Heat Budget
	 Spatial distribution of the upper-ocean heat budget 

	Summary and Discussion
	Acknowledgements

	Linear vs Nonlinear Filtering with scale selective corrections for balanced dynamics in a simple atmospheric model
	Introduction
	 Linear and Nonlinear Bayesian Filtering
	The Particle Filter (PF)
	Ensemble Kalman Filtering (EnKF)

	Lorenz-86 Model Description
	Lorenz-86 Model
	Slow Manifold Initialization
	Second-order slaving relations
	Experiments setup and objectives

	Results from experiments
	Slow Manifold
	Second-order slaving relations
	Nonlinear Mode

	Discussion and conclusions
	Acknowledgements

	Concluding remarks
	Final Remarks
	Contributions of the Dissertation
	Future Directions
	Concluding Thought

	Bibliography



