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Abstract  40 

 41 

Gonadotropin-releasing hormone (GnRH) from the hypothalamus regulates synthesis and 42 

secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior 43 

pituitary gonadotropes. LH and FSH are heterodimers, comprised of a common -subunit and 44 

unique -subunits, which provide biological specificity and are limiting components of the mature 45 

hormone synthesis. Gonadotrope cells respond to GnRH via specific expression of the GnRH 46 

receptor. GnRH induces the expression of gonadotropin genes and of the GnRH receptor by 47 

activation of specific transcription factors. The JUN (c-Jun) transcription factor binds to AP-1 sites 48 

in the promoters of target genes and mediates induction of the FSH gene and of the GnRH 49 

receptor in the gonadotrope-derived cell lines. To analyze the role of JUN in reproductive function 50 

in vivo, we generated a new mouse model that lacks JUN specifically in GnRH receptor-expressing 51 

cells (JUN-cKO). JUN-cKO mice displayed profound reproductive anomalies such as reduced LH 52 

levels resulting in lower gonadal steroid levels, longer estrous cycles in females, and diminished 53 

sperm numbers in males. Unexpectedly, FSH levels were unchanged in these animals, while GnRH 54 

receptor expression in the pituitary was reduced. Steroidogenic enzyme expression was reduced in 55 

the gonads of JUN-cKO mice, likely as a consequence of reduced LH levels. GnRH receptor driven 56 

Cre activity was detected in the hypothalamus, but not in GnRH neuron. Female, but not male, 57 

JUN-cKO mice exhibited reduced GnRH expression. Taken together, our results demonstrate that 58 

GnRH receptor expression levels depend on JUN and are critical for reproductive function.  59 

 60 

 61 

 62 



Precis  63 

Knock-down of JUN in the GnRH receptor-expressing cells leads to diminished reproductive 64 

capacity, reduced GnRH receptor expression and lower serum LH in male and female mice. 65 

 66 

Introduction 67 

 68 

Mammalian reproduction is regulated by the hypothalamic-pituitary-gonadal (HPG) axis. The 69 

hypothalamic decapeptide gonadotropin-releasing hormone (GnRH) is the final brain output that 70 

regulates both expression and secretion of gonadotropins, luteinizing hormone (LH) and follicle 71 

stimulating hormone (FSH) from the anterior pituitary gonadotropes (1). This function is mediated 72 

by gonadotrope-specific expression of the GnRH receptor, which belongs to the rhodopsin family 73 

of seven transmembrane G-protein coupled receptors (2). LH and FSH in turn stimulate 74 

steroidogenesis and gametogenesis in the gonads (3, 4).  75 

 Gonadotropin levels are primarily regulated by transcription of their unique β-subunits, 76 

which provide biological specificity. Alternations in the transcription of β-subunits correlate with 77 

changes in the concentration of the mature hormones in the circulation (5, 6). The β-subunits 78 

heterodimerize with a common α-subunit to form the mature glycoproteins (7). GnRH induces 79 

LHβ (Lhb), FSHβ (Fshb) and GnRH receptor (Gnrhr) transcription via induction of specific 80 

immediate-early genes: EGR1 that regulates Lhb transcription; and FOS and JUN, which activate 81 

both Fshb and Gnrhr transcription (4). The FOS and JUN transcription factors form the AP-1 82 

heterodimer, which is rapidly and transiently activated (8). Both mouse and human Fshb and 83 

Gnrhr genes are induced by GnRH via AP-1 (9-13). Transcriptome analysis demonstrated that 84 



AP-1 members are strongly induced by GnRH in LβT2 cells (14) and in primary rat gonadotrope 85 

cells (15). 86 

Responsiveness of the Fshb gene to GnRH is conveyed by AP-1 response elements in the 87 

proximal promoter (9,16-19). GnRH induces FOS (c-Fos), FOSB, JUN (c-Jun) and JUNB, but not 88 

JUND in the LβT2 cell line, a model of mature gonadotropes. A combination of these factors binds 89 

the AP-1 site in the Fshb promoter (9). In the αT3 gonadotrope cell line, GnRH regulates Gnrhr 90 

expression via AP-1, as well (11, 20). JUN homodimer, or a heterodimer with FOS, FOSB, FRA1 91 

or FRA2, binds the mouse Gnrhr promoter at two different sites (13, 21).  AP-1 heterodimer of 92 

JUN and FOS also regulates expression of the human GNRHR gene by GnRH (22). 93 

Although gonadotrope cell models, such as LβT2 and αT3 cells, facilitated identification 94 

of transcription factors that lead to induction of gonadotrope genes, it is critical to determine the 95 

roles of these transcription factors in vivo. LHβ induction by GnRH is mediated by the EGR1 96 

transcription factor. EGR1 is an immediate early gene and a member of the zinc finger family of 97 

transcription factors. EGR1 plays a non-redundant role in reproduction, and other family members 98 

are unable to compensate. Consistent with this, global EGR1 knockout mice are infertile and lack 99 

LH expression resulting in blunted sex steroid hormone synthesis (23, 24). FOS also plays non-100 

redundant roles in reproduction in vivo (25). In the pituitary, FOS is critical for gonadotropin gene 101 

expression, while expression of another glycohormone subunit, TSHβ (Tshb) is not affected. In 102 

the hypothalamus, FOS is expressed in both kisspeptin and GnRH neurons during the preovulatory 103 

surge and can be used as a marker of their activation (26-28). FOS is necessary for normal 104 

kisspeptin neuron numbers and Kiss1 expression, primarily in the female, while GnRH neuron 105 

location, axon targeting or gene expression do not depend on FOS (25).  106 



Since JUN is an obligatory heterodimerization partner of FOS for DNA binding (8), we 107 

used c-Junflox/flox mice crossed to GnRH receptor Cre animals to create mice that lack JUN 108 

specifically in the GnRH receptor-expressing cells. These conditional knockout mice, JUN-cKO, 109 

were used to analyze the reproductive physiology and determine the cell-specific role of JUN in 110 

reproduction.  111 

 112 

Materials and Methods 113 

 114 

Cell lines and transient transfection 115 

LβT2, a gift from Dr. Pamela Mellon (UCSD), were maintained in DMEM with 10% FBS at 37˚C 116 

and 5% CO2. The line was authenticated with RT-PCR based expression analysis of endogenous 117 

gonadotropin β subunits. For transfection, LβT2 cells were plated in 12-well plates one day prior 118 

to transfection with FuGENE 6 transfection reagent (Roche Molecular Biochemicals, Indianapolis, 119 

IN), 0.1 µg expression vectors, 0.5 µg of a luciferase-reporter plasmid (reported previously (17, 120 

29-31)) and 0.1 µg of TK β-galactosidase, a reporter plasmid driven by a Herpes virus thymidine 121 

kinase (TK) promoter as a control for transfection efficiency. cDNA for the AP-1 transcription 122 

factors were in the same backbone under the same promoter, and their expression was evaluated 123 

by western blot. Forty-eight hours after transfection, cells were lysed with 100 nM KPO4 buffer 124 

containing 0.2% Triton X-100 luciferase activity measured on a luminometer (Veritas Microplate 125 

luminometer from Turner Biosystems) by injecting 100 µl of buffer containing 25 mM Tris pH 126 

7.8, 15 mM MgSO4, 10 mM ATP, and 65 µM luciferin into each well. Using the Tropix Galacto-127 

light β-galactosidase assay (Applied Biosystems, Foster City, CA) and following the 128 

manufacturer’s instructions, β-galactosidase activity was measured subsequently. Transfections 129 



were performed in triplicate and repeated a minimum of three times. 1-way ANOVA statistical 130 

analysis with Tukey's posthoc test was performed using the JMP program with significance set at 131 

p<0.05. 132 

 133 

Animals 134 

Mice lacking c-Jun in GnRH receptor-expressing cells were obtained by crossing c-Junflox/flox mice 135 

with GnRH-Receptor-Cre (GRIC) mice. Briefly, c-Junflox/flox mice, in which the only coding exon 136 

of the c-Jun allele is flanked by LoxP sites (32, 33), were created by Dr. Randall Johnson (UCSD, 137 

California). Gnrhrtm1(cre)Uboe mice (GnRH receptor-internal ribosome entry site-Cre, GRIC) carry a 138 

knock-in GnRH receptor allele fused to an internal ribosome entry site and a Cre transgene. GRIC 139 

drives Cre expression in pituitary gonadotrope cells (34). Since some Cre expression is also 140 

observed in male germ cells in these animals (35), the GRIC allele was always introduced via the 141 

female. Homozygous c-Junflox/flox Cre+ mice served as experimental mice, while Cre- littermates 142 

were used as controls. TdTomato reporter mice, Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, were  obtained 143 

from Jackson laboratory (strain 007909) and crossed to GRIC mice to analyze Cre activity. 144 

Animals were maintained under a 12-hour light, 12-hour dark cycle and received food and water 145 

ad libitum. All experiments were performed with approval from the University of California 146 

Animal Care and Use Committee and in accordance with the National Institutes of Health Animal 147 

Care and Use Guidelines using 8-week-old animals, unless indicated otherwise. Males and females 148 

were analyzed separately to determine potential sex differences. At least 6 animals per sex per 149 

genotype were analyzed and statistical differences between Cre+ and Cre- were determined by 150 

Student’s T-test and Tukey’s test for multiple comparison. 151 



Fertility studies – 8-week-old Cre+ and Cre- male or female mice were individually paired with 152 

an adult C57BL/6 mouse of the opposite sex, and the presence of litters was monitored daily over 153 

a period of 4 months. Additionally, starting at 8 weeks of age, a separate cohort of female mice 154 

was assessed for estrous cycle stage with daily vaginal smears for 5 weeks. 155 

Sperm count - The epididymides were dissected, macerated, incubated in 1 ml DMEM at room 156 

temperature for 30 minutes with shaking. Sperm was cleared with a 70 m cell strainer, diluted 157 

with sterile water and counted with a haemocytometer. 158 

 159 

Histological analyses and immunohistochemistry 160 

Ovaries and testes were fixed overnight at 4°C in 4% paraformaldehyde or Bouin’s fixative, 161 

respectively. Tissues were dehydrated in ethanol, embedded in paraffin, cut into 10 μm thick 162 

sections, floated onto UltraClear™ Plus Microslides (Denville Scientific Inc, Holliston, 163 

Massachusetts) and stained with hematoxylin and eosin. 164 

Pituitaries were fixed in 4% paraformaldehyde, embedded in paraffin, and cut to 10 μm. 165 

Slides were deparaffinized in xylene and rehydrated. Antigen unmasking was performed by 166 

heating for 10 minutes in a Tris-EDTA-0.3% Triton X and endogenous peroxidase was quenched 167 

by incubating for 10 minutes in 0.3% hydrogen peroxide. Slides were then blocked with 20% goat 168 

serum and incubated with primary antiserum against LH (1:300 raised in rabbit, National Hormone 169 

and Peptide Program, NIDDK) overnight at 4°C. After PBS washes, slides were incubated with 170 

biotinylated goat anti-rabbit IgG (1:300, BA-1000, Vector Laboratories, Burlingame, CA) for 30 171 

minutes. The Vectastain ABC elite kit (Vector Laboratories) was used per manufacturer's 172 

instructions, after which the DAB peroxidase kit was used for colorimetric staining. Slides were 173 

dehydrated in ethanol and xylene, and cover-slipped with Vectamount (Vector Laboratories).  174 

http://www.denvillescientific.com/node/4025


To visualize costaining of TdTomato and pituitary hormones, pituitaries were fixed in 4% 175 

paraformaldehyde, frozen in OCT, and cut to 12 μm sections using Leica cryostat. Hypothalami 176 

were sectioned to 30 μm sections for GnRH staining. Slides were blocked with 20% goat serum 177 

and incubated with primary antibodies against LH or FSH (1:300 raised in rabbit, National 178 

Hormone and Peptide Program, NIDDK) or GnRH (provided kindly by Greg Anderson, University 179 

of Otago; Dunedin, New Zealand (36)) overnight at 4°C. After PBS washes, slides were incubated 180 

with biotinylated goat anti-rabbit IgG (1:300, BA-1000, Vector Laboratories, Burlingame, CA) for 181 

30 minutes; followed by streptavidin-Cy5 (1:500, Molecular Probes, Thermo Fisher) for 30 182 

minutes. Secondary antibody-only controls were performed and determined that endogenous 183 

TdTomato expression was strong for visualization and that its emission in the 184 

TdTomato/Rhodamine channel overlaps with FITC/Alexa 488 channel. Thus, Streptavidin-Cy5 185 

was used for visualization of LH-, FSH- or GnRH-expressing cells and slides cover-slipped using 186 

Vectasheild (Vector Laboratories). To determine percent co-expression, we counted how many of 187 

the hundred LH- or FSH-containing cells express TdTomato and vice versa. We counted at least 188 

3 non-overlapping fields of view in 3 different sections per mouse (=9 fields), and stained 189 

pituitaries from 3 male and 3 female Cre+ mice. 190 

  191 

qPCR analyses 192 

Tissues were dissected, total RNA extracted and reverse transcribed using Superscript III 193 

(Invitrogen, CA). qPCR was performed using an iQ SYBR Green supermix and an IQ5 real-time 194 

PCR machine (Bio-Rad Laboratories, Hercules, CA) with primers listed in Table 1 under the 195 

following conditions: 95°C for 15 min, followed by 40 cycles at 95°C for 20 sec, 56°C for 30 sec, 196 

and 72°C for 30 sec. A standard curve with dilutions of 10 pg/well, 1 pg/well, 100 fg/well, and 10 197 



fg/well of a plasmid containing LH, or FSH cDNA, was generated in each run with the samples. 198 

The amount of the gene of interest was calculated by comparing the threshold cycle obtained for 199 

each sample with the standard curve generated in the same run. Replicates were averaged and 200 

divided by the mean value of the GAPDH housekeeping gene in the same sample using Ct 201 

method. After each run, a melting curve analysis was performed to confirm that a single amplicon 202 

was generated in each reaction. Statistical differences in expression between genotypes were 203 

determined by Student’s T-test, and Tukey’s HSD for multiple comparisons using JMP software 204 

(SAS Institute; Cary, North Carolina). 205 

 206 

Hormone analyses 207 

For serum collection, mice were sacrificed between 9-11 am by isoflurane inhalation and blood 208 

was obtained from the inferior vena cava. The blood was left to coagulate for 15 minutes at room 209 

temperature, and then centrifuged at 2000 RCF for 15 minutes for serum separation. Hormone 210 

assays were performed by the University of Virginia, Ligand Core. The University of Virginia 211 

Center for Research in Reproduction Ligand Assay and Analysis Core is a fee-for-service core 212 

facility and is in part supported by the Eunice Kennedy Shriver NICHD/NIH Grant U54-HD28934. 213 

LH was analyzed using a sensitive two-site sandwich immunoassay (37), and mouse LH reference 214 

prep (AFP5306A; provided by Dr. A.F. Parlow and the National Hormone and Peptide program) 215 

was used as standard. FSH was assayed by RIA using reagents provided by Dr. A.F. Parlow and 216 

the National Hormone and Peptide Program, as previously described (38). Mouse FSH reference 217 

prep AFP5308D was used for assay standards. Steroid hormone levels were analyzed using 218 

validated commercially available assays, information for which can be found on the core’s 219 

website: http://www.medicine.virginia.edu/research/institutes-and-programs/crr/lab-220 



facilities/assay-methods-page and reported in (39). Limits of detection were 0.24 ng/ml for LH, 221 

2.4 ng/ml for FSH, 3 pg/ml for estradiol, and 10 ng/dL for testosterone. Intra- and inter-assay 222 

coefficients of variation were 6.4%/8.0%, 6.9%/7.5%, 6.0%/11.4% and 4.4%/6.4% for the LH, 223 

FSH, estrogen (E2) and testosterone (T), respectively. For the assays used for this manuscript, 224 

inter-assay coefficients of variation data are the result of 30 assays for LH and FSH, and 60 assays 225 

for E2 and T. Six animals per group were used for each hormone analysis. Statistical differences 226 

in hormone levels between wild-type and null group were determined by Student’s T-test, and 227 

Tukey-Kramer HSD for multiple comparisons using JMP software (SAS Institute; Cary, North 228 

Carolina).  229 

 230 

Results 231 

 232 

JUN induces FSH and GnRH receptor reporters in LT2 gonadotrope cell line. 233 

Given that the AP1 family of transcription factors is comprised of four FOS members (FOS 234 

(c-Fos), FOSB, FRA1 and FRA2) and three JUN members (JUN (c-Jun), JUNB and JUND), 235 

combinatorial heterodomerization of these provides a variety of different factors that can induce 236 

target genes. GnRH induces all family members in gonadotropes, except for JUND (9). Since AP-1 237 

heterodimers bind FSH (Fshb) and GnRH receptor (Gnrhr) promoters using EMSA (9, 13, 21), 238 

we first analyzed the level of induction of these target genes in gonadotropes with different 239 

combinations of AP-1 factors. cDNAs for the AP-1 transcription factors were cloned in the same 240 

vector backbone under the same promoter, and their expression was confirmed by western blot 241 

(data not shown). We also compared the induction with AP-1 overexpression to the induction by 242 

GnRH (G, Fig. 1). Since GnRH receptor reporter induction by GnRH was previously analyzed 243 



using T3-1 cells, a model of immature gonadotrope, we determine the level of induction in the 244 

model of mature gonadotrope, LT2 cells. GnRH induced FSH reporter 6.2 fold, and GnRH 245 

receptor reporter 2.4 fold. FRA1 (F1) and FRA2 (F2) did not induce FSH (Fig. 1A) or GnRH 246 

receptor (Fig. 1B) expression either alone, nor more highly in combination with either JUN or 247 

JUNB compared to JUN or JUNB alone. JUN in combination with FOS or FOSB induced FSH 248 

reporter to similar levels compared to the induction observed with GnRH treatment (Fig. 1A). JUN 249 

heterodimers induced FSH to higher levels compared to JUNB heterodimers with FOS or FOSB. 250 

GnRH receptor, on the other hand, was induced to similar levels by either JUN or JUNB 251 

heterodimers with FOS or FOSB (Fig. 1B). In LT2 cells, GnRH receptor is induced by GnRH 252 

2.4 fold, a similar level observed with AP-1 overexpression. Since JUN induces both AP-1 gene 253 

targets in gonadotrope-derived cell line, we next crossed c-JUNflox/flox mice to GnRH receptor Cre 254 

(GRIC) animals to analyze the role of JUN in gonadotropes in vivo.  255 

 256 

Reduced reproductive capacity but normal gonadotrope numbers in mice lacking JUN in 257 

GnRH receptor-expressing cells. Previous studies successfully used the GRIC allele to express 258 

Cre recombinase in gonadotropes to analyze transcription factors’ roles in gonadotropin gene 259 

expression (40-42). We used the GRIC allele to knockdown JUN and create a conditional JUN 260 

knockout (JUN-cKO). Because JUN is an immediate early gene that is expressed at a very low 261 

basal level, undetectable by immunostaining, we were unable to reliably demonstrate JUN 262 

knockdown in the gonadotrope.  Thus, to analyze Cre activity in the gonadotrope, and co-263 

expression of Cre and gonadotropin hormones, we used TdTomato reporter mice in which 264 

TdTomato is specifically induced in Cre-expressing cells, following Cre-mediated excision of the 265 

stop codon. Immunohistochemisty of frozen pituitary sections with antibodies to gonadotropin 266 



hormones, revealed faithful expression of the TdTomato fluorescence; that 98% of TdTomato 267 

expressing cells also express LH or FSH, consistent with the previous report (34). Furthermore, 268 

88% of cells that contain LH express TdTomato (Fig. 2A, white arrowheads indicate LH-269 

containing cells lacking TdTomato expression). 76% of FSH-containing cells express TdTomato 270 

(Fig. 2B).  271 

JUN-cKO animals exhibited profound changes in their reproductive physiology; females 272 

had significantly longer estrous cycles, 7.4 days, compared to 4.4 days per cycle in controls (Fig 273 

3A, representative females’ stage of the estrous cycle over a 33-day period; Fig 3B, days per cycle 274 

in 6 females per genotype; JUN-cKO, cKO; control, Ctr). Male JUN-cKO mice had a 43% lower 275 

sperm count compared to controls (Fig. 3C). JUN-cKO mice also displayed longer time intervals 276 

in between litters, when paired with wild type C57BL/6 mice of the opposite sex (Fig. 3D, female 277 

cKO data presented, male data not shown).  278 

To assess the role of JUN in gonadotrope differentiation, we stained pituitaries from 279 

JUN-cKO and control mice for LH to determine the number of gonadotropes. The morphology 280 

and size of JUN-cKO (cKO, Cre+) and control (Ctr, Cre-) pituitaries were indistinguishable (Fig. 281 

4A). We then counted gonadotropes and determined that animals of both sexes and both genotypes 282 

contained the same numbers of gonadotropes (Fig. 4B). Therefore, the lack of JUN in the 283 

gonadotropes did not affect gonadotrope numbers. The JUN-cKO and control animals were of the 284 

same size and weight (data not shown). Therefore, despite the same number of gonadotropes, the 285 

lack of JUN in gonadotrope cells results in subfertility in both sexes.  286 

 287 

JUN-cKO mice have reduced LH levels. Analyses of gonadotropin levels in the circulation 288 

revealed that JUN-cKO males exhibited 49% lower serum LH compared to control males, while 289 



the LH concentration in JUN-cKO diestrus females was reduced by 56% compared to control 290 

females in diestrus (Fig 5A). Although GnRH induces FSHβ via FOS and JUN in the gonadotrope-291 

derived cell line, FSH levels were the same in both JUN-cKO and control males and in JUN-cKO 292 

and control diestrus females (Fig 5B). Steroid hormone levels were reduced; testosterone was 293 

lower in males, while estradiol was lower in females (Fig. 5C), likely due to reduced LH levels in 294 

the circulation. 295 

We also analyzed gonadotrope gene expression at 8 weeks of age. Consistent with the 296 

reduction in LH concentration in the circulation, Lhb mRNA level was 29% lower in JUN-cKO 297 

males (Fig. 6A) and 62% lower in JUN-cKO diestrus females compared to Cre- littermate controls 298 

(Fig. 6B). Consistent with unaltered FSH levels, there was no difference in Fshb expression 299 

between genotypes (Fig. 6C, D). Expression of the Gnrhr (GnRH receptor) mRNA, however, was 300 

reduced by 28% in JUN-cKO males (Fig. 6E) and by 56% in JUN-cKO females (Fig. 6F). 301 

Expression of the common Cga subunit(GSU) that heterodimerizes with both LHβ and FSHβ 302 

was unaffected (Fig. 6G, H). Previous studies analyzing Lhb expression did not reveal a role for 303 

the FOS and JUN AP-1 family, while the importance of AP-1 in GnRH receptor induction is well 304 

established (13,43). Our results may point to a role for AP-1 in Lhb expression. On the other hand, 305 

concomitant reduction of both Lhb and Gnrhr expression in both JUN-cKO males and females 306 

may implicate diminished GnRH receptor levels in lower Lhb mRNA. This is consistent with 307 

previous studies postulating that the receptor concentration correlates with LHβ levels (44).  308 

 309 

Reduced LH target genes in the gonads of JUN-cKO mice. We next analyzed potential 310 

downstream effects of reduced LH levels in the gonads in both males and females at 12 weeks of 311 

age. Male JUN-cKO mice had a 22% reduction in seminal vesicle weight compared to controls 312 



(Fig. 7A), which is consistent with reduced intratesticular testosterone levels (Fig. 7B). We also 313 

examined the expression of steroidogenic enzymes, which are induced by LH signaling. While 314 

Star (Steroidogenic acute regulatory protein, StAR) expression was unchanged, expression of 315 

Cyp11 and Cyp17 was reduced by 20% and 25%, respectively (Fig 7C, D, E). Expression of the 316 

FSH target gene in the testis, Shbg (Sex hormone binding globulin; androgen-binding protein, 317 

ABP) was unaffected, consistent with the unperturbed FSH levels in the circulation (Fig. 7F). We 318 

observed lower sperm numbers, as shown above. Testosterone levels, that were reduced due to the 319 

reduction in LH concentration, are necessary for spermatogenesis and for the maintenance of the 320 

blood-testis barrier. Blood-testis barrier is established via expression of tight junction proteins 321 

from the Claudin family (45,46). Expression of claudin 11 (Cldn11) did not change (data not 322 

shown). Claudin 3 (Cldn3) expression is regulated by androgens (47), however despite a decrease 323 

in testosterone, expression of Cldn3 was not significantly reduced (Fig. 7G, p=0.1). Given that 324 

sperm numbers in the epididymides were diminished, we assessed markers for several stages of 325 

spermatogenesis (48) and determined that the early stage spermatogenesis marker Sycp3 to be 326 

unchanged, while later stage markers such as Spert and Elp were reduced in JUN-cKO males by 327 

31% and 36% compared to the controls, respectively (Fig. 7H, I, J). Histological analyses of the 328 

testes uncovered small number of abnormal seminiferous tubules (~5%) lacking mature sperm in 329 

the JUN-cKO males (Fig. 7L). Thus, lack of JUN in GnRH receptor-expressing cells in JUN-cKO 330 

males causes lower expression of steroidogenic enzymes and reduced levels of the late stage 331 

spermatogenesis markers, corresponding to reduced sperm count.  332 

 The ovaries of JUN-cKO mice weighed 37% less than control ovaries and contained fewer 333 

corpora lutea (Fig. 8A, B, C). JUN-cKO females expressed 43% lower level of the LH target gene 334 

Cyp17a1 (Fig. 8D), while the FSH target gene Cyp19a1 (aromatase) was unchanged in the ovaries 335 



(Fig. 8E). Given that antral stage of folliculogenesis is not affected corresponding to unaltered 336 

FSH, fewer corpora lutea may stem from reduction in prolactin levels, since prolactin is necessary 337 

for corpus luteum function in rodents (49, 50). We measured expression of prolactin (Prl) in the 338 

pituitary and determined that Prl mRNA is reduced by 67% in JUN-cKO female mice (Fig. 8F). 339 

Therefore, female as well as male gonads from JUN-cKO animals exhibit a phenotype 340 

corresponding to diminished reproductive capacity.  341 

 342 

Cre activity in the hypothalamus. The lack of an effect on Fshb expression and FSH levels in 343 

the circulation was unexpected, given previous evidence in the literature. In addition to inadequate 344 

Cre activity in a portion of gonadotrope cells, other JUN family members such as JUNB, that is 345 

also induced by GnRH (9), may compensate for the loss of JUN. Although JUN and JUNB exert 346 

non-overlapping functions in other tissues as evidenced by the different phenotypes of the 347 

respective knockout mice (32, 51), they may be able to substitute for each other in this scenario. 348 

To assess a possible compensatory increase in JUNB expression, we analyzed the level of Junb 349 

mRNA in the pituitaries of JUN-cKO and of control males and females. In both sexes, JUN-cKO 350 

animals exhibited an increase in JUNB expression in the pituitary (Fig. 9). Therefore, JUNB 351 

increase may be able to compensate for the loss of JUN for Fshb but not for Gnrhr expression.  352 

On the other hand, reduced expression of Gnrhr and Lhb may stem from extrapituitary 353 

sites. GnRH receptor is expressed in several hypothalamic nuclei and may be expressed in GnRH 354 

neurons themselves (52-58). We used TdTomato reporter mice to determine activity of Cre 355 

recombinase in the hypothalamus. We also performed immunostaining for GnRH to detect GnRH 356 

neurons and determine whether TdTomato is expressed in GnRH neurons following Cre excision 357 

of the stop codon. Coronal sections of the mediobasal hypothalamus demonstrated that TdTomato 358 



was expressed in the arcuate nucleus in GRIC+ animals, while GnRH axon terminals were located 359 

in the median eminence (Fig 10A, GnRH, green; TdTomato, red).  Staining of the preoptic area 360 

detected GnRH neurons in their expected location, while TdTomato-expressing cells were situated 361 

more laterally (Fig. 10B, GnRH, green; TdTomato, red).  There was no overlap of the green and 362 

red fluorescence in any section from either male or female mice. We also performed qPCR on 363 

biopsy punched preoptic area and analyzed Gnrh expression. Gnrh expression did not differ in 364 

control and JUN-cKO male mice (Fig. 10C). However, Gnrh expression was reduced by 56% in 365 

the female JUN-cKO mice (Fig. 10D). Given that GnRH neurons of either sex did not express 366 

TdTomato reporter, we hypothesize that lower Gnrh mRNA levels in the female may stem from 367 

the upstream regulatory neurons that may be affected by either lack of JUN in GnRH receptor-368 

expressing cells, or by lower estrogen levels.  369 

 370 

Discussion  371 

The molecular mechanisms of GnRH regulation of its target genes in pituitary gonadotropes have 372 

been previously examined primarily in cell lines and in primary cultures; however, a role of GnRH-373 

induced transcription factors regulating gonadotrope genes in vivo is just beginning to emerge. As 374 

an immediate-early gene, JUN is rapidly induced in gonadotrope cells following GnRH treatment, 375 

both in vivo (59) and in model cell lines (14, 60). In these, JUN mediates GnRH induction of the 376 

FSH (Fshb) gonadotropin subunit (9) and of the GnRH receptor (Gnrhr) (12) by binding to the 377 

AP-1 site in the proximal promoters of these genes following dimerization with FOS. Herein, we 378 

examined the role of JUN in HPG axis gene expression in vivo, using c-Junflox/flox mice, crossed to 379 

GRIC, in which Cre expression is driven by the GnRH receptor promoter. We demonstrate that 380 



JUN expression in the GnRH receptor-expressing cells is necessary for normal reproductive 381 

function.  382 

 Mice lacking JUN in GnRH receptor-expressing cells exhibit a number of reproductive 383 

defects. Males have decreased Lhb and Gnrhr expression, which results in a decline in LH 384 

concentration in the circulation, and consequent reduction in testicular function, including lower 385 

expression of several steroidogenic enzymes, leading to reduced testosterone levels, smaller 386 

seminal vesicles and fewer mature spermatozoa. Females, as well, have lower LH, which results 387 

in longer estrous cycles, reduced expression of Cyp17 steroidogenic enzyme and fewer corpora 388 

lutea in the ovaries. Reduced number of corpora lutea, despite normal numbers of antral follicles, 389 

may stem from diminished intra-ovarian steroid hormone levels due to lower expression of Cyp17. 390 

Alternatively, fewer corpora lutea may be a result of abrogated prolactin levels. Prolactin has a 391 

critical permissive role for LH action in the ovary, and is necessary for luteinization and corpus 392 

luteum function in rodents (49, 50). Reduced prolactin expression likely derives from decreased 393 

levels of steroid hormones. Estrogen strongly upregulates prolactin in females (61, 62). In males, 394 

expression of aromatase in the pituitary allows for testosterone conversion to estrogen, which then 395 

increases prolactin levels (63). Therefore, decreased estrogen may contribute to diminished 396 

prolactin expression and reduced number of corpora lutea. Previous studies analyzing regulation 397 

of Lhb expression failed to find a role for JUN, while JUN is involved in Gnrhr induction. Since 398 

Lhb expression is dependent on GnRH receptor numbers at the surface of gonadotropes (44), we 399 

believe that reduced levels of GnRH receptors are a cause of diminished LH levels. On the other 400 

hand, it is possible that AP-1 may play a role in Lhb expression in vivo. 401 

 Unexpectedly, FSH levels were unchanged in the cKO animals, although in LT2 model 402 

cell line JUN mediates GnRH induction of the Fshb subunit (9). This may illustrate discrepancy 403 



between cell models and in vivo function, as suggested before (64). GRIC model has been used in 404 

the recent literature to analyze a role of transcription factors in the gonadotrope (40-42). We 405 

determined a significant overlap between LH and TdTomato expression.  Although difference in 406 

the percent coexpression of the reporters and LH between previously reported results (34) and 407 

results reported herein is small, it may stem from different levels of fluorescent reporter 408 

expression. 12% of LH-expressing cells lack TdTomato expression demonstrating insufficient Cre 409 

activity in these cells. The number of FSH-expressing cells which do not have sufficient Cre 410 

expression is higher, at 24%. It is possible that FSH-containing cells that do not express functional 411 

Cre are sufficient to maintain normal levels of FSH in the circulation. Especially since FSH can 412 

be constitutively secreted (65, 66) and thus, would be less dependent on the level of GnRH receptor 413 

expression. Lack of GnRH receptor expression in a portion of the FSH-containing cells was 414 

reported previously (35), although it was postulated that this population is present only during 415 

development. Data presented herein imply that FSH-containing cells without GnRH receptor 416 

persist in adulthood, which is consistent with several previous studies (67, 68). Compensation by 417 

JUNB may explain unchanged FSH levels as well, although in most tissues JUN and JUNB have 418 

opposing effects (69, 70). However, FSH was more highly induced by JUN heterodimers than 419 

JUNB heterodimers, while GnRH receptor induction was the same with either JUN or JUNB 420 

heterodimers with FOS or FOSB. The effect on GnRH receptor expression may indicate that either 421 

the GnRH receptor is more sensitive to the levels of JUN, or that JUNB cannot compensate for 422 

JUN to induce GnRH receptor expression.  423 

 Given that GRIC allele also drives Cre expression in the testes, in the germ cells (35), there 424 

is a concern that gonadal phenotype in the male mice may be caused by a lack of JUN in testes. 425 

However, that is unlikely for several reasons. Specific lack of JUN in male and female JUN-cKO 426 



results in the same outcomes: lower expression of Gnrhr and Lhb mRNA in the pituitary, reduced 427 

LH in the circulation and diminished expression of LH-dependent genes in the gonads, resulting 428 

in lower sex steroid levels. In fact, in the female JUN-cKO, all these effects are exacerbated 429 

compared to the male JUN-cKO. Furthermore, known targets of AP-1 in the testes are not affected. 430 

Although AP-1 binding site was identified in the FSH receptor promoter, regulating expression of 431 

the FSH receptor by FSH (71), in the testes of JUN-cKO males FSH receptor expression is not 432 

affected (data not shown). AP-1 factors also play roles in tight junction formation and blood-testis 433 

barrier (45, 46). Blood-testis barrier, which is necessary for spermatogenesis and fertility, is 434 

established via expression of tight junction proteins, primarily Claudin 11 (72-74). Expression of 435 

Claudin 11 is unaltered in JUN-cKO mice (data not shown). Claudin 3, whose expression is 436 

regulated by androgens, forms the stage-specific basal barrier in mice (47).  Despite a decrease in 437 

circulating testosterone, expression of Claudin 3 is not significantly changed either. Since late 438 

stage spermatogenesis markers are reduced, AP-1 may regulate spermatogenesis directly (75). Due 439 

to a lack of known AP-1 target genes in germ cells, we are not able to delineate if decrease in late 440 

stage spermatogenesis may be due to testicular expression of Cre or to reduced levels of LH and 441 

diminished testosterone. Therefore, since males and females JUN-cKO exhibit similar phenotypes, 442 

and Cre is not expressed in the ovary, the observed effects likely stem from the gonadotrope 443 

specific JUN knockdown. 444 

 Cre expression is driven by the GnRH receptor regulatory region, which is expressed in 445 

several other extrapituitary sites. GnRH receptors, in addition to pituitary gonadotrope, are 446 

expressed in the mediobasal hypothalamus, amygdala and hippocampus (52), but the specific 447 

neuronal populations that express GnRH receptors are not known. Several studies identified that 448 

GnRH receptor is expressed in about 50% of GnRH neurons (55-58), suggesting that GnRH 449 



receptor may contribute to autocrine GnRH pulse generation (76, 77). Using this same GRIC 450 

mouse, ablation of GnRH receptor-expressing neurons resulted in elevated number of GnRH 451 

neurons (78), implying that GnRH receptor is not expressed in GnRH neurons themselves, but it 452 

may be expressed in afferent neurons that regulate GnRH neurons. It was also postulated that 453 

central GnRH via hypothalamic GnRH receptors upstream of GnRH neurons, may participate in 454 

the pulsatile release and preovulatory surge (79). Our analyses of GnRH receptor-driven Cre 455 

expression in the hypothalamus, demonstrated Cre activity in the arcuate nucleus and in the 456 

preoptic area, but not in GnRH neurons themselves. Examination of GnRH expression determined 457 

that Gnrh mRNA is significantly reduced specifically in female JUN-cKO. We previously 458 

observed female specific effects using FOS null animals (25). Since there was no overlap between 459 

GnRH neurons and TdTomato expression, these findings suggest that GnRH expression is 460 

mediated in part via activity-regulated gene induction by afferent neurons which may be affected 461 

by reduced estrogen levels or by JUN knockdown. A number of previous reports determined that 462 

hypothalamic factors involved in reproductive function, such as RFamide-related peptide 3 463 

(RFRP-3), a mammalian gonadotropin-inhibitory hormone ortholog; senktide, a neurokinin B 464 

receptor agonist; and oxytocin; elicit changes in LH serum levels, not only via alterations of GnRH 465 

secretion but by modifications of Gnrh transcription (80-82). Alternatively, diminished Gnrh 466 

mRNA transcription may be secondary to reduced LH levels that caused lower estrogen (83, 84). 467 

Similar to other studies using whole animal models where endocrine loops are dysregulated, we 468 

are not able to distinguish between these alternatives.   These results may indicate that the observed 469 

reproductive phenotype in females may stem from reduced GnRH expression.  470 

In summary, our analyses of the mice that lack JUN in GnRH receptor-expressing cells 471 

revealed several physiological roles of this gene in the reproductive axis. Reduced GnRH receptor 472 



and lower LH levels contribute to diminished sex-steroid hormone levels, impaired 473 

spermatogenesis and reduced numbers of corpora lutea. Unchanged FSH levels may be due to 474 

compensatory role of JUNB for this gene target but not for GnRH receptor, or to the presence of 475 

FSH gonadotropes that lack sufficient Cre activity. We demonstrate that JUN expression in GnRH 476 

receptor-expressing cells is necessary for normal reproductive function.  477 
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 745 

Figure Legends 746 

1. JUN-containing heterodimers induce both FSHβ and GnRH receptor reporters in LβT2 747 

cells.  Expression vectors for AP-1 isoforms were co-transfected with the mouse FSHβ (A) and 748 

GnRH receptor (B) reporters. In the separate sets of samples, cells transfected with the reporters 749 

were treated with vehicle (V) or GnRH (G, 10 nM GnRH, 5 hours). Data represents a mean of 3 750 



independent experiments each performed in triplicate, and significant induction compared to the 751 

empty vector control is indicated with *.  752 

 753 

2. TdTomato coexpresses with gonadotropin hormones. TdTomato reporter mice were crossed 754 

with GRIC to allow TdTomato expression in the Cre-dependent manner. Pituitaries from 755 

GRIC+/TdTomato- mice (not shown) and from GRIC+/TdTomato+ mice, from 4 separate litters, 756 

were sectioned and stained for LH and FSH. A, 88% of LH (green) cells coexpress TdTomato 757 

(red; while arrows indicate LH cells that do not express TdTomato); B, 76% of FSH cells coexpress 758 

TdTomato. One hundred gonadotropin hormone-containing cells were counted in 3 non-759 

overlapping fields of view in 3 sections from 3 different male and 3 female mice.  760 

 761 

3. Fertility is profoundly affected in JUN-cKO animals. A, Representative estrous cycle 762 

changes in Cre- control females (top) and JUN-cKO female (bottom) assessed by vaginal smears 763 

for 33 days starting at 8 weeks of age (E, estrus, P, proestrus, D/M (diestrus/metestrus). B, JUN-764 

cKO animals (black bars) have increased average cycle length (6 females per group) than Cre- 765 

controls (gray bars). C, Sperm count indicates 43% lower numbers in 8-week old JUN-cKO 766 

compared to control littermates. D, Animals were continuously present in the cages with wild-type 767 

mice of opposite sex and monitored daily for litters. JUN-cKO mice had longer time interval 768 

between litters. * indicates difference between control (Ctr, gray bars) and JUN-cKO (cKO, black 769 

bars), determined by Student’s T-test followed by Tukey’s HSD test. 770 

 771 

4. JUN is not required for gonadotrope differentiation. A, Pituitaries of control (Ctr, Cre-, 772 

cJunflox/flox homozygous without Cre recombinase) and JUN-cKO (cKO, Cre+, cJunflox/flox 773 



homozygous with Cre recombinase) were subjected to immunohistochemistry for LH to analyze 774 

number of gonadotrope cells. B, quantification in males and females of gonadotropes indicates 775 

that the lack of JUN has no effect on gonadotrope population (Ctr, Cre-, gray bars; cKO, Cre+, 776 

black bars). 777 

 778 

5. Lower LH levels in JUN-cKO animals. Six 8-week old control controls (Ctr, gray bars) and 779 

six JUN-cKO littermates (cKO, black bars) were analyzed for serum gonadotropin concentration. 780 

Females were monitored for the estrous cycle stage and analyzed in diestrus. Male and female 781 

JUN-cKO mice have lower level of LH than Cre- controls (A), while FSH is unchanged (B). 782 

Consequently, sex steroid levels are lower (C). Difference (*) between control (gray bars) and 783 

JUN-cKO (black bars) were determined by Student’s T-test followed by Tukey’s HSD test. 784 

 785 

6. Reduced LHβ and GnRH receptor expression in JUN-cKO mice. Pituitaries from six 8-786 

week old Cre- controls (Ctr, gray bars) and six JUN-cKO littermates (cKO, black bars) were 787 

analyzed for expression of gonadotrope genes by qPCR: Lhb (LHβ; A-males, B-females), Fshb 788 

(FSHβ; C-males, D-females), Gnrhr (GnRH receptor; E, F) and Cga (common GSU; G, H). 789 

Statistical significance (*) between control (gray bars) and JUN-cKO (black bars) were determined 790 

by Student’s T-test followed by Tukey’s test. 791 

 792 

7. Reduced seminal vesicle weight and spermatogenesis in male JUN-cKO mice. A, Seminal 793 

vesicles were dissected and measured to reveal reduced weight in 12-week old JUN-cKO males. 794 

B, Testes were homogenized and intratesticular testosterone measure. C-J, Testes were 795 

homogenized and mRNA extracted using Trizol. qPCR revealed lower expression of CYP11 (D) 796 



and CYP17 (E) steroidogenic enzymes and lower levels of mRNA for late stage spermatogenesis 797 

markers (I, J). K-L, Histological analyses of testes following H&E stain exhibits some abnormal 798 

seminiferous tubules in JUN-cKO males.  Difference (*) between control (Ctr, gray bars) and JUN-799 

cKO (cKO, black bars) were determined by Student’s T-test followed by Tukey’s HSD test. 800 

 801 

8. Reduced expression of LH target gene CYP17 and fewer corpora lutea in JUN-cKO 802 

females. A, Histological analyses of ovaries following H&E stain illustrates lower number of 803 

corpora lutea in JUN-cKO females.  B, Ovaries from JUN-cKO mice were smaller and C, had 804 

fewer corpora lutea. Ovaries were homogenized and mRNA extracted using Trizol. qPCR revealed 805 

lower expression of CYP17 (D) but not CYP19 (E) steroidogenic enzymes in 12-week old JUN-806 

cKO female mice. F, Prolactin (Prl) expression in the pituitary was reduced. Statistical 807 

significance (*) between control (Ctr, gray bars) and JUN-cKO (cKO, black bars) were determined 808 

by Student’s T-test followed by Tukey’s posthoc test. 809 

 810 

9. Increased JUNB expression. JUNB expression in the pituitaries of the 8-week old male and 811 

female control and JUN-cKO mice was analyzed to determine if JUNB expression is elevated in 812 

compensation for the lack of JUN. * indicates statistical significance determined by Student’s t-813 

test and Tukey’s posthoc analysis. 814 

 815 

10. Cre activity in the hypothalamus. A, Coronal sections at the level of the mediobasal 816 

hypothalamus demonstrate TdTomato reporter expression (red) and Cre activity in the arcuate 817 

nucleus, and GnRH axon terminals staining in the median eminence (green). B, Coronal section 818 

of the preoptic area shows that GnRH neurons (green) do not express TdTomato reporter (red). 819 



Male and female mice from 4 separate litters were used, and no sex differences were detected. C, 820 

GnRH expression (Gnrh) in the hypothalami of male mice is not altered. D, Reduced expression 821 

of Gnrh gene in the female JUN-cKO mice.  * indicates statistical significance determined by 822 

Student’s t-test and Tukey’s posthoc analysis. 823 

 824 

Table 1. Antibodies 825 

Antibody Species Dilution Provider, cat # and RRID 

LH rabbit  1:300 NHPP, AFP240580Rb;  RRID:AB_2665533 

FSH rabbit  1:300 NHPP, AFP-C0972881; RRID:AB_2687903 

Prolactin rabbit  1:300 NHPP, PRL; RRID:AB_2629220 

GnRH rabbit 1:5000 Greg Anderson, Univ. of Otago; RRID:AB_2721118 

 826 

 827 

Table 2. Primers 828 

Primers Forward Reverse 

Lhb (LH CTGTCAACGCAACTCTGG ACAGGAGGCAAAGCAGC 

Fshb (FSH GCCGTTTCTGCATAAGC CAATCTTACGGTCTCGTATACC 

Cga (aGSU) ATTCTGGTCATGCTGTCCATGT CAGCCCATACACTGGTAGATGG 

Gnrhr (GnRH 

receptor) 
GCCCCTTGCTGTACAAAGC CCGTCTGCTAGGTAGATCATCC 

Prl (prolactin) TGTTCCCAGCAGTCACCAT CAGCAACAGGAGGAGTGTC 

Star (StAR) GGAGGGGTGGTAGTCAGGAGA TCCCCTGTTCGTAGCTGCTG 

Cyp11 AAGTATGGCCCCATTTACAGG TGGGGTCCACGATGTAAACT 

Cyp17a1 ATCCTTGTCACGGTGGGAGA GGAGGTGAGTCCGGTCATTG 

Cyp19a1 

(aromatase) 
TTCCCATGGCAGATTCTTGTG CGAATCGGGAGATGTAGTG 

Shbg (ABP) GACATTCCCCAGCCTCATGCA TGCCTCGGAAGACAGAACCAC 

Cldn3 

(claudin 3) 
AACTGCGTACAAGACGAGACG GGCACCAACGGGTTATAGAAAT 

Gnrh (GnRH) CTACTGCTGACTGTGTGTTTG CATCTTCTTCTGCCTGGCTTC 

Gapdh TGCACCACCAACTGCTTAG GGATGCAGGGATGATGTTC 

 829 

 830 
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