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A B S T R A C T

Objective: Subfield-specific measurements provide superior information in the early stages of neurodegenerative
diseases compared to global hippocampal measurements. The overall goal was to systematically compare the
performance of five representative manual and automated T1 and T2 based subfield labeling techniques in a sub-
set of the ADNI2 population.
Methods: The high resolution T2 weighted hippocampal images (T2-HighRes) and the corresponding T1 images
from 106 ADNI2 subjects (41 controls, 57 MCI, 8 AD) were processed as follows. A. T1-based: 1. Freesurfer
+ Large-Diffeomorphic-Metric-Mapping in combination with shape analysis. 2. FreeSurfer 5.1 subfields using in-
vivo atlas. B. T2-HighRes: 1. Model-based subfield segmentation using ex-vivo atlas (FreeSurfer 6.0). 2. T2-based
automated multi-atlas segmentation combined with similarity-weighted voting (ASHS). 3. Manual subfield
parcellation. Multiple regression analyses were used to calculate effect sizes (ES) for group, amyloid positivity in
controls, and associations with cognitive/memory performance for each approach.
Results: Subfield volumetry was better than whole hippocampal volumetry for the detection of the mild atrophy
differences between controls and MCI (ES: 0.27 vs 0.11). T2-HighRes approaches outperformed T1 approaches
for the detection of early stage atrophy (ES: 0.27 vs.0.10), amyloid positivity (ES: 0.11 vs 0.04), and cognitive
associations (ES: 0.22 vs 0.19).
Conclusions: T2-HighRes subfield approaches outperformed whole hippocampus and T1 subfield approaches.
None of the different T2-HghRes methods tested had a clear advantage over the other methods. Each has
strengths and weaknesses that need to be taken into account when deciding which one to use to get the best
results from subfield volumetry.

1. Introduction

Hippocampal neuronal and/or glial dysfunction or neuronal loss
severe enough to cause hippocampal volume loss in quantitative mag-
netic resonance imaging (MRI) is a common feature of many brain
disorders, e.g., Alzheimer's disease, multiple sclerosis, epilepsy, schi-
zophrenia, post-traumatic stress syndrome, Parkinson's disease or

traumatic brain injury (Miller and O'Callaghan, 2005; West et al., 1994;
Papadopoulos et al., 2009; Bluemcke et al., 1999; Harrison, 2004;
McEwen and Magarinos, 1997, Swartz et al., 2006, Pereira et al., 2013).
Even non-brain disorders, e.g., hypertension, hypothyroidism or dia-
betes (Cooke et al., 2014; Petrovitch et al., 2000; Korf et al., 2006) can
be associated with hippocampal abnormalities. The hippocampus is not
a homogeneous structure but consists of several histologically and
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functionally specialized but nonetheless tightly interconnected sub-
fields: the subiculum (SUB) which is subdivided into the prosubiculum,
subiculum proper, pre- and parasubiculum, the cornu ammonis sectors
(CA) 1–3 and the dentate gyrus (DG) (Duvernoy et al., 2013). Animal
and histopathological studies have shown that different pathological
conditions affect subfields differently, e.g., Alzheimer's disease and
hypoxia damage CA1, schizophrenia CA2, traumatic brain injury and
post-traumatic stress syndrome CA3 and temporal lobe epilepsy da-
mages the dentate gyrus (e.g., West et al., 1994; Fukutani et al., 2000;
Bluemcke et al., 1999; Lucassen et al., 2006; Baldwin et al., 1997;
Bluemcke et al., 2007). These observations suggest that subfield specific
information might allow for a better differentiation of different disease
processes and consequently for an earlier diagnosis than total hippo-
campal volume (Small, 2014).

The advent of high field (3 Tesla and higher) MRI platforms and the
possibility to acquire high resolution images of the hippocampal for-
mation depicting details of its internal structure within a few minutes
resulted in the development of a growing number of manual and
computational subfield labeling approaches. These techniques were
applied to a variety of diseases in small single-site studies and usually
found subfield volumetry to be superior to standard whole hippocampal
volumetry for the detection of hippocampal damage in the early stages
of the disease process, for differentiating between diseases or for the
investigation of structure/function relationships (e.g., Wang et al.,
2006; Ballmaier et al., 2008; Mueller et al., 2008; Schobel et al., 2009;
Neylan et al., 2010; Bender et al., 2013; Kerchner et al., 2014; Schoene-
Bake et al., 2014; Chao et al., 2014; Hsu et al., 2015; De Flores et al.,
2015; Pluta et al., 2012; Yushkevich et al., 2015b). The promise of
hippocampal subfield volumetry techniques however led to two un-
expected developments that could potentially limit the usefulness of
this approach. One is the lack of standardized boundary definitions for
each subfield that complicates the comparison of results from different
laboratories. This problem has been recognized by the research com-
munity and is now being addressed by an international work group that
will develop a harmonized subfield labeling protocol (Yushkevich et al.,
2015a; Wisse et al., 2017) using a similar approach as for the harmo-
nization of the outer hippocampus boundaries (Boccardi et al., 2011).
The other development is the variety of available labeling techniques
(e.g., Pipitone et al., 2014; Kim et al., 2014; Zeineh et al., 2001;
Thompson et al., 2004; Chatelat et al., 2008; Goubran et al., 2014).
Each of them has its strengths and weaknesses which can complicate
the comparison of findings across laboratories but also confuse re-
searchers new to this field who must decide which of the available
technique fits their needs best.

The goal of this study was not to compare all existing subfield la-
beling approaches/protocols but to concentrate on the performance of
five commonly used approaches (4 automated, 1 manual labeling) in a
common data set. These techniques were selected because each re-
presents a different approach for subfield labeling and because all au-
tomated approaches except one are publicly available and used by the
research community. The intention was not to determine which of these
four approaches captures the disease specific pathology best because
this is not possible without a ground truth, i.e. histopathological con-
firmation, but rather to compare where they find the most prominent
differences between groups and how large the differences are. The ideal
common data set for such a comparison consists of a large population of
well-characterized subjects who show the whole range of normal age-
related to severely disease related hippocampal atrophy. This data set
became available when the steering committee of the Alzheimer's
Disease Neuroimaging Initiative (ADNI) added a high resolution hip-
pocampal sequence to the ADNI MR protocol in a subset of the ADNI
sites (cf. Methods).

Based on the image type used for the parcellation two main subfield
volumetry approaches can be distinguished. 1. Approaches using a

whole brain T1 weighted image typically at a resolution of 1 mm iso-
tropic or close to that resolution, e.g., shape analysis, radial distance
technique, voxel-based morphometry or deformation-based morpho-
metry (Csernansky et al., 1998; Chatelat et al., 2008; Thompson et al.,
2004; Yushkevich et al., 2010a). Of the currently available T1-based
approaches, the Bayesian inference labeling as implemented in Free-
surfer 5.1. (Van Leemput et al., 2009) and shape analysis based on
Large Deformation Diffeomorphic Metric Mapping (Khan et al., 2008)
were selected for this project. The former because the algorithm is
publicly available and is frequently used, and the second because it was
one of the earliest approaches for subfield volumetry that has been
continuously refined and optimized for 3 T images. 2. Approaches using
a T2 weighted hippocampal image. These images are characterized by a
submillimeter in plane resolution but thick slices to increase S/N and
therefore depict more details of the internal structure than a T1 image.
This has been exploited by manual labeling approaches and increas-
ingly also by automated approaches. Of the currently available ap-
proaches ASHS (Yushkevich et al., 2015b) and the latest version of
Bayesian inference labeling implemented in Freesurfer 6.0 (Iglesias
et al., 2015) were chosen for this project because both algorithms are
publicly available and are used by the larger research community. The
manual labeling protocol developed by Mueller et al. (2007) was
chosen as manual reference because its limited labeling scheme made it
possible to label the over 100 images required for this project within a
reasonable amount of time. The selected approaches use different la-
beling protocols which prevents a direct comparison of the subfield
volumes. Instead of focusing on the subset of subfields known to show
atrophy and other histopathological features of AD from autopsy stu-
dies, e.g., subiculum, CA1, it was therefore decided in a first step to
calculate the effect sizes for each and every subfield provided by the
approach and compare the performance of the subfields with the largest
effect size for each approach regardless of biological plausibility. This
provides the type of information that is needed to determine which one
of the approaches evaluated here is the most cost efficient in a clinical
trial that uses subfield volumetry as an outcome measure. In a second
step, it was investigated how well the findings reflected the pattern of
subfield atrophy described in histopathological studies of AD. The in-
tention was to compare the performance of these approaches over the
whole range of Alzheimer's disease (AD) related hippocampal atrophy
and thus the following comparisons were chosen:

1. Ability to detect a group effect for subfield and mesio-temporal
volumes in a population consisting of cognitively normal older
controls, non-demented subjects with different degrees of mild
cognitive impairment and subjects diagnosed with AD (group).

2. Ability to detect subfield and mesio-temporal volumes losses in non-
demented subjects with different degrees of mild cognitive impair-
ment (MCI) compared to cognitively normal elderly controls (MCI).

3. Ability to detect an effect of amyloid positivity on subfield and
mesio-temporal volumes in cognitively normal subjects (Abeta)
which is the stage when treatment with a disease modifying drug
would be most efficient.

4. Ability to detect a significant association between general cognitive
performance/memory performance and subfield and mesio-tem-
poral volumes in cognitively normal subjects (ADAScog and RVLT).

2. Methods

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to investigate which combination of the
measures obtained by serial magnetic resonance imaging (MRI),
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positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessments allows for the most effi-
cient monitoring of the progression of mild cognitive impairment (MCI)
and early Alzheimer's disease (AD). The initial ADNI was followed by
ADNI GO, ADNI 2 and now ADNI 3. To date these 3 projects have re-
cruited> 1500 55–90-year-old participants who were either cogni-
tively normal or diagnosed with early (EMCI), late (LMCI) mild cog-
nitive impairment or with early AD. The ADNI2 hippocampal subfield
project was not part of the original ADNI2 project and was made pos-
sible by a grant of the Alzheimer's Association. It consisted of three
phases. Phase 1: 2011–2012 harmonization and modification (reduc-
tion of acquisition time to 8 min) of existing high resolution T2 hip-
pocampus 3 T sequences. Phase 2: January 2012–December 2012:
Testing the performance of existing subfield algorithms on ADNI2
imaging data and modification to optimize performance, e.g., devel-
opment of strategies to allow for partial coverage, testing of different
atlases, quality control routines etc. Phase 3. Evaluation phase: January
2013–December 2015. Identification of final study population and data
processing

2.1. MRI acquisition

The ADNI2 MRI protocol has been optimized to provide comparable
images from different 3 T platforms from the three major vendors
Siemens, Philips and General Electric. The high resolution hippocampus
sequence was added to the existing ADNI2 imaging protocol of 20 sites
with Siemens magnets in December 2012 and acquired at the end of the
official protocol. The following images were used for this project: 1. T1
weighted MPrage TR/TE/TI 2300/2.95/900 ms, sagittal,
1.1 × 1.1 × 1.2 mm resolution. 2. T2 weighted turbo spin echo TR/TE
8020/50 ms, inplane resolution 0.4 × 0.4 mm, slice thickness 2 mm, 28
or 32 slices, coronal, oriented perpendicularly to the long axis of the
hippocampus covering the hippocampal head and body but not always
the tail in all cases (please see adni.loni.usc.edu/methods/documents/
mri-protocols/ Siemens sequences for details).

2.2. Image quality control

684 high resolution exams of 393 different subjects had been ac-
quired between December 2012 and November 2015. The image
quality was systematically assessed by trained raters for: hippocampus
coverage (full/head and body or incomplete), correctness of FOV an-
gulation regarding the hippocampal axes (meeting specification or not
meeting specification), contrast/noise of internal structure of hippo-
campus (good, moderate, bad), severity of motion artifacts (good,
moderate, severe) and other (e.g., artifacts from vessels, pathology).
543 high resolution images from 349 different subjects passed quality
control. 84 exams were rejected due to severe motion artifacts which
were typically associated with bad contrast/noise. 57 exams were ex-
cluded due to positioning errors resulting in incomplete coverage of
hippocampal head and body or incorrect angulation. Please see
Supplementary material for list of images selected for this project.

2.3. Study population

The images from 106 different subjects were selected for further
processing. The reason to focus only on a subset of all available exams
was the limited processing capacity of the manual subfield labeling arm
that had only one qualified rater. Subjects were selected based on the
availability of clinical diagnosis, results of the florbetapir amyloid PET
(cut off for amyloid positivity: 1.11) and neuropsychological exam at
the timepoint of the selection. Since the intent was to compare the
techniques regarding their performance in the early stages of the dis-
ease, MCI and healthy controls were preferentially selected. Please see

Table 1 for demographic information etc. The cognitive functioning of
all subjects had been assessed with the standardized ADNI test battery.
The Alzheimer's Disease Assessment Scale – cognition (ADAScog) and
the immediate recall of the Rey Auditory verbal learning test were
chosen from that battery. The former is a measure of global cognitive
performance and was expected to show associations with subfields
differentiating between cognitively intact and mildly impaired subjects.
The latter was chosen as a hippocampus specific measure for encoding/
learning and was expected to show an association with CA3 and/or
dentate gyrus volume (Mueller et al., 2011). (See Fig. 1.)

2.4. Image processing

2.4.1. High resolution T2 sequences
2.4.1.1. Manual labeling. Input: Resampled high resolution T2
hippocampal image to obtain images where the hippocampal cross-
section is perpendicular to the long axis of the left and the right
hippocampus.

Output: Left and right label masks in space of resampled image and
text file with volumes covered by labels.

Parcellation scheme and atlas: Rview (www.colin-studholme.net/
software/software.html) is used for display and labeling. Labels for
entorhinal cortex, subiculum, CA1, CA2 and dentate gyrus & CA3 are
generated.

Validation: NA.
Customization: Label definition and region to be labeled can be

customized.
Quality control: Consistency check, i.e., each label is checked after

first pass labeling for labeling accuracy and consistency after processing
the complete study population and manually edited if necessary before
transferring the volumes into the project database.

Computing power: Standard desktop computer with 2.80GHz CPU
and 6.00 GB RAM. The resampling step (preparation and computation
of left and right hippocampus) takes ca. 1.5 h/subject, manual labeling
ca. 60–90 min/subject for an experienced rater.

Brief method summary: The labeling method including assessment
of measurement reliability has been described in detail previously
(Mueller et al., 2007, 2010). In brief, the marking scheme depends on
anatomical landmarks, particularly on a hypointense line representing
myelinated fibers in the stratum moleculare/lacunosum which can be
reliably visualized on these high resolution images. Together with ex-
ternal landmarks, e.g., fimbria, collateral sulcus etc. this line is used to
identify and manually label the subiculum, the cornu ammonis sectors
CA1-CA3 and the dentate gyrus on a length of about 1 cm in the

Table 1
Study population demographics.

Group Normal MCI AD

No 41 57 8
Female/male 22/19 22/35 4/4
Age 75.1 (7.6) 71.1 (7.6) 75.6 (9.0)
Apo E4 pos 10 22 4
SUVR 1.12 (0.21) 1.21 (0.23) 1.41 (0.13)
CDR SB 0.11 (0.38) 1.80 (1.54) 4.56 (1.43)
MMSE 28.8 (1.5) 27.4 (2.8) 21.0 (3.8)
ADAScog 8.4 (4.6) 15.2 (10.0) 31.8 (9.0)
RVLT immediate 47.1 (10.8) 39.7 (13.8) 20.6 (6.1)
RVLT learning 5.8 (2.4) 4.6 (3.1) 2.1 (1.5)
RVLT forgetting 3.8 (3.3) 4.6 (3.1) 4.0 (1.3)

Apo E4 pos, at least one Apo E4 allele; SUVR standardized uptake.
Value ratio relative to cerebellar gray CDR SB, clinical dementia rating scale sum of
boxes.
ADAS cog, Alzheimer's Disease Assessment Scale – cognition.
MMSE, Mini-Mental-State-Exam; RVLT, Rey verbal learning test.
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anterior third of hippocampal body. For the sake of efficiency, the la-
beling section is restricted to the anterior section of the hippocampal
body (ca. 60–90 min/subject for an experienced rater).

Limitations: Specially trained rater required, time consuming.
Method requires the acquisition of suitable high resolution T2 images.

2.4.1.2. Automated segmentation of hippocampal subfields (ASHS). Input:
T1-MRI and high resolution T2 hippocampal image.

Output: Left and right multi-label images and text file with volumes
of each subregion.

Parcellation scheme and atlas: Labels for hippocampal subfields
CA1–3 and CA4/DG, subiculum, and extrahippocampal cortical regions
parahippocampal cortex, entorhinal cortex, BA35 and BA36 together
constituting perirhinal cortex, are generated. The atlas provided with
the public distribution of the software consists of 28 subjects in whom
the subfields were labeled manually by an experienced rater. The atlas
population consists of an almost equal proportion of older healthy
control and amnestic mild cognitive impairment (aMCI) patients. The
method has recently been adapted to 7 T, the latest software release
includes a 7 T atlas (Wisse et al., 2016).

Validation: This method has been validated using k-fold cross-vali-
dation against manual segmentation in an in-vivo dataset of older
healthy controls and aMCI patients (Yushkevich et al., 2015b).

Customization: The method can be adapted regarding number and
definition of labels and also regarding atlas images, i.e., it is possible to
generate a customized library. Training software is provided as part of
the package to utilize such a customized library. A set of 20 atlas images
is sufficient.

Quality control: Label images can be displayed overlaid on T2
hippocampal images with ITK snap software (www.itksnap.org) and
edited if necessary. Manual editing was not performed on the data
presented in this paper.

Computing power: The method is based on a multi-atlas technique
that requires multiple pairwise image registrations, which are ideally
performed in parallel in a computing cluster. The software provides
interface to Sun Grid Engine scheduler to facilitate this. The method

takes 2–3 h to complete on a modern Linux-based cluster.
Brief method summary: This software, named (ASHS) implements a

previously published multi-atlas segmentation technique (Yushkevich
et al., 2010b). Briefly, the target MRI is registered with a bank of T2-
weighted atlas MRIs that includes manually labeled subregions. These
manually derived labels were transferred to the target image to produce
a set of candidate segmentations. A consensus segmentation is obtained
using joint label fusion (Wang et al., 2013a), that takes into account
similarity of each atlas image to the target image. Systematic segmen-
tation errors are corrected using a learning-based biased correction
technique (Wang et al., 2013b) to generate the final segmentation. Fi-
nally, a bootstrapping phase repeats joint label fusion and corrective
learning with atlas-to-target registrations seeded by the segmentation
result from the previous phase.

Limitations: The atlas provided with the publicly distributed version
of the software (https://www.nitrc.org/projects/ashs/) is composed of
older healthy controls and mild cognitive impairment patients. This
atlas is suitable for studies in an Alzheimer's disease population or older
healthy subjects, but must be used with caution in a dataset of non-
neurodegenerative pathologies and younger subjects, for which the
results might be non-optimal, particularly if volumetric analysis is de-
sired. The best results should be achieved with a customized population
specific atlas generated from images generated on the same magnet (cf.
customization).

2.4.1.3. FreeSurfer 6.0 (FS 6.0). Input: T1-MRI and/or high resolution
T2 hippocampal image.

Output: Assuming that both a T1 and a high resolution T2 scan are
provided, the algorithm produces a high resolution T2 image in the
space of input T1 scan and all other FreeSurfer volumes, a left and right
multi-label image with the discrete segmentation of the substructures of
each hippocampus, at 0.333 mm resolution, in the physical space of the
FreeSurfer T1 data and two text files with the estimated volumes of the
hippocampal substructures and of the whole hippocampus. These vo-
lumes are computed from probabilistic (rather than binary, winner-
take-all) segmentations, so simply counting the number of voxels that

Fig. 1. Parcellation schemes. Manual, manual parcellation labels; green, entorhinal cortex; blue, subiculum; red, CA1; yellow, CA1–2 transition zone; maroon, CA3&dentate. FS 6.0, labels
of Freesurfer 6.0 subfield parcellation; yellow, parasubiculum; purple, presubiculum; blue, subiculum; red, CA1, green, CA2/3; tan, CA4; brown, molecular layer; light blue, GC-DG; light
green, HATA; lilac, fimbria, ASHS parcellation.
FS Sub, Freesurfer 5.1 subfield parcellation labels; yellow, presubiclum; green, subiculum; red, CA1; blue, CA2/3; bright blue, hippocampal fissure; lilac, fimbria; shape analysis, green,
hippocampal boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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have been labeled as a specific structure in the discrete segmentation
will not yield the same result as the volume reported in this file.

Parcellation scheme and atlas: The hippocampal substructures that
are segmented by the software are hippocampal tail; parasubiculum;
presubiculum; subiculum; CA1; CA2 + CA3; CA4; hippocampus–a-
mygdala transition area (HATA); granule cell layer of dentate gyrus
(GC-DG); molecular layer; fimbria; and hippocampal fissure (not in-
cluded for computing the whole hippocampal volume). These structures
were manually labeled in 15 ex vivo scans, and a probabilistic atlas of
hippocampal anatomy was built from these delineations, in combina-
tion with manual segmentations of 39 1 mm T1 scans of the whole brain
at the structure level (i.e., whole hippocampus, whole amygdala, etc.).
These 39 scans are important to learn the defining image features of the
anatomy of the brain structures surrounding the hippocampus (Iglesias
et al., 2015).

Validation: Indirect validation by assessing the ability of the esti-
mated subfield volumes to separate different groups (Iglesias et al.,
2015).

Customization: Not possible.
Quality assessment: Labels can be displayed in FreeSurfer's Freeview

to assess label accuracy. Editing is theoretically possible but requires
advanced knowledge of hippocampal anatomy and was not done for
this project.

Computing power: The algorithm takes approximately 30 min to
complete, using a single core.

Brief method summary: The method is based on a probabilistic atlas
of hippocampal anatomy derived from manual segmentations made on
15 ex vivo scans (including four subjects diagnosed with AD) scanned at
(on average) 0.13 mm isotropic resolution. Using a Bayesian algorithm,
these manual delineations were then combined with manual segmen-
tations from 39 1 mm T1 scans (including 10 of subjects diagnosed with
AD) that had been labeled at the whole structure level, to create a single
probabilistic atlas. The atlas is represented as a tetrahedral mesh, in
which each node has a corresponding vector of probabilities for the
different structures encoded in the atlas. The mesh is adaptive, such
that more convoluted regions of the atlas are represented by finer tet-
rahedra. Once the atlas has been built, segmentation of the hippo-
campal substructures is posed as a Bayesian inference problem, such
that the probability of the segmentation given the input scan and the
atlas is maximized. The intensities of the voxels in the scan to analyze
are assumed to be samples of a Gaussian mixture model conditioned on
the hidden segmentation. The parameters of this model are learned
directly from the test scan to segment, which makes the method robust
to changes in MRI contrast, and also enables it to immediate generalize
to multispectral MRI data (even when some of the channels do not
completely cover the hippocampal formation), as described in (Iglesias
et al., 2015). Longitudinal labeling has been developed for T1 weighted
images (Iglesias et al., 2016) but not been tested for high resolution T2
images with thick slices.

Limitations: The atlas was built using elderly subjects. Its applic-
ability to studies of younger populations or other diseases has not been
tested. Finally, a drawback of the ability of this method to adapt to the
MRI contrast is that it is not possible to further optimize its performance
by training it in a subset of the imaging data to be segmented.

2.4.2. T1 weighted methods
2.4.2.1. Shape analysis. Input: T1-MRI and hippocampal label
produced by the Freesurfer recon-all stream.

Output: The primary outputs are binary whole-hippocampus seg-
mentations, corresponding hippocampal 2D surfaces and surface-based
subfield delineations. Secondary outputs are multivariate shape indices
and summary shape deformation index (univariate).

Parcellation scheme and atlas: The atlas segmentation is a manually
traced subset of 74 ADNI1 subjects (not part of investigated cohort).

Validation: The three hippocampal surface zones in the right
hemisphere of ten randomly selected subjects were manually outlined
and compared with the surface zones as mapped from the template. The
intra-class correlation coefficients of the areas of the three surface zones
were between 0.90 and 0.97 (Wang et al. 2006).

Customizations: None.
Quality assessment: The method provides a quick-check snapshot

generation step for easy quality assurance.
Computing power: Multi-atlas FS-LDDMM requires multiple pair-

wise image registrations, which are ideally performed in parallel in a
computing cluster. On a modern Linux-based cluster, the method takes
2–4 h to complete. A web portal (http://ceramicca.ensc.sfu.ca/) is
provided for collaborators.

Brief method summary: Hippocampal surfaces were generated from
T1-weighted images of all subjects using multi-atlas FS-LDDMM
(Christensen et al., 2015; Khan et al., 2008; Khan et al., 2013; Wang
et al., 2009). ADNI2 EMCI and control subjects that had not been se-
lected for this analysis were used to define EMCI-related surface sig-
nature labels. This was done by first computing a population average
hippocampal surface and then the vertex-wise deformation for each
subject from this average. Vertex-wise generalized linear model (GLM)
was used to compare the hippocampal deformation between ADNI2
EMCI and controls. Significant clusters of vertices were identified using
Random Field Theory (Taylor and Worsley, 2007; Worsley et al., 1999).
The collection of these vertices in each subfield represent “EMCI sig-
nature labels.” Next, the hippocampal surfaces of the ADNI2 subjects
selected for this project were calculated. The subfield deformation can
be represented in a multivariate or a univariate approach. The former
uses a PCA to determine the principal components (PC) that account for
80% of the shape variance to represent the surface shape. Each subject's
surface is expressed in terms of a linear combination of the PCs with the
weights being a multivariate representation of the shape (Csernansky
et al., 2004). For this analysis, the univariate approach was used, i.e.,
the vertex-wise surface deformation corresponding to each EMCI sig-
nature label was extracted and the mean calculated. This provided a
measure of subfield specific deformation for each subject that is com-
parable with the other approaches.

2.4.2.2. FreeSurfer subfields version 5.1 (FS sub). Input: T1 image.
Output: label image and text file with subfield volumes.
Parcellation scheme atlas: Identifies labels for fimbria, CA2–3, CA1,

CA4 and dentate, presubiculum, subiculum, hippocampal fissure, hip-
pocampus (tail) inferior lateral ventricle and choroid plexus based on
information from an probabilistic atlas generated from the manual
segmentations of the right hippocampus in 10 (6 young, 4 older) cog-
nitively intact subjects (Van Leemput et al., 2009).

Validation: Leave-one-out comparison with manual delineations in
ultra-high resolution images.

Customization: Not possible.
Quality control: Each label map was assessed for accuracy, i.e.,

verified that all subfield labels were within the hippocampus, non-
subfield labels, e.g., ventricle label, were not bleeding in the hippo-
campus and that the hippocampus was completely labeled. No label
editing was done, substandard labels were rejected, only labels from
images that were rated as pass were used in analysis.

Computing power: 5 h per subject on a 2.83 Hz Intel Xeon E5440
processor.

Brief summary: Automated segmentation of hippocampal subfields
using Bayesian inference and a segmentation prior that is defined in the
form of a tetrahedral mesh-based probabilistic atlas in which each mesh
vertex has an associated vector of probabilities for different hippo-
campal subfields and surrounding structures of the medial temporal
lobe. The subfield routine implemented in FreeSurfer (version 5.1,
https://surfer.nmr.mgh.harvard.edu) was used for this project.
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Limitations: Simplified non-anatomical parcellation scheme (Wisse
et al., 2014).

2.4.2.3. FreeSurfer hippocampus version 5.1 (FS Hippo). Input: T1
weighted image.

Output: label mask (aseg_aparc) and text file.
Parcellation and atlas: Subcortical structures including the hippo-

campi of 39 healthy subjects were manually traced on T1 weighted
images. These scans and their segmentations were then used to build a
joint probabilistic atlas of labels and intensities.

Customization: Not possible.
Quality control: Each aseg_aparc label map including hippocampal

labels was assessed for accuracy. Only hippocampal labels from images
that were rated as full pass (all assessed labels met accuracy criteria)
were used in this analysis.

Computing power: 5 h per subject on a 2.83 Hz Intel Xeon E5440
processor.

Brief summary: The FreeSurfer processing stream consists of the co-
registration of the subject T1 image to an atlas followed by for bias
correction, intensity normalization and brain extraction/removal of
non-brain tissue. The subcortical structures are labeled by co-re-
gistering the subject brain to a probabilistic labeled template in
Talairach space. FreeSurfer version 5.1, (https://surfer.nmr.mgh.
harvard.edu) was used for this project.

Limitations: Only global hippocampal labeling, no subfields.

3. Statistics

All volumes were corrected for intracranial volume (ICV calculated
by FreeSurfer) using the following formula: corrected volume = vo-
lume × 1000/ICV. Multiple linear regression analyses with subfield
volume as dependent and diagnostic Group, MCI status, SUVR (Abeta)
or cognitive measures (ADAScog, RVLT immediate recall) as in-
dependent variables of interest and age (all comparisons) and education
(cognitive associations only) as independent nuisance variables were
performed. The impact of the nuisance variable gender was investigated
but found to be non-significant after correcting for ICV and hence not
included in the final statistical model. The R2 from these regression

analyses were used to calculate standardized effect size and power
(significance level alpha = 0.05) for the number of the subjects in the
actual analysis and not for a fixed number of subjects. Effect sizes are
reported rather than the more common p-values because the purpose of
this paper was not to report that these subfield approaches are able find
significant differences between groups etc. but rather to provide in-
formation about how large these differences are (Sullivan and Feinn,
2012). Statistical analyses were done in JMP12 (SAS Institute Inc.) and
GPower 3.1 (http://www.gpower.hhu.de). SINGLEBAYES.EXE
(Crawford and Garthwaite, 2007) was used to identify effect sizes that
were significantly higher (p < 0.05, one tailed) than others in each
comparison.

Considering that all three diagnostic comparisons, i.e., comparisons
1–3, were designed to detect hippocampal atrophy caused by AD, it was
expected that the order of the subfields when ranked from largest to
smallest effect would be similar for each of these comparisons, e.g., if
CA1 had the largest effect size for MCI, it was expected that it would
also be the case for Abeta. The consistency of the effect size ranking for
the different subfields was investigated using Pearson's correlation
coefficients for each side separately, i.e., the effect sizes for comparison
1 were correlated with those from 2 and 3 and those from comparison 2
were correlated with comparison 3 and the mean of the resulting cor-
relation coefficients calculated.

4. Results

4.1. Group comparisons and amyloid effects

Please see Table 2a–2c for detailed effect sizes and power estimates
of every subfield. With one exception, the manual labeling approach
identified CA1 or CA1-CA2 transition volumes as the subfields with the
largest effect sizes for diagnostic and neuropsychological variables of
interest. This consistency was also reflected in the high correlation
coefficients (mean r left = 0.61, mean r right = 0.61). The FS 6.0 ap-
proach identified CA4 and CA1 as having the largest effect sizes for the
overall group comparison, fimbria and CA4 as having the largest effect
size for the comparison between MCI and cognitively normal and
subiculum and molecular layer as having the largest effect size for the

Table 2a
Effect sizes to detect “Group” effects.

Red, subfields with the highest power for alpha = 0.05 and effect size for each method; bold, method with best performance; *, subfield with significantly higher effect size than other
subfields within this comparison. PHIPPO, parahippocampus, ERC entorhinal cortex; BA, Brodmann Area; PreSub, presubiculum, ParaSub, parasubiculum, SUB, subiculum, CA, cornu
ammonis sector, Mol Lay, molecular layer, GC-ML-DG, granule cell layer of dentate gyrus, DG, dentate gyrus, HIPPO tail, posterior section of hippocampus, Total Hippo, total hippo-
campal volume from FreeSurfer.
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comparison between amyloid positive and negative cognitively intact
subjects. The inconsistency of the subfields identified as having the
largest effect size in these tests was reflected in low correlation coeffi-
cients (mean r left =−0.16, mean r right =−0.16). ASHS identified
the CA sector as having the largest effect sizes to detect group effects,
BA36 and DG has having the largest effect sizes to detect differences
between cognitively intact subjects and subjects diagnosed with MCI
and parahippocampal gyrus and entorhinal cortex as having the largest

effect size to detect amyloid associated subfield atrophy. The ranking of
the effect sizes and thus consistency of the detected effects was low with
r = −0.27 on the left side but higher on the right side r = 0.3.

T1 based shape analysis identified CA1 and dentate as the subfields
with the largest effect sizes for effect of group, and subiculum and CA1
as the subfields with the largest effects sizes to detect differences be-
tween cognitively intact and impaired subjects and amyloid positivity.
Since the shape analysis only identifies 3 subfields, a formal consistency

Table 2b
Effect sizes distinction MCI vs. cognitively intact elderlies.

Red, subfields with the highest power for alpha = 0.05 and effect size for each method; bold, method with best performance. *, subfield with significantly higher effect size (p < 0.05)
than other subfields within this comparison. PHIPPO, parahippocampus, ERC entorhinal cortex; BA, Brodmann Area; PreSub, presubiculum, ParaSub, parasubiculum, SUB, subiculum,
CA, cornu ammonis sector, Mol Lay, molecular layer, GC-ML-DG, granule cell layer of dentate gyrus, DG, dentate gyrus, HIPPO tail, posterior section of hippocampus, Total Hippo, total
hippocampal volume from FreeSurfer.

Table 2c
Effect sizes for the amyloid effects on hippocampal subfields in cognitively intact amyloid positive and negative controls.

Red, subfields with the highest power for alpha = 0.05 and effect size for each method; bold, method with best performance. *, subfield with significantly higher effect size (p < 0.05)
than other subfields within this comparison. PHIPPO, parahippocampus, ERC entorhinal cortex; BA, Brodmann Area; PreSub, presubiculum, ParaSub, parasubiculum, SUB, subiculum,
CA, cornu ammonis sector, Mol Lay, molecular layer, GC-ML-DG, granule cell layer of dentate gyrus, DG, dentate gyrus, HIPPO tail, posterior section of hippocampus, Total Hippo, total
hippocampal volume from FreeSurfer.
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assessment with Pearson correlation coefficients was not possible. FS
Sub identified the fimbria as having the largest effect sizes for the dif-
ferentiation between cognitively intact and impaired subjects, sub-
iculum and hippocampal tail as having the largest effect sizes to detect
a group effect and hippocampal tail and CA2/CA3 as having the largest
effect size to detect amyloid effects in cognitively intact controls. The
ranking of the effect sizes was low on the left side with r = −0.003 and
moderate on the right side with r = 0.26. With exception of the effect
size for group effect, the effect sizes of total hippocampal volume de-
rived from FS Hippo was lower than those seen by the T2 high re-
solution image based approaches. The means of the subfields with the
highest power and effect sizes for each T2 method (values in red in
Table 2a–2c, Table 3) were generally higher than those of the T1 based
methods for all three comparisons (cf. Table 4).

A well acknowledged problem of all subfield labeling approaches in-
cluding those chosen for this project is the lack of a common set of rules to
identify their boundaries which makes a direct comparison of the findings
across different labs difficult (Yushkevich et al. 2015). Although the
identification of a common set of rules for subfield labeling was beyond
the scope of this project, it is possible to combine labels from more de-
tailed protocols to mimic the parcellations of less detailed protocols. The

less detailed protocol used by ASHS and shape analysis consisted of a CA
label, a DG label and a subiculum label. The CA label was mimicked for
the manual approach by combining the CA1 and CA1–2 transition zone
volumes, for FS 6 by combining the volumes for subiculum, CA1, CA2/3
and molecular layer and for FS Sub by combining the volumes for sub-
iculum, CA1, CA2/3. The presubiculum label of FS 6.0 and FS Sub cor-
responds to the subiculum label of ASHS, shape analysis and the manual
approach. The DG label for FS 6.0 was mimicked by combining the labels
of CA4 and granular cell layer dentate. The DG estimates for the manual
labeling was based on its CA3&DG volume and those for FS sub on its
CA4-DG label. Fig. 2 shows the effect sizes for these compounded labels.
Using the compounded labels, all three high resolution T2 based ap-
proaches identified left and right CAc as the subfield with the highest
effect size for group. Manual labeling and FS 6.0 identified left and right
CAc and ASHS right CAc but left subiculum with left CAc as a close
second as the most affected combined label for Abeta effects. All three
identified either CAc or DG as the most affected subfield for the MCI
effects. Taken together, simplifying parcellation schemes by com-
pounding labels increased the consistency within each approach and
across the three approaches. FS SUB identified left and right subiculum as
the region with the largest group effect and left and right DG as the region
with the largest MCI effect. Right CAc and left subiculum with left CAc as
a close second showed the largest effect sizes for Abeta with the FS SUB
approach. The use of the compounded labels also increased the con-
sistency of the findings within FS SUB but not of those of high resolution
T2 based approaches.

4.2. Subfield volumes as predictor of cognitive function in cognitively intact
subjects

Left and right volumes were averaged for this assessment. Please see
Table 3 for the detailed results. The manual approach identified CA1
and CA1–2 transition as having the largest effect sizes for ADAScog and
RVLT immediate recall. FS 6.0 identified the presubiculum as the sub-
field with the largest effect for ADASCog and the dentate granular cell
layer volume as the subfield with the largest effect size for immediate
RVLT recall. ASHS found that ERC had the largest effect size for

Table 3
Effect sizes for the association subfield volumes with cognition in healthy controls: ADAScog and RAVLT immediate.

Red, subfields with the highest power for alpha = 0.05 and effect sizes for each method; bold, method with best performance. *, subfield with significantly higher effect size (p < 0.05)
than other subfields within this comparison. PHIPPO, parahippocampus, ERC entorhinal cortex; BA, Brodmann Area; PreSub, presubiculum, ParaSub, parasubiculum, SUB, subiculum,
CA, cornu ammonis sector, Mol Lay, molecular layer, GC-ML-DG, granule cell layer of dentate gyrus, DG, dentate gyrus, HIPPO tail, posterior section of hippocampus, Total Hippo, total
hippocampal volume from FreeSurfer. ADAScog, Alzheimer's Disease Assessment Scale – cognition; RAVLT, immediate recall of the Rey Auditory verbal learning test.

Table 4
Comparison of power and effect sizes of T2 and T1 based subfield approaches.

Mean power Mean effect size Mean
power

Mean
effect
size

High
Res T2

Whole
brain
T1

P-value High
res T2

Whole
brain
T1

P-value Total
Hippo

Total
Hippo

Group 1.0000 0.9900 0.24 0.5584 0.4419 0.33 1.0000 0.5042
MCI 0.9438 0.6241 0.02 0.1771 0.0768 0.01 0.8359 0.1122
Abeta 0.3051 0.1643 0.06 0.0749 0.0467 0.18 0.0742 0.0081
Cog 0.6659 0.5146 0.26 0.1850 0.1369 0.37 0.5102 0.1248

High Res T2 includes manual labeling, ASHS and Freesurfer 6.0 subfields.
Whole Brain T1 includes shape analysis and Freesurfer 5.1 subfields.
P-value, p for comparion T2 vs T1 subfield approach.
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ADAScog and that CA had the largest effect size for immediate RVLT.
Shape analysis identified the dentate gyrus as having the largest effect
size for ADAScog and CA1 as the subfield with the largest effect size for
RVLT immediate recall. Finally, FS Sub subfields showed the same
pattern as FS 6.0, i.e., presubiculum had the highest effect size for
ADAScog and CA4&dentate had the highest effect size for RVLT im-
mediate recall. The means of the subfields with the highest power and
effect sizes for each T2 method (values in red in Table 2a–2c, Table 3)
were generally higher than those of the T1 based methods for all both
comparisons (cf. Table 4).

5. Discussion

The comparison revealed two major findings. 1. It was possible to
acquire T2 high resolution hippocampal images in a large multi-site
project that were comparable regarding image quality and accurate and

consistent positioning to images acquired for dedicated small research
projects where a one-to-one training and immediate feedback regarding
quality are possible. This is an important step for this technique's suc-
cessful transition from a research tool to a clinical routine procedure. 2.
Using effect size as criterion subfield volumetry but especially ap-
proaches using a T2 high resolution image outperformed traditional
hippocampal volumetry regarding their ability to detect conditions
characterized by subtle hippocampal atrophy, i.e., comparisons be-
tween MCI vs CN, amyloid neg vs pos, and associations subfield cog-
nition/memory in cognitively intact subjects. T2 high resolution ap-
proaches also outperformed subfield approaches using the whole brain
T1 image for the comparisons between MCI vs CN and amyloid neg vs
pos. However, the T2 high-resolution approaches identified different
subfields as having the highest effect sizes for these comparisons. This
was not unexpected given the differences of the labeling scheme.
Reducing the differences of parcellation schemes between the three T2

Fig. 2. Bar plots of effect sizes for combined labels. CA
corresponds to all cornu ammonis labels, DG corresponds to
the dentate gyrus and Sub to the subiculum. Please see text
for a description how these labels were generated for each of
the approaches. “Group” refers to the ability to detect a
group effect in a population consisting of cognitively normal
elderly controls, non-demented subjects with different de-
grees of mild cognitive impairment and subjects diagnosed
with Alzheimer's Disease. ‘MCI’ refers to the ability to detect
a group effect on subfield and mesio-temporal volumes in a
population consisting of cognitively normal elderly controls,
and non-demented subjects with different degrees of mild
cognitive impairment. ‘Abeta’ is the ability to detect an ef-
fect of amyloid positivity on subfield and mesio-temporal
volumes in cognitively normal subjects.

S.G. Mueller et al. NeuroImage: Clinical 17 (2018) 1006–1018

1014



high resolution approaches by combining labels and generating com-
pounded labels eliminated left/right differences within each method
and increased the consistency for the identification of the most affected
region across methods. None of the different T2 high resolution
methods tested had a clear advantage over the other methods. Each has
strengths and weaknesses that need to be considered when deciding
which one to use to get the best results from subfield volumetry in AD.

Attempts to use high resolution T2 images to measure subfield vo-
lumes have been made since the introduction of the hippocampal un-
folding technique by Zeineh et al. (2001) and have been intensified
after 3 T magnets became widely available in academic hospitals and
research institutions in the last decade. Despite its popularity for re-
search and the development of reliable, fast and computationally effi-
cient automated subfield volumetry approaches quantitative hippo-
campal subfield volumetry has yet to make the transition from research
to clinical application. One of the reasons for the delay is the relatively
lengthy acquisition time of about 9–13 min which is rather long for a
busy clinical setting. For this project, this issue was addressed by
shortening the acquisition time to about 8 min. Another reason is the
need for careful positioning that requires some knowledge of hippo-
campal anatomy. Despite detailed instructions incorrect positioning
with insufficient coverage of the hippocampus was a problem in the
early phase of this project and resulted in the exclusion of about 8% of
all acquired images. The problem was eliminated after adding the po-
sitioning information as a tab to the information displayed at the MR
console. The images acquired for ADNI2 were of similar quality as those
acquired in research settings. 12% were rated as not suitable for pro-
cessing mostly due to motion artifacts or poor contrast in the hippo-
campal formation which compares well with the percentage of images
excluded from processing in this population in research settings. Taken
together, it can be concluded that it is possible to obtain high resolution
T2 hippocampal images of suitable quality for manual and automated
subfield labeling within a reasonable acquisition time in a multi-site
project which makes it possible to use this sequence in imaging pro-
tocols for drug trials or for clinical purposes.

There are two ways to assess the performance of different subfield
volumetry approaches. The first is statistical efficiency which compares
approaches based on effect size or minimal number of subjects needed
to find any statistical difference. The second is biological plausibility
which addresses the question to what degree the measurement with the
highest effect size corresponds to the known histopathological features
of the disease process. AD is characterized by a well-defined progres-
sion of its histopathological hallmarks amyloid plaques and neurofi-
brillary tangles. Particularly the latter has been shown to be closely
associated with cognitive performance and neuron loss within the
hippocampus and mesio-temporal lobe (Giannakopoulos et al., 1996;
Giannakopoulos et al., 2007; Fukutani et al., 2000). The earliest site of
neurofibrillary tangle accumulation in the preclinical state of AD is the
trans-entorhinal cortex (BA 35) followed by the entorhinal cortex. The
tangles then progress to the hippocampus where they cause the most
prominent neuron loss in CA1 followed by that in the subiculum while
the dentate gyrus is relatively spared in the early clinical stages (West
et al., 1994). Subfield volumetry should ideally show the same kind of
progression, i.e., the most prominent volume loss in the trans-en-
torhinal cortex/entorhinal cortex in the early preclinical phase followed
by volume loss in CA1 (MCI and early AD) and subiculum (early AD)
and affect the dentate/hilus region in the more advanced stages. Based
on these considerations, CA1 and entorhinal cortex would be expected
to show the highest effect sizes in all comparisons except for “group”
where subiculum and eventually dentate gyrus are also affected.

Regarding statistical efficiency the findings of this project replicated
those of previous studies (e.g., De Flores et al., 2015; Mueller et al.,
2010) that showed that subfield volumetry based on a T2 high

resolution image outperforms hippocampus volumetry for the detection
of subtle and more localized atrophy characterizing the early stages of
AD as evidenced by the power and effect size calculations for “MCI” and
“Abeta”. This was expected given that the increased accuracy for the
detection of subtle atrophy was one of the major reasons for the de-
velopment of subfield volumetry. Nonetheless, it is satisfying that this
assumption was confirmed for all T2 high resolution approaches in-
vestigated here.

Approaches based on a high resolution T2 hippocampal image had
typically higher effect sizes than subfield approaches using the lower
resolution whole brain T1. This finding was also not unexpected. The
myelinated tissue of the stratum moleculare and lacunosum appears as
a very characteristic hypointense line in this image and its acquisition
parameters are usually set to maximize this contrast in the population
of interest. In contrast, T1 based subfield approaches use standard
whole brain T1 weighted images with a lower resolution whose contrast
has not been optimized for the hippocampus. On such images the
stratum moleculare and lacunare is slightly hyperintense compared to
the surrounding tissue and far less prominent although it is possible to
enhance it by acquiring and averaging multiple T1 images. Without any
strong information from the internal structure though, subfield par-
cellation by FS SUB is mostly guided by the outer hippocampal
boundaries and by the information from the probabilistic prior. This
limitation and the simplified non-anatomical parcellation scheme re-
duce the ability of FS SUB to detect subtle disease related atrophy and
explain why the subfields with highest effect sizes for the different
comparisons, do not reflect the known atrophy pattern very well despite
large effect sizes. The rationale behind subfield volumetry based on
hippocampal shape analysis inherently acknowledges the limited in-
formation about the internal structure in the T1 image and tries instead
to optimize the information provided by the outer boundaries.
However, the ability of surface-based approaches to detect subtle dis-
ease related effects is on the one hand limited by the existence of
physiological shape variants, e.g., the varying number of digitations in
the hippocampal head or rotational variants of the body, and on the
other hand by the fact that abnormalities restricted to a specific subfield
are often not well reflected on the surface. In addition, the shape
measure used in this analysis was the univariate summary index, se-
lected to be comparable to other methods. Multivariate approaches are
better suited to capture shape differences due to group differences.
These limitations explain why shape analysis had the lowest effect sizes
of the subfield specific approaches for comparisons assessing subtle
atrophy. It is important to emphasize in this context that the area where
shape analysis is likely to outperform the other approaches, i.e. its
ability to identify the region of maximal atrophy along the anterior-
posterior axis, was not tested in this project.

If effect size is used as the sole criterion, none of the different high
resolution hippocampal T2 based approaches consistently out-
performed the other approaches, i.e., the effect size differences between
the best performing labels of the three T2 based approaches were small
and mostly not significant. This leaves the question how well they were
able to detect the atrophy pattern associated with the disease process.
One of the major criticisms of the manual labeling approach used for
this project is that the labeling is restricted to the anterior third of the
hippocampal body. While there is no doubt that this approach would
miss localized atrophy in the posterior body, its effect sizes for the
detection of a less focal atrophy pattern compared well with the auto-
mated whole hippocampus labeling approaches. The manual labeling
identified CA1 or the neighboring CA1–2 transition area as the most
prominently affected subfields except for the “MCI” comparison in the
right hippocampus where the largest effect size was found in the den-
tate gyrus and CA3 area. The ranking of the effect sizes for the manual
labeling was also quite consistent across the comparisons. It is possible
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that the limited labeling approach that excluded difficult to trace re-
gions such as the hippocampal head and tail contributed to the con-
sistency of the findings. ERC however had often the smallest effect sizes
in these comparisons. The poor performance of ERC for the manual
labeling was not unexpected. The re-slicing of the image that is ne-
cessary to optimize the cross-section for hippocampal labeling and the
limited coverage of the ERC often aggravate partial volume artifacts in
the ERC region and thus the non-disease related variability. This was
different for ASHS. Except for the “group” comparison that identified
CA as the most affected subfield and the “cognitively normal vs MCI”
comparison that identified the right dentate gyrus as having the largest
effect size, ASHS identified ERC, neighboring Brodmann Area (BA) 36
or the parahippocampus as the regions with the highest effect size with
CA usually a close second. This is not surprising since ASHS is the only
labeling approach evaluated here that has been optimized for en-
torhinal/perirhinal volumetry. It is the only approach that has a sepa-
rate label for the transentorhinal cortex or BA 35 (Taylor and Probst,
2008) although the other, larger entorhinal/perirhinal labels out-
performed the BA 35 volume in all comparisons. A downside of the
detailed entorhinal/perirhinal labels was that it affected the con-
sistency of the ranking order of the effect sizes. FS 6.0 uses the most
detailed parcellation for hippocampal subfield labeling of all ap-
proaches investigated here. The detailed labeling makes the assessment
of this approach somewhat challenging because there exist no histo-
pathological studies that systematically investigated the distribution of
AD related abnormalities across layers of different subfields. As seen in
the assessment of the other high resolution T2 based methods, the
subfields showing the largest effect sizes varied between comparisons
and the consistency of the effect size order across comparisons was low.
The higher number of labels in FS 6.0 likely contributed to the low
consistency. Reducing the complexity of the labeling scheme by com-
bining labels increased the consistency of the findings between left and
right hippocampal volumes for each T2 approach and also across T2
approaches but reduced the effect sizes.

The observations regarding detailed labeling schemes in the pre-
vious paragraph point to another important requirement for biologi-
cally meaningful subfield labeling. The input images need to con-
sistently depict a minimal set of landmarks for these parcellation
schemes to work well. This minimal number is higher for more detailed
parcellations than for less sophisticated schemes. Furthermore, outputs
from automated subfield labeling routines should undergo a rigorous
visual quality control by raters who know the hippocampal anatomy
well enough to spot labeling inaccuracies. Such a quality control step
becomes more complicated with elaborate parcellation schemes that
require expert knowledge. These concerns raise the question if these
detailed rhinal and hippocampal parcellations of ASHS and FS 6.0
should not be reserved for high quality 3 T images with motion cor-
rection or even 7 T images that depict the landmarks reliably and are
addressing hypotheses that require such a detailed parcellation while
projects that do not acquire this kind of high quality image and do not
have layer specific hypotheses should consider reducing the complexity
of the labeling by combining to enhance reliability and reproducibility
across projects.

As mentioned before, each of T2 high resolution methods has its set
of strengths and weaknesses. Manual segmentation is time consuming
and therefore not an option for the processing of large datasets en-
compassing hundreds of images. It also requires experienced, specially
trained rater(s) who are not available everywhere. However, this
weakness can also turn into a strength because experienced raters can
adapt more easily to physiological and pathological shape and contrast
variants of the hippocampus than atlas-based automated subfield la-
beling approaches. ASHS, on the other hand, is based on multi-atlas
segmentation, which has become a very popular segmentation

approach in recent years, and produces state-of-the-art results in many
medical image segmentation tasks. However, ASHS relies on the accu-
racy of an intensity-matched registration of the images to be segmented
to a library of labeled images which is likely to suffer if the former has
been acquired with a different sequence or platform than the atlas
images. In the case of ASHS, this can be overcome by generating po-
pulation and magnet specific libraries, but this usually requires again
the input of expert raters who select the appropriate images and edit the
library labels. FS 6.0's main advantage is that its intensity models are
learned directly from the individual scan to be segmented, which makes
it less dependent on magnet type and sequence. However, FS 6.0 uses
the probabilistic information from an ex vivo atlas for this process and
thus its performance will be impaired in cases where the intensity
distribution deviates too much from the atlas due to shape variants or
due to the disease processes.

In conclusion, subfield volumetry outperformed hippocampal vo-
lumetry in their ability to detect subtle atrophy that characterizes the
early stages or preclinical stages of AD: T2 high resolution based ap-
proaches performed better than T1 based approaches but the latter have
the advantage that they do not require the acquisition of a dedicated
image. The automated T2 based subfield labeling approaches tested in
this project compared well with the manual approach and their accu-
racy is likely to further improve in the future. However, just as for
manual labeling approaches, the accuracy of the automated algorithms
depends on the quality of the image that is being labeled and on how
well the atlas or a priori information used by the algorithm reflects the
process of interest.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.12.036.
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