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ABSTRACT OF THE THESIS 

  

  

Transporting Average Causal Effects across Observational Settings  

 

by  

  

Warren Coons  

 

Master of Science in Epidemiology  

University of California, Los Angeles, 2024  

Professor Onyebuchi A. Arah. Chair  

  

This thesis investigates and demonstrates observational transportability, a causal inference 

approach that combines observational information from a study population and observational 

covariate data from a target population to generate potential causal insights in the target 

population. Inspired by transportability in the setting of a randomized control trial (RCT), a set 

of identifiability assumptions for observational transportability is provided. Then, a general 

formula is obtained for the average causal effect in the target population (TACE) under this 

framework. The concept is then used to extrapolate the average causal effect of blood lead on 

hypertension from a study population represented by the National Health and Nutrition 

Examination Survey (NHANES) to a target population represented by the Behavioral Risk 

Factor Surveillance System (BRFSS), thereby computing the average causal effect in the target 
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population. Limitations of observational transportability in generating unbiased causal effects in 

target populations are discussed. The study concludes by considering observational 

transportability in practice, including an approach enabled by extracting models published in 

other studies. 

 

  

  

  

  

  

 

  

 

 

 

 

 

 

 

 

 

 

 



  iv  

The thesis of Warren Coons is approved.  

Beate R. Ritz  

Roch A. Nianogo  

Onyebuchi A. Arah, Committee Chair  

  

  

  

  

  

University of California, Los Angeles  

2024  

  

  

  

  

  

  

  

  

  

  

  

 



  v  

Dedication 

I dedicate this work to my family, friends, colleagues, and professors who have 

supported me throughout my journey. Many people have come and gone, but those who 

stuck around have always pushed me to be the best I can be. I am not the same person I 

am today without their support and their guidance, and I am forever grateful for them. 

While I am excited to move on to the next chapter of my life, the memories will always 

be with me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  vi  

Table of Contents 

 

Abstract 
Dedication 
Table of Contents 
List of Figures 
List of Tables 
List of Symbols 
List of Acronyms 
 

Introduction 
 
Methods 
    Notations and Definitions 
        Definition 1: S-admissibility in Distribution  
        Definition 2: S-admissibility on the Risk Difference Scale  
    Identifiability Assumptions and Formula for Transporting from an RCT 
        RCT Transportability Identifiability Assumptions 
        RCT Transportability Formula 
    New Result: Extending the Assumptions and Formula for Observational 
    Transportability 
        Observational Transportability Identifiability Assumptions 
        Observational Transportability Formula 
    Illustration 
    Application 
    
Discussion 
 
Appendix 
    RCT Transportability Formula Proof 
    Observational Transportability Formula Proof 
 
Bibliography 

ii 
v 

vi 
vii 

viii 
ix 
x 

 

1 
 

3 
3 
4 
4 
6 
6 
7 

 
8 
8 
9 

10 
11 

 
20 

 
24 
24 
24 

 
25 

 

 

 

 

 



  vii  

List of Figures 

1 Selection directed acyclic graph (S-DAG) where i) X represents exposure; ii) Y represents 

the outcome; iii) V1 differs in distribution between the study (S=1) and target (S=0) 

populations; iv) C1 is a confounder. 

2 S-DAG. X is a cause of Y. The union of V1 and V2 differs in distribution. C1 and C2 are 

confounders.  

3 S-DAG of the hypothesized data-generating process for blood lead (X) on hypertension 

risk (Y). C1 designates a covariate in a set C of proposed confounders: age, sex, race 

and ethnicity, educational attainment, BMI, smoking behavior, and alcohol use (only one 

is shown to prevent cluttering; they all share similar causal relations). V1 (stress) and 

V2 (sleep duration) are treated as EMM that vary in distribution. Accordingly, they are 

dependent on selection (S) and are risk factors for Y. Assuming an accurate data-

generating process, V = {V1, V2} is sufficient for S-admissibility on the risk difference 

scale. Moreover, the union of C and V is sufficient for confounding control in the 

presence of selection.  

 

 

 

 

 

 

 

 



  viii  

List of Tables 

1 Means and proportions of the study demographics in NHANES and BRFSS. In the 

analysis, days of poor mental health and sleep duration are treated as a set of EMM that 

vary in distribution between NHANES and BRFSS. 

2 Final estimates of the SACE and the TACE obtained by averaging samples generated by 

1,000 bootstrapped datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  ix  

List of Symbols 

In order of appearance: 

Variables 
X – a binary exposure or treatment 
Y – the study outcome 
Yx – the potential outcome of Y under X = x 
S – selection; S = 1 indicates the study population; S = 0 indicates the target population 
W, W1, W2, Wx, W1x, W2x – placeholder variables and variable sets used to illustrate 
counterfactual equivalence 
D – a placeholder in Definition 1; a set S-admissible in distribution 
Dx – a placeholder in Definition 1; a set where each variable corresponds to its counterfactual 
variable in D under an intervention setting X = x  
T – a placeholder in Definition 2; a set S-admissible on the risk difference scale 
Tx – a placeholder in Definition 2; a set where each variable corresponds to its counterfactual 
variable in T under an intervention setting X = x  
V – a set that is S-admissible on the risk difference scale 
C – a set defined such that Yx, conditional on C ∪ V, is exchangeable over exposure X in the 
presence of selection (S) 
C1, C2, V1, V2 – covariates used for illustrative purposes in Figures 1, 2, and 3  
U – a placeholder used for defining the function g; an arbitrary set of covariates 
i – an index variable referring to an individual either in the study or the target population 
Vx – a set where each variable corresponds to its counterfactual variable in V under an 
intervention setting X = x  
Cx – a set where each variable corresponds to its counterfactual variable in C under an 
intervention setting X = x  

Functions 
E – the expectation function 
fA – the joint probability density function for a given set A with respect to S 
g – a stratum-specific risk difference function 
P – the probability function 

Assumptions  
A1 through A5 delineate the necessary assumptions to calculate the average causal effect in the 
target population (TACE) when transporting from a randomized control trial (RCT). B1 through 
B5 delineate the necessary assumptions for identifying the TACE when transporting from an 
observational study.  
 

 



  x  

List of Acronyms 

In order of appearance: 

RCT – randomized control trial 
TACE – target average causal effect, or the average causal effect in the target population  
BRFSS – Behavioral Risk Factor Surveillance System 
NHANES – National Health and Nutrition Examination Survey 
EMM – effect-measure modifier(s) (implied to be over the risk difference scale) 
SACE – study average causal effect, or the average causal effect in the study population 
ACE – average causal effect 
RDxy – difference of potential outcomes Yx=1 and Yx=0 

S-DAG – selection directed acyclic graph 
TACERCT – TACE under the RCT transportability framework 
TACEOBS – TACE under the observational transportability framework 
CDC – Centers for Disease Control and Prevention 
BMI – body mass index 
p – p-value for a given test statistic 
CI – confidence interval 
N – variable indicating sample size for the study and target population demographics 
SD – column variable indicating standard deviations for the study and target demographics 
PL – indicator that a standard probability law was used for a particular step in a proof 

 

 

 

 

 

 



  1  

Background 

Scientific studies conducted in one setting are often undertaken with the premise that they will 

generalize to the population in which the sample is drawn or extend to other populations. 

However, there is always the risk that differences between the settings will render this 

generalization unwarranted. This paper concerns the question of transportability, a concept that 

specifies the assumptions necessary and means to draw causal inferences for a population of 

interest utilizing measurements in a separate population. By incorporating information about 

differences between the two populations, transportability can be wielded to make causal 

inferences in situations where otherwise simple extrapolations would be invalid.  

Bareinboim, working with Pearl, was the first to formalize transportability 

mathematically [1]. Bareinboim and Pearl outlined fundamental concepts and definitions in a 

series of seminal papers in the field [1, 2, 3]. This paper utilizes the concepts and definitions and 

frames them in an epidemiological context. In epidemiology, results are generated from study 

populations (taken from a source population) and are extended to target populations. 

Generalizability refers to making inferences about a target population when the study population 

is a subset, while transportability applies to situations when the target population does not 

completely subsume the study population [4]. Transportability effectively utilizes information 

from a study population and a non-overlapping target population to draw inferences about the 

target population. The act of drawing inferences in this manner is known as transporting.  

The method of transporting inferences from observational data is known as observational 

transportability [1]. While there has been a steadily growing body of transportability literature 

focused on transporting effects from randomized control trials (RCTs) [5, 6, 7], there is a 
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conspicuous lack of studies on observational transportability. This is an area of much-needed 

research, as many causal studies in epidemiology and related fields can only be done with 

observational data. When feasible, observational transportability could circumvent the need to 

conduct additional epidemiological studies to obtain desired causal quantities, providing major 

benefits in reducing the time and cost of research and informing policies and interventions.  

This study aims to derive a methodology for transporting effect measurements from 

observational data under a strict set of assumptions and demonstrate how one could apply the 

method in a real-world scenario. First, the average causal effect in the target population (TACE) 

under the observational transportability framework is derived, and the necessary assumptions to 

estimate a causal effect without bias are clarified in terms of observable quantities from the 

source and target populations. The sets of measured variables needed in both the study and target 

populations to enable such observational transportability on the risk difference scale are outlined. 

Lastly, observational transportability is applied by obtaining the TACE of blood lead levels on 

the risk of hypertension in a cross-sectional dataset from the Behavioral Risk Factor Surveillance 

System (BRFSS) using data from the National Health and Nutrition Examination Survey 

(NHANES). The TACE is compared with the SACE, or the average causal effect in the study 

population. Due to the cross-sectional study design of our study population, the application does 

not yield true causal insights but is useful as an exercise. 
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Methods 

Notation and Definitions 

X is the exposure or intervention, and Y is the study outcome. In an experimental setting, X = 1 

refers to the treated group, and X = 0 refers to the untreated group. In an observational setting, X 

= 1 indicates the exposed group, and X = 0 indicates the unexposed group. S represents 

selection; S=1 indicates the study population and S=0 indicates the target population. 

Conditioning on S=s in a probabilistic expression means that the other variables are measured in 

population s. For example, E(Y|X,S=1) designates the expectation of Y conditional on X within 

the study population. While the exposure is treated as a binary variable in the derivations, 

findings can be translated to settings where the exposure is a continuous variable. The 

Application section provides an example of this translation. 

The average causal effect (ACE) is defined as the expectation of the contrast between 

Yx=1 and Yx=0, where Yx is the potential outcome under the intervention X=x. Under the 

observational transportability framework, the TACE, the ACE of X on Y in the target population, 

is derived on the risk difference scale, which is equivalent to E(Yx=1 – Yx=0|S=0). For simplicity, 

all variables are assumed to be discrete in the derivations. 

Situations where other downstream factors of X besides Y, such as mediators, are 

dependent on selection are ignored. As such, variables besides Y that are expressed in 

counterfactual values under treatment or exposure will be equivalent to their observed value. 

This notion of counterfactual equivalence can be extended to sets. For instance, if W is a set of 

variables W1 and W2, then Wx is defined as the set of variables in W converted to their 

counterfactual values under an intervention setting X = x, which can be denoted W1x and W2x. 
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A concept that has been used extensively in the transportability literature is defined and 

functions as a necessary assumption: 

Definition 1: S-admissibility in Distribution 
 
Let D be a set, and Dx be a set where each variable corresponds to its counterfactual variable in 
D under an intervention setting X = x. Dx is S-admissible in distribution if it satisfies the relation 
(Yx	⫫	Sx|Dx), where Sx designates selection under an intervention setting X = x. 

S-admissibility was a concept introduced by Bareinboim in terms of the do-calculus [1] and 

adapted using counterfactual language by Pearl [8], whose framing of S-admissibility is 

borrowed in the definition. Under counterfactual equivalence, Sx and Dx are equivalent to their 

observed counterparts, S and D. In this situation, D is S-admissible in distribution if (Yx	⫫	S|D).   

The definition of S-admissibility is extended to look at a causal contrast: 

Definition 2: S-admissibility on the Risk Difference Scale 
 
Let T be a set, and Tx be a set where each variable corresponds to its counterfactual variable in T 
under an intervention setting X = x. Tx is S-admissible on the risk difference scale if it satisfies 
the relation (RDxy ⫫	Sx|Tx), where Sx designates selection under an intervention setting X = x, and 
RDxy is equivalent to the risk difference Yx=1 – Yx=0. 

Similarly, T is S-admissible on the risk difference if (RDxy	⫫	S|T) in the absence of variables 

affected by X other than Y that are dependent on selection. The assumption that a set T is S-

admissible on the risk difference scale is mathematically weaker than the corresponding 

distribution assumption, as the latter guarantees the former. Only the weaker assumption is 

necessary for the derivations. Furthermore, a set that is S-admissible in distribution contains 

variables that are effect-measure modifiers (EMM) over at least one scale, such as over the risk 

difference scale. The subset of all EMM over the risk difference scale is S-admissible on the 
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corresponding scale. This follows from the fact that the non-effect modifiers can be removed 

from the conditioning set without modifying the risk difference.  

Selection directed acyclic graphs (S-DAGs) provide a useful illustration for observational 

transportability by depicting non-parametric causal relationships between variables in the data-

generating process. Figure 1 provides an S-DAG where C1 is a confounder, and V1 is a cause of 

Y that differs between the study and target population, i.e., that depends on selection. V1 

provides S-admissibility in distribution and, therefore, on the risk difference scale (regardless of 

its effect-measure modification properties). Additionally, the union of C1 and V1 is conditionally 

exchangeable over exposure in the presence of selection. 

Figure 1:  

 
Selection directed acyclic graph (S-DAG) where i) X represents exposure; ii) Y represents the 
outcome; iii) V1 differs in distribution between the study (S=1) and target (S=0) populations; iv) 
C1 is a confounder. 

The function fA is used to denote the joint probability density function for a given set or 

union of sets A with respect to S. In addition, stratum-specific risk differences within the study 

population are frequently referenced in the assumptions and derivations. The stratum-specific 

risk difference can be denoted by the function g, where 

X Y

V1

S

C1
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g(U) = E(Y|X=1,U,S=1) – E(Y|X=0,U,S=1) 

given a set of covariates U. 

Identifiability Assumptions and Formula for Transporting from an RCT 

In this section, the identifiability assumptions and formula for identifying the TACE are 

highlighted with the study population consisting of data from an RCT. Examining the conditions 

and derivation in an RCT setting provides a point of inspiration for observational transportability. 

The identifiability assumptions for estimating the TACE in a trial setting were previously listed 

out by Dahabreh [5]. They have been reworked in the context of continuous treatment.  

RCT Transportability Identifiability Assumptions  

Consider a set of covariates V. The necessary assumptions for identifiability are as follows: 

A1: Consistency of Potential Outcomes: If Xi = x, then Yxi = Yi for every individual i in S = 1 

and S = 0.  

This assumes that individuals do not modify their behavior in the study or target population 

because they are aware that they are being studied (no Hawthorne effects). 

A2: Conditional Exchangeability Over Treatment in the Trial: E(Yx|X=x,V=v,S=1) = 

E(Yx|V=v,S=1) for a treatment group X=x and each v with fV(v,S=1) > 0.  

This is expected to hold through randomized treatment assignment.  

A3: Positivity of Treatment Assignment Probability in S=1: For a treatment group X=x, 

P(X = x|V=v,S=1) > 0 
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for every v with fV(v,S=1) > 0. 

This is also expected to hold through randomization.  

A4: Conditional Exchangeability in Measure Between the Trial and the Target Population: 

For the treatment groups X = 1 and X = 0, E(Yx=1 – Yx=0|V=v,S=0) = E(Yx=1 – Yx=0|V=v,S=1) for 

every v with fV(v,S=0) > 0.  

Equivalently, V is S-admissible on the risk difference scale. V can be reduced to a set of EMM. 

A5: Positivity of the Probability of Participation in the Trial: P(S=1|V=v) > 0 for every v with 

fV(v,S=0) > 0.  

Each covariate pattern within the target population should have a non-zero probability of 

occurring in the trial. 

Assumptions A1 through A5 are necessary for identification of the TACE when the study 

population consists of trial data.  

RCT Transportability Formula  

Under A1 through A5, 

TACERCT = ∑ 𝑔! (V)P(V|S=0) 

The proof of the formula is in the Appendix. The result demonstrates that the following 

information is sufficient for the TACE to be calculable in an RCT setting: 

• A list of variables that is S-admissible on the risk difference scale, denoted by V. 

• Experimental data on V within the study population. 
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• Observational data on V within the target population. 

• Treatment and outcome data in the study population. 

New Result: Extending the Assumptions and Formula for Observational Transportability 

Under the observational transportability framework, the identifiability assumptions and formula 

for the TACE on the risk difference scale are illuminated. Since the study population consists of 

observational data, the properties outlined by Dahabreh [5] cannot be directly taken advantage of. 

Instead, identifiability conditions are adjusted such that conditional exchangeability over 

exposure is ensured not by design but through a conditioning set that deconfounds the association 

of X and Y in the presence of selection.  

Observational Transportability Identifiability Assumptions 

Consider non-overlapping sets C and V. The necessary assumptions for identifiability are as 

follows: 

B1: Consistency of Potential Outcomes: If Xi = x, then Yxi = Yi for every individual i in S = 1 

and S = 0.  

This assumes treatment or exposure variation irrelevance, i.e., well-defined exposures that can 

map onto conceivable interventions with unique potential outcomes. 

B2: Conditional Exchangeability Over Exposure in the Observational Study Population: 

E(Yx|X=x,C=c,V=v,S=1) = E(Yx|C=c,V=v,S=1) for every combination of c and v with 

fC,V(c,v,S=1) > 0.  

This holds if the union of C and V is sufficient for confounding control in the presence of 

selection.  
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B3: Positivity of Exposure Probability in the Observational Study Population: For an exposure 

X=x, 

P(X = x|C=c,V=v,S=1) > 0 

for every combination of c and v with fC,V(c,v,S=1) > 0. 

There is a non-zero probability that X is in either the exposed or unexposed group for each 

combination of c and v in S=1. 

B4: Conditional Exchangeability over Selection in Measure Between the Observational Study 

Population and the Target Population: For the exposed group X = 1 and the unexposed group X 

= 0, E(Yx=1 – Yx=0|V=v,S=0) = E(Yx=1 – Yx=0|V=v,S=1) for each v with fV(v,S=0) > 0.  

Equivalently, V is S-admissible on the risk difference scale. V can be reduced to a set of EMM. 

B5: Positivity of the Probability of Participation in the Observational Study Population: 

P(S=1|V=v) > 0 for each v with fV(v,S=0) > 0.  

Each covariate pattern within the target population has a non-zero probability of occurring in the 

study population.   

Assumptions B1 through B5 are necessary for the identification of the TACE when the 

study population consists of observational data. 

Observational Transportability Formula 

Under B1 through B5, 

TACEOBS = ∑ 𝑔",! (C ∪ V)P(C|V,S=1)P(V|S=0) 
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The proof of the formula is in the Appendix. The result demonstrates that the following 

information is sufficient for the TACE to be calculable: 

• A list of variables that is S-admissible on the risk difference scale, denoted by V. 

• A list of variables that is conditionally exchangeable over exposure in union with V and 

in the presence of selection, denoted by C. 

• Observational data on C and V within the study population. 

• Observational data on V within the target population. 

• Exposure and outcome data in the study population. 

Illustration 

To ingrain the concepts of observational transportability, the variable selection procedure and 

TACE calculation is presented under a hypothetical scenario. Consider the data-generating 

process encapsulated by the S-DAG in Figure 2. Suppose one is interested in utilizing the 

observational transportability formula to calculate TACEOBS. They can do so by combining 

information leveraged from the S-DAG and appropriate data. 

Figure 2: 

 
S-DAG. X is a cause of Y. The union of V1 and V2 differs in distribution. C1 and C2 are 
confounders.  

X Y

V1

S

C1
V2

C2
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To generate TACEOBS, they first need to guarantee S-admissibility on the risk difference 

scale. The union of V1 and V2 is S-admissible in distribution. They are limited to non-graphical 

means for assessing effect-measure modification. Suppose that they went through a non-

graphical approach to determine that V2 is an EMM but V1 is not. With this information, V2 is 

S-admissible on the risk difference scale. For the next step, V2 needs to be extended by a set of 

variables to ensure conditionally exchangeability over exposure in the presence of selection. The 

union of C1 and C2 is sufficient. Given exposure and outcome data in the study population, the 

final check for identification is observational data on C1, C2, and V2 in the study population and 

V2 in the target population. If fulfilled, the TACE is obtainable and represented by the following 

expression: 

TACEOBS = ∑ 𝑔"$,"%,!% (C1 ∪  C2 ∪  V2)P(C1,C2|V2,S=1)P(V2|S=0). 

This assumes no positivity or counterfactual consistency violations (assumptions B1, B3, 

and B5). 

Application 

This section aims to provide an illustrative example of observational transportability using real-

world data. Considering the case of blood lead levels and hypertension, cross-sectional data from 

NHANES is used to estimate an SACE. Then, the formula for observational transportability is 

applied to obtain the TACE in BRFSS where data is only needed for some EMM. Lastly, a 

comparison is made of the SACE and the TACE in addition to their confidence intervals. Since 

the study population consists of cross-sectional data, results may be influenced by reverse 

causality. 
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Humans are exposed to lead through a variety of sources, including lead-based paint, 

contaminated soil, and drinking water [9]. Lead has also been shown to have a detrimental 

impact on human health. According to the Mayo Clinic, lead poisoning has been linked to high 

blood pressure, joint and muscle pain, difficulties with memory or concentration, and other 

adverse symptoms [10]. As of 2022, researchers estimate that more than 170 million people in 

the United States have been exposed to harmful levels of lead in their early childhood [11]. The 

connection of lead exposure to hypertension has been a subject of debate for years. 

Study Population 

Study population data was collected from the 2011-2012 National Health and Nutrition 

Examination Survey (NHANES) [12] conducted by the Centers for Disease Control and 

Prevention (CDC). NHANES is a nationally representative cohort that utilizes questionnaires, 

laboratory samples, and other physical examinations to assess the health of adults and children in 

the United States. The original data for this study consisted of 8 NHANES cross-sectional 

datasets [13, 14, 15, 16, 17, 18, 19, 20] collected from 2011 to 2012 that were merged by a 

unique subject identifier, yielding 8,956 subjects in total. Patients who were younger than 20 

years old or had missing values for blood lead level, diastolic blood pressure, systolic blood 

pressure, age, body mass index (BMI), sex, race and ethnicity, education, smoking status, alcohol 

consumption, sleep duration, or reported days of poor mental health were excluded, leaving 

2,823 subjects in the final analytic sample. Participants with missing data included those whose 

lead content was below the detection level (<0.25 µg/dL) and those who did not know or refused 

to provide information on smoking status, alcohol consumption, average sleep duration, or days 

of poor mental health. 
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Exposure, Outcome, and Confounder Assessment (NHANES) 

Blood lead measurements were taken by NHANES from blood samples procured in a laboratory. 

Diastolic and systolic blood pressure measurements were taken from mobile examination 

centers. Following the American Heart Association’s definition of hypertension as of 2023 [21], 

participants with a systolic blood pressure reading of 130mmHg or above or a diastolic blood 

pressure of 80mmHg or above were defined as having hypertension.  

Age (continuous), sex (binary), race and ethnicity (categorical), educational attainment 

(categorical), BMI (continuous), smoking behavior (categorical), and alcohol use (continuous) 

were determined through multiple NHANES questionnaires as confounders in accordance with 

an existing cross-sectional study on blood lead and blood pressure in NHANES [22]. We assume 

that these confounders constitute a set that is sufficient for conditional exchangeability over 

exposure in the presence of selection. The list may not be exhaustive. The categories under race 

and ethnicity were “Mexican American”, “Other Hispanic”, “Non-Hispanic White”, “Non-

Hispanic Black”, and “Other Race”. Education was classified by highest level of attainment, with 

three categories: “< High School” for those that did not graduate high school, “High School” for 

those that graduated but did not obtain a postsecondary degree, and “> High School” for those 

that obtained a postsecondary degree. 

For smoking behavior, participants were categorized as current smokers if they reported 

smoking at least 100 cigarettes in their life and additionally reported that they still smoke “every 

day” or “some days”, former smokers if they reported smoking at least 100 cigarettes in their 

lifetime and additionally reported currently smoking “not at all”, and never smokers if they 

reported smoking fewer than 100 cigarettes in their lifetime. For alcohol consumption, 
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participants were asked how many drinks they had on an average drinking day during the last 12 

months. 

Target Population 

Target population data was acquired from the 2022 Behavioral Risk Factor Surveillance System 

(BRFSS) conducted by the CDC [23]. The data consisted of a single file with 445,132 

participants. Participants younger than 20 years old and those with missing or unknown values 

for the final choice of EMM – sleep duration and stress – were filtered out. After applying this 

exclusion criteria, 164,801 participants were available for analysis. 

Effect-Measure Modification Assessment (NHANES and BRFSS) 

The search for EMM available for analysis not already identified as confounders was informed 

by a study on the modifying effect of stress and a few other articles on the general risk factors for 

hypertension [24,  25]. Although there were several candidates like physical activity and salt 

consumption [26], many potential EMM were not measured in both datasets under a universal 

standard. Among those that were equivalently measured in both populations and available for 

analysis were average sleep duration per night, measured in hours, and a question with identical 

wording that asked for the number of days that a participant’s mental health was “not good” in 

the past 30 days. In NHANES, sleep duration was preemptively capped at 12 hours. 

Effect measure modification was assessed over the risk difference scale by fitting 

separate linear regression models for days of poor mental health (or stress) and sleep duration in 

the study population, adjusting for the exposure and confounders, and obtaining a p-value of the 

Wald statistic corresponding to the interaction term. Utilizing an alpha value of 0.05, there was 

not significant evidence against the null hypothesis of no effect measure modification for days of 
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poor mental health (p = 0.4371) and sleep duration (p = 0.4398) in the study population. After 

applying the respective exclusion criteria for the target population, a Kolmogorov-Smirnov test 

was performed for each potential EMM to determine if there is evidence for heterogeneity in 

distribution between the study and target populations. There was significant evidence of 

heterogeneity in distribution for days of poor mental health (p < 2.2e-16) but not sleep duration 

(p = 0.1546).  

To summarize, there was not quality evidence of effect-measure modification due to 

stress or sleep duration, and only one of the covariates varied in distribution. However, for the 

purpose of illustration, both variables were treated as EMM that form an S-admissible set on the 

risk difference scale. Figure 3 depicts the hypothetical data-generating process of blood lead and 

hypertension based on the variable definitions.  

Figure 3: 

 

S-DAG of the hypothesized data-generating process for blood lead (X) on hypertension risk (Y). 
C1 designates a covariate in a set C of all proposed confounders: age, sex, race and ethnicity, 
educational attainment, BMI, smoking behavior, and alcohol use (only one is shown to prevent 
cluttering; they all share similar causal relations). V1 (stress) and V2 (sleep duration) are 
treated as EMM that vary in distribution. Accordingly, they are dependent on selection (S) and 
are risk factors for Y. Assuming an accurate data-generating process, V = {V1, V2} is sufficient 

X Y

V2

S

V1
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for S-admissibility on the risk difference scale. Moreover, the union of C and V is sufficient for 
confounding control in the presence of selection.  

Statistical Methods 

The true SACE and TACE and their 95% confidence intervals (CI) were estimated using a 

repeated multi-step process involving bootstrapping. In total, 1,000 bootstrapped datasets were 

created from the study population data. Each dataset yielded a sample SACE and a sample 

TACE. The following procedure was repeated for each bootstrapped dataset: 

• Calculating the SACE: A logistic regression model was learned on the exposure, 

confounders, differing EMM (sleep and days of poor mental health), and outcome within 

the dataset, including variables representing interaction with the exposure for each EMM 

in the regression. Counterfactual data was simulated by duplicating the data frame, 

increasing the value of the exposure by 1, updating the interaction variables, and creating 

predictions with this new dataset. The SACE was calculated by taking the mean 

difference of the predicted and observed values of the outcome. The estimate was then 

recorded in a list of all previously computed SACEs.  

• Augmenting the target population: Dummy data on the exposure and covariates were 

generated in the target population by repeatedly copying the study population data into a 

new data frame until the number of rows surpassed that of the original target population. 

Subsequently, the resulting data frame was trimmed to align with the row count of the 

target population. Dummy data for sleep and days of poor mental health was replaced by 

EMM data in the target population. Variables measuring interaction were then updated as 

a product of the true EMM data and the fake exposure data. 

• Calculating the TACE: Predictions were made from the model on the resulting data 

frame. Counterfactual data was generated under a similar process as before in the target 
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data. The TACE was obtained by taking the mean difference of the predicted values 

before and after intervening on X in the target data. This TACE was recorded in a list of 

all previously computed TACEs. 

After the last repetition, the average of all SACEs and a 95% CI were obtained using the 

2.5th and 97.5th quantiles of the 1,000 iterations. An average and 95% CI was additionally 

obtained for the TACEs. These averages are treated as the final values of the SACE and TACE. 

Analyses were conducted using R 4.3.0 and RStudio Version 2023.09.1+494. 

Results 

Table 1 illustrates the means and proportions for the exposure, confounders, and potential EMM, 

and outcome in the study and target populations after applying the respective exclusion criteria.  

A mean lead level of 1.55 μg/dL was obtained in NHANES and 41.4% of the participants in the 

study population exhibited hypertension. There was no information on exposure or outcome data 

in BRFSS. NHANES participants leaned heavily towards being male, while BRFSS participants 

were mostly female. BRFSS participants were older and demonstrated higher levels of 

educational attainment. BMI distributions did not noticeably vary. BRFSS participants were less 

likely to be current smokers and more likely to be never smokers in comparison to NHANES. 

Participants in NHANES had significantly fewer days of poor mental health than those in 

BRFSS. Both populations exhibited a similar pattern in sleep duration. Summary statistics on 

alcohol consumption and race distribution could not be assessed in identical fashion for the target 

population and are therefore missing from the table. 

Table 1: Study and target population demographicsa,b 

Variable 
Study Population 
(NHANES) (n = 2,823) 

Target Population 
(BRFSS) (n = 164,801) 

Exposure   
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    Lead Level (μg/dL) 1.55 ± 2.04 - 
Confounders   
    Age (yrs) 46.04 ± 17.63 49.73 ± 17.25* 
    BMI (kg/m²) 28.64 ± 6.73 29.05 ± 7.23 
    Alcoholic Drinks per Day  2.81 ± 2.99 -** 
    Sex   
        Male 55.6 39.8 
        Female 44.4 60.2 
    Race and Ethnicity   
        Mexican American 8.6 - 
        Other Hispanic 9.5 - 
        Non-Hispanic White 41.4 - 
        Non-Hispanic Black 24.8 - 
        Other Race 14.4 - 
    Highest Education   
        < High School 18.1 5.3 
        High School 19.4 22.5 
        > High School 62.5 72.2 
    Smoking Status   
        Current 23.3 15.5 
        Former 23.7 27.1 
        Never 53.0 57.5 
Potential EMM (Non-confounders)   
    Days of Poor Mental Health 3.97 ± 7.78 11.10 ± 10.15 
    Sleep Duration (hours) 6.79 ± 1.34 6.82 ± 1.64 
Outcome   
    Has Hypertension   
        Yes 41.4 - 
        No 58.6 - 
aContinuous data is presented as a mean ± standard deviation, and categorical variables are 
measured in terms of percentages. 
b- indicates that a measurement could not be taken for the target population. 
*An imputation procedure was used for age in BRFSS 
**There is a similar question in BRFSS for alcohol consumption, but it includes days where a 
person did not drink in the measured average. 

Means and proportions of the study demographics in NHANES and BRFSS. In the analysis, days 
of poor mental health and sleep duration are treated as a set of EMM that vary in distribution 
between NHANES and BRFSS.  

Table 2: SACE and TACE 
Effect Measure NHANES (95% CI) BRFSS (95% CI) 
Average Causal Effect (ACE) 0.0073 (-0.0131, 0.0289) 0.0096 (-0.0057, 0.0274) 

Final estimates of the SACE and TACE obtained by averaging samples generated by 1,000 
bootstrapped datasets. 
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As illustrated in Table 2, an SACE of 0.0073 was obtained, meaning that a one μg/dL 

increase in blood lead exposure was associated with a 0.73% increase in hypertension risk in the 

study population. The 95% confidence interval for this estimate ranged from -0.0131 to 0.0289. 

A TACE of 0.0096 was obtained, indicating a 0.96% increase in hypertension risk per one μg/dL 

increase in blood lead exposure in the target population. The 95% CI for this estimate ranged 

from -0.0057 to 0.0274. The 95% CIs contained 0, suggesting that blood lead content was not 

associated with a statistically significant increase in risk of hypertension in the study and target 

populations.  
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Discussion 

This study set out to derive and illustrate a methodology for utilizing information from an 

observational dataset to obtain an ACE for a target population of interest. The identifiability 

assumptions were stated, and a formula was obtained for the TACE when the study population 

corresponds to an RCT. From there, a formula was derived for the TACE when the study 

population is an observational dataset. Unlike the RCT case, the derivation for observational 

transportability relied on identifying a set sufficient for confounding control as conditional 

exchangeability over exposure could not be assumed by design. 

The methodology was applied in a real-world setting, utilizing cross-sectional NHANES 

data on blood lead and hypertension to estimate the TACE in BRFSS, a telephone survey. The 

literature on blood lead and hypertension was consulted to create a list of measurable 

confounders in the study population and a set of measurable potential EMM in both populations. 

Weak evidence of effect measure modification was found for days of poor mental health and 

sleep duration, and strong evidence of heterogeneity in distribution was found for days of poor 

mental health. Regardless, both variables were treated as EMM that differ in distribution, 

necessitating their measurement in both the study and target populations. Finally, the SACE and 

TACE were assessed from 1,000 bootstrapped datasets and averages were taken. A final SACE 

of 0.0073 and a final TACE of 0.0096 were obtained. Blood lead was not associated with a 

statistically significant increased risk of hypertension in either dataset.  

The ability to generate causal insights from observational transportability may be limited 

by poor-quality study data. In an observational study, high-quality data is relied upon, meaning 

that the exposure, confounders, and outcome are adequately measured and with minimal 
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selection bias or uncontrolled confounding. The same standard of high-quality data is required 

when transporting causal estimates from an observational setting. In addition, causal estimates 

obtained from cross-sectional datasets are generally unreliable as a temporal relationship 

between the exposure and outcome cannot be established. More work needs to be done to 

demonstrate how observational transportability can be utilized in a longitudinal setting where the 

TACE can more reliably be interpreted causally.  

Estimating an ACE through observational transportability poses some additional 

challenges that are distinct from those found in a typical observational study. Unlike in a typical 

observational study, one is met with the task of identifying a set that is S-admissible on the risk 

difference scale. As such, knowledge of the data-generating process must include differences in 

the distribution of the covariates between the study and target population and how these variables 

relate to the outcome. Variables in both populations must be measured by a universal standard 

such that heterogeneity in distribution is not a product of variations in measurement but actual 

differences between the two populations. 

Moreover, the nature of the data-generating process itself may pose problems for 

estimating the TACE under observational transportability. A presupposition this study makes is 

the absence of downstream factors of the exposure besides Y that depend on selection. Therefore, 

the application of observation transportability under this study’s framework is potentially limited 

to circumstances where other effects of X, such as mediators, do not drive selection. In addition, 

not all settings are amenable to transportability, regardless of the study design of the source 

population. One example of this is when there are no measured intermediate variables between 

the outcome and selection. Estimates are not transportable in this scenario [2]. 
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Despite its limitations, observational transportability can be a powerful tool for causal 

inference. Observational transportability can be useful in certain situations where traditional 

observational analysis fails to generate an ACE that can be interpreted causally. Standard 

methods for observational analysis are prone to bias when data on exposure, outcome, or 

confounder data in the population of interest is incomplete or mismeasured and when only cross-

sectional data is collected. By incorporating information on effect modifiers that differ between 

the study and the target population, observational transportability grants the freedom to generate 

causal insights from data that is less than ideal. The concept allows new populations to be 

studied in detail, including those that contribute significantly to the exposed population or carry a 

major portion of the disease burden. The importance of high-quality study population data when 

transporting is emphasized; causal estimates generated from poor-quality study data are 

meaningless. 

This study opens an alternative approach for estimating the TACE of any population that 

does not require performing additional observational studies. Suppose one is interested in 

measuring the TACE of an exposure-outcome relationship of interest. An unbiased estimate for 

the TACE is feasible with i) a well-defined model that controls for confounding and incorporates 

all EMM in a set that is S-admissible in distribution and ii) target population data of all EMM 

specified in the model that differ in distribution. While this is a promising new approach for 

epidemiological research, the standard format poses some barriers to applying observational 

transportability in practice. For one, most epidemiological studies do not provide a record of the 

formulas they used in their analyses. In addition, non-confounding EMM are justifiably ignored 

in models when the primary goal is to estimate a risk difference. Researchers in the field should 
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move towards publishing their models as a general practice with an eye towards reducing the 

time and cost of population-level research through observational transportability. 
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Appendix 

RCT Transportability Formula Proof 

TACERCT = E(Yx=1 – Yx=0|S=0)  

= ∑ E(&' Yx=1 – Yx=0|Vx,S=0)P(Vx|S=0)    (PL)  

= ∑ E(& Yx=1 – Yx=0|V,S=0)P(V|S=0)    (Counterfactual equivalence)  

= ∑ E(& Yx=1 – Yx=0|V,S=1)P(V|S=0)    (A4 and A5) 

= ∑ E(& Yx=1 – Yx=0|X,V,S=1)P(V|S=0)    (A2 and A3) 

= ∑ [E(& Yx=1|X=1,V,S=1) – E(Yx=0|X=0,V,S=1)]P(V|S=0)   

= ∑ [E(& Y|X=1,V,S=1) – E(Y|X=0,V,S=1)]P(V|S=0) (A1) 

= ∑ g& (V)P(V|S=0) 

 

Observational Transportability Formula Proof 

TACEOBS = E(Yx=1 – Yx=0|S=0)  

= ∑ E&' (Yx=1 – Yx=0|VX,S=0)P(VX|S=0)   (PL) 

= ∑ E& (Yx=1 – Yx=0|V,S=0)P(V|S=0)    (Counterfactual equivalence) 

= ∑ E& (Yx=1 – Yx=0|V,S=1)P(V|S=0)    (B4 and B5) 

= ∑ E(',& (Yx=1 – Yx=0|CX,V,S=1)P(CX|V,S=1)P(V|S=0) 

= ∑ E(,& (Yx=1 – Yx=0|C,V,S=1)P(C|V,S=1)P(V|S=0) 

= ∑ [E(,& (Yx=1|C,V,S=1) – E(Yx=0|C,V,S=1)]P(C|V,S=1)P(V|S=0)  

= ∑ [E(,& (Yx=1|X=1,C,V,S=1) – E(Yx=0|X=0,C,V,S=1)]P(C|V,S=1)P(V|S=0) (B2 and B3) 

= ∑ [E(,& (Y|X=1,C,V,S=1) – E(Y|X=0,C,V,S=1)]P(C|V,S=1)P(V|S=0) (B1) 

= ∑ g(,& (C ∪ V)P(C|V,S=1)P(V|S=0) 
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