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Abstract

We present a category learning experiment in which subjects
faced the knowledge selection problem, i.e., they needed to use
their observations to determine which prior knowledge would be
useful for learning. The issue of putting prior knowledge into
neural network models is reviewed, and we present a new model
which addresses the knowledge selection problem. This model
gives a good account of the experimental results.

Introduction

At first glance, categorization would seem to simplify our
lives, because a large number of individual observations can
be classed together to allow reasoning and communicating
about them as a group. But it has been pointed out that cate-
gorization itself entails further complexities. Medin and
Ross (1997) noted that just 10 objects can be partitioned into
categories over 100,000 different ways. So in addressing
one computational problem, the high number of unique
events, we are led to another computational problem, the
high number of possible partitions of events. As a solution
to this problem, it has been proposed that, by necessity,
category learning is not entirely data driven (e.g., Peirce,
1931-1935). That is, people do not consider all possible
partitions of observations when forming a category repre-
sentation. Instead, we in effect consider a subset of the pos-
sibilities, using background knowledge for guidance. In-
deed, it has by now been well established empirically that
background knowledge has robust effects on facilitating
category learning (see Heit, 1997, for a review).

Unfortunately, this solution itself raises yet another prob-
lem, namely the problem of selecting prior knowledge.
There are many possible sources of background knowledge
that could be helpful in learning about a new category. For
example, imagine visiting some university campus for the
first time and trying to learn about the general layout and
architectural styles. Many sources of past knowledge could
possibly be helpful, such as memories of other campuses or
towns. In fact, it would be easy for the number of past ob-
servations to greatly outnumber the number of new observa-
tions! In light of this knowledge selection problem, how
could background knowledge actually make concept learn-
ing easier?

The knowledge selection problem does seem very trouble-
some for experimental and computational approaches to
category learning, but it is important to note that people do
manage to solve this problem every day. In addition, it is
encouraging to pick up any textbook on Bayesian statistics
and find many techniques for combining multiple prior be-
liefs with observations, and selecting among these beliefs
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based on the data observed. In Bayesian statistics there is no
assumption that a learner starts with optimal or perfectly
correct prior beliefs, Instead, the learner begins with a rea-
sonable guess that merely serves as an initial basis for
learning, with corrective information then provided by the
data. Indeed, it is possible to start with a whole set of differ-
ent prior beliefs, with a distribution of initial degrees of con-
fidence in each of these. When observations are made, con-
fidence in various prior beliefs can be increased or decreased
as appropriate. (See also Heit, 1998.) That is, observations
can be used to select from a set of prior hypotheses.

Many previous experiments on knowledge effects on
category learning have avoided the knowledge selection
problem by more or less telling the subjects which prior
knowledge to use. One of the exceptions is a study by Mur-
phy and Allopenna (1994), in which subjects learned about
categories of buildings, animals, and vehicles, with labels
such as "Category 1" and "Category 2." These category
labels did not constrain the knowledge selection problem
very much. When a subject learned about a new category of
vehicles, for example, there were many known types of ve-
hicles that could be informative. It was impossible to know
in advance whether to use prior knowledge about snowmo-
biles, ice cream vans, heavy trucks, or jeeps. However, the
content of the category itself, that is, the descriptions of
category members, were helpful in finding useful prior
knowledge. For example, when subjects observed a cate-
gory member with the description "made in Africa, lightly
insulated, and drives in jungles," they were able to access
knowledge about vehicles used in hot weather such as jeeps,
rather than knowledge about other vehicles such as snow-
mobiles and heavy trucks.

Our own experiment was an attempt to further address the
phenomenon of knowledge selection. Like Murphy and
Allopenna, we used building categories. (Also see Heit and
Bott, 1999, for an experiment with vehicle categories.)
Given that people already know about many kinds of build-
ings, we see these stimuli as encouraging knowledge selec-
tion processes. Unlike Murphy and Allopenna, we collected
data over the course of learning. One of our goals was to
show that in some situations, categorization judgments are
not affected early on by prior knowledge, until many obser-
vations have been made and relevant prior knowledge can be
assembled. Therefore it was necessary to collect categori-
zation judgments after various numbers of category mem-
bers had been observed. Our general was that in terms of
various measures there would be increasing knowledge ef-
fects over the course of learning. Another advantage of
collecting data along the course of learning was that our data
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were suitable for developing and testing a computational
model of category learning.

We next present an experiment on knowledge selection in
category learning, followed by a brief review of computa-
tional models that employ prior knowledge and then by the
introduction of a computational model that addresses knowl-
edge selection

Method

The 77 subjects learned about two categories of buildings,
referred to as Doe buildings and Lee buildings. The subjects
were told to imagine that they were reading a book with a
series of descriptions of buildings. The stimuli were organ-
ized as five blocks, with descriptions of four Doe buildings
and four Lee buildings presented in each block. Each de-
scription included the category label (Doe or Lee) and a list
of featural information. There were two critical features
presented in each description and two filler features. The
critical features for each category were related to a known
type of building (e.g., churches for Doe and office blocks for
Lee or vice versa). In contrast, the filler features were gen-
eral characteristics that could be true of just about any
building. Finally, each description contained three pieces of
individuating information (name of builder, surveyor, and
photographer). The main prediction was that there would be
increasing facilitation on critical features over the course of
learning, as subjects were increasingly able to select useful
prior knowledge.

The critical and filler features were derived from a pre-
test, which involved a series of sorting tasks in which sub-
jects were asked to place each feature into one of two
groups. After a series of iterations, replacing features as
necessary, a set of 8 pairs of critical features and 8 pairs of
filler features was obtained. A final pre-test group of 20
subjects sorted each of the critical features with at least 90%
preferring one group over the other, and for the filler fea-
tures preference for one group was always less than 75%. In
addition, subjects were readily able to describe one sorted
pile of features as being related to churches or old buildings,
and the other as being related to office buildings or other
commercial buildings. The complete list of critical features,
as well as sample filler features, are shown in Table 1.

From the 8 pairs of critical features, 4 pairs were ran-
domly assigned to presentation frequency one. Each feature
in each pair was presented in one description per block, ei-
ther Doe or Lee. Two pairs were assigned to presentation
frequency two, and each feature presented in two descrip-
tions per block. Finally, 2 pairs of features were not pre-
sented at all in the study blocks (but they were tested in test
blocks). Likewise, the 8 filler features were assigned to
presentation frequencies one, two, and zero.

There was a sequence of 5 study-test blocks. In each
study block, the building descriptions, each with a category
label, were presented individually, for 6 s each. A sample
description would be: {Lee building type, Builder: T Jones,
near a river, has gas central heating, Surveyor: R Rawson,
Photographer: A Ferraro, has steeply angled roof, has
wooden furniture}. Subjects were given memorization in-
structions. Following each study block was a test block, in
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which subjects were asked to categorize 40 single features,
in the Doe or Lee categories. These test items included 24
individuating features, 8 critical features (4 presented once,
2 presented twice, and 2 not presented), and 8 filler features
(same distribution as critical features).

Table 1. Critical and filler features for building stimul.

Critical Features

has steeply angled roof, has a flat roof

has wooden furniture, has metal furniture

has an interesting structure, has a repetitive structure
old building, new building

quiet building, busy building

lit by candles, lit by fluorescent light

ornately decorated, blandly decorated

built with stone, built with metal and concrete

Sample Filler Features
near a bus station, not near a bus station

designed by a local architect,
designed by an international architect
has gas central heating, has electric central heating

Results and Discussion

Initial analyses did not reveal any significant differences
between presentation frequency 1 and presentation fre-
quency 2; therefore the results were pooled over these two
presentation frequencies. The average proportions correct
are shown in Figure 1. The top panel shows responses to
features that had been presented during the study blocks.
Overall, there is a trend for performance to improve over
blocks. Although there is no difference between critical and
filler features in the first block, the difference between the
two kinds of features, that is, the gap between lines, widens
after the first block, suggesting increased facilitation on
critical features over the course of learning. The bottom
panel shows responses to the features that had not been pre-
sented at all. Responses to filler features essentially repre-
sent chance responding. The responses to critical, non-
presented features are more interesting. Even though these
features were never presented in study blocks, categorization
performance clearly improved from the first block to the
fifth block, suggesting an increasing influence of knowledge.

The results were analyzed with a three-way ANOVA with
block, feature type (critical or filler), and presentation (ob-
served or not observed) entered as variables. Each of the
variables had statistically significant main effects, and like-
wise each of the two-way interactions were significant. Per-
haps the most important interaction was the feature type by
block interaction, supporting the observation that the differ-
ence between critical and filler features increased across
blocks.

Finally, performance on the individuating features in-
creased steadily from 51% correct in block 1 to 59% in
block 3, suggesting that subjects were devoting increased
resources to learning the names on later blocks, as the other
features were better learned.



The key result in this experiment was that subjects were
increasingly influenced by background knowledge over the
course of learning. One source of evidence for increasing
influences of knowledge is the results for presented features.
There was no difference in classification accuracy for criti-
cal and filler features after the first training block, but by the
end of the second block subjects had apparently retrieved
prior knowledge that facilitated performance on critical fea-
tures compared to filler features. Realizing that the Doe
buildings are church-like and the Lee buildings are like of-
fice buildings, for example, would help answer questions
about critical features but not filler features. Although per-
formance on critical and filler features continued to improve
over the course of learning, the advantage for critical fea-
tures was persistent. The other source of evidence for
changes in knowledge effects is the judgments on non-
presented critical features. Subjects were never told the
correct category for these features during training blocks.
The only way to classify these features correctly was on the
basis of general knowledge about buildings. Performance on
non-presented critical features improved over the course of
learning, suggesting that subjects were increasingly relying
on appropriate knowledge for making judgments about
these features.
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Figure 1. Results of experiment.

220

One surprising result was the lack of difference between
features presented once per block and features presented
twice per block. For both critical and filler features, we did
not find any statistically significant difference in judgments
for the two levels of presentation. It is tempting to relate
this finding to Murphy and Allopenna (1994), who also
found low sensitivity to frequency. Informal debriefing of
subjects suggested to us that because each description, con-
taining eight pieces of information, only appeared for 6 s,
there may have been some strategic scanning of information.
For example, in each block some subjects might have looked
for features that had not already been presented in that
block, hence overlooking a second presentation.

Putting Knowledge into Neural Networks

Next we set out to develop and apply a computational model
that could address knowledge selection. We chose to work
within the framework of neural network or connectionist
models because they provide such a rich descriptive frame-
work. That is, the complexity of connectionist models pro-
vides many opportunities for describing distinctive effects of
knowledge on learning, as well as an appropriate framework
for describing the dynamics of learning. Also, there has
already been a great deal of research on different ways of
putting knowledge into neural networks. Before we present
our own model, we review some of this past work.

A useful framework for discussing prior knowledge in
neural networks has been developed by Geman, Bienenstock
and Dourstat (1992), who demonstrated that the generaliza-
tion error when learning a concept can be broken down into
a bias component and a variance component. Models that
rely heavily on prior assumptions about the data, e.g., having
architectural constraints that favor a particular conceptual
structure, can lead to a high bias component, that is the
model can persistently fail to capture aspects of the target
concept which do not meet its prior assumptions. On the
other hand, models that do not make strong assumptions
about the concept to be learned can show a high variance
component, that is they will be easily swayed by noise in
training samples. Therefore a model without many assump-
tions could require an excessively large training sample to
achieve good generalization. Further, reducing one type of
error frequently is accompanied by an increase in the other
type of error, leading to what Geman at al. referred to as the
bias-variance dilemma. To reduce generalization error, both
bias and variance must be reduced. We next review a num-
ber of learning algorithms that are aimed at reducing gener-
alization error, keeping in mind the need to minimize the
number of training examples as well.

One method for reducing the number of examples re-
quired for good generalization is to introduce "hints" into
neural networks (e.g., Abu-Mostafa, 1995). Hints are gen-
eral properties of a class of target concepts, independent of
the specific details of the training data. Hints are introduced
into the network by presenting "virtual examples" of the
hint, and altering the error function to incorporate a term for
the hint. Another approach to prior knowledge is to insert
biases directly into neural networks by artificially setting the
weights before learning begins. This approach has been



taken by, for example, Giles and Omlin (1993), whose
method was to insert transition rules into recurrent neural
networks that learned artificial grammars. Known transi-
tions were built into the network and then unknown transi-
tions were learned from the data.

Figure 2. The Baywatch model.

Another way to build in prior knowledge is by varying the
network architecture, to allow the network to have sufficient
representational power to capture the underlying concept,
but also avoid fitting the noise in the data. This goal is an-
other way of looking at the bias-variance dilemma--a net-
work that is too small leads to a high bias, but a network that
is too large leads to high variance (and fitting the noise).
Constructive networks (e.g., Prechelt, 1997) expand their
architecture during learning, allowing the complexity of the
network to increase as the data suggests it. Destructive net-
works, on the other hand, start off with an excess of hidden
units and then prune off the hidden units which are not use-
ful (e.g., Mozer & Smolensky 1989).

Rather than varying the network architecture over the
course of learning, a different approach is to employ more
than one architecture within a mixed network, and allow the
network itself to learn which of the architectures is best for a
particular problem. An example of this approach is the
mixture-of-experts network (e.g., Jacobs, Jordan, & Barto,
1991). Jacobs et al. used a mixed network, with three mod-
ules having different structures (no hidden units, medium
number of hidden units, and a high number). In effect, each
module took a different approach to the bias-variance di-
lemma, with the simplest network being most constrained in
terms of what it could learn and the network with many hid-
den units being most sensitive to variation in a training sam-
ple. The network was trained to perform two tasks, and it
learned to allocate the module without hidden units to the
simpler task while it allocated one of the modules with hid-
den units to the more complex task. We see the mixture-of-
experts approach as coming close to the Bayesian idea of
starting with multiple hypotheses then selecting among them
based on the data.
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The Baywatch Model

Our own approach to the knowledge selection problem has
some parallels to the mixture-of-experts architecture, but
instead of using modules with different structures, we used
modules with different pools of pre-trained knowledge.
Therefore our method also has some relations to techniques
that insert prior knowledge directly into networks. Our
model, illustrated in Figure 2, can be described as having
one module or set of weights for strictly empirical learning.
These weights do not get any pre-training. Then the model
also has a set of experts which are pre-trained to recognize
different known categories. For example, a network for
learning about buildings might have experts which can rec-
ognize different kinds of buildings such as churches, office
blocks, restaurants, and schools. (Only two of these expert
modules are illustrated.) We refer to this model as the Bay-
watch model because it combines a general Bayesian ap-
proach to selecting among multiple sources of prior knowl-
edge with an empirical learning component.

The Baywatch model is a feedforward network where the
input units represent the individual features and the output
units represent the Doe and Lee category nodes. The two
hidden units correspond to two expert modules, or prior
knowledge category nodes (PK nodes). The input units on
the left side of Figure 2 represent filler features, and the in-
put on the right side represent the critical features. The dif-
ference between the two types of features is that the filler
features are only connected to the output nodes, whereas the
critical features are connected both directly to the output
nodes and indirectly to the output nodes via the PK nodes.
The connections between the critical features and the PK
nodes have fixed, pre-learned weights, so that values of
critical features of the stimuli that correspond to church
features would activate the church PK node, and likewise
critical features of the stimuli that correspond to offices
would activate the office PK node. The PK nodes have
threshold functions, so that if any church feature, say,
steeply angled roof, is presented, then the church PK node
will be activated. The activation from the PK node would
then be propagated to the output units.

In contrast to the connection weights between the critical
features and the PK nodes, the other weights in the network
are learnable through gradient descent. Adjusting the
weights from filler units and the critical units to the output
units allows the features to be associated with the category
nodes in the empirical learning module. Finally, there are
adjustable weights between the PK nodes and the category
nodes. These represent the subject’s capacity to associate
known categories, say churches and office blocks, with the
new categories, Doe and Lee buildings. We see this part of
the network as addressing (at least in part) the knowledge
selection problem, because here the network is learning to
select from already known categories and apply this knowl-
edge to judgments about new categories. (See Heit and Bott,
1999, for further details of the model and simulations.)
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Figure 3. Results of simulations.

Simulations

The network was trained for a total of 10 blocks, with the
learning rate in the delta rule set at 0.1 and the activation on
each category node converted to a probability using a logis-
tic transformation. The training stimuli consisted of four
examples of buildings, two Doe exemplars and two Lee ex-
emplars. Following each training block, the network was
tested on the individual features by presenting a vector of all
zeroes except for the particular feature of interest, which had
a value of either +1 or -1. The results of the simulations are
displayed in Figure 3. The top panel shows predictions for
presented features, with the predictions for features pre-
sented once per block and features presented twice per block
pooled together. The bottom panel shows predictions for
features that had not been presented during training. The
predictions fit well with the main results of the experiment.
Critical features were learned more quickly than filler fea-
tures, and critical features that hadn’t been presented were
responded to more accurately than chance, whereas filler
features which hadn’t been presented were at chance level.
To provide a better idea of how the Baywatch model uses
prior knowledge, we re-ran the simulations without any PK
nodes. In Figure 4, we show predictions on presented items,
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comparing versions of the model with and without prior
knowledge. For critical features, in the top panel, it can be
seen directly that prior knowledge does not have any influ-
ence initially on judgments; the model acts the same way
with or without PK nodes. However, the beneficial effect of
prior knowledge for critical features increases over the
course of learning, as the network with PK nodes learns
which categories to connect with its prior knowledge. In the
bottom panel of Figure 4, there is evidence for a slight det-
rimental effect of prior knowledge on the learning of filler
features. This result can be explained as a kind of overshad-
owing effect, in which knowledge of some highly predictive
cues can reduce learning on other predictive cues.

One difference between the model’s predictions and sub-
Jjects’ performance is that the model does predict more accu-
rate judgments for features presented twice per block com-
pared to features presented once per block. In contrast, there
was no significant difference between these two levels of
presentation in the experiments. This insensitivity to fre-
quency could be an important aspect of concept learning in
knowledge-rich domains but on the other hand it could just
reflect subjects’ reading strategies in this experiment. There-
fore further experimental study is required.

Conclusion

How well would the Baywatch model scale up? The simu-
lations were run with just two sources of prior knowledge
(i.e., churches and office blocks) and the network was able
to link up these two sources with the correct output catego-
ries, Doe and Lee. But people would obviously have a much
larger number of known categories when facing the knowl-
edge selection problem, due to large numbers of known
kinds of buildings. In general, we think the model might
scale up well, in terms of adding more prior knowledge
nodes. It is useful to distinguish three different classes of
PK nodes that might be added to the network in Figure 2, in
addition to the church and office nodes.

First, irrelevant prior knowledge nodes might be added,
which have little or no connection to the input stimuli. For
example, there could be prior knowledge nodes for space
stations, igloos, tents, and cave dwellings, added to the net-
work, but these nodes would be hardly activated by the in-
puts. Therefore, adding PK nodes that are irrelevant to the
stimuli would not affect the results of the simulations very
much.

Second, additional PK nodes that are similar to the exist-
ing PK nodes might be included. For example, a PK node
corresponding to cathedrals would entail much of the same
connections to inputs as the church node. Putting in addi-
tional but similar PK nodes would enhance the prior knowl-
edge effects but it would not really change their nature. Just
as adding the PK node for churches helped performance on
critical features of churches, relative to a straightforward
empirical learning network (see Figure 4), adding another
PK node for cathedrals would help even further. Paradoxi-
cally, there is no knowledge selection problem here, from
adding another similar PK node. To the extent that sources
of prior knowledge are mutually supporting, having multiple
sources of prior knowledge need not harm performance.
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Figure 4. Predictions of model with and without prior
knowledge.

Third, "malicious" prior knowledge nodes could be added
to the network, for example, prior knowledge about some
kind of building that is half-church and half-office block.
Such PK nodes that are intermediate between the Doe and
Lee categories might reduce the benefits of prior knowledge
or even lead to costs due to knowledge, because they could
make it more difficult to distinguish between the two catego-
ries.

More generally, we see the knowledge selection problem
as having many facets. Certainly one of them is that when
learning about novel categories, a learner would need to link
up knowledge of familiar categories with judgments about
the novel categories. The Baywatch model seems to address
this aspect of knowledge selection, in terms of the gradual
selection of prior knowledge nodes to use for a particular
novel output category. In contrast, the prior knowledge in
terms of connections from input units to PK nodes is fixed at
the start of the simulations. It is assumed that these connec-
tions would have been already learned through ordinary as-
sociative processes, so that the network can more or less
instantly recognize church or office buildings. However,
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there could be some gradual aspects of knowledge activation
or retrieval that are not captured by the model. It could be
the case that somehow the connections between input units
and PK nodes would be learned over the course of making
observations, so that the recognition of relevant categories in
prior knowledge would not be instantaneous when a single
observation is made. This aspect of knowledge selection
might be studied more directly, for example by showing
subjects a series of training examples and asking them to
judge directly which familiar categories are related to these
stimuli,
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