
UCSF
UC San Francisco Previously Published Works

Title
Categorical speech representation in human superior temporal gyrus

Permalink
https://escholarship.org/uc/item/49c2s9v5

Journal
Nature Neuroscience, 13(11)

ISSN
1097-6256

Authors
Chang, Edward F
Rieger, Jochem W
Johnson, Keith
et al.

Publication Date
2010-11-01

DOI
10.1038/nn.2641
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49c2s9v5
https://escholarship.org/uc/item/49c2s9v5#author
https://escholarship.org
http://www.cdlib.org/


Categorical Speech Representation in Human Superior Temporal 
Gyrus

Edward F. Chang1,2,*, Jochem W. Rieger2,4,*, Keith Johnson5, Mitchel S. Berger1, Nicholas 
M. Barbaro1, and Robert T. Knight1,2,3

1Department of Neurological Surgery, University of California San Francisco

2Helen Wills Neuroscience Institute, University of California Berkeley

3Department of Psychology, University of California, Berkeley

4Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany

5Department of Linguistics, University of California Berkeley

Abstract

Speech perception requires the rapid and effortless extraction of meaningful phonetic information 

from a highly variable acoustic signal. A powerful example of this phenomenon is categorical 

speech perception, in which a continuum of acoustically varying sounds is transformed into 

perceptually distinct phoneme categories. Here we show that the neural representation of speech 

sounds is categorically organized in the human posterior superior temporal gyrus. Using 

intracranial high-density cortical surface arrays, we found that listening to synthesized speech 

stimuli varying in small and acoustically equal steps evoked distinct and invariant cortical 

population response patterns that were organized by their sensitivities to critical acoustic features. 

Phonetic category boundaries were similar between neurometric and psychometric functions. 

While speech-sound responses were distributed, spatially discrete cortical loci were found to 

underlie specific phonetic discrimination. Thus, we demonstrate direct evidence for acoustic-to-

higher order phonetic level encoding of speech sounds in human language receptive cortex.

INTRODUCTION

A fundamental property of speech perception is that listeners map continuously variable 

acoustic speech signals onto discrete phonetic sound categories1–3. This "phonetic" mode of 

listening4 lays the phonological foundation for speaking new words5 and mapping speech 
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into writing. In categorical speech perception, a continuum that gradually morphs from one 

syllable to another is transformed into perceptually discrete categories whose members 

closely resemble each other 6, 7.

A convergence of research supports a key role of the posterior superior temporal gyrus 

(pSTG) in Wernicke’s area for higher-order auditory processing of speech sounds8–13. 

Current noninvasive neurophysiologic methodologies (e.g. fMRI, MEG, PET) have 

provided important insights into speech localization. However, due to limitations in 

simultaneous spatial and temporal resolution, these approaches have been unable to offer a 

mechanistic account for speech representation in humans. As a result, fundamental questions 

remain unresolved regarding how the functional organization of pSTG supports the 

perceptual features of aural speech. In particular, do pSTG neural activity patterns 

correspond to precise spectrotemporal changes in the external acoustic signal (i.e. veridical 

representation), or rather, to a higher-order linguistic extraction of phonetic categories? 

Furthermore, what neural response features (e.g. place, time, amplitude) are critical for 

representing the discriminability of different phonemes as fundamental contrastive linguistic 

units?

To answer these questions, we recorded cortical local field potentials from the pSTG in four 

human subjects undergoing awake craniotomy with speech mapping as part of their 

epilepsy14 or brain tumor surgery15. While limited to rare clinical settings, high-density 

electrocorticographic recordings offer the advantage of simultaneous high spatial 

(millimeters) with real-time temporal (ms, millisecond) resolution, in addition to excellent 

signal-to-noise properties. We found that listening to speech sounds that differed by small 

acoustic steps evoked highly distributed cortical activation in the pSTG. Multivariate 

analyses revealed, however, that the neural response patterns were strongly organized along 

phonetic categories, and did not demonstrate sensitivity for gradual acoustic variation. We 

found a high level of concordance between neuro- and psycho-metric functions, suggesting 

that pSTG encoding represents high-order invariant representation for speech sounds.

RESULTS

We employed a classic paradigm first described by Liberman and colleagues6 in 1957 to 

investigate the perceptual and neural organization of stop consonant phonemes. Consonant-

vowel syllables were synthesized with 14 equal and parametric changes in the starting 

frequency of the F2 transition (second vocal tract resonance), that ranged perceptually across 

three initial consonants /ba/ to /da/ to /ga/ (Fig. 1a). When subjects ascribed one of the three 

phoneme labels to the stimuli, the psychophysical identification functions demonstrated 

clear perceptual category borders between /ba/ and /da/ percepts near stimuli 4 and 5, and 

between /da/ and /ga/ percepts near stimuli 8 and 9 (Fig. 1b). In a psychophysical two-step 

discrimination task, accuracy was highest for those stimulus pairs that straddled the 

identification boundary (Fig. 1c). The steep labeling identification functions and peaked 

discrimination functions shown here, with the peak at the phoneme discrimination boundary 

corresponding to the 50% point of the labeling curve, are the defining psychophysical 

properties of categorical perception (Fig. 1b and c). Therefore, one does not hear step-like 
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changes corresponding to the changes in the acoustic signal, but rather perceives essentially 

quantal jumps from one perceptual category to another.

While subjects were fully awake in the operating room, a customized high-density 64-

electrode microarray (4 mm spacing) was placed using stereotactic guidance on the surface 

of the posterior temporal cortex (defined here as cortical area caudal to the point where the 

central sulcus intersects the Sylvian fissure, Fig. 1d). Subjects listened passively to a 

randomized sequence of stimulus tokens. The averaged evoked potential peaked at 

approximately 110 ms after the stimulus onset (Fig. 1e). Examples of the spatial distribution 

of responses to /ba/, /da/, and /ga/ are shown in Figure 1f, which demonstrate distributed 

responses across the pSTG.

Since the functional organization of the pSTG exhibits a distributed representation for 

speech sounds, in contrast to the well-defined gradient of frequency selectivity in the 

primary auditory cortex16, we implemented an information-based strategy to determine how 

distributed neural population activity patterns might encode speech. The specific measure 

we used was the degree to which a multivariate pattern classifier (L1 norm regularized 

logistic regression17) was able to distinguish single-trial response patterns of the evoked 

cortical potentials.

In linguistics, confusion matrices are commonly used to explore the perceptual organization 

and distinctiveness of speech sounds18. We assembled the performance results from pattern 

classification into neural confusion matrices to organize the neural response dissimilarity 

across each pair-wise stimulus comparison (Fig. 2). The confusion matrices were calculated 

for each subject and then averaged for the group, using data binned in 40 ms time intervals 

and advanced by 10 ms steps. Classification performance varied between stimulus pairs, 

with peak discrimination at 78–79% for each subject.

Two important results were apparent from the averaged matrices. First, when analyzed over 

successive time epochs, the overall neural pattern dissimilarity gradually increased (Fig. 2a), 

and peaked transiently around 110 ms. Thus, the greatest overall neural pattern dissimilarity 

occurred at the peak response of physiologic evoked potentials, as opposed to early- or 

longer-latency responses. Second, while the overall discriminability among responses was 

highest during that interval, specific comparisons in the confusion matrices also showed 

poor discriminability suggesting structured organization of response patterns. For example, 

neural responses to stimuli 1–4 were indiscriminable, whereas those responses to stimuli 7 

and 11 were highly discriminable (Fig. 2b).

To examine the similarity relationships across all stimuli, unsupervised multidimensional 

scaling (MDS) was applied to the confusion matrix to construct a geometric space in which 

the Euclidean distances between different stimuli markers correspond to similarity of their 

neural responses19. Stimuli placed close together elicited similar neural response patterns, 

whereas stimuli positioned far apart elicited dissimilar response patterns. Visual inspection 

of the MDS plots suggested that during maximal neural response discriminability (110–150 

ms), neuronal responses to different stimuli organized into three discrete groupings (Fig. 2c, 

see Supplementary Figures 1–3 for the entire MDS time series).
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To confirm these results, another method, unsupervised K-means clustering analysis, was 

used to examine the independent grouping of neural response patterns. This method is well-

suited for exploring categorical data organization because it extracts a clustering of the data 

that minimizes intra-cluster distances and maximizes inter-cluster differences. The neural 

responses were organized into three discrete and independent clusters, representing /ba/ 

(red), /da/ (green), and /ga/ (blue) syllables respectively in Fig. 2c (stimulus color 

corresponds to each cluster). No errors in cluster membership were found at the peak of 

discriminability (110 & 120 msec interval start), The neuronal stimulus responses clustered 

in exactly the same way as found in perception (/ba/ 1–4, /da/ 5–9, and /ga/ 10–13), whereas 

earlier and later epochs yielded error-prone cluster estimates (see Supplemental Materials 

for entire cluster error time series). Importantly, the separate organization of response 

clusters matches the robust perception that /ba/, /da/, and /ga/ are perceived as independent 

and unique phonetic entities, rather than speech sounds occurring along a linear acoustic or 

even phonetic continuum.

To evaluate how well the neural pattern correlated to the psychophysical behavior, 

neurometric identification functions for each phonetic category were plotted using the 

normalized distance in MDS space between each stimulus position and the three cluster 

means. This revealed a similar appearance to the psychometric identification functions, with 

steep boundaries occurring between phoneme categories (Pearson’s correlation, r>0.9 for 

each function at 110 ms intervals start; p<0.05; Fig. 3a, Supplementary Figure 4). A 

neurometric discrimination function was also derived from distances between individual 

stimulus positions in MDS space. This also achieved good correlation with the psychometric 

functions for discrimination (Pearson’s correlation, r=0.66 at 110 ms intervals start; p<0.05; 

Fig. 3b). More importantly, we observed good correspondence between the two neurometric 

functions: the peaks of the discrimination occur for the same stimuli as the steepest parts of 

the identification, thus fulfilling the criterion for neural categorical organization. This 

organized representation was transient, spanning the neuronal response from 110–160 ms.

To determine the spatial organization of phonetic representation, we next identified the 

cortical sites contributing to stimulus discriminability by extracting the most informative 

electrodes as determined by the classifier. While the evoked potentials showed overlapping 

representation for speech sounds, discrete differences in cortical activations (<4mm) were 

observed to underlie phonemic discrimination. Those spatially contrastive differences 

between various categories are shown in Figure 4. The small overlap between these loci 

suggests that phonetic encoding is not simply a scaling of the response amplitudes in the 

same neuronal population.

DISCUSSION

A key element of speech perception is the categorization of acoustically variable inputs into 

a discrete phonetic code. Understanding the neural basis of this process is a central question 

in the study of the human capacity for language20. We found that the pSTG is robustly 

organized according to its sensitivity to phonetic objects rather than to the linear changes of 

spectrotemporal acoustic cues. For the stop consonant-vowel sounds used in this study, we 

observed a complex distributed pattern of evoked neural activity recorded by a cortical 
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microarray. The discriminability of these response patterns, however, relies upon transient 

temporal and local, non-overlapping spatial neural representations.

Without a priori knowledge on functional organization of the pSTG, the use of a 

multivariate pattern classifier and MDS were useful methods to reveal the critical acoustic 

features underlying stimulus discriminability. The first MDS dimension correlated linearly 

with the F2 onset frequency, which in natural speech this parameter cues the feature of place 

of articulation across /b/ to /d/ to /g/ (i.e. location of constriction in the vocal tract from lips 

to teeth to soft palate). The second MDS dimension correlated with the size of F2 transition 

(absolute value of the difference between the onset F2 frequency and the vowel F2 

frequency), which in these stimuli cues the linguistic feature (-coronal, i.e. not produced by 

tongue tip position), grouping /b/ and /g/ together. Critically, the grouping patterns observed 

did not arise from one dimension alone, but instead from the specific combination of two 

different linguistically relevant feature dimensions: the F2 onset frequency and the F2 

formant transition. Therefore, these results support a notion that phonetic encoding in the 

pSTG appears to be facilitated by feature detectors that integrate specific spectrotemporal 

cues relevant to speech.

The pSTG appears to have a specialized role in phonetic processing because of its specific 

responsiveness to speech over other sounds21–25, and its direct anatomic connections to 

cortical areas supporting lexical and semantic extraction26–28. In a recent fMRI study, 

Desai et al. found overall increased activation of the left pSTG after engaging in categorical 

perception tasks on phonetic and non-phonetic sine-wave syllable tokens29. Our results 

extend these findings by providing new information about the timing and topography 

mechanisms intrinsic to stimulus encoding in the pSTG.

While our microarray recordings focused on auditory processing in the pSTG, fMRI has 

implicated other areas during active phonetic discrimination. Raizada et al. observed 

selective amplification of left supramarginal gyrus activity in response to the contrastive 

features of stimulus pairs spanning a /ba/-/da/ category boundary30. Blumstein et al. found 

invariant neural activation of the left inferior frontal gyrus for sounds morphed along a 

different acoustic continuum for voice onset time31. These findings suggest that there are 

several other cortical areas likely involved in the behavioral processes of phonetic detection, 

working memory, and/or decision-making.

Our results demonstrate that the pSTG implements rapid categorical phonetic analysis, 

integrating spectro-temporal features to create invariant higher-order linguistic structure32. 

This pattern is consistent with the pragmatic demands of spoken English: there is a meaning 

distinction between /b/ and /d/ (e.g. ‘bad’ versus ‘dad’), while the distinction between the 

variations of /b/ carries no meaning. Our results provide a mechanistic account whereby the 

pSTG functions as a critical locus for phonological processing in the neural representation of 

human language.
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METHODS

The experimental protocol was approved by the University of California, San Francisco and 

Berkeley institutional review boards and Committees on Human Research and subjects gave 

their informed consent prior to testing.

Stimulus Synthesis and behavioral testing

Speech stimuli were synthesized using the Klatt synthesizer. The critical stimulus variation 

was created by stepwise changes in the F2 onset frequency over 14 equal steps6, (100 Hz 

step increases ranging from 800 to 2100 Hz) spanning the perceptual phonetic continuum 

from /ba/ to /da/ to /ga/.

Before surgery, subjects first performed a two-step AX (“same”/”different”) discrimination 

task and then an identification task in which they labeled the stimulus as either /ba/, /da/, or /

ga/. Subjects then underwent awake craniotomy with speech mapping by electrocortical 

stimulation as part of their epilepsy or brain tumor surgery. The stimulus tokens were aurally 

presented in a pseudorandom order via free-field loudspeakers at approximately 80 dB. Due 

to time constraints in the operating room, each stimulus token was repeated 25 times, for a 

total of 350 total trials per subject.

Subjects and intraoperative testing

The four subjects in this study underwent awake craniotomy as part of their epilepsy or brain 

tumor surgery. They gave their written informed consent prior to the day of surgery. Table 1 

shows the patient characteristics included in this study. All subjects underwent 

neuropsychological language testing, and were found to be normal. Boston naming test, and 

verbal fluency test were used for preoperative language testing. The Wada-test was used for 

language dominance assessment.

Before surgery, patients received midazolam (2 mg) and fentanyl (50 to 100 µg). At the start 

of surgery, propofol (at a dose of 50 to 100 µg per kilogram of body weight per minute) and 

remifentanil (0.05 to 0.2 µg per kilogram per minute) were given for sedation during scalp 

incision and craniotomy. After the bone flap was removed, the dura was infiltrated with 

lidocaine and all anesthetics were discontinued. No anesthesia was administered during 

routine electrocortical stimulation mapping while the patients were fully awake. Once 

stimulation mapping was completed, the stimuli were aurally presented via free-field 

loudspeakers at approximately 80 dB. Patients were instructed to keep their eyes open while 

passively listening to the stimuli.

Data acquisition and preprocessing

The electrocorticogram (ECoG) was recorded using a customized 64-channel subdural 

cortical electrode microarray, with center-to-center distance of 4 mm. The electrode array 

was placed on the lateral aspect of the posterior superior temporal gyrus using stereotactic 

intraoperative neuronavigation. The signal was recorded with a TDT amplifier optically 

connected to a digital signal processor (Tucker-Davis Technologies, Alachua FL USA).
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The ECoG data were digitally low-pass filtered at 50 Hz and resampled at 508.6 Hz. Each 

channel time series was visually and quantitatively inspected for artifacts or excessive noise. 

The data was then segmented, with a 100 ms stimulus pre-stimulus baseline and a 400 ms 

post-stimulus interval. The common mode signal was estimated using principal component 

analysis with channels as repetitions, and was removed from each channel time series using 

vector projection.

Estimation of neuronal response dissimilarity

We estimated single trial pair-wise dissimilarity of the neuronal response patterns evoked by 

different stimulus tokens using an L1-norm regularized logistic regression classifier17 

applied to the time series data in a leave-one-trial-out cross validation procedure. 

Dissimilarities were estimated for 40 ms long data windows, advanced every 10 ms. To 

increase the ratio of the number of examples to the number of features we combined 

responses to adjacent stimuli (e.g. 1&2; 2&3 etc.), doubling number of trials used per 

dissimilarity estimate. Note that labels in the figures of the main paper list only the first 

stimulus in these combined sets of trials. Both feature selection and classifier training were 

performed in the cross-validation loop. Feature selection was done by calculating univariate 

effect sizes for each data sample and discarding samples with small effects from classifier 

training. L1-norm logistic regression is well suited for classification problems involving 

high dimensional feature spaces and relatively few examples for training because it provides 

good generalization performance even when relatively few training data are available.

Generalization rate expressed as percent correct classifications measures the dissimilarity of 

the neuronal responses of a stimulus pair. The single trial classification measures of pair-

wise neural response dissimilarity were used to construct a confusion matrix for each time 

interval.

Derivation of neuronal response classes, neuronal identification, and discrimination 
functions

Metric multidimensional scaling (MDS) was applied to the confusion matrices averaged 

over all subjects to represent neural response patterns to different phoneme stimuli in a new 

space in which the distance between neuronal responses represents their relative similarity 

(and dissimilarity)33. The objective in MDS is to minimize the reconstruction error 

measured by Kruskall Stress34. The MDS embedding was calculated in three dimensions, 

given a priori considerations of how many dimensions would be maximally required. The 

simultaneous representation of all neuronal responses in on common similarity space 

allowed us to use K-means cluster analysis35 to test when, if at all, neuronal responses 

group in a way that parallels perceptual grouping obtained psychophysically.

K-means clustering implements the definition of categorical representation of stimulus 

responses7, hence the obvious choice for k, the number of expected clusters, was three, the 

number of perceived phonemes.

To derive the three neuronal identification functions we calculated three distance functions 

in MDS similarity space, one between each of the three cluster prototypes and all neuronal 

responses. These functions can be directly compared to the psychophysical identification 
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functions using a Pearson’s correlation analysis. The psychophysical discrimination 

functions were approximated by calculating the distances of the neuronal responses between 

consecutive pairs of stimuli in the MDS-representation.

Reconstruction of spatial informative patterns

The trained classifier’s weight vector quantifies the amount of information each feature 

provides for classification. Highly informative features receive higher weights and features 

providing little or no information receive low or zero weights. Features with zero entries in 

the weight vector do not contribute to the classification results.

The feature weights represent averages over cross validation results and samples per 

electrode in the analysis interval. The average feature weights represent an estimate of how 

informative a local neuronal population (per electrode) was judged by the classifier.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Psychophysics of categorical speech perception and speech-evoked responses during 
intraoperative human cortical recordings
A. Wide-band spectrograms of the stimulus token continuum, synthesized with equal 

parametric changes in the F2 starting frequency (from 800 to 2100Hz). Top shows the full 

spectrogram of a single token with an 800 Hz starting frequency (Stimulus #1, 

duration=250ms). Bottom shows the first 50 ms for each of the 14 stimulus tokens. B. 

Psychometric identification function with percentage reporting /ba/, /da/, or /ga/. C. 

Psychometric discrimination function (two-step). Percentage of responses judged as 

“different” versus “same”. The category boundaries located at peak discrimination are at 

stimuli 4 & 5, and 9 & 10. D. Three-dimensional surface reconstruction of representative 

brain MRI with superimposed electrode positions over pSTG. E. Grand average rooted mean 

square (RMS) evoked potentials (EP) recorded over pSTG for sound stimuli reliably 

categorized as /ba/ (tokens 1–4), /da/ (tokens 6–9), and /ga/ (tokens 10–14). Average EP 

(root mean square (RMS); solid line) and standard error of EP amplitudes (shaded). 

Potentials peak at approximately 110 ms after stimulus onset. F. Topographic plots of EPs at 

110 ms for each prototype sound stimulus revealed distributed cortical activation pattern, 

with some sharply localized differences between stimuli. (uV=microvolts, ms=milliseconds, 

mm=millimeters).
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Figure 2. Categorical organization of neural response patterns to a speech-stimulus continuum
A. Rapid and transient neural representation for speech stimulus discriminability. Time-

series of the total normalized neural pattern dissimilarity derived from classifier 

performance aggregated across all pair-wise stimulus comparisons. Peak dissimilarity occurs 

at the same time as peak of evoked potential magnitude in Figure 1e. B. Structured neural 

dissimilarity. Neural confusion matrices for three time intervals at 0–40ms (a), 110–150ms 

(b), and 180–220ms (c) (group average data). Colorbar scaling corresponds to the classifier 

performance for each pairwise stimulus comparison shown in individual matrix pixels. In 

the 110–150ms interval, responses to some stimulus pairs, for example, 1 vs 4, 8 vs 5, or 10 

vs 13, are nearly indiscriminable while other stimulus pairs elicited responses that were 

much easier to discriminate, for example 7 vs 11, or 3 vs 9. C. Relational organization of 

neural pattern response dissimilarity using multidimensional scaling. Neural pattern 

dissimilarity is proportional to the Euclidean distance (i.e. similar response patterns are 
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grouped closely together, whereas dissimilar patterns are positioned far apart). K-means 

clustering results for group membership denoted by stimulus coloring (red=/ba/ sounds; 

green=/da/ sounds; blue=/ga/ sounds; k=3). Zero cluster errors were found at time interval 

110–150 ms (i.e. same clustering as in psychophysical results), but 6 errors at 0–40ms, and 5 

errors at 180–220 ms.
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Figure 3. Correlation of neurometric and psychometric category boundaries
Peak encoding at 110–150ms. A. Left, Comparison of neuronal (dark) and psychophysical 

(light/dashed) -derived identification functions. Neurometric identification functions were 

determined by using the MDS distance between each stimulus position and the three cluster 

means. Middle, Correlation between neurometric and psychometric identification functions 

(Pearson’s correlation, 0.92 for /ba/, 0.98 for /da/, and 0.92 for the /ga/ category; dotted line: 

threshold of corrected p-value at 0.05. Right, Comparison of neural (red) and 

psychophysical (black/dashed) discrimination functions. The neurometric discrimination 
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functions were derived from the distance of the stimulus responses in MDS space. At 110 

ms both the position of the maxima and the general shape of the neurometric function 

correlate well with the psychometric function. (r=0.66, p<0.05). Early (0–40ms, B) and late 

(180–220ms, C) epoch field potentials demonstrate poor correlation between neural and 

psychophysical results (see insets).
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Figure 4. Topography of discriminative cortical sites in the pSTG underlying categorical speech 
perception
A. The degree of separability of the various evoked activations at each electrode position is 

shown as classifier weights. The spatial patterns indicate that discriminative neuronal 

activation is not distributed over the pSTG but instead concentrated in few cortical sites. B. 

The informative loci overlap very little between comparisons of the features (on average 3.9 

+/−0.88%), (indicated by mixed colors such as magenta, cyan, or orange in panel A) 

suggesting that the neuronal categorization is not accomplished by simply scaling the 
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responses in the same network but rather is a function of spatially discrete and local 

selectivity.
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