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Abstract

Theoretical and Computational Investigation of Self-Assembly in Bio-inspired and
Polymeric Materials

by

Carl E. Rogers

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Phillip Geissler, Chair

Fabrication of materials through bottom-up, noncovalent self-assembly has the potential
to revolutionize many areas of science and engineering that depend upon the precise arrange-
ment and interaction of nanometer-scale particles. Theory and computation provide a useful
route to studying self-assembly of these materials due to their ability to study the kinetic and
thermodynamic features of simplified systems at a level of detail not possible in experiments.
In this thesis we study the self-assembly of two bio-inspired systems using a combination of
theory and computation. The first is comprised of archaeal chaperonin proteins that form
in-vitro two remarkably different structures: filamentous chains and layers of sheets. Using a
quasi-dynamical Monte Carlo algorithm, we show that the binary decision for sheet or string
formation can be explained by allowing for conformational changes between a sheet-favoring
state and a string-favoring state. Using advanced sampling techniques, we find that the
energy gap for this conformational change controls structure formation. The second system
is a self assembling cyclic peptide inside a block copolymer matrix. We develop a compu-
tationally efficient pseudospectral technique to simulate a Langevin dynamics derived from
the block copolymer field-theoretic Hamiltonian and demonstrate two different processes by
which nanoparticles may be incorporated into this framework.

In support of the peptide-polymer work, we develop a new algorithm for Metropolis
Monte Carlo simulations on high-performance graphics processing units (GPUs) that relies
on the local equilibration of non-interacting regions of a lattice system. We show how the
technique can better exploit the GPU memory hierarchy resulting in over 100-fold speedups.
This technique is well-suited for lattice systems with couplings beyond nearest neighbors and
systems with complicated local or dynamical constraints.

Finally, we investigate the implications for excluding volume in a φ4 − φ2 field theory,
representative of a block copolymer theory. We provide a simplified derivation for the re-
sponse of a Gaussian liquid to a volume-excluding solute. We apply this technique to a
discrete φ4 − φ2 theory and show that the effects of volume exclusion act independently of
the φ4 term. Finally, we show using Monte Carlo simulations that the stabilization provided
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by the φ4 term may be replaced by a hard constraint on density fluctuations that imparts
stability, while making the model’s connections to well-studied Gaussian models of liquids
more transparent.
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Chapter 1

Introduction

Fabrication of materials via the bottom-up, noncovalent self-assembly of constituent nanometer-
scale particles has the potential to revolutionize many areas of science and engineering, from
more efficient semiconductors to novel optical and plasmonic devices. A mix-and-wait ap-
proach to self assembly, in which the nanoparticles are added to a medium and allowed to
assemble, is attractive due to its simplicity and time and resource efficiency, but beyond the
design of the nanoparticles and the medium, this approach leaves assembly largely up to the
vagaries of chance. Without a thorough understanding of how random mixtures of particles
spontaneously assemble into extended superstructures, there is little hope for controlling
the spatial and orientational distribution of nanoparticles. Although limited progress has
been made in designing synthetic experimental systems that successfully self-assemble over
meaningful length-scales at a meaningful level of complexity, living systems clearly demon-
strate that reliable self organization can be achieved over nearly any length scale, and can
be utilized for a stunning variety of purpose. But beyond biomimicry, it is still unclear what
general principles and concepts are necessary to design de-novo systems that self assemble.
Straightforwardly varying parameters of a model system is akin to searching for a needle in
a high-dimensional haystack and typically results in disordered or defect-laden structures.
On the other hand, theory and computation provide a useful route to studying self-assembly
due to their ability to study the kinetic and thermodynamic features of simplified systems
at a level of detail not possible in experiments. Since interactions are non-covalent, pairwise
interaction energies in these systems are usually on the order of kT, and statistical physics
provides an ideal framework to describe the equilibrium and non-equilibrium behavior of
these systems. Thus, such an approach has the potential to elucidate mechanisms responsi-
ble for defect-free assembly in simplified systems that could serve as foundational principles
to designing successful experimental systems.

In this thesis we explore the self-assembly of two bio-inspired systems, and we extend
various techincal issues related to their study. In Chapter 2, we study a system of archaeal
chaperonin proteins, which are known to self-assemble into micron-scale structures when
purified in-vitro. Two remarkably different structures form in a largely binary fashion: ei-
ther bundles of filamentous chains, or layers of hexagonally packed sheets. Both structures
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are being investigated as templates for nanoscale devices. Using a newly developed quasi-
dynamical Monte Carlo simulation technique, we reproduce the assembled structures and
show that the binary decision for sheet or string formation can be explained by allowing
for conformational changes between a sheet-favoring state and a string-favoring state, and
that the energy gap for this conformational change controls which structure will eventually
form. Further, we show classical nucleation theory can explain this assembly as a compe-
tition to form structures with differing nucleation barriers. Finally, the dynamical aspects
of the Monte Carlo technique allow us to illustrate differences in the structural features of
equilibrium ground states and kinetically accessible assemblies.

In Chapter 3, we examine a system of self assembling cyclic peptides inside a block
copolymer matrix. Most studies to date have focused on the self assembly properties of
nanoparticle systems in a structureless solvent, whose only effect is to introduce a random
’buffeting’ force on the nanoparticles. The system studied in this chapter takes its inspiration
from materials science, where an increasingly popular trend has been to employ structured
solvents to aid in nanoscale assembly of materials. Block copolymers have been a solvent
of choice due to their ability to undergo mesoscopic phase separation on 1-100 nm length
scales, into a variety of self assembled phases. The basic theory of block copolymers is well-
known, and a variety of computational techniques are available to investigate complicated
polymer architectures, where closed-form solutions are not known. The situation is less
clear for nanocomposites, since the field-theoretic description of the polymer matrix must
be topologically constrained to the regions outside of the (assumed) hard-core nanoparticles.
We delay a detailed discussion of the theory unil later chapters and instead assume that a
sufficient condition on the block copolymer is that compositional fluctuations vanish inside
hard-core nanoparticles. Under this assumption we develop an pseudospectral approach to
simulating nanocomposities and investigate nanoparticle self assembly with this approach.
We find that a major obstacle to this simulation approach is the enormous interfacial penal-
ties associated with excluding volume for nanoparticles. Such findings indicate future work
should be directed at developing efficient constraint algorithms.

In Chapter 4 we develop a method for using Metropolis Monte Carlo lattice simulations
on graphics processing units (GPUs). A number of authors have previously adapted parallel
checkerboard lattice techniques to simulating the Ising model on the GPU [123, 94]. This
approach is tractable because the Ising model contains only nearest-neighbor couplings in
its Hamiltonian, meaning the decomposition produces two separate lattices that are inde-
pendently updated. The block copolymer Hamiltonian contains higher-order gradient terms
that introduce couplings beyond nearest neighbors, making straightforward lattice decompo-
sition techniques neither feasible to program, nor even remotely efficient at utilizing the GPU
memory hierarchy that frequently is a bottleneck in simulations. We develop an approach
that first partitions the lattice into non-interacting subregions, which are sent to individual
multiprocessors on the GPU, where a checkerboard decomposition is able to run quickly
since data has been cached in fast, on-chip memory. We demonstrate that our approach is
able to achieve above a 100-fold increase in the number of Monte Carlo steps per second and
provide evidence that the rate of configurational decorrelation is even greater.
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Finally, in Chapter 5, we develop a theory for nanocomposite systems. This requires
two modifications to the well known derivation for the block copolymer Hamiltonian: first a
volume is excluded for each nanoparticle and then polymer-particle interactions are turned
on. The polymer-particle interactions may be effectively treated at a coarse-grained level
similar to Flory Huggins theory for polymer melts by adding an interaction term to the
Hamiltonian. Excluding volume is much more difficult and amounts to a restricted functional
integration over both A-type and B-type density fields such that both densities vanish within
nanoparticle hard cores. A derivation analogous to the original block copolymer Hamiltonian
derivation would apply the random phase approximation to the intractable integral formulas,
using a system of non-interacting chains in a volume-excluded system as a reference state.
Instead, we make an analogy to simple liquids, where the effect of volume exclusion is well
known in the context of Gaussian field theories, by showing that the nonlinear terms in the
block copolymer Hamiltonian, traditionally truncated and replaced by a Landau-like quartic
term, essentially amount to a sharp restoring force that constrains nonphysical fluctuations
in the order parameter. With this shown, we approximate the system as a GFT with
constraints placed on the real-space compositional fluctuations and demonstrate the validity
of this approach with Monte Carlo simulations.
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Chapter 2

Impact of Conformational
Fluctuations on Self-Assembly
Exemplified by Self Assembly of
Group II Chaperonin Complexes

Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein sub-
units [124]. Group II chaperonin complexes from the hyperthermophilic archaeon Sulfolobus,
called rosettasomes, spontaneously assemble in vitro into micron-scale structures [90, 81].
Two remarkably different structures can be formed by the self-assembled, roughly spheri-
cal rosettasomes: bundles of filamentous chains bound pole-to-pole, and hexagonally-packed
sheets of units bound equator-to-equator. The prospect of switching between the assembly
of different structures by controlling only environmental conditions offers great promise for
materials science. Dual assembly poses new fundamental questions regarding the statistical
dynamics of organized growth: How do multiple modes of assembly cooperate or interfere?
Are hybrid structures an unavoidable endpoint when forces favoring different structural
motifs combine? Conceptually, these are general questions that may be asked for many
complicated, self-assembling systems. In later chapters, we address these same questions for
other bio-inspired systems, whereas in this chapter, we attempt to answer these questions
by detailed computational exploration of group II chaperonin assembly.

2.1 Importance of Group II chaperonin complexes

and their assembly

The Role of Chaperonins in Sulfolobus shibatae

Sulfolobus shibatae is a hyperthermophilic archaeon that was first identified living in acidic
geothermal hot springs. When S. shibatae is subjected to higher than normal temperatures
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it activates a heatshock response. The major component of the heatshock response is a
formation of a large ring structure called archaeosome or rosettasome, which is composed of
two different subunits (TF55α and TF55β), bearing resemblance to to the prokaryotic GroEL
[98]. Unlike their bacterial counterparts, however, S. shibatae chaperonins are not able to fold
more than a few specific proteins in vitro [40, 118]. This may be due to technical problems
associated with in vitro experiments or specialization of these chaperonins for folding specific
proteins. Alternatively, it suggests that chaperonins may have other functions in vivo.

The two chaperonin proteins represent 4% of S. shibatae total protein content and have
a combined intracellular concentration of >30 mg/ml which is notable because at concentra-
tions 0.5 mg/ml purified chaperonins form filaments which occurs at physiological relevant
conditions. These observations suggest that chaperonin filaments may exist in vivo and
form an extensive cytostructure. For example, Trent and coworkers observed filamentous
structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaper-
onin filaments in size and appearance. ImmunoGold labeling using chaperonin antibodies
indicated that many chaperonins are associated with insoluble cellular structures and these
structures appear to be filamentous in some areas. Moreover, in in vitro experiments they
observed that as the concentration of purified chaperonins is approaching the concentration
found in cells, the isolated double-ring structures assembled into ordered filaments.

The formation of chaperonin filaments in cells has profound implications on their function
as it will affect their role in both protein folding and as a cytoskeletal unit. In protein fold-
ing, chaperonin filaments may serve a regulatory function. It is believed that protein folding
happens inside the chaperonin’s cavity [32, 126] so if chaperonins form filaments access to
the active cavity will be blocked for majority of non-terminal units. This can be used by
S. shibatae as a mechanism to sequester chaperonins and limit their activities. Analogously,
filaments can dissociate to free the individual chaperonin rings to increase their protein fold-
ing ability rapidly, much faster than if additional protein synthesis were required. This may
allow the arcea to respond rapidly to changes in environmental conditions. Additionally it is
possible that chaperonin filaments themselves form a cytoplasmic structure in Archaea that
is functionally similar to the cytoskeleton in eukaryotes. Sulfolobus, similarly to other Ar-
chaeas, lack rigid cell walls, and such an internal cytoskeleton could be used to maintain and
change their shape in solution [49, 113]. Moreover TCP1, a related eukaryotic cytoplasmic
protein, is associated with the eukaryotic cytoskeleton [124].

The Role of Chaperonins in Nanofabricated Active Materials

Both filamentous- and planar-assembled chaperonin materials separately display great promise
for nanotechnology. The controlled organization of materials into multi-dimensional struc-
tured arrays is a goal of many nano fabrication efforts and could potentially impact the
engineering of many nano devices including semiconductor materials used in logic and mem-
ory units, as well as photonic bandgap (PBG) crystals used in nonlinear optical and sensing
devices [136, 144]. Many of these devices are currently fabricated using lithographic pat-
terning processes, which offer great control but are very expensive, time consuming and can
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only be used for fabrication of devices smaller than mm. Moreover for devices with features
smaller than 100 nm, ion and electron beam lithography becomes prohibitively expensive
and time consuming, and more importantly, at these scales quantum effects fundamentally
change the properties of devices. [110].

Arrays of nanoparticles formed by top-down self assembly methods are being explored for
use as viable alternatives to standard lithographically patterned devices. Two-dimensional
(2D) arrays of QDs with nanoscale resolution have a potential to form the basis of future
generations of electronic and photonic devices [77, 78]. Biomolecules, such as chaperonins,
are capable of self-assembling into a wide diversity of structures with nanoscale architecture.
Proteins in particular can form intricate structures that can be readily manipulated and
functionalized because their synthesis is genetically directed. The utility of chaperonins as
scaffolds depends on their structure and their ability to self-assemble into double-rings and
higher-order structures, such as filaments and two-dimensional arrays. Moreover the subunits
can be radically engineered to affect their hierarchical self-assembly into rings, filaments and
two dimensional arrays without compromising their structure-forming ability. They can be
engineered by metallization of single chains of the D1 mutant to make nanowires by coat-
ing them with nickel/palladium [72]. Modifiyng β subunits by adding chemically reactive
sites can guide the subunits to assemble into 2D crystals and guide the assembly of pre-
formed metal and semiconductor nanoparticle QDs into ordered arrays [81]. Developments
in nano science require alternative fabrication methods and new insights into the behaviour
of materials on nanometer scales will be crucial.

2.2 Previous Experimental and Theoretical

Approaches

Emulating the complex self-assembly properties of rosettasomes with synthetic particles re-
quires interactions of a ‘patchy’ nature. It may seem sufficient to situate a strongly sticky
region at each particle’s equator, and a distinct kind of stickiness at its poles. Several
computer simulation studies [51, 142, 55, 47, 130, 133, 9, 88, 104] and a few ambitious ex-
periments have adopted an analogous perspective, attempting to design specific aggregate
geometries through anisotropy of microscopic forces. For example Glotzer and coworkers per-
formed molecular simulations to study the self-assembly of nanoparticles functionalized with
oligomeric tethers attached to specific locations on the nanoparticle surface and observed
formation of structures beyond what may be predicted using concepts from block copoly-
mer microphase separation and liquid-crystal phase ordering [51, 142]. Systematic study of
the design of simple patchy sphere models that reversibly self-assemble into monodisperse
icosahedral clusters revealed that the optimal patch width is a compromise between struc-
tural specificity and kinetic accessibility [133] and that patchiness has a strong effect on the
phase diagram [9]. Such patchy particles then self-assemble into a diamond structure from
an initially disordered state [141], which is of particular interest in nanotechnology due to
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its similarity with a photonics crystal structure. However, component design based solely on
structural considerations rarely results in successful assembly. The picture emerging from
these studies is one of intense competition between thermodynamics and kinetics: even for
simple patchy nanoparticles, stochastic growth dynamics and the difficulties of defect an-
nealing condition successful assembly on the fine-tuning of nanoparticle attraction strengths
and binding geometry specificities.

TEM imaging of single S. shibatae cells stained with uranyl acetate showed some cells
in which in lightly stained areas filamentous structures were seen at both low and high
magnifications. The distribution and interweaving of these filaments suggest that they ex-
tend throughout the cytoplasm and stereomicrographs confirmed that they were distributed
throughout the cell volume. The width of the intracellular filaments was typically ≈ 11
± 1 nm for individual filaments, which was very similar to the width of the chaperonin
filaments formed in vitro (≈ 10.7 ± 0.6 nm) [124]. Additional experimental self assembly
of rosettasomes revealed that beta homo-oligomeric rosettasomes and all hetero-oligomeric
rosettasomes typically associate into filaments and in vivo, the rosettasome structure is de-
termined by the relative abundance of subunits and not by a fixed geometry [59].

We want to draw attention to the striking qualitative observation from experiments,
which suggests rosettasome aggregation to be a binary rather than a hybrid process: struc-
tures intermediate in character between bundled strings and few-layered sheets are not seen
in micrographs. Together with the observation that planar and filamentous structures some-
times appear in the same sample, this fact suggests a precipitous transition in aggregate
geometry, from string-like to sheet-like, as control parameters (temperature, concentration,
protein amino acid sequence, etc.) are changed. By contrast, our simulations of collections
of patchy nanoparticles give rise to products that display a gradual transformation with
model parameters from string-like to sheet-like character. We resolve this discrepancy by
considering in addition a conformational flexibility of assembling units. The kinetic effects
of this simple local detail are global in both space and time. Although our examination
of this cooperative dynamical phenomenon is inspired by the behavior of a specific protein
complex, its implications are quite general: endowing nanoscopic self-assembling components
with a simple degree of conformational flexibility permits modes of assembly unattainable
to components of fixed conformation [31].

2.3 Methods

In this paper we use theoretical models based on these physical perspectives as well as
computer simulations to explain the dual nature of rosettasome assembly.

Theory

The precise interactions between two rosettasome units, each comprising about 105 atoms,
are enormously complicated. Detailed molecular dynamics simulations might accurately re-
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produce these solvent-mediated forces, but such an approach could scarcely be applied over
time scales of milliseconds or longer that give rise to the higher-order structures considered
here. Therefore, we treat free energies of interaction in a schematic way, considering for
each pair of units only the dependence on a handful of geometric parameters, as sketched
in Figure 2.1. Our effective potentials are constructed with attention to a few key physical
facts and ideas: (1) each unit excludes a roughly spherical volume of radius a = 8.5 nm; (2)
attractive interactions extend over distances small compared to a and vary weakly with rota-
tion of a unit about its axis. While rosettasomes are 9-fold symmetric, they are observed to
pack in hexagonal lattices incommensurate with such symmetry so we assume that equatorial
interactions vary weakly with longitude and (3) potentials of mean force stabilize bindings
pole-to-pole and equator-to-equator, as indicated by high-resolution microscopy [90].

n̂jn̂i

θj
θi

φij

rij

Figure 2.1: Geometry for our model of associating rosettasomes. Each rosettasome is
represented here as a spherical object. Angular variables are related to orientation vectors
by n̂i · n̂j = cosφij and n̂i · ~rij|~rij | = cos θi.

In detail, our model consists of N non-overlapping spheres of radius a, each representing
a single rosettasome unit. The attraction upair between units i and j possesses polar and
equatorial contributions, both depending on the inter-unit separation vector rij and unit
orientation vectors n̂i and n̂j:

upair(rij, n̂i, n̂j) = −εeqv eq(rij, n̂i, n̂j)

−εpolvpol(rij, n̂i, n̂j). (2.1)

The strengths εpol and εeq of these two interactions, relative to that of typical thermal exci-
tations kBT , constitute the most important control parameters of our study. In simulations
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that permit units to change conformation, these parameters become in effect fluctuating
variables.

The short range of rosettasomes’ interactions relative to their size motivates our simplified
choice of the potential’s distance dependence: the model functions vpol and veq vanish for
separations greater than 2a+ a/4, yielding an attraction range a/4 ≈ 2 nm consistent with
Debye screening at experimental ionic strengths. Below this cutoff distance these functions
vary only with particle orientations, and do so according to the equations

veq = Ĉ1(φij;σalign)C0(θi;σeq)C0(θj;σeq); (2.2)

vpol = Ĉ1(φij;σalign)Ĉ1(θi;σpol)Ĉ1(θj;σpol). (2.3)

Equations (1.2) and (1.3) describe in mathematical terms the patchiness sketched in Fig-
ure 2.1. The effective size of polar and equatorial patches is determined by inverse speci-
ficities σalign, σeq and σpol; these parameterize a function Cα (ψ;σ) ≡ e−(cosψ−α)2/σ2

that re-

wards the alignment of angles ψ and cos−1 α within a tolerance σ. The function Ĉα (ψ;σ) ≡
Cα (ψ;σ)+C−α (ψ;σ) is made symmetric to preserve the up-down equivalence of rosettasome
units suggested by crystal structures of homologous proteins. We set σalign = σeq = 0.3 and
σp = 0.12.

Computational Implementation

We study long trajectories of this model system, corresponding to roughly tens of milliseconds
of evolution for an experimental system. Dynamics were propagated using a virtual-move
Monte Carlo procedure [130] designed to mimic the aggregation kinetics of strongly asso-
ciating nanoparticles. We drew translation magnitudes from a uniform distribution with
maximum 0.5a, and drew rotation angles from a uniform distribution with maximum 22.5◦.
We scaled collective translation acceptance rates by the reciprocal of an approximate hy-
drodynamic radius of the moving cluster [130], and scaled acceptance rates for rotations by
the cube of the same factor. We initiated each simulation by selecting particle orientations
and positions at random (while respecting steric constraints) within a cubic box of length
L. Periodic boundary conditions were imposed in imitation of bulk surroundings.

Model Parameters

We set an upper bound on the angular tolerance (i.e. inverse specificity) of the polar in-
teraction in our simulations, σpol, by noting that bundled chaperonin strings in experiments
appear to grow in register, via the addition of monomers to each string tip, rather than via
the recruitment of monomers shared between neighboring strings. In simulations, the an-
gular component of the polar energy of interaction between two aligned model chaperonins
[i.e., φ = 0, see Figure 2.1] is (Equation (1.4))

vpol(θ) = −εpol exp
(
−2σ−2

pol[cos θ − 1]2
)
, (2.4)
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where θ is the (small) angle between the orientation directors of the units and the vector
joining their centers. To set an upper bound on σpol we require that in simulations a bundle
of two perfectly-aligned strings finds it energetically favorable to recruit monomers prefer-
entially to the tips of each of its two filaments, rather than by sharing monomers between
filaments. We therefore require that vpol(0) < 2vpol(π/6), or

σ2
pol <

2

ln 2
(cos(π/6)− 1)2 , (2.5)

giving σpol<0.23. We choose σpol = 0.12 to strongly disfavor off-register growth of bundled
strings.

Given the specificity of the polar interaction we can put an approximate lower bound on
its strength εpol by requiring that in thermal equilibrium we observe chains of (at least) hun-
dreds of units (assuming a sufficiently large system). Chaperonin strings of many hundreds
of units are observed in experiment [124]. Strings are quasi-one-dimensional structures (each
particle in the bulk binds to only two neighbors) and so a numerically large binding energy
is required to offset the unfavorable entropy of polymerization that results from the growth
of long strings. We can estimate how large this binding energy must be using the Wertheim
thermodynamic perturbation theory [129] outlined in Ref. [112]. This theory provides an
expression for the free energy of associating particles possessing two identical binding sites
(such as an identically sticky north and south pole, as here), and so may be used to calculate
the extent of string formation for a collection of model chaperonins. From the results of
Ref. [112] we find that chaperonin string-formers of number density ρ = N/V form strings
whose equilibrium length distribution ρ(l) is

ρ(l) = ρ`−2
eq

(
1− `−1

eq

)l−1
. (2.6)

Here `eq is the average string length in equilibrium, and satisfies

2`eq = 1 +
√

1 + 8ρ∆. (2.7)

The parameter ∆ is related to the second virial coefficient of our model system. It is cal-
culated by integrating the Mayer f function for two chaperonin units over all angles and
distances for which they interact:

∆ = 4π

∫
dωdr r2 gHS(r)〈e−βU(r) − 1〉ω. (2.8)

In this expression r is the vector joining the two units, and r is its magnitude; ω represents
two sets of angles (we assume one chaperonin to be fixed at the origin with orientation along
ẑ); gHS(r) is a (reference) pair correlation function for hard spheres (for this we use the
approximation of Ref. [112]); 〈·〉ω represents an average over the angles ω; and U is the
energy of interaction of the two units. We plot in Figure 2.2 the average string length in
equilibrium (for two chaperonin concentrations) and the string length distribution (for two
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attraction strengths), assuming σpol = 0.12. We find that εpol must exceed roughly 15 kBT
(to the nearest 5 kBT ) in order that chains formed in simulations may approach hundreds
of units in length. Therefore, we take εpol = 16 kBT for the polymerization interaction of
string-forming units.

(a) (b)

100

101

102

103

L
e
q

0 5 10 15 20

pole/ (kBT )

C =

0 = 0.
0 1

C 5

0

0.25

0.5

0.75

1

ρ
(l

)/
ρ
(1

)

0 50 100 150 200
l

pole = 12kBT

pole = 16kBT

Figure 2.2: Predictions of Wertheim thermodynamic perturbation theory [129, 112] applied
to a collection of our model string-forming units (with inverse specificity parameter σpol =
0.12 and no equatorial coupling). (a) Average string length `eq in equilibrium as a function
of εpol for two concentrations; C0 is the concentration corresponding to 1500 units in a cubic
box of length 64a, as considered in the main text. (b) String length l distribution ρ(l) for
two binding strengths. Our conclusion from these estimates is that εpol must exceed roughly
15 kBT in order that the longer strings in simulations approach hundreds of units in length
(as is seen in experiment).

With polar strength and specificity determined by equilibrium considerations, we find
that nucleation and growth of filaments proceeds rapidly. Sheet formation, by contrast, is
relatively sluggish: the requirement that self-assembly of sheets proceed without the devel-
opment of substantial kinetic traps imposes stringent limits on the strength of equatorial
interactions (given their specificity) [130]. Based on our previous work we choose for sheet-
forming units the parameters σeq = 0.3 and εeq = 6.5kBT to ensure that planons self-assemble
into sheets with a low density of defects even at the largest concentrations we consider.

2.4 Results

We report below on long trajectories of this model system, corresponding to roughly tens of
milliseconds of evolution for an experimental system to study both kinetic and thermody-
namic aspects of assembly. As mentioned before we encounter discrepancy between initial
theoretical results and experimental observation which we resolve by considering in addition
a conformational flexibility of assembling units. The kinetic effects of this simple local detail
are global in both space and time as shown below.
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Kinetic Phase Diagram

We have explored the assembly dynamics of units with fixed conformation as a function of εeq
and εpol. For many sets of values for these parameters, we ran trajectories of N = 800 units
in a box of length 60a. Units therefore occupied 1.5% of the box volume, corresponding to a
protein concentration of 10.9 mg/ml, typical of experimental samples (1−20 mg/ml). Results
of these numerous trajectories are summarized by the kinetic phase diagram in Fig. 2.3, which
reports on both the occurrence of assembly (judged by the presence of clusters comprising 20
or more units; the ‘no assembly’ cutoff of size 20 means that we ignore assembly in regions
of the phase diagram where short filaments form, but this neglect does not change in an
important way the trends we identify) and on resulting geometries.
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Figure 2.3: Kinetic phase diagram for units of fixed conformation. We identify regions in
which assembled structures are string-like, e.g. (a), sheet-like, e.g. (d), or of ambiguous
character, e.g. (c). Kinetically-frustrated structures, e.g. (b), are found with increasing
abundance as we increase the potency of the equatorial coupling.
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In order to quantify the level of assembly and the morphology of each aggregate we
defined an order parameter:

S ≡ 1

6
(6− neq)−

1

2
(2− npol) (2.9)

. For a given cluster above the cutoff size of 20 units, neq estimates the number of equatorial
neighbors per particle (computed by summing veq over all interacting pairs and dividing
by the number of particles); npol is calculated in an analogous manner. S takes the value
+1 for an infinitely long filament, S = −1 for an infinitely extended close-packed sheet,
and intermediate values for structures of finite size and for geometric character intermediate
between sheets and strings. Any aggregate having S > 1/4 is identified as a ‘string’, while
any aggregate for which S < −1/4 is classed as a ‘sheet’. We consider aggregates satisfying
−1/4 ≤ S ≤ 1/4 to be of ambiguous character.

Kinetic accessibility is a crucial issue in the assembly of sheet-like structures. Although
sheets are thermodynamically stable under many of the conditions we have considered, the
range of εeq in which planar aggregates grow in an ordered fashion is small. The region
εeq ≥ 7kBT is dominated by kinetic frustration, while the region εeq = 6kBT , from εpol = 0
to εpol = 4kBT is supercooled: sheets are thermodynamically stable but nucleate too slowly
to appear in the simulation times considered.

The kinetic phase diagram and illustrated configurations indicate a propensity for hybrid
assembly when both equatorial and polar attractions are appreciable. Under no conditions
do structures of distinct geometry coexist at the same thermodynamic state. Instead, we
observe a continuous variation with model parameters from sheet- to string-like assembly.
At some values of (εeq,εpol), the two modes of assembly clearly hinder one another, either
by sequestering material or by leading the ordered growth of nascent clusters astray. At
other parameter values these modes cooperate, generating well-ordered hybrid structures
that interpolate smoothly between layered sheets and bundled strings.

Kinetics versus thermodynamics for fixed-conformation
self-assembly

Since large regions of the phase diagram of Figure 2.3 are dominated by nonequilibrium effects
we investigated the contrast between the products of aggregation dynamics seen in Figure 2.3
with configurations typical of true thermal equilibrium (which might be reached dynamically
on time scales too long to witness even in the laboratory) Figure 2.4. Equilibrium structures
were obtained using a Monte Carlo algorithm that samples the Boltzmann distribution much
more efficiently than does the system’s natural dynamics [27]. In these simulations a nonlocal
move set dramatically accelerated the annealing of defects [58, 104] by shuttling particles
between the interaction regions of other particles. Those nonlocal moves [27] reveal that
close-packed sheets are the thermodynamically preferred state and that kinetically frustrated
aggregates at state (εeq, εpol) = (7, 8) kBT observed previously are replaced by structures
with few defects such as highly ordered sheets These examples indicate the considerable
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difference between what is kinetically accessible and what is thermodynamically preferred in
this example of self-assembly.

(a) (b)

K.A.

N.L

Figure 2.4: Large regions of the phase diagram of Figure 2 (main text) are dominated by
nonequilibrium effects. (a) At state (εeq, εpol) = (6kBT, 0kBT ), kinetically accessible (K.A.)
configurations, i.e., those generated by an algorithm designed to mimic a natural dynamics
over experimental time scales, primarily comprise unassociated units. However, nonlocal
(N.L.) moves [27] reveal that close-packed sheets are the thermodynamically preferred state.
(b) Kinetically frustrated aggregates at state (εeq, εpol) = (7, 8) kBT are replaced by structures
with few defects and with a very different form under nonlocal moves.

The Importance of The Conformational Flexibility of the
Rosettasome Units

This smooth evolution is expressly not what is observed in experiments. Instead, laboratory
measurements suggest a very sharp crossover from sheets to strings with changing environ-
mental conditions. The absence of an intermediate regime of hybrid assembly is highlighted
by the observation of behavior akin to phase coexistence. Accord between experiments and
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our patchy nanoparticle model is unlikely to be achieved by revising our choices of inter-
action strengths and specificities: we have performed many additional simulations in which
we varied component concentrations, system sizes, binding tolerances and energy scales, and
failed to observe sheet-string coexistence in all cases.

The key question arises: why does the model we have presented fail to produce coexisting
superstructure types? We cannot rule out the possibility that fine details of intermolecular
forces are key to capturing this emergent behavior. We argue, however, that the qualitative
contrast between binary assembly reminiscent of a phase transition and hybrid aggregation
that varies smoothly with model parameters points to the neglect of a more fundamental
feature. We propose that this missing ingredient is the conformational flexibility of each
rosettasome unit.

Previous work has established as many as three different conformations for the S. Shibatae
rosettasome [99, 111], which are summarized in the table below.

Simulation of Patchy Particles with Different Conformations

Motivated by these studies and by our findings above, we have augmented our model of
patchy nanoparticles by allowing each particle the freedom to change between two different
conformations. One of these conformations is biased towards forming sheet-like geometries.
When particles adopt this state, we refer to them as planons. Particles assuming the alter-
nate conformation, which we dub stringons, have a preference for filamentous self-assembly.
We will see that the ability of particles to fluctuate between these identities indeed greatly
sharpens the transition between assembled structures and can effect coexistence of sheets
and filaments.

These preferences conferred by internal degrees of freedom appear in our model through
variations in binding energies. In all the calculations we will describe, the equatorial cou-
pling strength εeq between two adjacent planons is set to 6.5 kBT , sufficient to ensure that a
collection of particles constrained to their planon states can form large-scale ordered sheets.
To ensure the possibility of filamentous growth we choose the strength εpol of polar inter-
actions between two adjacent stringons to be 16 kBT . We also assign minor couplings of
varying strengths: these consist of polar interactions between planons; equatorial interac-
tions between stringons; and inter-species interactions. These are summarised in Table 1.

In the course of model assembly dynamics we permit monomer conformations to fluctuate
at random, subject to biases from interaction energies and from an intrinsic free energy dif-
ference between planon and stringon states. Each unit possesses an internal energy uinternal,
which we set to −kBT ln δ for stringons and 0 for planons. The parameter δ thus represents
the ratio of stringons to planons in a sample of noninteracting rosettasome units. Just as
internal states bias propensity for structure formation, however, so aggregation can bias
conformational populations significantly away from ideal statistics.

Algorithmically, we attempted a change in each unit’s conformation on average once



16

interacting species εeq εpol

planon-planon 6.5 kBT ε
(min)
pol

stringon-planon ε
(min)
eq ε

(min)
pol

stringon-stringon ε
(min)
eq 16 kBT

Table 2.1: Stringon and planon interaction strengths. We consider fixed major couplings
and different sets of minor couplings. The specific case ε

(min)
eq = ε

(min)
pol = 0 corresponds to

planons and stringons interacting only through hard core constraints. We have considered
minor equatorial attractions as strong as ε

(min)
eq = 4kBT and minor polar attractions as strong

as 5kBT . In the limit ε
(min)
pol = 16kBT , ε

(min)
eq = 6.5kBT , the distinction between planons and

stringons vanishes.

every Mchange = 1000 Monte Carlo sweeps. By accepting such changes with probability

pchange = min [1, exp (−β∆E − β∆uinternal)] , (2.10)

we established a basic rate ωchange = ω0(1 + δ)/Mchange ≈ 105 s−1 for conformational fluctua-
tions of isolated units that is consistent with estimates for similar large-scale rearrangements
in related proteins [57]. The results we present are qualitatively unchanged by varying
Mchange from 1 to 1000. This robustness suggests that assembly behavior is not strongly
sensitive to changes in the rate of conformational fluctuations, provided it outpaces the rate
of basic structure formation. Here ω−1

0 is the duration of a single MC sweep (involving on
average one proposed move per particle). Based on the diffusivity expected from Stokes Law
for a sphere of radius 8.5 nm in liquid water, we estimate that ω0 ≈ 108 s−1. In Eq. (2.10),
∆E and ∆uinternal are respectively the changes in interaction energy and internal energy
resulting from a proposed conformation change.

We computed assembly trajectories for N = 1500 conformationally flexible particles in a
box of length 64a. By examining several values of δ and of the minor couplings, we varied the
strength of interactions between planons and stringons, as well as the degree of distinction
between them. Units’ initial identities were randomly assigned as stringons with probability
δ/(1 + δ), or alternatively as planons with probability 1/(1 + δ).

Trajectories with Vanishing Minor Couplings

We focus first on the case of vanishing minor couplings. Here, stringons and planons are ori-
entationally ambivalent toward one another, interacting only through sterics but intimately
linked through interconversion. In Figure 2.5 we show a time-ordered series of snapshots
taken from a single trajectory featuring this extreme example of conformational change. Al-
lowing unit identities to fluctuate can indeed yield at late times a coexistence of structures
possessing sheet- and string-like symmetry. Interestingly, in order to observe such coexis-
tence we must bias the internal energy of units strongly in favor of planons; here δ = 0.05,
corresponding to an internal bias of 3kBT . The necessity for this imbalance originates in an
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t = 0 t = 0.4 t = 3.0

Figure 2.5: Time sequence of the assembly of conformation-changing units. Here, units of

different types interact only through interconversion and sterics
(
ε

(min)
eq = 0 = ε

(min)
pol

)
. The

internal energy bias parameter is δ = 0.05, so that isolated planons (blue) are strongly favored
thermodynamically over stringons (yellow). However, string formation is facile, leading to
an increase in the number of stringon units with time. Parameters are such that we observe
coexistence between large-scale assembled structures of the two distinct symmetries. Time
is measured in millions of Monte Carlo moves per particle.

unambiguous physical mechanism: As one-dimensional structures, strings lack a nucleation
barrier and thus form much more rapidly than sheets, which must await the appearance of
a critical nucleus.

Thermodynamics of sheet formation

We have quantified the free energy barrier to sheet nucleation at various planon concentra-
tions using umbrella sampling simulations. In Figure 2.6(a) we plot the free energy G(n)
of a small sheet as a function of the number n of its constituent planon units, for several
concentrations of free planons with no polar couplings. Each of these curves, calculated
using umbrella sampling techniques, features a barrier ∆G‡ to nucleation. In Figure 2.6(b)
we show the decay of this barrier height with increasing planon concentration.

At the highest density, corresponding to the initial state of an assembly trajectory, this
barrier is little larger than energies typical of thermal fluctuations, so that sheet initiation is
only weakly impeded. However, string formation quickly sequesters units, in effect diluting
the pool of monomers available for sheet formation. Our umbrella sampling results show
that removing 60% of the available units raises ∆G‡ by several kBT , slowing nucleation
more than 100-fold. This dynamic elevation of the nucleation barrier necessitates a large
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Figure 2.6: (a) Free energy of a system of planons that comprise a single sheet-like cluster
of n units and N−n unassociated units. Results are shown for several concentrations c = N

V
,

with volume V = (64a)3: c = 7 mg/ml (red), c = 9.4 mg/ml (blue), c = 11.7 mg/ml (green),
c = 14.1 mg/ml (black), and c = 17.6 mg/ml (pink). (b) Barrier height as a function of
planon concentration c in mg/ml.

bias in internal energy in favor of planons (small δ) in order to obtain coexistence. These
considerations underscore the fundamentally nonequilibrium nature of assembly within our
model: when fully relaxed (at inaccessibly long times), this system would possess almost no
strings or stringons.

Time evolution of schizophrenic assembly

In Figure 2.8 (a) we quantify the kinetics of dichotomous assembly by plotting as a function
of time the fraction of planon units for a trajectory possessing the same parameter values
as that shown in Figure 2.5. We plot also the number of polar and equatorial contacts per
particle. The celerity of string growth with respect to sheet nucleation in general causes f
to be noticeably diminished from its ideal value of (1 + δ)−1. Steady increases in both neq

and npol at intermediate times reflect the simultaneous growth of corresponding structures.
In Figure 2.8 (b) we show the time dependence of f for trajectories obtained with several
different values of the bias δ. String formation suppresses sheet nucleation almost completely
for even modest δ.
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Nonzero minor couplings facilitate the formation of structures of
a composite character

Equipping units with nonzero minor couplings introduces inter-species attractions, which,
as one might expect, facilitate the formation of structures of a composite character, namely
stacked sheets and bundled filaments. The minor couplings also control inter-species ener-
getic interactions, which influence the ease of unit interconversion. We find that the kinetic
bias toward string formation identified previously is qualitatively unchanged, but interac-
tions between species modify quantitatively the rate at which structures of the two species
proliferate.

First we qualitatively investigate the effect of minor coupling on assembly. We show snap-
shots from long trajectories generated using nine different sets of parameters (representing a
variety of thermodynamic states in the real system) in Figure 2.7. These states differ in the
internal energies of conformational states (set by δ), and in their minor energetic couplings.

To quantitatively study the differences between the assembly kinetics of interconverting
units with vanishing minor couplings and considerable minor couplings we compare (1) the
time dependence of the fraction of planon units and the number of polar contacts per particle
for the trajectory in Figure 2.7 and (2) time dependence of the fraction of planon units for
single trajectories with different values of internal bias.

When units have vanishing minor couplings rapid string formation lowers the planon-to-
stringon ratio so that both strings and sheets proliferate. In Figure 2.9 we present the analog
of Figure 2.8 for units with considerable minor couplings. While the rapidity of planon to
stringon conversion is influenced by the inter-species interactions, the fundamental kinetic
bias in favor of one-dimensional stringons is not.

2.5 Composite structures can arise from

planon-stringon interactions

Units’ conformational flexibilities can induce interactions between superstructures of different
types. The interconversion of units at the surfaces of aggregates can fuse different structures
together, or promote nucleation of one kind of structure at the surface of another. We show
an example product of sheet-string fusion in Figure 2.10. In contrast to hybrid structures
that proliferate when unit conformations are fixed, different elements of these assemblies
tend to maintain their essential shapes even when fused. When units are free to undergo
conformational change in our simulations, the superstructures they form are qualitatively
similar to those seen in experiments.
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δ = 0.02 δ = 0.05 δ = 0.07

(a)

(b)

(c)

Figure 2.7: Long-time conformations for self-assembly of conformation-changing units at
nine different thermodynamic states. Columns contain states at fixed values of δ; rows
contain states at fixed values of the minor couplings. (a) Non-attracting species (ε

(min)
eq =

0 = ε
(min)
pol ); (b) conditions under which planons have a tendency to stack (ε

(min)
eq = 0, ε

(min)
pol =

3kBT ); and (c) strongly-attracting species (ε
(min)
eq = 4kBT, ε

(min)
pol = 5kBT ). Assemblies with

hybrid character appear as minor couplings are increased, but the fundamental kinetic bias
in favor of string formation remains.

2.6 Discussion

Cooperative binding as a mechanism for precipitous response is a textbook notion of bio-
chemistry: interactions with one ligand heighten affinity for additional binding events, es-
tablishing positive feedback and enabling sharp switching behavior. Our results illustrate
the dramatic kinetic implications of this kind of cooperativity. The molecular dynamics of
self-assembly enriches traditional cooperativity scenarios in several interesting ways. The
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4

FIG. 3: (a) Free energy of a system of planons that comprise a single sheet-like cluster of n units and N − n unassociated
units. Results are shown for several concentrations c = N

V
, with volume V = (64a)3: c = 7 mg/ml (red), c = 9.4 mg/ml

(blue), c = 11.7 mg/ml (green), c = 14.1 mg/ml (black), and c = 17.6 mg/ml (pink). (b) Barrier height as a function of planon
concentration c in mg/ml.

FIG. 4: Assembly kinetics for interconverting units with vanishing minor couplings (ε
(min)
eq = 0 = ε

(min)
pol ). (a) Time-dependence

of the fraction of planon units f and the number of optimal equatorial (polar) contacts per particle neq (npol) for the trajectory
shown in Figure 4 (with δ = 0.05, main text). Rapid string formation lowers the planon-to-stringon ratio so that both strings
and sheets proliferate. (b) Time dependence of the fraction of planon units f for single trajectories with different values of the
internal bias δ.

to hybrid structures that proliferate when unit conformations are fixed, different elements of these assemblies tend
to maintain their essential shapes even when fused. Figure 7 shows a TEM image of a similar type of composite
structure, a sheet with ‘hairs’ protruding from its edges. When units are free to undergo conformational change in
our simulations, the superstructures they form are qualitatively similar to those seen in experiments.

Figure 2.8: Assembly kinetics for interconverting units with vanishing minor couplings
(ε

(min)
eq = 0 = ε

(min)
pol ). (a) Time-dependence of the fraction of planon units f and the number

of optimal equatorial (polar) contacts per particle neq (npol) for the trajectory shown in
Figure 4 (with δ = 0.05, main text). (b) Time dependence of the fraction of planon units f
for single trajectories with different values of the internal bias δ.

5

FIG. 5: Analog of Figure 4 for units with considerable minor couplings (ε
(min)
eq = 4kBT, ε

(min)
pol = 5kBT ). (a) Time-dependence

of the fraction of planon units f and the number of equatorial (polar) contacts per particle neq (npol) normalized with reference
to optimal value neq = 6 (npol = 2). (b) Time dependence of the fraction of planon units f for single trajectories with different
values of the internal energy bias δ. Inter-species interactions modify quantitatively but not qualitatively the bias toward string
formation observed in the case of vanishing minor couplings.

FIG. 6: Structure obtained from a long trajectory of units possessing considerable minor interactions (ε
(min)
eq = 4kBT, ε

(min)
pol =

5kBT ). The interconversion of units near the periphery of sheets and strings permits the fusing together of distinct superstruc-
ture types.
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Figure 2.9: Analog of Figure 2.8 with considerable minor couplings (ε
(min)
eq = 4kBT, ε

(min)
pol =

5kBT ). Time-dependence of the fraction of (a) planon units and the number of equatorial
contacts (b) planon units f for single trajectories with different values δ.

growth of extended structures, for example, introduces spatially heterogeneous effects of
binding and leads to the emergence of ‘microphases’ of distinct response types. In addition,
kinetic barriers to the formation of distinct structures can dramatically alter the threshold
conditions at which switching occurs, imbuing the resulting behavior with a fundamentally
nonequilibrium character. Further, cooperative binding can drive the formation of composite
assemblies through fusion of well-defined superstructures.

In the context of rosettasome self-assembly our results support a picture in which inter-
nal conformational fluctuations bias superstructure nucleation, thereby inducing the simul-
taneous growth of structures with distinct symmetries. Rosettasome allostery is a known
phenomenon, while superstructure coexistence is a striking feature of recent experiments
involving the wild-type protein and its genetically-engineered variants. While the function
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Figure 2.10: Structure obtained from a long trajectory of units possessing considerable
minor interactions (ε

(min)
eq = 4kBT, ε

(min)
pol = 5kBT ). The interconversion of units near the

periphery of sheets and strings permits the fusing together of distinct superstructure types.

of many proteins depends on self-organization at the nanometer scale, the emergence of
long-range order with a variable outcome is exceptional. Such a capability might be of
considerable use to a hyperthermophilic organism seeking to respond to extremes of heat
by promoting, for instance, the rapid assembly of membrane-stabilizing scaffolding (biases
for particular rosettasome conformations might be mediated by changes in their protein
composition, known to vary in response to environmental cues [59]). From the perspective
of nanoscience, mimicking such cooperativity offers a plausible route to adaptive assembly,
whereby subtle changes in environment can engender a dramatic change in the assembly
products of a system.
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Chapter 3

Cyclic Peptide Self Assembly

3.1 Polymer Nanocomposites

Polymer nanocomposites comprise a broad class of novel materials in which nanoparticles
are embedded in a polymer matrix. The types of nanoparticulate matter and polymers that
can be used to create polymer nanocomposites are quite general. The first systems studied
experimentally occurred in the early 1990s, when scientists at Toyota Corp. realized that
the addition of a small amounts of nanoparticulate clay to homopolymer matrices could have
a profound impact on the mechanical strength, temperature resistance and durability of the
plastics now widely used in automobile manufacturing [56]. Since then, much experimental
research has sought discover new functional and mechanical properties of nanocomposites,
and to elucidate their microscopic origins. The field has advanced to the point where coarse
control over the distribution and orientation is possible [114][61][60][143][102], but improved,
nanometer-level control over feature spacing, domain shape and alignment and function
chemistry, which could have profound impacts on our ability to engineer novel functional
materials, remains elusive.

One particular application of interest is the creation of polymeric thin films with vertically
aligned pores. These films have potential uses in a variety of fields, ranging from photonic
band gap materials [33], battery applications [117], nanoelectrode arrays [106][46], gas sep-
aration [19], but high fidelity assembly over macroscopic length scales remains a challenge.
While crosslinked homopolymer networks may generate semi-porous networks suitable for
thin film applications, the inherently unpredictable dispersity of pore sizes makes them unfit
for the applications that require finely tuned control over pore size, distribution, and interior
chemistry.

Meanwhile, block copolymers are low cost, easily manipulated systems well known to
undergo an order-disorder transition (ODT) below a critical temperature into a variety of
phases, including a cylindrical, hexagonal packing [70]. Using plasma etching techniques, it
is possible to produce nanoporous thin films from cylindrical block copolymers with nearly
monodisperse pores as small as a few nanometers [107]. However, even this scale is too
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large by a factor of 10 to selectively discriminate among small molecules demanded in the
preceding areas.

Modern chemical synthesis techniques allow for the size and shape of nanoparticles to
be precisely tailored, and the synthesis of many types of functional nanoparticles, such as
inorganic nanoparticles, carbon nanotubes, fullerenes, dendrimers, and biological materials,
is possible. Thus, thin-film spanning pores comprised of sub-nanometer scale nanoparticles
inserted into the polymer thin film matrix is seen as a possible mechanism for enabling the
above technologies. In particular, the alignment of preformed carbon nanotubes inside the
polymer matrix is one possible strategy that has been considered [137], but orienting carbon
nanotubes has so far proven challenging [62][43].

A promising mechanism for subnanometer pore alignment is to allow the pore building
blocks to co-assemble with the polymer matrix, rather than being inserted into the matrix
pre-assembled. Such an approach leverages the power of modern chemical synthesis, with
many known self-assembling motifs that offer precise control over pore size, shape and chem-
istry. Unlike preformed carbon nanotubes, where high aspect ratio units make the system
prone to aggregation and kinetically arrested assemblies, the ability for individual units to
cooperatively assemble with the polymer matrix suggests that appropriate coupling between
nanoparticle units and the cylindrical polymer phase, as well as specific intermolecular inter-
actions such as hydrogen bonding or other electrostratic interactions to promote nanoparticle
assembly, may be sufficient for proper nanotube localization and assembly. Such a strategy
also obviates the need to prepare nanotubes monodisperse in length, since such assembled
tubes should, at least in principle, span the thickness of the film.

In this thesis, we draw inspiration from a particular organic ”nanoparticle” known as
cyclic peptides [52], which are comprised of an even number of D and L amino acids, cyclized
to form a ring structure of well defined size and shape (see Figure 3.1).

Assembly of multiple cyclic peptide units is facilitated by the same hydrogen bonding
interactions responsible for α and β secondary structure formation in true biological sys-
tems. The interactions responsible for biologal secondary structure are generated from the
atoms on the peptide backbone, meaning the specific choice of sidechain is quite flexible for
cyclic peptides, leaving the exterior of the self assembled cyclic peptide tube open to exten-
sive modification, via choice in specific amino acid sequence, as well as “post-translational”
modifications to amino acid structure found in biology, allowing for a myriad of approaches
for passivating and coupling cyclic peptides to each block copolymer segment. Further, the
inward facing Cα hydrogen is available for covalent substitution, and many such artificial
amino acids are known which effectively modifiy the chemical properties of the interior of
the assembled cyclic peptide tube. Further, using solid phase peptide synthesis provides
extensive control over the number and location of modifications in the peptide sequence [25].

Beyond the obvious importance for understanding the specific behavior of the cyclic
peptide - block copolymer system, this work is representative of an emerging, yet not very
well understood, field of self assembly, in which multiple, interacting motifs must assemble
into a final coordinated structure. Does assembly of each component proceed independently,
cooperatively, or hierarchically? What are the possibilities for such assembly pathways? The
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Figure 3.1: Figure taken from [52]. Chemical structures of a substituted 8-membered
cyclic peptide (a) and (b) its conventional analogue. Detailed assembled structure of a
cyclic peptide oligomer, computed from Molecular Dynamics simulations for each respective
structure are shown in (c-f).

cyclic peptide system serves as an example of such a complicated system, while still being
sufficiently simple compared to biological analogues, for instance.

3.2 Model

In this work we consider the cyclic peptide - block copolymer system from [137] as moti-
vation to study the self assembly of nanoparticles within a self-assembling block copolymer
matrix. Our efforts are directed at developing a model that incorporates the relevant physics
of both constituent systems, and then investigating the possibilities for self assembly and
characterizing the driving forces behind different modes of assembly. To acheive this we will
need to develop a model for block copolymer assembly as well as a model for cyclic pep-
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Figure 3.2: Phase Diagram for an AB diblock copolymer of length N in terms of the fraction
f of A monomer and the AB Flory interaction paramter, χ. Below a critical value XsN no
ordering occurs. Above χsN , the lamellar phase (L) occupies most of the diagram and is the
only available phase for a symmetric (f = 0.5 copolymer. Other phases include a hexagonal
packing of cylinders (H), close packed spheres (CPS), gyroid (Q) and iambic (Q). Taken
from [80]

tide/nanoparticle assembly. Then, we will develop a coupling between these two systems.
For the remainder of the thesis, we will assume a diblock copolymer to be composed of two
contiguous regions of distinct monomer types, A and B, which are in some sense chemically
incompatible, which loosely means there is a tendency for the two types to separate, due to
chemical differences. The extent to which the segment types are incompatible is captured
by the Flory χ parameter, and together with the fraction f of the polymer composed of A
monomers, the self assembly phase diagram is well known, see 3.2.

For the block copolymer system, we use a field-theoretic Hamiltonian originally dervied
by Leibler [70], and subsequently reduced to a well known model for systems undergoing
a fluctuation-induced first order phase transition [36], the Brazovskii model [18]. Leibler’s
model treats the individual polymers as ideal Gaussian polymers, meaning an energy func-
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tional quadratic in local stretching,

βHG[r] =
3

2b2

∫ N

0

ds

∣∣∣∣dr(s)ds

∣∣∣∣2 (3.1)

together with a Flory-Huggins style interaction between A and B monomers, which depends
on the local densities of each monomer type at each point in space. For a system of n block
copolymers, the interaction is given by

V [ρ̂A, ρ̂B] = χ

∫
dr ρ̂A(r)ρ̂B(r), (3.2)

where ρ̂A(r) and ρ̂B(r) are given by,

ρ̂A(r) =
n∑
j=1

∫ f

0

ds δ(r − rj(s)) (3.3)

ρ̂B(r) =
n∑
j=1

∫ N

f

ds δ(r − rj(s)). (3.4)

Making the assumption that the block copolymer melt is incompressible, (i.e. ρ̂A(r)+ρ̂B(r) =
ρ0), the partition function is given by

Z =

∫
Drne−βHG[rn]−βV [ρ̂A,ρ̂B ] δ [ρ̂A + ρ̂B − ρ0] (3.5)

By invoking functional analogues of well known δ-function identities,

1 =

∫
DρAδ [ρ̂A − ρA] =

∫
DψA

∫
DρA e−i

∫
drψA(r)ρA(r) (3.6)

Eq. 3.5 may be converted into an integration over the density fields ρA, ρB,

Z =

∫
DρADρBe−H[ρA,ρB ] (3.7)

Eq. 3.7 is an exact expression for the partition function, but the Hamiltonian is highly
anharmonic in ρA(r) and ρB(r) , making analytical evaluation as hopelessly complicated
as evaluation of Eq. 3.5. Leibler’s result is obtained by applying the random phase ap-
proximation (RPA) to evaluate the otherwise intractable nonlinear field theory 3.7. Due to
the incompressibility constraint in Eq. 3.5, only one of the density fields fluctuates indepen-
dently. Therefore it is convenient to express the Hamiltonian in terms of the order parameter
field

φ(r) = ρA(r)− ρB(r) (3.8)



28

This representation has the advantage that φ = 0 signifies the interface between A-rich and
B-rich regions. Further, in the disordered phase, 〈φ(r)〉 = 0. The Hamiltonian is then given
by

βH [φ] = ρ0

∫
dr
λ

4!
φ(r)4 +

α

3!
φ(r)3 +

1

2
φ(r)

[
τ + εq−2

0 (∇2 + q2
0)2
]
φ(r) (3.9)

For a symmetric block copolymer (f = 0.5), α vanishes, leaving a symmetric φ4−φ2 potential.
Further, the fourth order gradient can be integrated by parts,

∫
drφ∇4φ =

∫
dr (∇2φ)

2
, and

it is instructive to rewrite the Hamiltonian as

βH [φ] = ρ0

∫
dr
λ

4!

(
φ2 +

6τ

λ

)2

+
ε

2q2
0

(
∇2φ+ q2

0φ
)2

+ const (3.10)

Thus, the Hamiltonian is comprised of two separate, positive quadratic terms. Since λ > 0
and ε > 0, the lowest energy configuration will must strike a balance between minimizing
each term, since the constraint that

∫
drφ(r) = 0 implies Eq. 3.10 can never reach 0. For

τ ≥ 0, no phase separation can be expected since the first term is a single well potential
centered around φ(r) = 0. For τ < 0, the first term drives φ(r) towards ±1 which can
physically be interpreted as double-well, local free energy density that drives macroscopic
phase separation between unlike monomer types, A and B. Since

∫
drφ(r) = 0, the system

must phase separate into equal volumes of A rich and B-rich regions. The second term
ascribes ordering to the phase separation. It is easily seen that cosine waves cos (~q0 · ~r) with
wavevector |~q0|2 = q0 minimize the quadratic gradient term while satisfying the constraint∫
drφ(r) = 0. Thus, the model’s preference for ordering along any wavevector of magnitude

q0 is manifest.
Since the random phase approximation takes a functional Taylor expansion to quadratic

order about a homogenous state [37] of the nonlinear portion of the Hamiltonian in 3.7,
3.10 is useful for studying systems only weakly perturbed past the order-disorder transition
(ODT). The advantage of the model is that simulations of the model are significantly less
computationally demanding, and significantly easier to implement, than field-theoretic sim-
ulations of the full non-Gaussian Hamiltonian without the RPA, and can access time scales
and system sizes much greater than more detailed molecular simulation techniques, such as
atomistic or even bead-spring molecular dynamics and Monte Carlo techniques. The field
theoretic approach may be expected to capture the same long wavelength phenomena of
more detailed molecular approaches, while sacrificing the shorter wavelength structure lost
in the field-theoretic coarse-graining. From a self-assembly perspective, such a system strikes
a good balance between faithful representation of the block copolymer structure, while still
acheiving the many characteristic wavelengths of order required to properly study structure
formation in a nanocomposite.

Although some parameters in the model can be estimated given certain assumptions
and approximations of the physical system, we are not concerned with model behavior at
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particular parameter values, but rather, the types of assembled structures possible at a
variety of reasonable parameter values. For our purposes it is sufficient to know that

τ = 2 (χsN − χN) (3.11)

is the only term in the model dependent upon temperature, and χs denotes the value for the
A-B monomer interaction at the spinodal limit of stability and N is the index of polymer-
ization.

Since the cyclic peptide system serves as motivation for studying interacting nanocom-
posite systems, we are interested only in the essential physics inherent in the system. Since
the individual cyclic peptide units are able to interact via hydrogen bonds, we consider a
patchy model in which spherical particles interact via head-to-tail interactions that vary
rapidly over distance and weakly under angular rotations of the constituent particles. Thus,
we choose to use the same geometric factors from the string-forming (“stringon”) interactions
of the archaeal chaperonin model. The justification for such a coarse short-ranged potential
is the same as in the chaperonin model. When running Monte Carlo simulations we also
adopt hard-core volume exclusions between particles,

urep(|ri − rj|) =

{
∞, |ri − rj| < σ

0, else
(3.12)

whereas in Brownian Dynamics simulations we use repulsive WCA cores,

urep(|ri − rj|) =

 4ε

[(σ
r

)12

−
(σ
r

)6
]

+ ε, |ri − rj| < 21/6σ

0, else

(3.13)

In sum, the total Hamiltonian for M cyclic peptides is

Hnp =
∑
i 6=j

uarch(|ri − rj|) + urep(|ri − rj|) (3.14)

It is possible to formulate an exact description of the coupling between nanoparticle and
polymer within the field-theoretic framework [115] by introducing a new field for nanoparticle
density into the functional integration for the partition function 3.7. In this case, a Flory
Huggins style interaction between nanoparticle density and the polymer composition field φ
can be introduced to capture their interaction, and field theoretic sampling strategies may
be applied [71]. Since the most prominent effect of the nanoparticles within the polymer
melt is to exclude volume, large variations in the order parameter φ(r) would be expected in
systems of practical interest. For a nanoparticle favorably coupled to and embedded within
the A phase, φ would need to vary from φ(r) = 0 within the nanoparticle, to φ(r) = 1 just
out of the particle. It is unclear whether the RPA, and hence our model, is suitable for such
situations, since it relies on a system characterized by weak density inhomogeneities. We
will delay a detailed investigation of this issue until Chapter 5. For now, we assume that
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we can capture excluded volume effects by setting φ(rin) = 0 at every rin located inside
a nanoparticle, and the interaction between cyclic peptide and the polymer melt may be
written in terms of the total nanoparticle density field and φ,

Hcpl = γ

∫
drφ(r)ρp(r) (3.15)

To define ρp, we place a density profile for each individual cyclic peptide at the particle’s
position, and then define the total density as the sum of these individual densities. The form
of the density profile is not too important, provided it can be normalized to 1 and vanishes
outside of a bounded interval, such as a truncated and shifted Gaussian. For computational
techniques we use in this thesis, it is convenient to have a density profile that is infinitely
differentiable so that the Fourier representation of the distribution converges quickly. Since
a truncated and shifted Gaussian has a kink at the truncation point, we use the following
instead

ρp(r) =
M∑
j=1

e
1

1−r·r (3.16)

3.3 Methods

We would like to simulate M nanoparticles of diameter 1 in an AB diblock copolymer melt in
3 dimensions, where the order parameter φ(r, t) has been discretized on a square lattice with
Nx grid points in x, y and z. We assume the spatial extent of each dimension is L, which
indicates ∆x = L

Nx
. We use two different dynamical rules to generate a canonical ensemble

of fluctuations in the order parameter φ consistent with the Hamiltonian 3.10. The most
straightfoward method is a Metropolis Monte Carlo algorithm, which has the advantage
that a variety of proposal moves can be constructed, including those which preserve the
volume excluded interior of embedded nanoparticles. A pseudospectral method to simulate
a conserved Langevin dynamics of the conserved order parameter φ is also developed [15].
Such an approach has the advantage that at each time step, every degree of freedom in the
system is updated. Further, as we will show below, using spectral techniques to evaluate the
derivatives in 3.17 allows for an exponential gain in accuracy for a fixed system discretization,
allowing for a much larger time step ∆t than if a simple finite differences scheme was used
to propagate the dynamics. Unfortunately, discontinuities in the Hamiltonian introduce
singularities into the propagation rule that are not easily handled via the Langevin approach.
This fact becomes especially important when we consider a block copolymer - nanoparticle
system with volume exclusion. Although it should be possible to exclude the polymer from
the interior of a nanoparticle by introducing a Lagranian constraint into the dynamical
equations [44], we have instead used Metropolis Monte Carlo to generate trajectories with
quasi-dynamical trial moves. Such an approach easily allows us to enforce the constraint
that polymer density vanishes in the interior of nanoparticles.
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Pseudospectral Langevin simulations

Since the order parameter φ(r) is conserved over space, an appropriate Langevin dynamics
that preserves this constraint is the so-called Model B dynamics [50],

∂φ(r)

∂t
= ∇2 δH[φ]

δφ(r)
+ η(r, t) (3.17)

where η(r, t) is a conserved Gaussian random field that satisfies

〈η(r, t)〉 = 0 (3.18)

〈η(r, t)η(r′, t′)〉 = −2β−1∇2δ(r − r′)δ(t− t′) (3.19)

In order to calculate η(r, t) in 3.17, we follow Puri and Oono [97] and first consider a non-
conserved 3-dimensional Gaussian random field ~γ(r, t) such that

〈~γ(r, t)〉 = 0 (3.20)

〈γa(r, t)γb(r′, t′)〉 = 2β−1δa,bδ(r − r′)δ(t− t′) (3.21)

η(r, t) is then given by

η(r, t) = ∇ · ~γ(r, t) =
3∑
j=1

∂γj(r, t)

∂rj
(3.22)

Defined in this way, η satisfies 3.18 and 3.19.
Since the term ∇2 δH[φ]

δφ(r)
in 3.17 will contain gradient terms of at least second order,

discretization will introduce errors associated with a discrete approximation to the spatial
derivatives. A centered finite difference approximation to the partial derivatives of φ is
O(∆x2),

∂φ(r)

∂rx
= [φ(rx + h)− φ(rx − h)]/(2∆x) +O(∆x2) (3.23)

In general, the error associated with higher order centered finite differences scales with the
number of lattice sites used to compute the estimate of the derivative. For example, for a
fourth order centered finite difference, the error is O(∆x4). However, since we are interested
in a system of finite volume V with periodic boundary conditions, the Fourier expansion of
a function f(r) defined on the system is

f(r) =
1

V

∑
k

cke
−ik·r (3.24)

ck =

∫
drf(r)eik·r (3.25)
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Since differentiation is exact in Fourier space,

∂φ(r)

∂rx
= −i 1

V

∑
k

kx cke
−ik·r (3.26)

When only N modes are retained in the expansion, the approximation to the derivative is an
N -point formula, and one would hope that, in analogy with the centered finite differences,
the error scales as O(∆xN) = O(N−N). Fortunately, for a cubic system with periodic
boundaries, the error in this approximation can scale as O(N−N), depending on the location
of singularities in φ(r) [16]. To see this, note that with periodic boundaries differentiation is
a self-adjoint operator, and if f has m continuous derivatives, then integrating 3.25 by parts
m times gives

ck = (−ik)−m
∫
dxf (m)(x)eikx ≤ |f (m)|/km (3.27)

For infinitely differentiable functions, 3.27 implies that the Fourier coefficients ck decay
exponentially fast for sufficiently large k. However, if φ only has m continuous derivatives
on the system domain, then convergence of the Fourier series will be algebraically limited to
O(N−m) [16]. In terms of overall complexity associated with an update for time ∆t, the finite
difference scheme requiresO(N) work, and isO(N−2) accurate. Meanwhile, a pseudospectral
update requires a forward and reverse FFT pair, requiring O(N logN) operations but is
O(e−N) accurate if φ is sufficiently smooth. Thus, a pseudospectral method is marginally
more expensive per degree of freedom, but asymptotically, exponentially more accurate.

For the bilinear portion of H, the pseudospectral technique can easily be applied, since

δH[φ]

δφ(r)
=

δ

δφ(r)

∫
dr′′
∫
dr′φ(r′)χ(r′′ − r′)φ(r′′) (3.28)

=

∫
dr′φ(r′)χ(r − r′) =

1

V

∑
k′

χ̂(k′)φ̂(k′)e−ikr (3.29)

Upon Fourier transforming,

δH[φ̂]

δφ̂(k)
= χ̂(k)φ̂(k) (3.30)

∂φ̂(k)

∂t
= −k2χ̂(k)φ̂(k) + η̂(k, t) (3.31)

However, for the quartic term, the Fourier space representation has nonlocal couplings which
are costly to evaluate,
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H[φ] =
1

4

∫
drφ(r)4 (3.32)

δH[φ]

δφ(r)
= φ(r)3 =

∫
dk1

∫
dk2

∫
dk3 φ̂(k1)φ̂(k2)φ̂(k3)e−ir(k1+k2+k3) (3.33)

δH[φ̂]

δφ̂(k)
=

∫
dk1

∫
dk2

∫
dk3 φ̂(k1)φ̂(k2)φ̂(k3)δ(k1 + k2 + k3 − k) (3.34)

The solution is to use a semi-implicit algorithm where the bilinear term is treated by an
implicit integration step in Fourier space, while the nonlinear terms are treated with explicit
steps in real space, which is much more stable than a fully explicit Euler integration step.
For the Hamiltonian 3.10, the continuous and discretized equations are (absorbing ρ0 into
the units of time),

∂φ̂(k)

∂t
= −k2 λ

3!
φ̂3(k)− k2 α

2!
φ̂2(k)− k2

[
τ +

ε

q2
0

(q2
0 − k2)2

]
φ̂(k) + η̂(k, t) (3.35)

φn+1
k − φnk

∆t
= −k2 λ

3!

[
φ3
]n
k
− k2 α

2!

[
φ2
]n
k
− k2

[
τ +

ε

q2
0

(q2
0 − k2)2

]
φn+1
k + ηn+1

k (3.36)

Solving for φn+1
k and inserting ηn+1

k =
∑3

j=1 ikj [σj]
n+1
k (from 3.22) gives

φn+1
k =

−k2∆t
[
λ
3!

[φ3]
n
k + α

2!
[φ2]

n
k

]
+
∑3

j=1 ikj [σj]
n+1
k

1 + k2∆t
[
τ + ε

q20
(q2

0 − k2)
2
] (3.37)

After randomly initializing the system, the algorithm consists of the following steps for each
update:

1. Compute [φ4]
n
r , [φ2]

n
r

2. Generate new Gaussian random fields σn+1
j

3. Compute φnk , [φ4]
n
k , [φ2]

n
k , [σj]

n+1
k via Fast Fourier Transform (FFT)

4. Compute φn+1
k via 3.37

5. Inverse FFT to obtain φn+1
r

Metropolis Monte Carlo

To approximate the kinetics associated with diffusive order parameter dynamics, we use
local proposal moves that mimic the flow of density fluctuation between neighboring lattice
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cells. Order parameter conservation is therefore ensured on a local scale. A ”seed” lattice
site is chosen with uniform probability and then a neighboring lattice site is chosen with
uniform probability from among the neighbors. Finally, a displacement ∆ ∈ [−∆max,∆max]
of density from the seed lattice site to its neighbor is chosen. Such a scheme has symmetric
generation probabilities and the Metropolis acceptance probability is therefore

Pacc = min
[
1, e−β∆H

]
(3.38)

3.4 Results and Conclusion

Bare Model

In Figures 3.7 and 3.8 we display self assembly phase diagrams in two different regimes of
the diblock fraction f . Further, in Figures 3.3 to 3.6 we show representative trajectories
for self-assembling block copolymer systems at a variety of parameters. At different param-
eter values, we are able to reproduce lamellar 3.3, cylindrical 3.4 and spherical 3.5 phases
predicted by the theory, 3.2. Although for some parameter choices the model consistently
assembles into well ordered strucutres, slow and frustrated dynamics are more typically en-
countered 3.6 at most parameter choices. In particular, large values for the quench depth, τ
encourage rapid spinodal decomposition, whereupon local orderings around different ~q0 de-
velop and defects between different regions do not anneal, allowing for long range frustration
to set in. Since q0 in 3.10 only specifies the magnitude of preferred wavevector ordering in
the system, the inability to achieve long range order is inescapable, as all such wavevectors
on the d−dimensional sphere are equally preferred.

Pseudo Volume Exclusion

In Figures 3.9 - 3.11 we show assembly trajectories in which nanoparticles have been inserted
and the Hamiltonian 3.15 has been used to couple the nanoparticles to the block copolymer
field φ. For physically plausible coupling values (γ = 1-20 kT ), nanoparticles may be driven
to particular phases of the block copolymer and both nanoparticle and polymer structure
formation may be seen. However, these results are not surprising, since 3.15 couples linearly
to the block copolymer density and simply acts as an externally applied chemical potential
field. At larger coupling values, block copolymer is immediately recruited to the vicinity of
each cylcic peptide, and overall tube structure formation is frustrated.

Corrected Volume Exclusion

As we show in Chapter 5, a first step towards introducing proper nanoparticle volume ex-
clusion in the model is to enforce the constraint that φ(r) = ρA(r) − ρB(r) = 0 inside each
nanoparticle. To this end, we modify the Monte Carlo and Langevin methods from the
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Figure 3.7: Self assembly phase diagram with q0 = 4.0, ε = 2.0, λ = 1.0, in the small f
regime in which close-packed spherical (CPS) structures are formed.

previous section to enforce φ(rin) = 0 for all appropriate rin inside a nanoparticle. Monte
Carlo has the advantage that this constraint may be explicitly enforced when proposing
trial configurations. Given that the current configurations satisfies the constraint, proposal
schemes are constructed, with symmetric generation probabilities, to always propose a new
configuration that also satisfies the constraint, ensuring detailed balance is satisfied.

Representing cyclic peptides as volume excluding spheres on a square lattice makes cal-
culating the overlap between each sphere and square lattice site analytically infeasible and
computationally onerous, requiring some flavor of numerical integration to calculate volume
overlap exactly (ignoring numerical integration error). To ameliorate this problem, rather
than computing partial overlaps, we fully exclude volume from the lattice sites whose centers
lie within a nanoparticle sphere, and leave those with centers outside of the sphere untouched.
This approximation is reasonably accurate for a sufficiently fine lattice. For a nanoparticle
of diameter σ located at ri, this amounts to

φr = 0, |r − ri| < σ/2 (3.39)

Enforcing the volume exclusion constraint when proposing changes in lattice values φr
may be done by only proposing configurations that respect the volume constraint. Like-
wise, changes in the orientations of the nanoparticles require no modification, since these
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Figure 3.8: Self assembly phase diagram with q0 = 4.0, ε = 2.0, λ = 1.0, in the f = 0.5
regime in which predominantly lamellar structures are formed.

moves keep the positions of the nanoparticles intact and do not interfere with the volume
exclusion constraint. Proposing changes in the positions of nanoparticles is complicated,
however, since a change in the position of a nanoparticle necessitates a change in the block
copolymer field to maintain volume exclusion at the new nanoparticle position. However,
since the nanoparticles are constrained to occupy an integral number of lattice sites, after
any move the number of newly vacated lattice sites will equal the number of newly occluded
sites. Therefore, one possible way to propose a nanoparticle update is to make a one-to-one
mapping between newly vacated and and newly occluded sites and copy the values from the
newly occluded sites directly to the newly vacated sites. The newly occluded lattice values
are then set to 0. Such a procedure is easy to implement and has symmetric Monte Carlo
generation probabilities. Further, when a move occurs, it should be more beneficial to make
this mapping in such a way that mimics physical dynamics by “pushing” polymer out of the
way (Figure 3.12b), rather than reflecting about the particle’s axis (Figure 3.12a).

A significant problem with this approach arises when considering the discrete finite differ-
ences used in evaluating the Hamiltonian’s gradients. For simplicity, consider a cubic lattice
with equal lattice spacing in 2 dimensions. The discrete form of the Hamiltonian for the



41

F
ig

u
re

3.
9:

S
el

f
as

se
m

b
ly

tr
a
je

ct
or

y
fo

r
a

n
o-

ex
cl

u
si

on
n
an

o
co

m
p

os
it

e,
w

it
h
f

=
0.

1,
q 0

=
4.

0,
τ

=
1.

0,
ε

=
2.

0,
λ

=
1.

0,
γ

=
10
k
T



42

F
ig

u
re

3.
10

:
S
el

f
as

se
m

b
ly

tr
a

je
ct

or
y

fo
r

a
n
o-

ex
cl

u
si

on
n
an

o
co

m
p

os
it

e,
w

it
h
f

=
0.

1,
q 0

=
4.

0,
τ

=
1.

0,
ε

=
2.

0,
λ

=
1.

0,
γ

=
10
k
T



43

F
ig

u
re

3.
11

:
S
el

f
as

se
m

b
ly

tr
a

je
ct

or
y

fo
r

a
n
o-

ex
cl

u
si

on
n
an

o
co

m
p

os
it

e,
w

it
h
f

=
0.

1,
q 0

=
4.

0,
τ

=
1.

0,
ε

=
2.

0,
λ

=
1.

0,
γ

=
10
k
T



44

(a) (b)

Figure 3.12: Nanoparticle MC move. A 1-1 mapping is made to transfer lattice values from
newly occluded sites to newly vacated sites. This mapping is illustrated by arrows showing
direction of transfer. (a) The mapping is made by reflecting about the particle axis. (b)
Lattice values are ”pushed” to the side as the polymer moves.

symmetric caes (i.e. α = 0 in 3.9) is

βH [φ] = ρ0

∑
i,j

∆x2

(
λ

4!
φ4
i,j +

1

2
φi,j
[
τ + εq−2

0 (L2 + q2
0)2
]
φi,j

)
(3.40)

Here, L is a choice of discrete Laplacian. Expanding the Laplacian term and inserting a
centered finite differences for derivatives, 3.23, gives

βH [φ] = ρ0

∑
i,j

∆x2

(
λ

4!
φ4
i,j +

1

2
(τ + εq2

0)φ2
i,j +

ε

∆x2
φi,jψi,j +

ε

2∆x4
ψ2
i,j

)
(3.41)

ψi,j = φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j (3.42)

From 3.41, it is clear that when the order of the derivative is greater than the dimension of
the system, the gradient-squared term in 3.41 will have a prefactor inversely proportional to
the lattice spacing. Since we have already assumed that the lattice spacing must be small
to adequately represent the circular shape of the nanoparticle, it follows that the coupling
strength for the difference between adjacent lattice sites φi+1,j − φi,j is very large. When
excluding volume, we require a discontinuity in the order parameter φ. We expect that
for a nanoparticle embedded in a polymer, the field will jump from 0 inside the particle
to a non-zero value representative of an A-rich or B-rich region of the polymer (this value

is given by the zeros of the φ4 − φ2 polynomial, ±
√

6|τ |
λ

). The enormously high energetic

contributions to the Hamiltonian of the discrete Laplacians is representative of the fact that,
as the lattice spacing approaches a continuum, these ”derivatives” should diverge at a point
of discontinuity in φ.

In practice we have determined the following rules of thumb. For a 2-dimensional system
with parameters for the model to be ρ0 = 1000, q0 = 4, τ = 1, ε = 1, f = 0.5, each
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lamellar ordering consists of an A-rich and B-rich region, for 4 × 2 = 8 total regions. The
lattice spacing necessary to adequately resolve each region can be set by considering that the
nanoparticles under consideration are on the scale of 1− 5nm and occlude at least 1 lattice
site, which puts a maximum lattice size around 1nm. Given that typical feature scales are
10-100nm per ordering, we need 40− 400 lattice sites in each dimension. For the parameters
selected, the double-well driving phase separation, (φ2 − τ

λ
)2 has minima at φmin = ±

√
6,

indicating that the boundary between nanoparticle and block copolymer should transition
from 0 inside the nanoparticle to ≈ 2.44 just outside. The interfacial penalty associated with

a single set of adjacent interfacial cells is 6ρ0

(
40
2π

)2
= 240000kT . For realistic systems, we

would need to represent the nanoparticle as more than a single lattice cell, 16 to 20 would
be more reasonable. The result is that differences in the polymer composition between the
two faces of the nanoparticle are amplified by a factor easily on the order of thousands
of kT for system sizes barely large enough to be considered sufficiently resolved, and this
amplification scales quadratically with increases in the system size. For small system sizes,
the differences in neighboring lattice values is significant. But by increasing the number
of lattice sites, and assuming the final ordered state will be a cosine wave, we decrease
the difference only linearly with N , since cos ≈ 1 − x

N
, whereas the penalty is growing

∝ N2. What these coarse calculations suggest is that to accept a nanoparticle move with
appreciable probability, we must simultaneously move the nanoparticle and redistribute the
surrounding copolymer composition in a way that minimizes interfacial energy penalties.
Such a cooperative move is difficult to predict and to program in such a way that satisfies
detailed balance. At the present, the construction of such a move is the foremost impediment
to developing this simulation technique further.

The advantage of the Monte Carlo approach is that the volume exclusion is easily enforced
by the appropriate choice of Monte Carlo moves. Its disadvantage is that creating a move
with reasonable acceptance probability is difficult. An alternative approach is to assign
a continuous density to each nanoparticle and introduce a coupling between polymer and
nanoparticle into the Hamiltonian that repels polymer from the interior of each nanoparticle.
Additionally, a halo region (denoted h(r)) surrounding each nanoparticle that couples linearly
to either the A-rich or B-rich region of block copolymer, as in 3.15.

Hcpl = γ

∫
drφ(r)2ρ(r) + ν

∫
drφ(r)h(r) (3.43)

ρ(r) is chosen to be a symmetric, infinitely differentiable function that vanishes outside
a finite interval from the center of the nanoparticle, such as 3.16. The differentiability
condition ensures exponential convergence of the Fourier series, making it suitable for the
pseudospectral techniques from the previous section. The φ(r)2 term is minimized by setting
φ(r) = 0 wherever ρ(r) is nonzero, while the linear coupling between φ(r) and the halo region
h(r) is attractive for φ(r) > 0, corresponding to an A-rich region attraction, and repulsive
for B-rich regions, where φ(r) < 0. In Figure 3.13 we show a snapshot of the density fields
from a representative simulation to illustrate the newly defined fields.
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(a) (b)

Figure 3.13: Continuous (a) nanoparticle density, ρ(r), and (b) halo attraction, h(r), fields
introduced into Langevin simulations to couple nanoparticles to polymer field φ.

This strategy is inspired by assuming that each particle imparts a small but finite com-
pressibility in its interior, and then considering the limit as this compressibility vanishes.
Hence, the δ[]-constraint in the partition function 3.5, inside each nanoparticle, is replaced
by a finite, quadratic compressibility, γ

∫
drφ(r)2ρ(r). Since this term is also a delta se-

quence when viewed as a sequence as γ → ∞, the term will converge towards the correct
δ[]-constraint in the original model formulation.

e−γ
∫
drφ(r)2ρ(r) →

∏
rin

δ (φ(rin)) γ →∞, ρ(rin) > 0 (3.44)

Thus, such an approach is theoretically well-behaved. Since the compressibility term favors
φ(rin) = 0, the most energetically favorable way to accommodate this condition in the
absence of a halo region is for the particle to localize to the interface between A-rich and
B-rich regions, where φ(r) naturally tends towards 0. Without a halo, this behavior is easily
reproduced in simulations on this model. Representative configurations are given in Figure
3.14.

When a halo region is present, the favorable energy gained from A-halo interactions may
be sufficient to drive the nanoparticle into the interior of an A-rich region. In this case,
two things may happen. Either the block copolymer will vacate the interior of the nanopar-
ticle, paying an interfacial penalty for excluding a volume inside the A-rich region, or the
block copolymer density will remain non-zero inside the nanoparticle, avoiding the interfacial
penalty from the gradient terms in the Hamiltonian, but paying an energetic penalty asso-
ciated with a nonzero φ value inside the nanoparticle due to the compressibility term. For
the same reasons as discussed for Monte Carlo simulations, the interfacial penalty associated
with creating an excluded volume in the interior of an A-rich region is enormous. As a result,
for volume to spontaneously be excluded, the energetic penalty from compressibility must
be greater than from interfacial terms, mean compressibility parameter γ must be on the
same scale as the interfacial penalty (thousands of kT ). As a result, the strength of the halo
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region must also be roughly this large in order for the particle to localize into the interior of
a phase, instead of sitting at the A-B interface.
Due to the extreme energetic scales necessary to actually acheive volume exclusion, an ex-
tremely small time step ∆t is necessary for the pseudospectral Langevin simulations, effec-
tively putting meaningful assembly simulations out of reach. In the parameter regimes used
in this thesis, the timestep ∆t must be decreased by a factor of 10, 000 in order for the
scheme to be stable. Representative snapshots obtained using this technique are shown in
Figure 3.15.

There are two possible approaches to remedy this situation that warrant further investi-
gation. The first is to use a higher order integrator for time stepping. The integrator used in
this thesis is an O(∆t) accurate Euler time stepping algorithm. Higher order algorithms are
available [21], which are essentially semi-implicit analogues of the familiar (explicit) Runge-
Kutta integrators. In general, these algorithms require a linear increase in computation at
each time step for a geometric increase in accuracy. For instance, the 4 − 5 Runge-Kutta
scheme requires evaluation of ∂φ

∂t
at 5 separate times, and yields an update φ(t+ ∆t) that is

accurate up to O(∆t4), allowing for a much bigger time step. A second possible solution is
to enforce the volume constraint in the Langevin equations by using a Lagrange multiplier,
similar to rigid body constraints in molecular simulations [1]. This approach would amount
to adding a Lagrange multiplier to the equation of motion at each lattice site neighboring
a volume-excluded nanoparticle to ensure that the BCP density gradient is normal to the
nanoparticle surface, so that no polymer flows into the excluded volume. A similar approach
has been successfully applied in the context of Cell Dynamical Simulations for a similar
nanoparticle-polymer system [44], however it is unknown whether this is compatible with
the semi-implicit, pseudospectral time-marching scheme used in this study.
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Chapter 4

Algorithms for GPU Accelerated
Simulations of Mesoscale Systems

Moore’s Law famously predicts that transistor counts will follow an exponential increase,
roughly doubling every two years, with chip performance doubling every 1.5 years (Fig-
ure 4.1). While this prediction has proven remarkably accurate since its inception in the
early 1970s, within the past ten years these gains have more frequently come not from in-
creased clock speeds or more efficient chip architectures, but from the production of proces-
sors that combine multiple execution units together onto a single die. This trend is expected
to continue, since the limits of thermal power density seem to have been reached with current
processor designs, leaving the addition of more independent cores as the only reliable way to
increase performance. As a result, there has been a renewed interest in the development of
algorithms in statistical physics that exploit massively parallel design principles via shared
memory (multicore processors) and distributed memory paradigms (commodity clusters) due
to the increased availability of computing resources at low cost. One particular option, gen-
eral purpose computing on graphics processing units (GPGPU) is especially attractive due
to theoretical GFLOP/s rates frequently 10-100 fold greater than traditional state of the art
CPUs.

Here we present the development of an algorithm for Metropolis Monte Carlo lattice
simulations on the GPU, and its application to the Ising Model and more general φ4 − φ2

Hamiltonians, such as 3.10. We demonstrate that the algorithm is able to successfully capture
the physics of those systems and we quantify computational advantages of them.

GPU Architecture and Its Implication for Algorithm Development

The large demand for graphics processing power in consumer industries (video gaming, video
processing and rendering, etc) has allowed the research and development of increasingly
powerful graphics processors. Since many graphics processing tasks can be formulated as
simple operations (i.e. translation and rotation) on arrays of vertices, a highly parallel
architectural paradigm has evolved for graphics processors, in which a relatively simple (by
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Figure 4.1: Comparison of Nvidia GPU and Intel CPU architecure timeline.

CPU standards) memory layout and instruction set provide enough memory bandwidth to
fully saturate a vast array of independent compute elements with data for manipulation. As
a result, graphics processors excel at transforming extremely large data sets, provided the
transformation can be structured in such a way that exploits the computation-intensive and
data-independent design of the processor.

Previously, to employ a graphics processor for scientific purposes, it was necessary to
disguise one’s computation in the language of graphics manipulations using a graphics API
(OpenGL, for example) [123]. In 2006, Nvidia introduced CUDA (Compute Unified Device
Architecture) [84], which included a set of extensions to the C programming language which
expose Nvidia graphics hardware via a thread-based programming paradigm. A specialized
compiler allows code to be compiled with these extensions and eventually run on Nvidia
hardware. Reported speedups of 10-fold to many hundred-fold in the statistical physics
community are common (although the appropriate metric for measuring speedup is somewhat
murky, and discussion of Amdahl’s rule is frequently avoided).

The code in this thesis was developed on a GeForce GTX 275. Since the particular
architecture of the GeForce GTX 275 is already outdated by the time of this writing (by two
major hardware revisions, Fermi and Kepler, no less), the extended architectural details of
the 275’s hardware will be omitted. Instead, it will suffice throughout the discussion to refer
to Figure 4.3, which gives a brief overview of the Nvidia GPU architecture at a level that
has remained relatively consistent throughout hardware revisions.
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Figure 4.2: Schematic for the Nvidia GPU architecture. The GPU consists of many inde-
pendent multiprocessors that communicate via global memory and caches. On each multi-
processor, individual processors share an instruction set and communicate via smaller, faster,
on-chip shared memory.

The GPU is made up of a collection of multiprocessors, each one itself composed of a
number of invidivdual compute elements capable of concurrent execution. Figure 4.3 gives a
more detailed view of one multiprocessor. Each compute element has its own private register
memory space, and can communicate with a global memory pool either directly or through
constant and texture caches. Additionally, the compute elements in the same multiprocessor
are able to communicate with one another via a small (tens of kBs in size), fast, shared
memory space. Different multiprocessors execute independently from one another, meaning
the compute elements in one multiprocessor cannot rely on, nor can they effectively synchro-
nize with, other multiprocessors. Shared memory allows a meager amount of coordinated
computation within a single multiprocessor, and threads of computation running one a mul-
tiprocessor can synchronize. Due to this design, increased parallelism and compute power
can always be acheived by adding more multiprocessors.

To further abstract hardware details such as multiprocessor count and compute power,
the CUDA programming model defines an abstract collection of threads, each representing a
virtual compute element. Threads are collected into grids, with a grid representing a virtual
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multiprocessor, and grids are arranged in a grid block so that each grid can access its relative
position in the overal pool of grids. Thus, the needed parallelism may be tailored to the
needs of the application, with highly efficient codes being those that spawn massive grid
blocks with a high amount of computation per thread (and per global memory access).

4.1 Ising Model

The Ising model is one of the most studied models in statistical physics, due to its ability
to describe a diverse array of phenomena (of which ferromagnetism was the first), and since
its exact solution is known in 1 and 2 dimensions [11]. A well known fact of the Ising model
is that it manifests a continuous phase transition in 2 dimensions and higher, but not in
1 dimension [11]. As the critical point associated with this phase transition is approached,
long range correlations encourage a critical slowing down in traditional single spin flip Monte
Carlo techniques [5]. To circumvent this, a large number of alternative numerical techniques
have been developed to study the Ising model, making the Ising model an excellent starting
point for prototyping new numerical techniques due to the wealth of information that exists
on this model. For this reason, we chose to implement the Ising model as a first proof of
concept for our GPU algorithm.

Model and Implementation

Tomov and coworkers were one of the first groups to implement a Monte Carlo Ising model
algorithm on the GPU [123]. Their work utilized NVIDIA’s Cg library, which was state
of the art at the time. Due to the difficulty of programming with Cg, it was not until
Pries et al [94] in 2009 reported a similar algorithm using NVIDIA’s more accessible CUDA
interface that widespread interest grew in GPUs for simulation. Following [94], we model
the simple two dimensional ferromagnetic square lattice Ising model, which consists of an
arrangement of ±1 spins arrange on a square lattice with periodic boundary conditions to
mimic a macroscopic system. These spins interact with their nearest neighbors on the lattice
with a Hamiltonian given by

H = −J
∑
<i,j>

SiSj −H
∑
i

Si (4.1)

where Si = ±1 represents a spin at site i and H denotes the external magnetic field. We use
the standard Metropolis criterion for single spin flips[82]

pacc(Si −→ −Si) = min[1, e−β∆E] (4.2)

The advantage of single spin flip dynamics is that neighboring states on the Monte Carlo
chain differ at most by a single spin, so that ∆H can be calculated by examining the proposed
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spin to flip and its neighboring spins. Since this depends only on the spin on the given lattice
site as well as its 4 immediate neighbors, the necessary calculations can be made in a highly
parallel fashion by using the well known checkerboard lattice decomposition. For an N ×N
lattices of n = N2 total spins, the lattice is divided into two sublattices with the property
that no lattice site in a sublattice is a neighbor of any other site in that sublattice. If all of the
sites in one sublattice are updated with a single spin flip exactly once, then the probability
of observing the system in state s1 after updating one sublattice, decomposes according to

P (s1|s0) = P (s0)

N/2∏
j=1

P (sj|sj−1) = (4.3)

= P (s0)

N/2∏
j=1

P (sj|sj−1
σ(j−1)) = (4.4)

= P (s0)

N/2∏
j=1

P (sj|s0
σ(j−1)) = (4.5)

= P (s0)

N/2∏
j=1

Pgen(sjσ(j−1))Pacc(s
j
σ(j−1)) (4.6)

Since the final probability 4.6 is invariant under the permutation σ chosen, the order in which
the moves are executed is irrelevant, and we can make the moves in any order, and even in
parallel, with one processor updating one lattice site. We can synchronize the processors
after 1 Monte Carlo step (n/2 total), update the second sublattice of n/2 sites, and repeat
until equilibrium is reached. One caveat is that due to the deterministic way in which lattice
sites are selected, the Markov chain is periodic at T = ∞ and thus not ergodic, since each
sublattice’s spins are simply flipped in parallel.

The checkerboard decomposition is a reasonably efficient and relatively simple way to
exploit parallelisn in the Ising model, but it does not fully exploit the idiosyncracies of the
Nvidia memory hierarchy, in which individuals ’processors’ on the GPU are grouped into
32-wide multiprocessors that share a local, cached memory space. Directly implementing the
checkerboard decomposition does not utilize this memory space, resulting in poor memory
bandwidth, since all data reads and writes are directly to/from the global memory space,
which has much lower latency. Further, each sublattice update requires a separate kernel
invocation, introducing even more overhead.

To remedy this problem, the entire lattice is first divided into a larger array of blocks,
with each block separated from its neighbors by a boundary region, as shown in Figure4.3.
As a consequence of this decomposition each block can be updated independently from the
others for an arbitrary number of Monte Carlo steps, provided the boundary regions are
never updated. The size of the blocks is chosen so that multiple blocks can be fit into the
shared memory space of a multiprocessor, and then each block may be collectively loaded
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into shared memory by the threads in the thread block. Each block is further decomposed
into a standard checkerboard decomposition, which allows for all spins inside the block to
be iteratively updated in the typical half-half checkerboard fashion for a number of times
before synchronization with the other blocks occurs.

lattice site updated in this MC move

lattice site not updated in this MC move

t=n t=n+1

separates large lattice blocks

Figure 4.3: Ising model decomposition. The lattice is broken up into distinct regions
separated by boundary regions that are never updated. Within each region, a checkerboard
decomposition is made. A block of threads then iterates through a single checkerboard
sublattice. In the case of the Ising model, the checkerboards have 2 sublattices, and a block
alternates MC proposals on each sublattice in every step. After a user-chosen number of
updates, the new values for each region’s spins is written to global memory, the boundary
regions are shifted and the process repeats.

In practice we first launch a kernel which assigns half (ever other one) of the large tiles
to a separate thread block. All of the thread blocks will be executed in parallel. Then the
threads of each thread block cooperatively load the spin configuration of their tile plus a
boundary layer, necessary to evaluate acceptance criteria, into shared memory. subsequently
the threads of each block perform a Metropolis update of each lattice site type (e. g blue) in
their tile in parallel and then all the threads of each block are synchronized, ensuring that
all of them have completed the previous step. In the next step the tiles that have not been
previously updated (in this case white) are updated and the threads of each block perform
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a Metropolis update on each site in their tile in parallel and again the threads of each block
are synchronized. Finally another kernel is launched to evaluate the remaining large tiles of
the checkerboard in the same fashion.

4.2 Block Copolymer

In this section we modify the parallel algorithm described for the Ising model to work with
the block copolymer Hamiltonian, 3.10. The principal difference between 3.10 and the Ising
Hamiltonian is the presence of gradient terms that couple further than nearest neighbor
lattice sites together, requiring a bigger footprint for each Monte Carlo move. Additionally,
the order parameter field φ(r) is continuous and locally conserved, requiring an even bigger
footprint, since a local transfer of order parameter density from neighboring lattice sites
must be made. Straightforward application of a checkerboard decomposition to the block
copolymer model would require 8 distinct sublattices and require a heroic programming effort
to even implement. Further, the extremely low efficiency associated with 1 lattice site for
8 memory transfers would make checkerboard decomposition a very unappealing solution.
This algorithm avoids the problems inherent in the traditional checkerboard algorithm by
efficiently exploiting the GPU memory hierarchy to maximize memory transfers per lattice
update.

In this section we approximate gradients by finite differences ∇4φ → δ4
k[φ]. The stencil

used for δ4
k[φ] will later determine the sublattices for the parallel checkerboard.

Briefly, we define a notional superlattice of subsystems separated by sufficient distance
that they do not directly interact i.e we first decompose the entire N×N lattice into (N/L)×
(N/L) lattice of L×L blocks. Each of these regions is assigned to a separate multiprocessor
(block of threads), which performs many MC sweeps, advancing moves locally with the
intervening boundary regions held fixed. Each block is decomposed into noninteracting
sublattices and a parallel checkerboard algorithm is used. Density transfer between adjacent
cells is proposed for cells on the current (blue, Figure 4.4) sublattice and accepted according
to standard Metropolis criteria. Different sublattices are sequentially chosen, until the entire
block is equilibrated. The edges are not updated in this process. After the entire block is
equilibrated the the gridlines defining the L×L blocks (red in Figure 4.4) are shifted by L/2
in the x and/or y direction, ensuring all edges eventually are equilibrated.

The advantage of this approach lies in the ability to choose a size of subsystems large
enough to exploit efficient memory access (so-called coalesced memory transactions) yet
small enough to fit inside of fast memory pools on the GPU. Such strategies should scale
well between different hardware types and even when new generations of hardware comes
out.
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Results

To test the new algorithm, we first compare the lamellar and cylindrical morphologies of sym-
metric diblock copolymers obtained from simulations with those observed in experiments.
As shown in Figure 4.5, simulated morphologies match qualitatively the experimental re-
sults including both the two-dimensional lamellae (Figure4.5A) and cylindrical structures
(Figure4.5B).

To quantify the speedup of the GPU code relative to CPU code, we approximate it as
the ratio of the MC step rate on GPU/CPU and then measure the speedup as a function
of lattice size. As shown on Figure4.6A the speedup increases as the lattice size increases
but tends to plateau for very large lattices (around N = 2000). Another, perhaps more
functionally relevant, way to measure the performance of GPU code is to track the number
of Monte Carlo steps necessary to reduce the spin-spin autocorrelation, C(t) = 〈si(t)si(0)〉 to
1% of its initial value at a single parameter set above the transition temperature. The ratio of
CPU/GPU values gives an idea of how efficiently the GPU scheme can generate decorrelated
microstates. As shown in Figure4.6B, the decorrelation ratio decreases almost exponentially
with increasing lattice size as the GPU code requires fewer MC steps to decorrelate the
density field. This demonstrates clearly the benefits of the local GPU algorithm for the
block copolymer model.

Discussion

We have quantified the speedup by looking at the ratio of the MC step rate on GPU/CPU of
the the number of Monte Carlo steps necessary to reduce C(t) to 1% of its initial value at one
parameter set above the transition temperature. While those measures reflect the speedup
closely an even better quantification of speedup would measure the system’s decorrelation
rate, in real seconds.

The speedup afforded by the GPU code depends on how many MC steps are taken before
switching grid boundaries. Nevertheless, it robustly shows that the bigger the lattice, the
slower the CPU code but faster the GPU code, highlighting the ability of GPU algorithms
to extend MC simulations of polymeric systems to larger and more complex systems. The
algorithm performs all computations in shared memory, a fast, but small (16kB) memory
space on each MP, which is the most likely reason behind the extraordinary speedup, since
the GPU experiences significant memory latency only when shifting gridlines (after millions
of MC steps have been completed).
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lattice site updated in this MC move
lattice site not updated in this MC move
lattice site that would be updated only after changing domain decomposition

t=0 t=1 (vertical move)

t=3 (shift) t=8

. . .

Figure 4.4: Similar to the Ising model procedure in Fig. 4.3, except that block copolymer
updates require the local transfer of density between neighboring lattice sites to maintain
local conservation of density. This necessitates the more complicated lattice decomposition
shown.
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Figure 4.5: Self assembly results for GPU block copolymer code.
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than at randomly selected sites), the local lattice regions decorrelate much faster on the
GPU than on the CPU.



60

Chapter 5

Excluding volume in field theories

The central goal of Chapter 3 was to develop a model for a block copolymer nanocomposite
and then to implement an efficient numerical scheme to investigate the self assembly behav-
ior of the model over many wavelengths of ordering. At the time, we assumed that volume
exclusion leaves the φ4 − φ2 model intact and only modifies the model insofar as it sets
φ(r) = 0 inside regions containing a nanoparticle. In this chapter we investigate the validity
of this assumption. In addition, we exploit the fact that the φ4 term is an approximate term
that restores stability to an unstable Gaussian model, and we introduce a hard-constraint
approximation that fulfills the same role, while making much more transparent the connec-
tion between our theory and Gaussian theories for liquids, the density statistics of which
have been extensively studied in the context of volume exclusion.

5.1 The Gaussian case

For a simple liquid of a single particle type with an intermolecular potential u(|ri − rj|), we
can apply the inverse Hubbard-Stratonovich transformation to convert a particle theory into
a field theory in which we integrate over all density fluctuations, similar to the procedure
leading to 3.7 [35]. If we are only interested in density fluctuations in the liquid far away
from a critical point, then we may make a harmonic approximation to the statistics of the
fluid. In this regime, density fluctations in the liquid are observed according to a Gaussian
weight, with partition function

ZG =

∫
Dρe−

1
2

∫
ρ(r)χ−1(r−r′)ρ(r′) (5.1)

As always, the functional integral in (5.1) implies a limiting process from a discrete set of
coupled Gaussian random variables to a continuum. For the purposes of excluding volume,
it will be easier to work directly within a discrete framework, where the partition function
is approximated as the normalization of a discrete (albeit quite large), multidimensional
Gaussian integral. We therefore discretize space onto a Euclidian grid, with one fluctuating
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variable for each discrete lattice site. In general, we will denote fluctuating variables with x′s,
means with µ′s, covariance matrices with Σ′s, and precision matrices (inverses of covariance
matrices) with Λ′s. Note that Σ−1 = Λ. For a simple liquid, when we exclude volume, we
need to set a portion of the fluctuating variables to 0. It will be convenient to block partition
the variables into freely fluctuating variables as xf , and constrained variables, xc.

In terms of x, the probability of a configuration is simply

p(x) = N (x|µ,Σ) = (2π)−N/2 |Σ|−1/2 e−
1
2

(x−µ)TΛ(x−µ) (5.2)

This probability can also be written in terms of the partitioned variables as

p(x) = p(xf ,xc) = (2π)−N/2 |Σ|−1/2 e−
1
2(δxTf Λff δxf+δxTc Λccδxc+2δxTf Λfcδxc) (5.3)

In 5.3 we have used δx = x− µ and the block matrix

Λ =

(
Λff Λfc

Λcf Λcc

)
(5.4)

We know that the density vanishes in excluded volume regions, which necessitates xc = 0.
Therefore, we seek an expression for the conditional probability of the remaining uncon-
strained variables xf , given that xc = 0. Bayes’s Theorem and a little algebra show that

p(xf |xc) =
p(xf ,xc)

p(xc)
=

p(xf ,xc)∫
dxf p(xf ,xc)

(5.5)

=
e−

1
2

(δxf−Λ−1
ff Λfcδxc)

TΛff (δxf−Λ−1
ff Λfcδxc)∫

dxf e
− 1

2
(δxf−Λ−1

ff Λfcδxc)TΛff (δxf−Λ−1
ff Λfcδxc)

(5.6)

The denominator in 5.6 is simply the normalization for the Gaussian exponential in the
numberator, meaning the unconstrained variables xf retain their Gaussian character, with
a new mean and variance determined in part by the constrained modes,

p(xf |xc) = N (xf |µf |c,Σf |c) (5.7)

µf |c = µf −Λ−1
ffΛfc(xc − µc) (5.8)

Σf |c = Λ−1
ff (5.9)

Note that Σf |c 6= Σff , the original covariance among xf when xc is unconstrained. 5.7-5.9
are general results for any choice of xc, but for excluded volume we know that xc = 0.
Further, both µf and µc are equal to the bulk density ρ̄. Using these facts, and assuming
there are Nf free variables and Nc constrained variables, gives
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µf |c = µf + ρ̄
Nc∑
j=1

aj (5.10)

A = [a1 . . . aNc ] = Λ−1
ffΛfc (5.11)

aj are the colums of the Nf ×Nc matrix A. Using the following matrix identity,

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 + D−1CBD−1

)
(5.12)

where M−1 is the Schur complement of the left hand side, along with a fair amount of
algebra, we can show that

Σf |c = Σff −ΣfcΣ
−1
cc Σcf (5.13)

5.10 and 5.13 are the discrete analogues of the continuum results presented in [42] and [24].
In particular, the structure in 5.10 and 5.13 are highly similar to Equation 7.8 and Equation
7.7 in [42], where the partitioning of varibles into unconstrained and constrained variables
is analogous to restricting the modified correlation function χ(m) to the subspace spanned
outside of the hard solute via projection operators.

5.2 Excluding volume in φ4-φ2 field theories

Extending the results from the previous section to a φ4−φ2 theory such as the block copoly-
mer Hamiltonian 3.10 is relatively straightforward. Since the structure factor is computed
by the random phase approximation, Λ is known, and Λ captures the bilinear terms in 3.10,
essentially the quadratic and gradient portions, leaving the quartic term as the only addition
to 3.10. Therefore, the probability for a configuration becomes

p(x) = Z−1 e−
1
2

(x−µ)TΛ(x−µ)+λ
∑N
i x4i (5.14)

Z =

∫
dx e−

1
2

(x−µ)TΛ(x−µ)+λ
∑N
i x4i (5.15)

In contrast to a Gaussian probability, the normalization Z cannot be evaluated in this case.
But this is not a problem, since upon splitting x into xf and xc, and an application of Bayes’s
rule, the normalizations cancel,
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(a) (b) (c) (d)

Figure 5.1: Illustration of the breakdown of stability in a Gaussian field theory. (a) Above
the transition temperature, the quadratic form is positive definite, and finite fluctuations
are observed. (b) When T < Tc, the quadratic form becomes negative definite, leading to
unbounded energy associated with larger density fluctuations. (c) For T > Tc in the quartic
model, stability is also observed. (d) For T < Tc in the quartic model, stability is still
observed due to the quartic restoring force, as seen by the energy minima at finite values.

p(xf |xc) =
p(xf ,xc)

p(xc)
=

p(xf ,xc)∫
dxf p(xf ,xc)

(5.16)

=
e−

1
2

(δxf−Λ−1
ff Λfcδxc)

TΛff (δxf−Λ−1
ff Λfcδxc)+λ

∑Nf
i x4i∫

dxf e
− 1

2
(δxf−Λ−1

ff Λfcδxc)TΛff (δxf−Λ−1
ff Λfcδxc)+λ

∑Nf
i x4i

(5.17)

What is remarkable about 5.17 is that, similar to the Gaussian field theory case, the process
of excluding volume does not fundamentally change the structure of the field theory. The
probability distribution remains a φ4 − φ2 theory. Since the φ4 term is entirely local, the
constrained lattice sites xc only influence the remaining lattice sites xf through the Gaussian
quadratic form, in exactly the same way as in the GFT case. What this means is that, to
study the effects of volume exclusion in a φ4 − φ2 theory, it suffices to study the effect of
volume exclusion independently from the effect of the quartic restoring force, when added
to the Gaussian case, 5.3.

We now focus attention on the effect of the quartic term in 5.17. Since the φ4 − φ2

Hamiltonian is used as a model for phase separated systems, it is assumed that the quadratic
form is negative definite. Physically, a negative definite quadratic form would reward ever-
more extreme density fluctuations and lead to unphysical configurations. To correct this,
a quartic term is added to the Hamiltonian to provide a restoring force against extreme
fluctuations. This view is illustrated in Fig. 5.1.

The local free energy density for a single lattice site rewards unbounded density fluc-
tuations in the absence of a restoring force. When a quartic term is added, the resulting
double-well potential has well-defined energy minimums. However, the choice of a quartic
term to provide stability is not special. Formally, it represents the next term in a functional
Taylor expansion of the field-theoretic Hamiltonian in powers of the density fluctuation field
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(with odd powers assumed to vanish due to symmetry). In practice, however, even the φ4

term is an approximation, since in an exact treatment the term would be of the form

1

2!

∫
q

γ2(q,−q)φ(q)φ(−q)+ 1

4!

∫
q1

∫
q2

∫
q3

γ4(q1, q2, q3,−q1−q2−q3)φ(q1)φ(q2)φ(q3)φ(−q1−q2−q3)

(5.18)
Despite this, it is standard to approximate the Hamiltonian’s fourth order vertex function,
γ4 as a constant, λ = γ4(0, 0, 0, 0). Upon inverse Fourier transform, this term becomes the
familiar

λ

4!

∫
q1

∫
q2

∫
q3

φ(q1)φ(q2)φ(q3)φ(−q1 − q2 − q3) =
λ

4!

∫
drφ(r)4 (5.19)

The quartic term
∫
drφ(r)4 is necessary to restore stability to the negative definite quadratic

form, but the particular choice of a quartic is merely a matter of convenience. However, as
shown in Chapter 3, this quartic term introduces extreme headaches when put into a numeri-
cal scheme, necessitating expensive and less-accurate explicit updates for the pseudospectral
technique, reducing its computational efficiency considerably.

In Fig. 5.2, we plot a family of polynomials of increasing order, to illustrate the basic
fact that

lim
n→∞

e−( x
xmax

)
n

= θ(xmax − x)θ(xmax + x), (5.20)

with the exception of x = ±1. Given this fact, for a sequence of random variables Xn with
probability measures

pn(x) ∝ e−
1
2
xTΛx+

∑
i(

xi
xmax

)
n

, (5.21)

we know that Xn converges to a random variable X with probability measure

p∞(x) ∝ e−
1
2
xTΛx

∏
i

θ(xmax − xi)θ(xmax + xi) (5.22)

Thus, the limitng case of an increasingly stiff restoring force against unphysical fluctuations
is simply a hard constraint on the fluctuation that can occur. This is simply a truncated
Gaussian distribution. Whereas the φ4 − φ2 approach is motivated by reasons of simplicity,
i.e. simply terminating the infinite order power series as soon as stability is restored to
the Gaussian portion, this approach is motivated by the realization that there must be
an infinitely stiff restoring force against physically unrealistic fluctuations that place more
polymer density at a point in space than excluded volume arguments from a particle-based
description would allow. In other words, the φ4−φ2 approach says unphysical density profiles
are unlikely, but possible, whereas we know excluded volume necessitates that these density
distributions can simply never be observed.
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Figure 5.2: Family of polynomials of increasing order, showing convergence towards hard
constraints, 5.1. (blue) x2, (green) x8, (red) x32.

The advantage of the infinitely stiff restoring force approach is that the distribution that
results is essentially a Gaussian distribution, restricted to a d−dimensional cube. Alterna-
tively, by diagonalizing the exponent through a variable transformation, y = Λ1/2(x−µ), the
partition function can be expressed as uncoupled Gaussian integrals, restricted to a convex,
d−dimensional polytope Vd,

Z =

∫
Vd

dy e−
1
2

∑
i λiy

2
i (5.23)

Whereas the integral for the φ4−φ2 partition function is unsuitable for Gaussian quadra-
ture, the partition function 5.23 and associated ensemble averages can, at least in principle,
be iteratively solved via a computer algebra system for a closed form solution in terms of
error functions.
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5.3 Normal modes of the system

Due to the translational invariance of the physical system, the resulting correlation matrix,
Σ is circulant. As a result, its eigenvectors are the complex Fourier exponentials,

Σ = UDUT (5.24)

U = [v1 . . .vN ] (5.25)

vk =
(
1, ωk, . . . , ω

N−1
k

)
(5.26)

ωk = e
2πik
N (5.27)

Therefore, the Fourier modes, x̃ = Ux, are also the normal modes of the system. Whereas
box constraints on real-space density fluctuations independently limit each component of x
to −xmax < xi < xmax, the effects of these constraints on x̃ are more complicated. Although
the coupling between components of x is removed after diagonalizing, the support for x̃ is
now a convex polytope, meaning the feasibility of a component x̃k taking a value is coupled
to the values of the other components in x̃. As xmax is increased, the probability for x̃
becomes Gaussian, as do all of the marginal probabilities p(x̃k). Therefore, it is interesting
to consider the extent to which the marginal probability, 5.29, for the the real component (or
imaginary, since they have identical statistics) of wavevector k∗, which describes the eventual
ordering periodicity, is Gaussian at relevant values for xmax.

p(x̃) =

∫
Vd

dx̃e−
1
2

∑
k |x̃k|2 (5.28)

p(x̃Rk∗) =

∫
Vd

dx̃Rk 6=k∗dx̃
Ip(x̃) (5.29)

5.4 Monte Carlo simulations

For high-dimensional vectors x̃, which correspond to a field theory with very fine lattice res-
olution, computing the marginal distribution 5.29 is non-trivial. We have chosen to compute
this distribution through histogramming values of xRk∗ generated through Metropolis Monte
Carlo sampling of the full distribution 5.28. In order to run these simulations, a suitable
value for the matrix Λ is needed. Since the approximated SRPA(k) is directly given by
Leibler’s calculations under the random phase approximation, Λ is easily obtained since it is
the discretized inverse structure factor, S(k)−1 for a melt of non-interacting ideal Gaussian
chains. SRPA(k) from Leibler’s calculations, evaluated along the x-axis (ie kz = ky = 0) is
shown in 5.3.

After choosing a starting configuration for x̃, new samples are proposed by choosing a
random component x̃k and perturbing it by a random amount, x̃k → x̃k + δ. In order to
ensure that the inverse FFT of x̃ remains real, we also update wavevector −k by the complex



67

Figure 5.3: Structure factor S(k), varied along the kx axis, with ky = kz = 0, for a 64-chain
system. Theoretical prediction based on direct calculation of S(k) for a bead-spring system
(blue) is compared against averages of S(k) computed from Monte Carlo simulations of an
explicit chain system (red).

conjugate of δ, δ∗. After proposing the update, it is also necessary to verify that x̃new does
not cause its real-space FFT pair, xnew, to violate its constraints −xmax < xnew < xmax.
Whereas a discrete Fourier transform is O(N logN), we can instead check this condition in
O(N) time by keeping track of x throughout the simulation and noting that

xnew = xold + δu (5.30)

u =
[
e
ir0·k
N . . . e

irdN ·k
N

]
(5.31)

Starting from a random configuration, simulations were typically conducted for thousands
of time steps to allow equilibration of the Markov MC chain before recording the value of
x̃Rk after each Monte Carlo sweep (1 sweep = N MC steps). To increase the sampling of
extremely unlikely values of xRk∗ , quadratic potentials biasing xRk∗ were placed according to

Ubias(x
R
k∗) = α(xRk∗ − x0)2 (5.32)

Tens to hundreds of simulations were run in parallel, with a different bias in each simula-
tion, and the value of xRk∗ was recorded at every sweep for thousands of time steps in each sim-
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ulation. A final estimate for p(xRk∗) was then computed by reweighting the histograms of each
simulation and combining them using the weighted histogram analysis method (WHAM) [67].

In addition to the lattice based simulations of 5.28, we also conducted Monte Carlo
simulations with an explicit bead-spring representation of the polymers as a check on the
validity of the field theory results. Although this approach is also not exactly analogous to
the field theoretic model, since each polymer is explicitly coarse-grained into a bead-spring
chain, it has been shown recently that the approach can still be exceedingly accurate [92].
We first simulated a system of independent, non-interacting Gaussian chains, the system
used to calculate SRPA(k), and computed p(x̃Rk∗) for this system. This is an interesting
system, because it allows us to qualitatively assess the contribution of bead-spring chain
structure to any potential non-Gaussian behavior of p(x̃Rk∗) separately from excluded volume
considerations. After this, it is possible to turn on volume excluding interactions in this
model and compute p(x̃Rk∗) again. We won’t go into great detail regarding the simulation
technique in order to maintain focus on the field-theoretic simulations. More extensive details
on the model and methods for explicit chain calculations may be found elsewhere [29].

Results

As we show in Figure 5.4, for a single chain, p(x̃Rk∗) is highly non-Gaussian. However, since
x̃Rk∗ is a Fourier transformed compositional variable, it is the sum of single particle density
operators, and a central limit theorem of sorts ensures that this quantity quickly assumes
Gaussian behavior as more chains are added to the system. This is demonstrated in Figure
5.4b, by increasing the number of chains to 64, and shown in further detail in 5.5. As a result,
although a single Gaussian chain (confusingly) results in non-Gaussian compositional density
fluctuations, for a sufficiently large number of chains, compositional density fluctuations are
essentially Gaussian.

Next, the results for the volume excluding explicit chain calculations are given in Figure
5.6, which clearly demonstrates that the explicit chain model demonstrates behavior that is
nearly Gaussian, even once volume excluding interactions are turned on. Given that intra-
chain behavior eventually becomes Gaussian, it is not surprising that volume excluding
interactions fail to disrupt this Gaussian behavior, since the density fluctuations of volume
excluding simple liquids are known to be highly Gaussian, even down to very small length
scales [28]. While these results are encouraging, the downside of the explicit chain technique
is the heroic computational effort required to simulate and collect the data at realistic chain
density parameters. For the data in Figure 5.6, a 640,000 particle system was needed, and
many simulations with separate biasing potentials were run in parallel for over 20 days each.
As a result, we were unable to push this system towards a regime where it strongly deviates
from Gaussian behavior.

Finally, in Figure 5.7 we show the results of lattice simulations for the constrained Gaus-
sian field theory, 5.28. In Figure 5.7, we compare the reweighted data (blue) with the
log-probability for a Gaussian of the same mean and variance (green). The data are nearly
identical until the constrained system has a nearly instantaneous divergence towards in-
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(a) (b)

Figure 5.4: (blue) Negative log-probability histogram obtained from WHAM for a single
explicit 32 monomer bead-sping system. (red) The negative log-probability for a Gaussian
distribution of the same mean and variance as computed from simulation data via WHAM.
For a system of 1 chain (left) deviations from harmonic behavior may already be seen at
relatively small kT values. When the system size is increased to 64 chains, p(x̃k∗) remains
Gaussian to much higher values of kT .

(a) (b) (c) (d)

Figure 5.5: A more detailed view of the 64 chain explicit Monte Carlo simulation from 5.4b.
Full data set is presented in (a). Panels (b), (c), and (d) present the same calculation applied
to increasingly restricted data sets, showing that the data is well fit by a to a harmonic model
(blue) that implies a Gaussian distribution.
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(a)

Figure 5.6: (blue) Negative log-probability histogram obtained from WHAM for a 640,000
system of 32-bead polymers with volume excluding interactions turned on. Parameters are
chosen so that the system would form 4 lamellar layers, were the AB interactions turned
on. (red) The negative log-probability for a Gaussian distribution of the same mean and
variance as computed from simulation data via WHAM.

finitely large free energy (which corresponds to zero probability). This indicates that the
effect of imposing hard constraints on real-space density fluctuations is, to a first approxima-
tion, to impose a hard constraint on normal mode fluctuations. This is significant, because
it indicates that the normal modes of the field theory retain their original structure, but
are truncated, in the constrained model. As a result, the original φ4 − φ2 model can be
replaced by a greatly simplified constrained Gaussian field theory which has the character
and advantages of simpler Gaussian theories while retaining the stabilizing features of im-
parted by the φ4 term. Since much is known about how to properly exclude volume and
how to develop efficient numerical techniques for Gaussian theories, a promising direction
for further extending these results will be to fully develop and apply what is known from
liquid Gaussian theories to this system.
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(a) (b)

Figure 5.7: (blue) Negative log-probability histogram obtained from WHAM for a 128x128
lattice with Hamiltonian 3.10. (green) The log-probability for a Gaussian distribution of the
same mean and variance as computed from simulation data via WHAM. When no constraints
are imposed (left) the distribution is Gaussian as expected. When constraints are imposed
(right) that no lattice site can exceed ±10, the data for wavevector k∗ remains Gaussian far
out into the wings.



72

Bibliography

[1] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. Oxford
University Press, 1989.

[2] J.G. Amar, F.E. Sullivan, and R.D. Mountain. Monte Carlo study of growth in the
two-dimensional spin-exchange kinetic Ising model. Physical Review B, 37(1):196–208,
1988.

[3] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose molecu-
lar dynamics simulations fully implemented on graphics processing units. Journal of
Computational Physics, 227(10):5342–5359, May 2008.

[4] S. Babu, J.C. Gimel, and T. Nicolai. Diffusion limited cluster aggregation with irre-
versible flexible bonds. Arxiv preprint arXiv:0801.4447, 2008.

[5] GT Barkema and T MacFarland. Parallel simulation of the ising model. Physical
Review E, 50(2):1623, 1994.

[6] Chris Bencher, Jeffrey Smith, Liyan Miao, Cathy Cai, Yongmei Chen, Joy Y. Cheng,
Daniel P. Sanders, Melia Tjio, Hoa D. Truong, Steven Holmes, and William D. Hins-
berg. Self-assembly patterning for sub-15nm half-pitch: a transition from lab to fab.
In Daniel J. C. Herr, editor, SPIE Advanced Lithography, pages 79700F–79700F–9.
International Society for Optics and Photonics, March 2011.

[7] L. Berthier. Revisiting the slow dynamics of a silica melt using Monte Carlo simula-
tions. Physical Review E, 76(1):11507, 2007.

[8] L. Berthier and W. Kob. The Monte Carlo dynamics of a binary Lennard-Jones glass-
forming mixture. Journal of Physics, Condensed Matter, 19(20):205130, 2007.

[9] E. Bianchi, P. Tartaglia, E. Zaccarelli, and F. Sciortino. Theoretical and numerical
study of the phase diagram of patchy colloids: ordered and disordered patch arrange-
ments. Arxiv preprint arXiv:0802.2466, 2008.

[10] K. Binder. Applications of Monte Carlo methods to statistical physics. Reports on
Progress in Physics, 60(5):487–559, 1997.



73

[11] James J Binney, NJ Dowrick, AJ Fisher, and M Newman. The theory of critical
phenomena: an introduction to the renormalization group. Oxford University Press,
Inc., 1992.

[12] Ion Bita, Joel K W Yang, Yeon Sik Jung, Caroline A Ross, Edwin L Thomas,
and Karl K Berggren. Graphoepitaxy of self-assembled block copolymers on two-
dimensional periodic patterned templates. Science (New York, N.Y.), 321(5891):939–
43, August 2008.

[13] Henk W. J. Blote, Lev. N. Shchur, and Andrei L. Talapov. The Cluster Processor: New
Results. International Journal of Modern Physics C, 10(06):1137–1148, September
1999.

[14] A.K. Boal, F. Ilhan, J.E. DeRouchey, T. Thurn-Albrecht, T.P. Russell, and V.M.
Rotello. Self-assembly of nanoparticles into structured spherical and network aggre-
gates. Nature, 404(6779):746–748, 2000.

[15] August W Bosse. Phase-field simulation of long-wavelength line edge roughness in
diblock copolymer resists. Macromolecular Theory and Simulations, 19(7):399–406,
2010.

[16] John Philip Boyd. Chebyshev and Fourier spectral methods. Courier Dover Publica-
tions, 2001.

[17] AJ Bray. Theory of phase-ordering kinetics. Advances in Physics, 51(2):481–587, 2002.

[18] SA Brazovskii. Phase transition of an isotropic system to a nonuniform state. Soviet
Journal of Experimental and Theoretical Physics, 41:85, 1975.

[19] M. G. Buonomenna, W. Yave, and G. Golemme. Some approaches for high performance
polymer based membranes for gas separation: block copolymers, carbon molecular
sieves and mixed matrix membranes. RSC Advances, 2(29):10745–10773, 2012.

[20] M. J. Cawkwell, E. J. Sanville, S. M. Mniszewski, and Anders M. N. Niklasson. Com-
puting the Density Matrix in Electronic Structure Theory on Graphics Processing
Units. Journal of Chemical Theory and Computation, 8(11):4094–4101, November
2012.

[21] Hector D Ceniceros and George O Mohler. A practical splitting method for stiff sdes
with applications to problems with small noise. Multiscale Modeling & Simulation,
6(1):212–227, 2007.

[22] D. Chandler. Introduction to modern statistical mechanics. Oxford University Press
New York, 1987.



74

[23] D. Chandler. Interfaces and the driving force of hydrophobic assembly. Nature,
437(7059):640–647, 2005.

[24] David Chandler. Gaussian field model of fluids with an application to polymeric fluids.
Physical Review E, 48(4):2898, 1993.

[25] Weng C Chang and Peter White. Fmoc Solid Phase Peptide Synthesis: A Practical
Approach, volume 222. Oxford University Press on Demand, 2000.

[26] P. Charbonneau and DR Reichman. Systematic characterization of thermodynamic
and dynamical phase behavior in systems with short-ranged attraction. Physical Re-
view E, 75(1):11507, 2007.

[27] B. Chen and J.I. Siepmann. Improving the efficiency of the aggregation-volume-bias
Monte Carlo algorithm. J. Phys. Chem. B, 105(45):11275–11282, 2001.

[28] Gavin E Crooks and David Chandler. Gaussian statistics of the hard-sphere fluid.
Physical Review E, 56(4):4217, 1997.

[29] François A. Detcheverry, Darin Q. Pike, Paul F. Nealey, Marcus Müller, and Juan J.
de Pablo. Simulations of theoretically informed coarse grain models of polymeric sys-
tems. Faraday Discussions, 144:111, October 2010.

[30] C.M. Dobson. Protein folding and misfolding. Nature, 426(6968):884–890, 2003.

[31] Oren M. Elrad and Michael F. Hagan. Mechanisms of size control and polymorphism
in viral capsid assembly. arXiv:0807.4344, 2008.

[32] W A Fenton, Y Kashi, K Furtak, and A L Horwich. Residues in chaperonin GroEL
required for polypeptide binding and release. Nature, 371(6498):614–9, October 1994.

[33] Y Fink, AM Urbas, MG Bawendi, JD Joannopoulos, and EL Thomas. Block copoly-
mers as photonic bandgap materials. Journal Of Lightwave Technology, 17(11):1963–
1969, NOV 1999. Workshop on Electromagnetic Crystal Structures, Laguna Beach,
California, Jan 04-06, 1999.

[34] H. Fraenkel-Conrat and R.C. Williams. Reconstitution of Active Tobacco Mosaic Virus
from Its Inactive Protein and Nucleic Acid Components. Proceedings of the National
Academy of Sciences of the United States of America, 41(10):690–698, 1955.

[35] Glenn Fredrickson. The Equilibrium Theory of Inhomogeneous Polymers (International
Series of Monographs on Physics). Oxford University Press, USA, 2006.

[36] Glenn H Fredrickson and Eugene Helfand. Fluctuation effects in the theory of mi-
crophase separation in block copolymers. The Journal of chemical physics, 87:697,
1987.



75

[37] Glenn Harold Fredrickson. The equilibrium theory of inhomogeneous polymers. Claren-
don Press Oxford, 2006.

[38] D. Frenkel. Speed-up of Monte Carlo simulations by sampling of rejected states. Pro-
ceedings of the National Academy of Sciences, 101(51):17571, 2004.

[39] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to
Applications. Academic Press, 2002.

[40] Yijie Gao, John O. Thomas, Robert L. Chow, Gwo-Hwa Lee, and Nicholas J. Cowan.
A cytoplasmic chaperonin that catalyzes β-actin folding. Cell, 69(6):1043–1050, June
1992.

[41] G. Ge and L.E. Brus. Fast Surface Diffusion of Large Disk-Shaped Nanocrystal Ag-
gregates. Nano Lett, 1(4), 2001.

[42] Phillip L. Geissler. Dynamics in liquids, 2000. Copyright - Copyright UMI - Disserta-
tions Publishing 2000; Last updated - 2010-08-07; First page - n/a; M3: Ph.D.

[43] MR Ghadiri, JR Granja, RA Milligan, DE Mcree, and N Khazanovich. Self-assembling
organic nanotubes based on a cyclic peptide architecture . Nature, 372(6507):709, Dec
15 1994.

[44] Valeriy V Ginzburg, Feng Qiu, Marco Paniconi, Gongwen Peng, David Jasnow, and
Anna C Balazs. Simulation of hard particles in a phase-separating binary mixture.
arXiv preprint cond-mat/9905284, 1999.
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conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. Journal of
Molecular Biology, 296(3):813–819, 2000.

[112] F. Sciortino, E. Bianchi, J.F. Douglas, and P. Tartaglia. Self-assembly of patchy
particles into polymer chains: A parameter-free comparison between Wertheim theory
and Monte Carlo simulation. The Journal of Chemical Physics, 126:194903, 2007.

[113] D G Searcy and W G Hixon. Cytoskeletal origins in sulfur-metabolizing archaebacteria.
Bio Systems, 25(1-2):1–11, January 1991.

[114] Jessica Y. Shu, Brian Panganiban, and Ting Xu. Peptide-Polymer Conjugates: From
Fundamental Science to Application. In Johnson, MA and Martinez, TJ, editor, An-
nual Review of Physical Chemistry, Vol. 64, volume 64 of Annual Review of Physical



81

Chemistry, pages 631–657. Annual Reviews, 4139 El Camino Way, PO Box 10139, Palo
Alto, CA 94303-0897 USA, 2013.

[115] Scott W Sides, Bumjoon J Kim, Edward J Kramer, and Glenn H Fredrickson. Hy-
brid particle-field simulations of polymer nanocomposites. Physical Review Letters,
96(25):250601, 2006.

[116] Mark Somervell, Roel Gronheid, Joshua Hooge, Kathleen Nafus, Paulina Rincon Del-
gadillo, Chris Thode, Todd Younkin, Koichi Matsunaga, Ben Rathsack, Steven Scheer,
and Paul Nealey. Comparison of Directed Self-Assembly Integrations. Proc. SPIE,
8325:83250G–83250G–14, March 2012.

[117] PP Soo, BY Huang, YI Jang, YM Chiang, DR Sadoway, and AM Mayes. Rubbery
block copolymer electrolytes for solid-state rechargeable lithium batteries. Journal of
the Electrochemical Society, 146(1):32–37, JAN 1999.

[118] H. Sternlicht. The t-Complex Polypeptide 1 Complex is a Chaperonin for Tubulin and
Actin in vivo. Proceedings of the National Academy of Sciences, 90(20):9422–9426,
October 1993.

[119] TR Strick, J.F. Allemand, D. Bensimon, and V. Croquette. Stress-Induced Structural
Transitions In DNA And Proteins. Annual Reviews in Biophysics and Biomolecular
Structure, 29(1):523–543, 2000.

[120] R.H. Swendsen and J.S. Wang. Nonuniversal critical dynamics in Monte Carlo simu-
lations. Physical Review Letters, 58(2):86–88, 1987.

[121] G. Tiana, L. Sutto, and RA Broglia. Use of the Metropolis algorithm to simulate
the dynamics of protein chains. Physica A: Statistical Mechanics and its Applications,
380:241–249, 2007.
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