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ABSTRACT OF THE THESIS 

 

The Association Between Air Pollution Exposure and the Risk of Postpartum Depression 
and Gestational Diabetes Mellitus During the COVID-19 Pandemic 

 
by 

Kathryne Scarlett Headon 

Master of Science in Biomedical and Translational Sciences 

University of California, Irvine, 2024 

Professor Jun Wu, Chair 

 

Air pollution exposure has been known to increase the risk of several adverse birth 

outcomes, including postpartum depression (PPD) and gestational diabetes mellitus 

(GDM). In March 2020, the COVID-19 pandemic caused the state of California to shut down 

to prevent the spread of the virus. This led to changes in air pollution concentrations. 

Understanding how these changes influenced the association between air pollution and 

both PPD and GDM will provide further information into the health impacts seen during the 

COVID-19 pandemic period. Therefore, we sought to investigate the association between 

air pollution exposure and the risk of PPD and GDM. We also incorporated the impacts of 

experiencing the pandemic during and after pregnancy to assess whether these 

associations changed. Patient records from Kaiser Permanente Southern California (KPSC) 

electronic health records (EHRs) provided health data, socioeconomic status (SES) data, 

and residential address histories. Pollution data for monthly averages of particulate matter 

with an aerodynamic diameter ≤ 2.5 µg/m3 (PM2.5), particulate matter with an 

aerodynamic diameter ≤ 10 µg/m3 (PM10), nitrogen dioxide (NO2), and 8-hour ozone (O3) 

was spatiotemporally linked to participant residential addresses. A discrete time approach 
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with pooled logistic regression was used for PPD models, while Cox proportional hazard 

models were used for GDM analyses. Subgroup analyses were performed with Cox 

proportional hazard models, and to investigate whether experiencing the pandemic before 

conception, after birth, or during pregnancy altered the associations with air pollution. We 

found increased risks of PPD with exposure to O3 during pregnancy and in the postpartum 

period; PM2.5 had significantly negative associations with PPD risk in the late pregnancy 

and postpartum periods. Hispanic, white, or multi-racial/other mothers, or mothers with 

higher incomes were more susceptible to PPD risk with ozone exposure. Positive 

associations between GDM risk and exposure to PM2.5, PM10, and O3 were found; no 

significant associations were seen with NO2 exposure, except for negative associations with 

second trimester exposure. Mothers with more than a college education had greater 

associations between GDM and exposure to all pollutants, including NO2. For PPD analyses, 

mothers were grouped by COVID time: not impacted (gave birth before March 2019), 

postpartum (gave birth between March 2019-March 2020), pregnant (pregnant in March 

2020), or conceived after (date of conception after March 2020). Experiencing the COVID-

19 pandemic while pregnant or in the 12-month postpartum period was positively 

associated with exposure to PM10 and O3. For GDM analyses, COVID time groups included: 

not impacted (gave birth before March 2020), pregnant (pregnant in March 2020), or 

conceived after (date of conception after March 2020). GDM risk was positively associated 

with exposure to PM2.5 for mothers who were pregnant when the pandemic began. Overall, 

this study shows the associations between air pollution exposure and the risk of PPD and 

GDM have changed since the COVID-19 outbreak. The results were different from our 

group’s previous studies, which found positive associations between PM exposure and PPD, 
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and positive associations between NO2 exposure and GDM. These differences may be 

explained by decreases in ambient air pollution levels during the COVID-19 pandemic 

period, or by altered PM2.5 constituent levels. Future studies should continue to investigate 

the association between air pollution and maternal health during the pandemic period, 

especially the association with PM2.5 constituent levels.
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CHAPTER 1: INTRODUCTION 
 

Overview 

Air pollution exposure has been associated with several adverse health outcomes (Hsu 

et al., 2017; Kanner et al., 2021; Niedzwiecki et al., 2020; O’lenick et al., 2017; Thomson et 

al., 2019), and is estimated to be responsible for 7 million premature deaths worldwide 

every year (World Health Organization, n.d.). The implementation of several regulatory 

policies has contributed to the decrease in air pollution levels seen in southern California 

over the past twenty years (Lurmann et al., 2015); but research is still finding that health is 

impacted by exposure to air pollution. Past research has found a relationship between air 

pollution exposure and adverse impacts on several biological systems such as the 

respiratory system, reproductive system, and cardiovascular system (H. Chen et al., 2022; 

Dominski et al., 2021; Manisalidis et al., 2020; Ming et al., 2022; Sexton et al., 2007), and 

recently, scientists have identified a potential association with mental health (Jia et al., 

2018; H. Li et al., 2020; Nguyen et al., 2021; Qiu et al., 2022). With air pollution known to 

impact human health, there has been support for perinatal air pollution exposure research. 

Pregnancy and the postpartum period are vulnerable stages for women (Bastain et al., 

2021; Lamichhane et al., 2021a, 2021b; Mughal et al., n.d.). Not only do women experience 

large hormonal changes, but they also require greater oxygen demands (LoMauro & 

Aliverti, 2015; Magon & Kumar, 2012; Soma-Pillay et al., 2016). This may increase their 

exposure to air pollution and put them at an even greater risk of the adverse impacts from 

exposure. Understanding the influence of perinatal air pollution exposure may increase 

awareness of different environmental exposures, which can improve the prevention of 

certain adverse birth outcomes. Postpartum depression (PPD) and gestational diabetes 
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mellitus (GDM) are two of the most common adverse birth outcomes, with a worldwide 

prevalence of 10-20% and 14%, respectively (Ashwal & Hod, 2015; Bauman et al., n.d.; 

Fisher et al., 2012; Mughal et al., n.d.; Plows et al., 2018). With no single cause known for 

either of these disorders, further research into their current risk factors is important. 

Therefore, this thesis seeks to examine the relationship between air pollution exposure and 

both PPD and GDM occurrence using a cohort of women from Southern California who gave 

birth between 2019 and 2021.   

PPD and Air Pollution  

Previous studies have provided support for the association between higher levels of air 

pollution throughout pregnancy and an increased risk of PPD (Ahlers & Weiss, 2021; 

Bastain et al., 2021; C. C. Duan et al., 2022; Niedzwiecki et al., 2020; Sheffield et al., 2018). 

Duan et al. published a study that assessed the relationship between different types of air 

pollutants and the risk of PPD at 6 weeks postpartum (C. C. Duan et al., 2022), while placing 

an emphasis on looking at different vulnerability windows (C. C. Duan et al., 2022). Their 

group found there was an increased risk of PPD with higher average exposures to 

particulate matter (PM) with an aerodynamic diameter ≤ 10 mg/m3, carbon monoxide 

(CO), and nitrogen dioxide (NO2) for the entire pregnancy (C. C. Duan et al., 2022). They 

also found increased risk of PPD for people with higher average exposures to SO2 during 

the second trimester and higher exposures to PM2.5 and O3 during the first trimester (C. C. 

Duan et al., 2022). Sheffield et.al assessed the relationship between PM2.5 during different 

periods of pregnancy and the risk of PPD at 6 and 12 months postpartum with an ethnically 

diverse population (Sheffield et al., 2018). They found there was an increased risk for PPD 

when there were higher average exposures to PM2.5 in mid-pregnancy; they also reported 
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that black women, who were exposed to higher levels of PM2.5 throughout their entire 

pregnancy were at an increased risk of developing PPD (Sheffield et al., 2018). This 

research group also published the Niedzwiecki et al. study in Mexico City, which assessed 

the relationship between PM2.5 exposure throughout pregnancy, and psychological 

functioning at 1 and 6 months postpartum (Niedzwiecki et al., 2020). They found an 83% 

increased risk of PPD when there were increased levels of PM2.5 exposure throughout 

pregnancy (Niedzwiecki et al., 2020). They also found a 158% increased risk of late-onset 

PPD when there were increased levels of PM2.5 exposure throughout pregnancy 

(Niedzwiecki et al., 2020).  

Our research group also recently published a study that investigated the association 

between antepartum and postpartum air pollution exposure, and the risk of PPD (Sun et al., 

2023). We used a cohort of women from Southern California who gave birth between 2008-

2018 (Sun et al., 2023). We found that exposure to O3, PM10, and PM2.5 both during 

pregnancy and the postpartum period was associated with greater risks of PPD (Sun et al., 

2023). Specifically, we found that O3 exposure during the entire pregnancy and 6 months 

postpartum, as well as PM exposure later in the pregnancy and in the postpartum periods, 

were associated with PPD (Sun et al., 2023).  

While these studies suggest that increased exposure to certain pollutants may increase 

one’s risk of developing PPD, the findings have been inconsistent regarding vulnerability 

windows, and the pollutants that pose the greatest risk. The COVID-19 pandemic was also 

not considered in previous studies, so future studies should assess whether the pandemic 

has influenced the association between air pollution exposure and PPD development. 
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Overall, further assessment of the potential relationship between PPD and air pollution is 

warranted.  

GDM and Air Pollution  

Several studies have reported an association between air pollution exposure and 

GDM. Our research group has previously studied the association between air pollution and 

GDM using a cohort of women who gave birth between 2008-2018 at Kaiser Permanente 

Southern California (KPSC) facilities (Sun et al., 2022). Exposure periods were defined as 

preconception (3 months before conception), first trimester (gestational months 1-3), 

second trimester (gestational months 4-6), first two trimesters (gestational months 1-6), 

and entire pregnancy (conception to birth). We found that exposure to kriged PM2.5, PM10, 

and NO2 increased the odds of GDM in every exposure period (Sun et al., 2022). O3 

exposure in all exposure periods decreased the odds of GDM, proposing a potential 

protective association (Sun et al., 2022).  

Most studies have reported positive associations between PM exposure and GDM. 

First and second trimester PM2.5 and PM10 exposure has most commonly been found to be 

associated with an increased risk of GDM (Choe et al., 2018, 2019; Gong et al., 2023; Hu et 

al., 2015; Jo et al., 2019; Lin et al., 2020; Miron-Celis et al., 2023; Niu et al., 2023; Rammah 

et al., 2020; Shen et al., 2017; Yan et al., 2023; Yao et al., 2020; B. Ye et al., 2020; Yu et al., 

2020; M. Zhang et al., 2020). One study from Chiayi City, Taiwan even reported that second 

trimester PM2.5 exposure was associated with a nearly 50% increased risk of GDM (Yan et 

al., 2023). Another period of vulnerability to PM exposure may be the period before 

conception (Jo et al., 2019; Niu et al., 2023; Rammah et al., 2020; Shen et al., 2017; Yao et 

al., 2020; Zhang et al., 2020). Only one study found a negative association between first 
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trimester PM2.5 exposure and GDM (Zhang & Zhao, 2021), and a few studies did not find 

any significant associations during the first trimester (Hu et al., 2021), the second trimester 

(Hu et al., 2021; Kang et al., 2020), or the first two trimesters (Hu et al., 2021). No 

significant associations were found in two studies from China regarding PM10 exposure and 

GDM (Hu et al., 2021; Zhang & Zhao, 2021). Overall, these results indicate that early 

pregnancy exposure to PM may increase the risk of developing GDM.  

Overall, the results for NO2 and NOx exposure have been mixed. Increased NO2 and 

NOx exposure during the preconception period (Jo et al., 2019; Niu et al., 2023; Robledo et 

al., 2015), first trimester (Choe et al., 2019; Niu et al., 2023; Pedersen et al., 2017; Robledo 

et al., 2015), and second trimester (Malmqvist et al., 2013; Zhang & Zhao, 2021), were all 

reported to increase the risk of GDM. However, negative associations were reported for 

exposure during the second trimester, and the first and second trimesters in a study from 

Foshan, China (Lin et al., 2020).  

Several studies reported positive associations between GDM and O3 exposure 

during the preconception period (Gong et al., 2023; Z. Li et al., 2022; Miron-Celis et al., 

2023; Yao et al., 2020), first trimester (Gong et al., 2023; Hu et al., 2015; Z. Li et al., 2022; 

Miron-Celis et al., 2023; Yao et al., 2020), second trimester (Gong et al., 2023; Hu et al., 

2015; Miron-Celis et al., 2023; Zhang & Zhao, 2021), entire pregnancy (Hu et al., 2015), and 

even early third trimester (Miron-Celis et al., 2023). These results contrast with findings 

from other studies, where O3 exposure was found to have a protective association with 

GDM during the preconception period (Jo et al., 2019; Robledo et al., 2015), first trimester 

(Jo et al., 2019; Lin et al., 2020), and second trimester (Lin et al., 2020).  



6 
 

Environmental Exposures and the COVID-19 Pandemic 

On March 11, 2020, the COVID-19 pandemic caused the world to shut down. This virus 

led to great concern regarding the safety and health of many individuals. To combat these 

concerns, many unessential businesses either shut down or converted to a virtual, work-

from-home setting. With more individuals working from home, the lockdowns were 

estimated to decrease vehicle traffic and industrial activities, potentially explaining the 

decline in anthropogenic air pollution after the pandemic began (Berman & Ebisu, 2020; 

Jiang et al., 2021). Since air pollution has been known to influence disease and illness, such 

as PPD and GDM, the difference in concentrations of pollutants may impact the development 

of these illnesses differently. Therefore, a study that compares PPD and GDM risk due to air 

pollution exposure before and after the COVID-19 pandemic may provide insight regarding 

how environmental factors contribute to the development of these illnesses. This study may 

also increase our understanding of how the COVID-19 pandemic impacted pregnant 

women’s vulnerability to air pollution exposure. 

Rationale: Air Pollution as an Exposure Variable  

Air pollution is known to impact multiple physiological systems in the human body 

(Manisalidis et al., 2020; Ming et al., 2022; Sexton et al., 2007; West et al., 2016; Zhang & 

Batterman, 2013). With air pollution levels changing over recent years (County of Los 

Angeles Public Health, n.d.; Lurmann et al., 2015; Rowan, 2019), further investigating its 

impact on health with a more recent cohort may be beneficial. Therefore, using a cohort 

from recent years, such as 2019-2021, may increase our understanding of the detrimental 

impacts from air pollution at the levels relevant to people’s recent or current exposures. 

Through understanding the current adverse health effects, policymakers can have the 
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necessary information to create policies that will best improve the current air pollution 

crisis.  

Overall objective: To evaluate the relationship between perinatal air pollution exposure 

and postpartum depression and gestational diabetes mellitus for women who gave birth 

between January 2019 and December 2021.  

Specific Aim 1: Assess the association between air pollution exposure during pregnancy 

and the postpartum period (12 months after birth) and postpartum depression occurrence.  

Hypothesis: Increased exposure to certain pollutants, such as PM2.5, PM10, and O3 during 

the third trimester and the postpartum period will increase the risk of developing PPD.  

Specific Aim 2: Assess the association between air pollution exposure during pregnancy 

and gestational diabetes mellitus occurrence.  

Hypothesis: Increased exposure to certain pollutants, such as PM2.5, PM10, and NO2 during 

the first and second trimesters will increase the risk of developing GDM.  

Specific Aim 3: Assess whether there is a difference between air pollution’s association 

with postpartum depression and gestational diabetes mellitus before, during, and after the 

COVID-19 pandemic. 

Hypothesis: There will be a stronger association between PPD and GDM and air pollution 

exposure during pregnancy before the COVID-19 pandemic compared to during the COVID-

19 pandemic due to pandemic lockdowns contributing to lower air pollution 

concentrations in southern California.  
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CHAPTER 2: BACKGROUND 
 
What is PPD? 

PPD is the perinatal form of major depressive disorder (Guintivano et al., 2018; Payne & 

Maguire, 2019). With a prevalence rate of 10-20% (Glynn et al., 2013; Guintivano et al., 

2018; Mughal et al., n.d.; Niedzwiecki et al., 2020; Payne & Maguire, 2019), it’s estimated 

that about 500,000 women in the US are diagnosed with PPD every year (Guintivano et al., 

2018). Additionally, a study revealed a 7-fold increase in depressive disorders recorded 

during delivery hospitalizations in the United States from 2000 - 2015 (Haight et al., 2019).  

There are three psychiatric outcomes that can occur after delivery: baby blues, PPD, 

and postpartum psychosis. Baby blues affects about 70-75% of new mothers (Cleveland 

Clinic, 2022; Sit & Wisner, 2009; Stewart & Vigod, 2016). Baby blues are brief crying spells, 

irritability, poor sleep, and emotional reactivity; symptom onset begins 1-2 days after 

delivery and usually resolves by 10-14 days postpartum (Cleveland Clinic, 2022; Mayo Clinic, 

2022b; Miller, 2002; Mughal et al., n.d.; Sit & Wisner, 2009; Stewart & Vigod, 2016). 

Postpartum psychosis can also occur, which is the rapid onset of intense mood disturbance, 

confusion, strange or delusional beliefs, hallucinations, and disorganized thought (Cleveland 

Clinic, 2022; Mayo Clinic, 2022b; Sit & Wisner, 2009). Postpartum psychosis is the perinatal 

form of bipolar disorder, and women with bipolar disorder are at a high risk for an episode 

within the first month postpartum (Miller, 2002; Sit & Wisner, 2009; Stewart & Vigod, 2016). 

Postpartum psychosis is different from PPD and requires immediate medical attention due 

to the increased risk of suicide and infanticide (Cleveland Clinic, 2022; Mayo Clinic, 2022b; 

Mughal et al., n.d.; Stewart & Vigod, 2016). For the following study, we will concentrate on 

PPD specifically.  
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PPD can emerge in the form of different symptoms, including depressed mood, feelings 

of worthlessness, lack of appetite, insomnia or hypersomnia, impaired concentration, 

suicidal tendencies, and many more (Mayo Clinic, 2022b; Mughal et al., n.d.; Payne & 

Maguire, 2019). Symptom onset can begin during pregnancy, and up to 12 months 

postpartum (Cleveland Clinic, 2022; Mayo Clinic, 2022b; Payne & Maguire, 2019; Stewart & 

Vigod, 2016), although diagnosis usually occurs between 4 and 6 weeks postpartum (Sit & 

Wisner, 2009). PPD can also affect infants (Glynn et al., 2013; Mughal et al., n.d.; 

Niedzwiecki et al., 2020); studies have shown that children born to mothers with PPD are 

more at risk for developing cognitive issues, behavioral and emotional issues, delays in 

language development, sleeping and eating concerns, obesity, and many more (Cleveland 

Clinic, 2022; Glynn et al., 2013; Guintivano et al., 2018; Mayo Clinic, 2022b; Payne & 

Maguire, 2019). PPD also can impact mother-infant bonding, and there are higher rates of 

infanticide among children born to mothers with PPD (Glynn et al., 2013; Guintivano et al., 

2018; Mughal et al., n.d.).  

There are several potential risk factors that have been identified in the past, but 

currently, there is no single predictor of PPD (Glynn et al., 2013; Guintivano et al., 2018; 

Mayo Clinic, 2022b). These potential risk factors include past mental health disorders, 

adverse life events, and physiological factors. Studies have shown that past psychiatric 

disorders increase a woman’s odds of developing PPD (Cleveland Clinic, 2022; Glynn et al., 

2013; Guintivano et al., 2018; Mayo Clinic, 2022b; Mughal et al., n.d.; Payne & Maguire, 

2019). Adverse life events have also been shown to be a risk factor (Mayo Clinic, 2022b; 

Mughal et al., n.d.; Payne & Maguire, 2019). Women who have had traumatic experiences 

either in childhood or adulthood are more at risk for PPD (Guintivano et al., 2018; Payne & 
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Maguire, 2019). Women who had adverse pregnancy outcomes are also more at risk; this 

includes women who had preterm and stillborn births (Cleveland Clinic, 2022; Guintivano 

et al., 2018). Physiological changes include different hormonal levels during pregnancy, 

differences in neurotransmitter availability, and immune system responses (Guintivano et 

al., 2018; Payne & Maguire, 2019). Normally, a woman’s body changes drastically 

throughout pregnancy and the postpartum period; these changes include increases in pro-

inflammatory cytokines, changes in hormone levels, and increases in respiratory 

requirements (Hendrick et al., n.d.; LoMauro & Aliverti, 2015; Palm et al., 2013; Racicot et 

al., 2014; Soma-Pillay et al., 2016). For example, one study reported that the pro-

inflammatory cytokine, IL-6 increased with gestational age (Palm et al., 2013). Hormonal 

changes include rising stress hormone levels during pregnancy, which drop drastically 

following delivery; there are also increases in oxytocin and prolactin (Hendrick et al., n.d.; 

Soma-Pillay et al., 2016). Finally, respiratory requirements are altered during pregnancy 

with oxygen consumption and metabolic rate increasing by 20% and 15%, respectively 

(LoMauro & Aliverti, 2015; Soma-Pillay et al., 2016). These drastic changes are normal for 

pregnancy, but they can increase a woman’s vulnerability to PPD.  

PPD also impacts both mother and infant long-term. A recent review found that 

mothers with PPD are more likely to have lower mood scores one year postpartum 

compared to those without PPD (Slomian et al., 2019). It’s also reported that depressed 

mothers have higher levels of both state and trait anxiety at 1 and 3.5 years postpartum 

(Slomian et al., 2019; Vliegen et al., 2013). If left untreated, mothers with PPD are at an 

increased risk of future episodes of major depression (Mayo Clinic, 2022b), and chronic 

depressive disorder (Corner & Miller, n.d.; Mughal et al., n.d.). For infants, there is an 



11 
 

increased incidence of infant night-time awakenings, and more problematic sleep patterns 

for infants with mothers with more depressive symptoms (Gress-Smith et al., 2012; Miller, 

2002; Pinheiro et al., 2011; Slomian et al., 2019). There’s overall strong support for a 

negative association between maternal PPD and cognitive development in children  (Miller, 

2002; Mughal et al., n.d.; Slomian et al., 2019). One study found that children born to 

mothers with persistent PPD had more internalizing problems, such as bodily complaints, 

worrying, and social withdrawal, at 6 years old (Tainaka et al., 2022). It’s also reported that 

higher maternal depressive symptoms at 5 months postpartum is associated with less 

infant weight gain from 5 to 9 months (Gress-Smith et al., 2012).  

According to the Diagnostic and Statistical Manual, postpartum depression, or major 

depression after delivery is two or more weeks of persistent 1) depressed mood, or 2) loss 

of interest in daily activities plus four of the following symptoms (appetite disturbance, 

sleep disturbance, psychomotor agitation or slowing, fatigue, feelings of worthlessness or 

inappropriate guilt, poor concentration, suicidal ideation) that onset after childbirth 

(Mughal et al., n.d.; Sit & Wisner, 2009; Stewart & Vigod, 2016). The optimal screening time 

for PPD is during the first postnatal obstetrical visit (Sit & Wisner, 2009). One of the most 

common diagnosis tools is the Edinburg Postnatal Depression Scale (EPDS) (Cleveland 

Clinic, 2022; Levis et al., 2020; Mughal et al., n.d.; Sit & Wisner, 2009). The EPDS is a self-

report instrument that contains 10 items ranked from 0-3 that reflect one’s experience 

over the past week (Cleveland Clinic, 2022; Levis et al., 2020; Sit & Wisner, 2009). An EPDS 

score of  ≥ 13 or 10 is an acceptable indicator of PPD (Levis et al., 2020; Mughal et al., n.d.; 

Sit & Wisner, 2009). When women are diagnosed with PPD, prompt treatment is necessary, 
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with psychotherapy and/or antidepressant medication being the most common treatment 

plans (Cleveland Clinic, 2022; Mayo Clinic, 2022b; Mughal et al., n.d.; Sit & Wisner, 2009).  

What is GDM? 

Pregnant women are diagnosed with GDM when they develop diabetes for the first time 

during their pregnancy (Centers for Disease Control and Prevention, 2022; Chen et al., 2016; 

Mayo Clinic, 2022a; Mumtaz, 2000); GDM impacts about 18 million births every year (Plows 

et al., 2018). GDM usually results from a combination of beta-cell (β-cell) dysfunction and 

chronic insulin resistance (Plows et al., 2018; Quintanilla Rodriguez & Mahdy, 2023; Sharma 

et al., 2022). β-cells are cells in the pancreas that are responsible for storing and secreting 

insulin when blood glucose levels are high (Bartolomé, 2023; Cleveland Clinic, 2024; Dludla 

et al., 2023; Khin et al., 2023; Marchetti et al., 2017; Plows et al., 2018; Sharma et al., 2022). 

β-cell dysfunction occurs when these cells cannot either adequately sense rising glucose 

levels, or when they no longer can release the proper amount of insulin (Cerf, 2013; Dludla 

et al., 2023; Plows et al., 2018). Insulin is normally produced by the pancreas to allow cells 

to take in glucose from the blood and use it for energy (Centers for Disease Control and 

Prevention, 2022; Cleveland Clinic, 2024; Dludla et al., 2023; Khin et al., 2023). Insulin 

resistance occurs when the cells don’t properly respond to insulin (American Diabetes 

Association, 2024b; Cerf, 2013; Freeman et al., 2023; Sharma et al., 2022). Insulin resistance 

exacerbates β-cell dysfunction, since it results in hyperglycemia, or high blood glucose levels 

(American Diabetes Association, 2024b; Cernea & Dobreanu, 2013; Freeman et al., 2023; 

Khin et al., 2023). Hyperglycemia leads to β-cells overproducing insulin, which further 

contributes to insulin resistance and β-cell dysfunction (Cernea & Dobreanu, 2013; Dludla et 

al., 2023; Sharma et al., 2022). Pregnant women are vulnerable to β-cell dysfunction and 
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insulin resistance due to hormones produced by the placenta. During pregnancy, the 

placenta produces several hormones, such as lactogen, estrogen, and cortisol, that block 

insulin’s function and promotes insulin resistance (Cleveland Clinic, 2024; Johns Hopkins 

Medicine, 2023; Plows et al., 2018; Quintanilla Rodriguez & Mahdy, 2023; Sharma et al., 

2022). Normally, the pancreas can overcome the adverse impacts from insulin resistance by 

producing more insulin, but during pregnancy, the pancreas may not overcome the effects 

from the placental hormones (Johns Hopkins Medicine, 2023).  

Women who have GDM are also at a greater risk of experiencing high blood pressure 

during pregnancy, preeclampsia, and cesarian-section delivery (Centers for Disease Control 

and Prevention, 2022; Mayo Clinic, 2022a; Mumtaz, 2000). Women with GDM are at an 

increased risk of developing cardiovascular disease, and it's also estimated that about 50%-

60% of women with GDM will develop Type 2 diabetes later in life, compared to the 

worldwide prevalence of 6.3%  (Centers for Disease Control and Prevention, 2022; Mayo 

Clinic, 2022a; Plows et al., 2018). Infants born to mothers with GDM are at a greater risk for 

preterm birth, breathing difficulties, hypoglycemia, low blood pressure immediately after 

birth, childhood obesity, cardiovascular disease, and developing Type 2 diabetes later in life 

(American Diabetes Association, 2003; Centers for Disease Control and Prevention, 2022; 

Johns Hopkins Medicine, 2023; Mayo Clinic, 2022a; Mumtaz, 2000; Plows et al., 2018). 

Another common complication for infants, is macrosomia, or large infant birth weight (more 

than 9 pounds) (American Diabetes Association, 2003; Johns Hopkins Medicine, 2023; Mayo 

Clinic, 2022a; Mumtaz, 2000). The growing fetus receives all its nutrients directly from their 

mother’s blood. If the mother’s blood has high levels of glucose, the fetal pancreas senses 

this, and produces more insulin. The extra glucose is then converted to fat, which can lead to 
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excessively large fetal growth (Johns Hopkins Medicine, 2023; Mayo Clinic, 2022a; Mumtaz, 

2000).  

Almost all pregnant women have some insulin resistance in late pregnancy (Centers for 

Disease Control and Prevention, 2022). Although, some women are at a greater risk of GDM, 

including women who are overweight or obese, have a family history of diabetes, have 

prediabetes or glucose intolerance, are older than 25 years, who have previously given birth 

to a baby larger than 9 pounds, or are of African American, American Indian/Alaska Native, 

Asian, Hispanic, or Pacific Islander descent (Johns Hopkins Medicine, 2023; Lavery et al., 

2017; Mayo Clinic, 2022a; Plows et al., 2018).  

Usually, GDM does not have any visible symptoms (Centers for Disease Control and 

Prevention, 2022; Mayo Clinic, 2022a; Mumtaz, 2000). Therefore, it’s diagnosed through 

tests performed at perinatal visits. Since GDM usually develops around 24 weeks gestation, 

testing is recommended between 24-28 weeks (Centers for Disease Control and Prevention, 

2022; Johns Hopkins Medicine, 2023; Mumtaz, 2000; Quintanilla Rodriguez & Mahdy, 2023). 

A common GDM test is an oral glucose tolerance test (OGTT), which assesses fasting plasma 

glucose levels (American Diabetes Association, 2003; Mumtaz, 2000; Quintanilla Rodriguez 

& Mahdy, 2023).  

 The current GDM treatment plan includes checking blood sugar levels regularly, 

developing a healthy eating plan, engaging in moderately intense regular exercise, and 

regularly monitoring the baby’s growth and development (Centers for Disease Control and 

Prevention, 2022; Johns Hopkins Medicine, 2023; Mayo Clinic, 2022a; Mumtaz, 2000; 

Quintanilla Rodriguez & Mahdy, 2023). If those treatments don’t work, then GDM patients 
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may be prescribed insulin, metformin, or other diabetes medications (Centers for Disease 

Control and Prevention, 2022; Johns Hopkins Medicine, 2023; Mayo Clinic, 2022a; Mumtaz, 

2000). After birth, maternal blood sugar levels usually return to normal (Centers for Disease 

Control and Prevention, 2022; Johns Hopkins Medicine, 2023; Mayo Clinic, 2022a).  

 GDM is especially concerning because its prevalence is increasing (CDC, 2023; 

Dabelea et al., 2005; Ferrara et al., 2004; Gregory & Ely, 2016; Lavery et al., 2017; Thorpe et 

al., 2005). In a nationally representative study in the United States, researchers reported a 

78% relative increase in the GDM rate from 2006 to 2016 (Zhou et al., 2022). A study that 

assessed births in the United States, reported that the GDM rate from 1979-1980 was 0.3%; 

the GDM rate from 2008-2010 increased to 5.8% (Lavery et al., 2017). The CDC has also 

reported a 20% increase in gestational diabetes diagnoses from 6% in 2016 to 8.3% in 2021 

(CDC, 2023). Another study reported that GDM rates increased 30% from 6% in 2016 to 

7.8% in 2020 (Gregory & Ely, 2016). In New York City alone, there was a 46% increase in 

GDM diagnoses from 1990-2001 (Thorpe et al., 2005). These increasing trends support 

further investigation into the potential factors that influence GDM development.  

What is Air Pollution? 

Air pollution is defined as the contamination of either the indoor or outdoor 

environments by any chemical, physical, or biological agent that can modify the 

characteristics of the atmosphere (World Health Organization, n.d.). The Environmental 

Protection Agency (EPA) and the World Health Organization (WHO) have identified six 

criteria air pollutants – ozone (O3), particulate matter (PM), carbon monoxide (CO), lead, 

sulfur dioxide (SO2), and nitrogen dioxide (NO2) (County of Los Angeles Public Health, n.d.; 

EPA, 2023c, 2015; Manisalidis et al., 2020). In 1999, the WHO developed the Air Quality 



16 
 

Guidelines (AQGs), which aim to serve as a “target” level of air pollution exposure (World 

Health Organization, 2021). Levels that exceed the concentrations recommended in the 

AQGs may be associated with important risks to population health (World Health 

Organization, 2021). These guidelines are presented in Table 1. In 2019, 99% of the world’s 

population was living in areas where the air pollution concentration was greater than the 

WHO’s AQGs (World Health Organization, n.d.). This is of great concern due to the growing 

evidence that air pollution may have adverse impacts on human health (Suglia et al., 2008; 

West et al., 2016; World Health Organization, 2021; Zhang & Batterman, 2013). 

Pollutant Average Time 2021 AQG 
PM2.5, µg/m3 Annual 

24 – Hour 
 

5 
15 

 

PM10, µg/m3 Annual 
24 - Hour 

 

15 
45 

 

O3, µg/m3 Peak Season 
8 - Hour 

 

60 
100 

 

NO2, µg/m3 Annual 
24 - Hour 

 

10 
25 

 

SO2, µg/m3 24 - Hour 40 
CO, mg/m3 24 - Hour 4 

Table 1: The WHO's 2021 Air Quality Guidelines. Source: World Health Organization, “What are the WHO Air Quality 
Guidelines?”, 2021. Accessed via https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-

guidelines.  

Ozone 

Ground-level ozone, which is one of the main constituents of smog  (California Air 

Resources Board, 2023; WHO, 2023; World Health Organization, 2022), has been found to 

cause lung inflammation and can aggravate several lung diseases (County of Los Angeles 

Public Health, n.d.; EPA, 2023b; WHO, 2023). Ground-level ozone is produced by chemical 

reactions between pollutants, such as volatile organic compounds (VOCs) and nitrogen 

oxides (NOx) produced by cars, power plants, and other sources (California Air Resources 

Board, 2023; EPA, 2023b, 2015; WHO, 2023). These reactions occur in the presence of 



17 
 

sunlight, so ozone levels often reach higher levels during summer months and hotter days 

(County of Los Angeles Public Health, n.d.; EPA, 2023b; WHO, 2023; World Health 

Organization, 2022). Ozone can also travel long distances by wind, which increases the 

number of those exposed (EPA, 2023b).  

Particulate Matter 

PM can come from a variety of sources such as construction sites, fires, automobiles, 

power plants, wood combustion, and chemical reactions from different chemicals produced 

from motor vehicles, such as sulfur oxides (SOx), NOx, or VOCs (California Air Resources 

Board, 2023; EPA, 2023d, 2015; WHO, 2023). The two most common types of PM are PM 

with an aerodynamic diameter ≤ 2.5 µm (PM2.5) and ≤ 10 µm (PM 10) (EPA, 2023d; 

Manisalidis et al., 2020). PM10, or coarse PM, is most often produced by mechanical 

processes or uncontrolled burning, while PM2.5, or fine PM, is most often formed by 

combustion processes (EPA, 2015). PM pollution, especially smaller PM pollution, is of 

great concern since it’s small enough to be inhaled, enter the lungs, and pass into the 

bloodstream (EPA, 2023d; Manisalidis et al., 2020). Once it reaches the bloodstream or the 

brain, it can cause adverse health effects (EPA, 2015; Manisalidis et al., 2020; WHO, 2023). 

From 2000-2022, there was a national decrease in PM2.5 by 42% (EPA: United States 

Environmental Protection Agency, 2023), but recent studies are still finding its association 

with adverse health effects.  

Nitrogen Dioxide 

NO2 enters the atmosphere through fuel burning; it’s commonly emitted from cars, 

trucks, and other vehicles (California Air Resources Board, 2023; County of Los Angeles 

Public Health, n.d.; EPA, 2023a, 2015; Manisalidis et al., 2020; World Health Organization, 
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2022). NO2 causes respiratory irritation and contributes to the development and 

exacerbation of asthma (County of Los Angeles Public Health, n.d.; EPA, 2023a, 2015; 

Manisalidis et al., 2020), and the development of PM and ground-level ozone (EPA, 2023a).  

Pollution in Southern California 

Over the past 30 years, levels of outdoor air pollution have decreased in the state of 

California (County of Los Angeles Public Health, n.d.; Lurmann et al., 2015). One study 

reported that between 2012 to 2015, there was a general decrease in the frequency of ozone 

exceedance events, which are over 70 parts per billion (ppb)  (Wu et al., 2023). Another study 

reported that PM2.5 and its constituents decreased by a factor of 2 between 1999 to 2012 

(Nussbaumer & Cohen, 2021). These reductions may be due to the numerus regulatory 

policies and emissions reduction strategies that have been implemented by the state and 

federal government to improve California’s air quality (Lurmann et al., 2015). Despite these 

efforts, many California communities remain highly polluted (Lung Association, n.d.; 

Lurmann et al., 2015). Research has shown that over 90% of Californians breath unhealthy 

air pollution levels (California Air Resources Board, 2024). Los Angeles County is still one of 

the most polluted counties in the United States (County of Los Angeles Public Health, n.d.; 

Lung Association, n.d.). One study investigated the average pollutant levels in several cities 

throughout the United States, including Los Angeles; they reported that Los Angeles 

experiences levels of ozone, PM2.5, and carbon monoxide above the exceedance limits (Yaya 

et al., n.d.).  

The Unequal Burden of PPD, GDM, and Air Pollution Exposure  

 Certain populations may be at an increased risk of exposure to air pollution. For 

example, in 2019, a study found that lower-income areas with larger Black and Hispanic 
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populations had higher than average concentrations of both PM2.5 and NO2 compared to 

other communities (Bluhm et al., 2022). Another study from the United States reported that 

areas with higher-than-average white or Native American populations are exposed to lower 

levels of PM2.5 compared to areas with higher-than-average black, Hispanic, or Asian 

populations (Jbaily et al., 2022). This study also reported that low-income areas are exposed 

to higher levels of PM2.5 compared to high-income communities (Jbaily et al., 2022). In North 

America, it has been reported that low SES communities experience higher levels of criteria 

air pollutants compared to low SES neighborhoods (Hajat et al., 2015). In addition, a third 

study reported that black populations were exposed to the highest national average 

concentration of PM2.5, Asian populations were exposed to the highest concentration of NO2 

and O3, while Hispanic populations were exposed to the highest concentration of PM10 (J. Liu, 

Clark, et al., 2021).  

Previous studies have found that certain populations are more at risk for PPD and its 

symptoms. One population that is more at risk for PPD symptoms is younger women 

(Bauman et al., n.d.; Rich-Edwards et al., 2006); a study that analyzed data from the 

Pregnancy Risk Assessment Monitoring System reported that 40% of women 24 years of age 

or younger experience PPD symptoms compared to 22.7% of women 25 years or older 

(Bauman et al., n.d.).  Regarding maternal race and ethnicity, conflicting results have been 

reported. Two studies have reported that Native American/Alaska Native women have the 

highest prevalence of PPD symptoms (Bauman et al., n.d.; Wei et al., 2008); although a third 

study reported that black women have the highest rates of PPD symptoms (Onyewuenyi et 

al., 2023). They also reported that black women experience an increased risk of PPD with 

increasing neighborhood disadvantage (Onyewuenyi et al., 2023). The lowest prevalence of 
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PPD symptoms was seen among Hispanic populations in one study from Robeson County, 

North Carolina (Wei et al., 2008). A different study that used patients from Kaiser 

Permanente Northern California did not find the same results; they found that Asian women 

had a 52.0% decreased risk of PPD compared to white women (Onyewuenyi et al., 2023). 

Finally, research has also shown that mothers with less than 12 years of education have an 

increased risk of PPD symptoms (Bauman et al., n.d.).  

In the US, there is a difference in GDM prevalence among different ethnicities, age 

groups, and SES, although results have not been consistent. One study reported that white 

mothers have the lowest prevalence of GDM, and Asian Americans have the highest 

prevalence (L. Chen et al., 2016). A different study reported that white mothers had a 

higher GDM prevalence compared to black mothers in 2006; this same study though, 

reported that white women experienced the lowest increase in GDM prevalence between 

2006-2016 (Zhou et al., 2022). Another study that used a nationally representative cohort 

supported Zhou et al.’s findings in 2006 and reported higher GDM risks among white 

mothers (Lavery et al., 2017). Older mothers may also be more at risk for GDM; one study 

showed that mothers 15-19 years of age had a GDM rate of 1.6% compared to mothers 

aged 40-44 who experienced a GDM rate of 14.3% (Lavery et al., 2017). Finally, mothers 

with a lower SES may be more at risk for GDM. Women below the poverty threshold 

experienced a greater increase in GDM prevalence between 2006-2016 compared to those 

with incomes greater than or equal to the poverty threshold (Zhou et al., 2022).  

Air Pollution Levels Before and During the COVID-19 Pandemic 
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Beginning in March 2020, the COVID-19 shutdowns were estimated to decrease vehicle 

traffic and industrial activities, potentially decreasing pollution emissions (Jiang et al., 2021; 

Naeger & Murphy, 2020).  

Globally, there was a decline in anthropogenic ambient air pollution after the COVID-19 

pandemic began (Berman & Ebisu, 2020; Fu et al., 2020; Jiang et al., 2021). PM2.5 

concentrations decreased (Berman & Ebisu, 2020), with a 15% reduction seen in southern 

California five weeks after the shutdown began (Jiang et al., 2021), and a 36.3% decrease 

compared to 2019 (Naeger & Murphy, 2020). In California, the lower-income communities 

experienced the greatest PM2.5 reductions during the pandemic shutdown (Bluhm et al., 

2022). All PM2.5 constituents decreased in concentration during the COVID-19 lockdowns, 

with nitrate decreasing the most (Jiang et al., 2021). NO2 concentrations decreased even 

more than PM2.5, with one study estimating a 27% decrease in concentrations during the 

COVID-19 shutdowns compared to pre-shutdown concentrations (Jiang et al., 2021). When 

specifically assessing NO2 levels in Los Angeles, studies have estimated a 29%-40% decrease 

in NO2 concentrations (J. Liu, Lipsitt, et al., 2021; Naeger & Murphy, 2020). Another study 

reported similar findings, where compared to pollutant levels in 2017-2019, NO2 

concentrations were decreased by 25.5% in 2020 (Berman & Ebisu, 2020). NO2 

concentrations may have dropped more than PM2.5 because NO2 mainly comes from 

vehicular traffic, which was reduced during the COVID-19 shutdowns (EPA, 2023a; Fu et al., 

2020; J. Liu, Lipsitt, et al., 2021). PM2.5 is produced by both transportation and non-

transportation sources, such as emissions from industries, so not all PM2.5 sources were 

impacted by the pandemic (Berman & Ebisu, 2020; EPA: United States Environmental 

Protection Agency, 2023). While most air pollutants decreased in concentration during the 
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shutdowns, O3 concentrations actually increased (Fu et al., 2020; Jiang et al., 2021). This may 

be due to higher temperatures, which elevate ozone concentrations (EPA, 2023d; Fu et al., 

2020; Jiang et al., 2021; Wu et al., 2023); in 2020, high temperatures occurred more 

frequently, and there were more persistent heatwave events that extended even into late 

September (K. Wu et al., 2023). 

Occurrence of PPD and GDM Before and During the COVID-19 Pandemic 

In a recent meta-analysis that investigated PPD occurrence during the COVID-19 

pandemic, there was a 34% pooled prevalence of PPD across eight studies – much larger 

than the prevalence before the pandemic (Q. Chen et al., 2022). The COVID-19 pandemic 

may have increased PPD risk due to the social isolation felt by mothers, limited social 

support, limited access to healthcare professionals, and the fear of potential infection (Q. 

Chen et al., 2022; Meaney et al., 2022). One study reported that 25% of women experienced 

a loss of maternal autonomy during both delivery and breastfeeding (Tsuno et al., 2022); 

this is concerning, since less autonomy has been found to lower overall well-being (Deci & 

Ryan, 2000). This same study also reported that 20-30% of mothers had fewer 

opportunities to learn about breastfeeding and childcare from physicians, midwives, and 

nurses during their hospital stay following delivery; these women were two times more 

likely to develop PPD (Tsuno et al., 2022).  

Studies have reported that GDM prevalence was significantly higher during the COVID-

19 pandemic lockdown periods compared to previous time periods (La Verde et al., 2022; 

Mendez et al., 2023; Mirsky et al., 2022; Rhou et al., 2023; Zanardo et al., 2022). One study 

estimated a 38.9% increase in GDM prevalence compared to pre-pandemic times (Mirsky 

et al., 2022). Another study from Northeast Italy found that experiencing the COVID-19 
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lockdowns during the first trimester increased GDM risk by a factor of 2.29 (Zanardo et al., 

2022). This increase in GDM prevalence may be partially due to the social isolation placed 

upon pregnant women during the pandemic (La Verde et al., 2022; Mendez et al., 2023; 

Rhou et al., 2023). One study reported that body mass index (BMI) at delivery and mean 

weight gained during pregnancy was significantly higher during the pandemic lockdown 

period compared to the pre-pandemic period (La Verde et al., 2022).  

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

CHAPTER 3: METHODS 

Study Population 

Patient data was retrieved from electronic health records (EHRs) through Kaiser 

Permanente Southern California (KPSC) facilities. KPSC is a health maintenance 

organization that serves approximately 19% of the population in Southern California (W. 

Chen et al., 2019; Koebnick et al., 2012). Mothers who gave birth between January 1st, 2019 

and December 31st, 2021 were included in the study. Women who were not KPSC 

members, who gave birth at either less than 20 weeks or more than 47 weeks gestation, 

who did not have a residential address, who had multiple births, or who had stillbirths 

were excluded. In addition, participants with missing GDM status due to missing lab test 

results (n=8,165) were excluded from all GDM analyses.  

Outcome: PPD Assessment 

PPD was assessed using the Edinburg Postnatal Depression Scale (EPDS) during 

postpartum visits (American College of Obstetricians and Gynecologists, 2018; Cox et al., 

1987). Participants who earned a score of  ≥ 10 on the EPDS were referred for a clinical 

interview for further assessment. Pharmacy use clinical codes were also supplemented to 

further improve PPD identification. Overall, PPD diagnosis was defined as a combination of 

the International Classification of Diseases, Ninth and 10th Revision diagnostic codes and 

prescription medication records from the date of delivery through 12 months postpartum.  

Outcome: GDM Assessment 

GDM was assessed during routine prenatal visits between 24 to 28 weeks of 

gestation. Two criteria were used to determine GDM diagnosis. The first method is the 

Carpenter-Coustan criteria, which is a 1-hour 50-gram glucose challenge test. If glucose 
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levels are greater than 200 mg/dL or if there are two abnormal values for 3-hour 100-gram 

oral glucose tolerance tests (cutoff values were fasting ≥95, 1-hour ≥180, 2-hours ≥155, 

and 3-hours ≥140 mg/dL), GDM was diagnosed (Carpenter & Coustan, 1982). The second 

method was the International Association of Diabetes and Pregnancy Study Groups criteria, 

in which one abnormal value for a 2-hour 75-gram oral glucose tolerance test (cutoff values 

were fasting ≥92, 1-hour ≥180, and 2-hours ≥153 mg/dL) indicated GDM (Metzger, 2010).  

Exposure Data and Assessment 

Daily data for PM2.5, PM10, NO2, and O3 (8-hour windows: 10 AM – 6 PM) from 2018 

to 2022 was retrieved from the US Environmental Protection Agency’s (EPA) monitoring 

stations. Monthly averages for each pollutant were calculated from the daily averages, and 

empirical Bayesian kriging (EBK) was performed to spatially interpolate the data between 

monitoring stations. Kriging is a method used to predict the spatial correlation between 

monitoring sites (Krivoruchko, 2012). It uses a semivariogram, which is a function of the 

distance and direction between two points, to determine the weight each point contributes 

to an estimated, unmeasured point (Krivoruchko, 2012). Classical kriging alone assumes a 

single semivariogram is the true correlation of the observed data (Krivoruchko, 2012; Wu 

et al., 2016). With ambient air pollution research, classical kriging may be inapplicable in 

practice (Krivoruchko, 2012; Wu et al., 2016). EBK models account for potential 

uncertainty by estimating several semivariograms rather than one semivariogram 

(Krivoruchko, 2012). In addition, EBK models have less under and overestimation, which 

may increase the accuracy of the estimations (Wu et al., 2016). The EBK model is further 

described in the literature (Krivoruchko, 2012; Wu et al., 2016).  
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Residential addresses were regularly updated due to KPSC membership 

requirements. Maternal residential histories (address, start date, and end date) were 

obtained from KPSC EHRs and geocoded (Sun et al., 2022, 2023). Geocoding translates a 

physical address into a geographic address by using latitude and longitude (Wu et al., 

2016). Monthly air pollution estimates were spatiotemporally linked to each participant 

based on their residential address pre-pregnancy, during pregnancy, and the postpartum 

period.  

Time Periods 

Different time periods were used to determine potential vulnerability windows. 

These time periods were calculated by averaging the exposure for each month in that 

period. Since PPD can be diagnosed up to one year postpartum, the time periods included 

in our PPD analyses were: entire pregnancy, 1st trimester (pregnancy months 1-3), 2nd 

trimester (pregnancy months 4-6), 3rd trimester (pregnancy months 7-delivery), 6-months 

postpartum, 12-months postpartum, conception through 12-months postpartum, 

conception through 6-months postpartum, 3rd trimester through 12-months postpartum, 

and 3rd trimester through 6-months postpartum. GDM is most commonly diagnosed in the 

second trimester; therefore, the time periods used in GDM analyses were: 3-months 

preconception, entire pregnancy, 1st trimester (pregnancy months 1-3), 2nd trimester 

(pregnancy months 4-6), the first two trimesters (pregnancy months 1-6), and the entire 

GDM time period (3-months preconception through the 2nd trimester). Date of conception 

was determined based on last menstrual period (LMP) date and early pregnancy 

ultrasonography. If disagreement was found between LMP and sonogram, the date 

generated from the latter was used. 
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Covariates 

Covariates were selected a priori based on existing literature (Sun et al., 2022, 

2023). The covariates were included in KPSC EHRs. KPSC EHRs contain detailed 

information for each patient and provided our team with both demographic and SES data. 

EHRs recorded each participant’s median household income in infant year of birth and the 

year 2020, maternal race/ethnicity, maternal educational level, smoking status, and passive 

smoking status. For our study, participants’ block-group level median household income 

was assigned to level 1 if their median household income was < $43,644, level 2 if income 

was $43,644 - $55,833, level 3 if income was $55,834-$71,429, or level 4 if income was 

>$71,429 (categorized as quartiles). Maternal race and ethnicity was recorded as: African 

American, Asian, Hispanic, Non-Hispanic White, or Multiple/Other. Maternal education was 

reported as: 8th grade or less, high school diploma or less, some college – no degree, college 

degree, or more than a college degree. Smoking status was based on status from 1-year 

preconception through 1 year postpartum; mothers were listed as either having never 

smoked, ever smoked, or smoked during pregnancy. The same time period was used to 

determine passive smoking, where women who lived with another person who smokes 

indicating passive smoking. Season of conception was determined based on LMP. If LMP 

was during the months May-October, season of conception was reported as warm. If LMP 

was during the months November-April, season of conception was reported as cool. 

Similarly, season of delivery based on infant date of birth was reported as warm (May-

October), or cool (November-April). Numerical BMIs were converted to categories: 

Underweight (<18.5 kg/m2), Normal (18.5-24.9 kg/m2), Overweight (25.0-29.9 kg/m2), 
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Obese Class 1 (30.0-34.9 kg/m2), Obese Class 2 (35.0-39.9 kg/m2), and Obese Class 3 (≥40.0 

kg/m2). 

PPD covariates included maternal age, maternal race/ethnicity, maternal 

educational level, median household income in the year of birth, smoking status, passive 

smoking, and season of delivery. GDM covariates included maternal age, maternal 

race/ethnicity, maternal educational level, median household income in the year of birth, 

smoking status, passive smoking, pre-pregnancy BMI, and season of conception. For 

COVID-19 analyses, covariates remained the same for each outcome.  

COVID-19 Time Periods 

A variable was created to 

assess whether there were certain 

time periods, in which experiencing 

the COVID-19 pandemic increased the 

risk of developing PPD or GDM due to 

air pollution exposure. Time periods 

were based on when the COVID-19 

pandemic began in March 2020 

(World Health Organization, 2024). 

For the PPD analyses, there were four 

COVID-19 pandemic time periods: 

group 1 was not impacted by the 

pandemic during pregnancy or the 

postpartum period, group 2 

Figure 1: COVID-19 pandemic time variable criteria. Figure created with 
BioRender.com 
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experienced the pandemic while in the postpartum period, group 3 was pregnant when the 

pandemic began, and group 4 conceived after the pandemic began. For GDM, three time 

periods were created; group 1 was not impacted by the pandemic, group 2 was pregnant 

when the pandemic began, and group 3 conceived after the pandemic began. The criteria 

used to assign women to each COVID-time are presented in Figure 1. 

Statistical Analysis 

Descriptive statistics were calculated for each study group (total population, PPD 

group, No PPD group, GDM group, No GDM group). Chi-square tests were used to 

determine if there was a difference between PPD and non-PPD, and GDM and non-GDM 

groups for each categorical variable. Additionally, chi-square tests were used to determine 

whether there was a difference in PPD or GDM rates during different COVID-19 pandemic 

time periods. T-tests were used to determine if there was a difference between PPD and 

non-PPD, and GDM and non-GDM groups for each continuous variable. Pearson correlation 

coefficients were calculated to assess the correlation between exposure metrics.  

For the PPD analysis, we used a discrete time approach with pooled logistic 

regressions to assess the associations between PPD risk and air pollution exposure. A 

discrete time approach is a more flexible model that allows for the estimation of time-

varying associations. This approach was chosen instead of Cox proportional hazard models 

since we found that our data did not follow the Cox proportional hazards assumption. Per-

interquartile range (IQR) increases for each air pollutant were used to estimate the odds 

ratios (ORs) and 95% confidence intervals (CIs), and county at delivery was fitted as a 

random effect.  
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Cox proportional hazard models were used to assess the relationship between GDM 

and air pollution exposure. Cox models are one of the most commonly used survival 

analysis models (Deo et al., 2021). They allow us to assess the influence of multiple 

continuous and categorical variables on survival, while also accounting for potential 

confounding variables (Deo et al., 2021). Time in the model was defined as the period 

between LMP and GDM diagnosis. If GDM was not diagnosed, time was defined as the 

period between the last menstrual period and date of infant birth. Hazard ratios (HRs) and 

95% CIs were estimated based on per-IQR increase for each pollutant.  

Cox proportional hazard models were also used in both PPD and GDM subgroup 

analyses. Subgroup analysis will separate data based on variable responses, lowering the 

sample size. Multilevel logistic regression models may be more accurate with large 

datasets, and therefore may not converge in subgroup analyses (Ali et al., 2019). Hazard 

ratios (HRs) and 95% CIs were determined based on per-IQR increase in pollutant. In the 

PPD Cox model, exposures during pregnancy through 12 months postpartum were used. 

Time was defined as the period between LMP and PPD diagnosis. If PPD was not diagnosed, 

the time was defined as the period between LMP and 12 months postpartum. The GDM Cox 

model for subgroup analyses was similar to the main GDM model. If GDM was not 

diagnosed, time was defined as the period between LMP and date of infant birth. Analyses 

were performed with pollution exposure from 3 months prior to conception through the 

2nd trimester. HRs and 95% CIs were estimated based on per-IQR increases.  

Subgroup analyses were also used to evaluate whether the COVID-19 pandemic 

influenced the risk of PPD or GDM from air pollution exposure. Participants were separated 
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based on COVID time group, and Cox proportional hazards models were used to estimate 

HRs and 95% CIs based on per-IQR increases in each pollutant. The covariates previously 

described were still included in the COVID-19 pandemic time analyses. 

All analyses were conducted using SAS, version 9.4 statistical software (SAS Institute 

Inc). A P-value of < 0.05 was considered significant. 
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CHAPTER 4: RESULTS 

Descriptive Statistics 

We had 115,804 participants, with 21,652 PPD cases (18.70%) and 12,174 GDM 

cases (10.51%). Participants with PPD were more likely to be older and have higher annual 

household incomes. PPD participants were also more likely to be African American or non-

Hispanic white, as well as have a history of smoking before or during pregnancy. Patients 

with GDM were more likely to be older, have a lower median household income, to have a 

cool season of conception, and to have an obese pre-pregnancy BMI. Interestingly, 42.21% 

of GDM participants had inadequate weight gain throughout their pregnancy compared to 

25.22% of non-GDM participants. Both GDM and PPD participants were exposed to higher 

average O3 levels, and slightly higher average PM10 levels during the entire pregnancy. 

Pollution exposure averages are presented in Table 2 and the Appendix. Simple summary 

statistics for demographic and medical variables are presented in Tables 3 and 4, 

respectively. 

 

 

 

Table 2: Air pollution exposure averages for the total population, PPD cases, and GDM cases. Pollution averages are in µg/m3. SD = 
Standard Deviation, Min = Minimum, Max = Maximum, IQR = Interquartile Range. 

Pregnancy Exposure Summary Statistics 
 Total Population PPD Cases GDM Cases  
 Mean (SD) Min Max IQR Mean (SD) Min Max IQR Mean (SD) Min Max IQR 

PM2.5 10.89 (1.78) 4.65 23.30 2.43 10.85 (1.79) 5.17 21.34 2.43 11.02 (1.78) 4.90 18.36 2.46 
PM10 26.35 (4.65) 10.56 71.20 5.59 26.45 (4.69) 10.56 60.19 5.72 26.49 (4.73) 14.51 57.02 5.78 
NO2 13.60 (3.18) 2.74 25.34 4.74 13.49 (3.23) 4.80 24.20 4.97 13.71 (3.10) 5.13 24.14 4.35 
O3 45.90 (6.01) 22.14 74.03 8.77 46.15 (6.06) 22.14 70.17 8.94 46.02 (6.08) 25.44 71.16 8.85 
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 Table 3: Summary statistics for sociodemographic characteristics. Statistics are divided into groups: total population, participants with PPD, participants without PPD, participants with GDM, and 
participants without GDM. P-values for chi-square and T-tests are presented for PPD and GDM analyses. Signiϐicant results are bolded. Signiϐicance was < 0.05. YOB =Year of Birth. 

 No. (%) 
Sociodemographic Characteristic PPD  

(n = 21,652) 
Non-PPD  

(n = 94,152) 
PPD Chi-Square 

and T-Test P-Values 
GDM 

(n = 12,174) 
Non-GDM  

(n = 96,450) 
GDM Chi-Square 

and T-Test P-Values 
Total Births  

(n = 115,804) 
Maternal Age, mean (SD) 31.02 (5.29) 30.91 (5.32) <0.0001 33.00 (4.96) 30.77 (5.24) <0.0001 31.02 (5.29) 
        
Maternal Race and Ethnicity   <0.0001   <0.0001  

African American 1,683 (7.77) 5,825 (6.19)  503 (4.14) 6,255 (6.51)  7,508 (6.48) 
Asian 1,986 (9.17) 13,695 (14.55)  2,695 (22.20) 12,268 (12.76)  15,681 (13.54) 

Hispanic 11,597 (53.57) 50,626 (53.78)  6,648 (54.77) 51,309 (53.39)  62,223 (53.74) 
Non-Hispanic White 5,391 (24.90) 19,859 (21.09)  1,772 (14.60) 22,044 (22.94)  25,250 (21.81) 

Multiple or Other 993 (4.59) 4,138 (4.40)  520 (4.28) 4,233 (4.40)  5,131 (4.43) 
Unknown or Missing 2 (0.00) 9 (0.00)  2 (0.02) 8 (0.00)  11 (0.00) 

Maternal Education   <0.0001   <0.0001  
8th Grade or Less 19 (0.09) 253 (0.29)  49 (0.43) 199 (0.22)  272 (0.25) 

9th Grade Through High School 4,344 (21.29) 21,751 (24.52)  2,574 (22.54) 21,328 (23.50)  26,095 (23.91) 
Some College, No Degree (<4 y) 4,604 (22.56) 17,979 (20.26)  2,307 (20.20) 18,577 (20.47)  22,583 (20.69) 

College  7,519 (36.85) 32,932 (37.12)  4,380 (38.35) 33,887 (37.33)  40,451 (37.07) 
More Than College 3,918 (19.20) 15,809 (17.82)  2,111 (18.48) 16,774 (18.48)  19,727 (18.08) 

Missing 1,248 (5.76) 5,428 (5.77)  719 (5.91) 5,352 (5.55)  6,676 (5.76) 
Median Household Income at Block Group Level – 2020    <0.0001   <0.0001  

<$43,667 1,714 (7.92) 8,159 (8.68)  1,061 (8.75) 7,972 (8.30)  9,873 (8.54) 
$43,668 - $55,930 3,021 (13.97) 13,740 (14.61)  1,857 (15.31) 13,627 (14.19)  16,761 (14.49) 
$55,931 - $71,591 4,414 (20.40) 19.019 (20.23)  2,571 (21.20) 19,209 (20.01)  23,433 (20.26) 

>$71,592  12,483 (57.71) 53,110 (56.48)  6,628 (54.65) 55,191 (57.49)  65,593 (56.71) 
Missing 20 (0.09) 124 (0.13)  11 (0.09) 118 (0.12)  762 (0.66) 

Median Household Income at Block Group Level – YOB   0.0011   0.0001  
<$43,667 1,875 (8.67) 8,788 (9.35)  1,133 (9.34) 8,646 (9.01)  10,663 (9.22) 

$43,668 - $55,930 3,009 (13.91) 13,576 (14.44)  1,804 (14.87) 13,504 (14.07)  16,585 (14.34) 
$55,931 - $71,591 4,420 (20.43) 19,103 (20.32)  2,564 (21.14) 19,297 (20.10)  23,523 (20.34) 

>$71,592  12,328 (56.99) 52,562 (55.90)  6,628 (54.65) 54,553 (56.83)  64,890 (56.10) 
Missing 20 (0.09) 123 (0.13)  11 (0.09) 117 (0.12)  761 (0.66) 

Smoking Status   <0.0001   0.0018  
Never 17,857 (82.48) 82,998 (88.15)  10,481 (86.33) 84,054 (87.45)  100,855 (87.09) 

Ever 3,065 (14.16) 9,018 (9.58)  1,335 (11.00) 9,795 (10.19)  12,083 (10.43) 
Smoked During Pregnancy 729 (3.37) 2,135 (2.27)  324 (2.67) 2,267 (2.36)  2,864 (2.47) 

Missing 1 (0.00) 1 (0.00)  0 (0.00) 1 (0.00)  2 (0.00) 
Passive Smoker   0.5086   0.0056  

Yes 286 (1.32) 1,191 (1.26)  121 (1.00) 1244 (1.29)  1,477 (1.28) 
No 21,366 (98.68) 92,960 (98.74)  12,019 (99.00) 94872 (98.71)  114,326 (98.72) 

Missing 0 (0.00) 1 (0.00)  0 (0.00) 1 (0.00)  619 (0.53) 
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Table 3 Continued: Summary statistics for sociodemographic characteristics. Statistics are divided into groups: total population, participants with PPD, participants without PPD, participants with 
GDM, and participants without GDM. P-values for chi-square and T-tests are presented for PPD and GDM analyses. Signiϐicant results are bolded. Signiϐicance was < 0.05. YOB =Year of Birth. 

 No. (%) 
Sociodemographic Characteristic PPD  

(n = 21,652) 
Non-PPD  

(n = 94,152) 
PPD Chi-Square 

and T-Test P-Values 
GDM 

(n = 12,174) 
Non-GDM  

(n = 96,450) 
GDM Chi-Square and 

T-Test P-Values 
Total Births  

(n = 115,804) 
Year of Infant Birth   <0.0001   <0.0001  

2019 7440 (34.36) 32,511 (34.53)  3,776 (31.10) 33,472 (34.82)  39,951 (34.50) 
2020 6433 (29.71) 29,310 (31.13)  3,671 (30.24) 29,787 (30.99)  35,743 (30.87) 
2021 7779 (35.93) 32,331 (34.34)  4,693 (38.66) 32,858 (34.19)  40,110 (34.64) 

Season of Conception   0.1740   <0.0001  
Warm Season (May – October) 10,315 (47.64) 45,336 (48.15)  5,383 (44.34) 46,581 (48.46)  55,930 (48.04) 

Cool Season (November – April) 11,337 (52.36) 48,816 (51.85)  6,757 (55.66) 49,536 (51.54)  60,492 (51.96) 
Season of Delivery    0.8852   0.9252  

Warm Season (May – October) 11,607 (53.61) 50,421 (53.55)  6,532 (53.81) 51,673 (53.76)  62,028 (53.28) 
Cool Season (November – April) 10,045 (46.39) 43,731 (46.45)  5,608 (46.19) 44,444 (46.24)  54,394 (46.72) 

Insurance Type   0.5768   <0.0001  
Medicaid  3,031 (13.93) 1,3242 (14.08)  1,469 (12.11) 13,126 (13.67)  16,255 (14.05) 

Other Insurance 18,613 (86.07) 80,816 (85.92)  10,657 (87.89) 82,901 (86.33)  99,429 (85.95) 
Missing 26 (0.12) 94 (0.10)  14 (0.11) 90 (0.09)  120 (0.10) 
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Table 4: Summary statistics for medical characteristics. Statistics are divided into groups: total population, participants with PPD, participants without PPD, participants with GDM, and participants 
without GDM. P-values for chi-square and T-tests are presented for PPD and GDM analyses. Significant results are bolded. Significance was < 0.05. YOB =Year of Birth. 

 No. (%) 
Medical Characteristic PPD  

(n = 21,652) 
Non-PPD  

(n = 94,152) 
PPD Chi-Square 

and T-Test P-Values 
GDM 

(n = 12,174) 
Non-GDM  

(n = 96,450) 
GDM Chi-Square and 

T-Test P-Values 
Total Births  

(n = 115,804) 
Pre-pregnancy Weight (Ibs), mean (SD) 168.25 (42.50) 160.61 (40.06) <0.0001 173.07 (43.86) 159.68 (39.24) <0.0001 162.04 (40.63) 
Pre-pregnancy BMI, mean (SD) 28.84 (6.76) 27.72 (6.45) <0.0001 30.33 (6.95) 27.47 (6.28) <0.0001 27.93 (6.52) 
Pre-pregnancy BMI in Categories   <0.0001   <0.0001  

Underweight (<18.5) 256 (1.18) 1,780 (1.89)  102 (0.84) 1,802 (1.88)  2,036 (1.76) 
Normal Weight (18.5-24.9) 6,942 (32.09) 36,044 (38.35)  2,894 (23.86) 37,961 (39.54)  42,986 (37.18) 

Overweight (25.0 - 29.9) 6,432 (29.74) 27,433 (29.19)  3,401 (28.04) 28,555 (29.74)  33,865 (29.29) 
Obese Class 1 (30.0-34.9) 4,241 (19.61) 16,205 (17.24)  2,870 (23.66) 16,002 (16.67)  20,446 (17.69) 
Obese Class 2 (35.0-39.9) 2,281 (10.55) 7,783 (8.28)  1,712 (14.11) 7,356 (7.66)  10,064 (8.71) 

Obese Class 3 (40.0+) 1,478 (6.83) 4,734 (5.04)  1,150 (9.48) 4,336 (4.52)  6,212 (5.37) 
Missing 22 (0.10) 173 (0.18)  11 (0.09) 105 (0.11)  195 (0.17) 

Gestational Weight Gain in IOM Categories   <0.0001   <0.0001  
Inadequate 5,765 (26.65) 26,293 (27.98)  5,120 (42.21) 24,211 (25.22)  32,058 (27.73) 

Appropriate 6,375 (29.47) 29,982 (31.91)  3,692 (30.44) 30,634 (31.91)  36,357 (31.45) 
Excess 9,489 (43.87) 37,692 (40.11)  3,317 (27.35) 41,161 (42.87)  47,181 (40.82) 

Missing 23 (0.11) 185 (0.20)  11 (0.09) 111 (0.12)  208 (0.18) 
COVID-19 Positive During 1st Trimester   <0.0001   0.3742  

No 21,385 (98.77) 93,282 (99.08)  12,030 (99.09) 95,165 (99.01)  114,667 (99.02) 
Yes 267 (1.23) 870 (0.92)  110 (0.91) 952 (0.99)  1,137 (0.98) 

COVID-19 Positive During 2nd Trimester   0.0001   0.0090  
No 21,300 (98.37) 92,935 (98.71)  11,945 (98.39) 94,852 (98.68)  114,235 (98.65) 
Yes 352 (1.63) 1,217 (1.29)  195 (1.61) 1,265 (1.32)  1,569 (1.35) 

COVID-19 Positive During 3rd Trimester   0.7254   0.7251  
No  21,181 (97.82) 92,140 (97.86)  11,875 (97.82) 94,066 (97.87)  113,321 (97.86) 
Yes 471 (2.18) 2,012 (2.14)  265 (2.18) 2,051 (2.13)  2,483 (2.14) 
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Correlations Among Pollutants 

The results from the correlation analysis 

among pollutants are presented in Table 5 and the 

Appendix. Negative associations were seen between 

NO2 and ozone, and large positive correlations were 

seen between PM2.5 and PM10.  

Associations Between Air Pollution and PPD 

Using a discrete time approach, we found significantly positive associations between 

O3 exposure and PPD risk in the following time periods: entire pregnancy (OR=1.043; 95% 

CI, 1.014-1.074), 2nd trimester (OR=1.024; 95% CI, 1.003-1.046), pregnancy through 12-

months postpartum (OR=1.063; 95% CI, 1.029-1.098), pregnancy through 6-months 

postpartum (OR=1.042; 95% CI, 1.006-1.079), and 12-months postpartum (OR=1.022; 95% 

CI, 1.005-1.039). PM2.5 was found to be negatively associated with PPD risk, except in the 

1st trimester (OR=1.008; 95% CI, 0.989-1.028). PM10 exposure was positively associated 

with PPD during the entire pregnancy (OR=1.004; 95% CI, 0.982-1.026), 1st trimester 

(OR=1.009; 95% CI, 0.990-1.028), and the 2nd trimester (OR=1.013; 95% CI, 0.989-1.036), 

although these results were not significant. PM10 exposure in the late pregnancy and 

postpartum periods were insignificant, but negatively associated with PPD risk. Discrete 

time results are presented in Table 6. 

PPD Subgroup Analyses 

Cox proportional hazard models showed different associations with pollution 

exposure among different groups. For race/ethnicity, white mothers were more susceptible 

to the effects from PM10 (HR=1.063; 95% CI, 1.022-1.107) and ozone exposure (HR=1.090; 

Table 5: Pearson’s correlation coefficients for pollutant 
exposures. Correlations presented are from the date of 

conception through 1-year postpartum. 

 PM2.5 PM10 NO2 O3 
PM2.5 1 0.45864 0.77343 -0.04146 
PM10  1 0.29203 0.57338 
NO2   1 -0.03371 
O3    1 
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95% CI, 1.027-1.157). Hispanic (HR=1.103; 95% CI, 1.052-1.156) and multi-racial/other 

(HR=1.125; 95% CI, 1.018-1.244) mothers were more susceptible to the effects from O3. 

Hazard ratios were large for mothers who had more than a college education, although only 

ozone (HR=1.112; 95% CI, 1.055-1.172) and PM10 (1.091; 95% CI, 1.045-1.139) were 

significant. Interestingly, smoking during or before pregnancy lowered the hazard ratio for 

PPD and PM2.5, PM10, and NO2 exposure. Similar results were seen for passive smoking. 

Results for PPD subgroup analyses are presented in Table 7. 
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Table 6: Results from the PPD discrete time approach model. Covariates included: mom age, mom race/ethnicity, mom educational level, income group in year of birth, smoking status, 
passive smoking, and season of delivery. Significant negative associations are presented in red, and significant positive associations are bolded. Significance level was <0.05. CI = Confidence 

Interval, OR = Odds Ratio. 

 PM2.5 PM10 NO2 O3 
 OR 95% CI P-Value OR 95% CI P-Value OR 95% CI P-Value OR 95% CI P-Value 
Entire Pregnancy 0.981 0.959 – 1.004 0.0993 1.004 0.982 – 1.026 0.7168 0.972 0.944 – 1.000 0.0517 1.043 1.014 – 1.074 0.0040 
1st Trimester 1.008 0.989 – 1.028 0.4071 1.009 0.990 – 1.028 0.3740 0.976 0.943 – 1.011 0.1836 1.019 0.996 – 1.042 0.0993 
2nd Trimester 0.987 0.967 – 1.008 0.2304 1.013 0.989 – 1.036 0.2867 0.985 0.961 – 1.009 0.2178 1.024 1.003 – 1.046 0.0256 
3rd Trimester 0.980 0.963 – 0.998  0.0263 0.991 0.972 – 1.012 0.4015 0.973 0.940 – 1.007 0.1177 1.017 0.992 – 1.041 0.1814 
12-Months Postpartum 0.984 0.968 – 0.999 0.0421 0.994 0.979 – 1.009 0.4419 0.988 0.968 – 1.009 0.2635 1.022 1.005 – 1.039 0.0121 
6-Months Postpartum 0.980 0.962 – 0.998  0.0303 0.986 0.966 – 1.006  0.1595 0.996 0.971 – 1.023 0.7886 1.013 0.992 – 1.034 0.2295 
Conception – 12-Months Postpartum 0.970 0.949 – 0.992 0.0070 0.995 0.974 – 1.016 0.6249 0.967 0.939 – 0.996 0.0240 1.063 1.029 – 1.098 0.0002 
Conception – 6-Months Postpartum 0.960 0.937 – 0.983 0.0009 0.985 0.963 – 1.007 0.1856 0.980 0.949 – 1.012 0.2122 1.042 1.006 – 1.079 0.0221 
3rd Trimester – 12-Months Postpartum 0.974 0.958 - 0.991 0.0030 0.989 0.973 – 1.005 0.1642 0.978 0.954 – 1.002 0.0702 1.030 1.007 – 1.053 0.0107 
3rd Trimester – 6-Months Postpartum 0.969 0.949 – 0.988 0.0017 0.981 0.962 – 1.001 0.0592 0.988 0.958 – 1.018 0.4142 1.016 0.990 – 1.042 0.2302 
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Table 7: PPD subgroup analysis using Cox Proportional Hazard Models. Hazard ratios, 95% confidence intervals, and p-values are presented for each subgroup and each pollutant. 
Negative associations are presented in red, and positive associations are bolded. Significance was determined at the ≤0.05 level. HR = Hazard Ratio, CI = Confidence Interval. 

 PM2.5 PM10 NO2 O3 
 HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value 
Maternal Race/Ethnicity             

African American 0.991 0.922 – 1.064 0.7981 1.054 0.973 – 1.142 0.1959 1.021 0.953 – 1.094 0.5557 1.094 0.967 - 1.237 0.1552 
Asian 0.971 0.906 – 1.040 0.4024 1.015 0.950 – 1.084 0.6655 0.932 0.872 – 0.995 0.0352 1.014 0.939 – 1.095 0.7226 

Hispanic 0.959 0.931 – 0.986 0.0038 0.996 0.964 – 1.029 0.8103 0.954 0.924 – 0.984 0.0033 1.103 1.052 – 1.156 <0.0001 
White 1.012 0.966 – 1.060 0.6150 1.063 1.022 – 1.107 0.0027 0.966 0.901 – 1.035 0.3277 1.090 1.027 – 1.157 0.0045 

Multi/Other 0.956 0.867 - 1.054 0.3681 1.049 0.961 – 1.131 0.3204 0.973 0.872 – 1.087 0.6289 1.125 1.018 – 1.244 0.0212 
Maternal Education             

High School or Less 0.962 0.918 – 1.009 0.1101 1.015 0.958 – 1.076 0.6073 0.938 0.886 – 0.992 0.0262 1.168 1.090 – 1.252 <0.0001 
Some College 0.965 0.924 – 1.008 0.1101 1.011 0.969 – 1.056 0.6073 0.950 0.909 – 0.994 0.0262 1.133 1.072 – 1.198 <0.0001 

College Degree 0.946 0.912 – 0.982 0.0037 1.009 0.974 – 1.045 0.6264 0.946 0.902 – 0.992 0.0233 1.041 0.991 – 1.093 0.1120 
More Than College 1.041 0.987 – 1.098 0.1367 1.091 1.045 – 1.139 <0.0001 1.023 0.958 – 1.092 0.5043 1.112 1.055 – 1.172 <0.0001 

Smoking Status              
Never Smoked 0.984 0.960 – 1.009 0.2063 1.032 1.006 – 1.059 0.0151 0.976 0.947 – 1.006 0.1199 1.083 1.044 – 1.124 <0.0001 

Smoked  0.925 0.878 – 0.975 0.0037 0.983 0.938 – 1.031 0.4794 0.892 0.835 – 0.953 0.0008 1.115 1.055 – 1.179 0.0001 
Passive Smoking             

No 0.971 0.949 – 0.994 0.0121 1.018 0.995 – 1.042 0.1296 0.958 0.932 – 0.985 0.0029 1.093 1.057 – 1.130 <0.0001 
Yes 1.115 0.926 – 1.342 0.2526 1.165 0.986 – 1.377 0.0731 0.978 0.833 – 1.147 0.7809 1.233 0.990 – 1.536 0.0616 

Income Group              
< $43,667 0.947 0.885 – 1.015 0.1226 1.016 0.962 – 1.074 0.5667 0.965 0.908 – 1.025 0.2488 1.043 0.936 – 1.163 0.4451 

$43,668 - $55,930 1.031 0.973 – 1.092 0.2984 1.065 1.022 – 1.111 0.0029 1.013 0.959 – 1.069 0.6444 1.108 1.042 – 1.178 0.0011 
$55,931 - $71,591 0.962 0.917 – 1.008 0.1065 1.001 0.951 – 1.053 0.9673 0.951 0.904 – 1.001 0.0538 1.106 1.033 – 1.183 0.0038 

≥ $71,592 0.959 0.929 – 0.989 0.0083 1.012 0.981 – 1.044 0.4577 0.935 0.897 – 0.976 0.0019 1.085 1.042 – 1.130 <0.0001 
Season of Delivery             

Cool 0.982 0.950 – 1.014 0.2599 1.041 1.008 – 1.075 0.0152 0.965 0.928 – 1.004 0.0784 1.092 1.042 – 1.144 0.0002 
Warm 0.965 0.936 – 0.995 0.0214 1.005 0.974 – 1.037 0.7497 0.951 0.916 – 0.987 0.0088 1.096 1.049 – 1.145 <0.0001 

Maternal Age Group             
Less Than 25 Years Old 0.982 0.924 – 1.043 0.5470 1.031 0.968 – 1.099 0.3365 0.928 0.870 – 0.990 0.0231 1.128 1.029 – 1.236 0.0099 

25 – 30 Years Old  0.954 0.917 – 0.994 0.0242 1.018 0.977 – 1.061 0.3937 0.966 0.922 – 1.012 0.1397 1.095 1.031 – 1.163 0.0026 
30 – 35 Years Old  0.971 0.935 – 1.009 0.1311 1.012 0.976 – 1.049 0.5335 0.954 0.911 – 0.998 0.0429 1.073 1.021 – 1.128 0.0030 

≥ 36 Years Old 0.981 0.935 – 1.030 0.4363 1.040 0.996 – 1.085 0.0736 0.967 0.912 – 1.026 0.2666 1.089 1.026 – 1.155 0.0047 
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Associations between air pollution and GDM 

Overall, significantly positive associations were seen with exposure to PM2.5, PM10, 

and O3. Specifically, PM2.5 exposure was positively associated with GDM risk during all time 

periods, with significant results found for the entire pregnancy (HR=1.061; 95% CI, 1.033-

1.090), 3-months preconception period (HR=1.040; 95% CI, 1.015-1.066), 1st trimester 

(HR=1.046; 95% CI, 1.016-1.076), 1st and 2nd trimesters (1.048; 95% CI, 1.019-1.078), and 

entire GDM period (HR=1.063; 95% CI, 1.035-1.092). For PM10, significantly positive 

associations were seen during the entire pregnancy (HR=1.043; 95% CI, 1.017-1.069), 2nd 

trimester (HR=1.024; 95% CI, 1.000-1.049), 1st and 2nd trimesters (HR=1.032; 95% CI, 

1.003-1.062), and entire GDM time period (HR=1.040; 95% CI, 1.013-1.067); all other time 

periods reported insignificantly positive associations with GDM risk. Ozone exposure in all 

time periods was positively associated with GDM risk; significant results were seen with 

exposure in the entire pregnancy (HR=1.058; 95% CI, 1.023-1.094), 2nd trimester 

(HR=1.039; 95% CI, 1.010-1.069), and entire GDM time period (HR=1.043; 95% CI, 1.007 – 

1.080). NO2 exposure during the 1st trimester was positively associated with GDM risk 

(HR=1.014; 95% CI, 0.984-1.046), although this association was not significant. All other 

regressions showed negative associations between NO2 exposure and GDM risk. All results 

from the GDM regression analyses are presented in Tables 8-9.  

GDM Subgroup Analysis 

Subgroup analyses with Cox models showed that certain populations may be at a 

greater risk of the impacts from air pollution exposure on GDM. Asian and Hispanic 

mothers were more susceptible to the effects from PM2.5 and PM10. We also found that 

white mothers are the most susceptible to O3 exposure (HR=1.118; 95% CI, 1.030-1.213). 
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For maternal education, results showed that higher education increased the risk of GDM 

with exposure to PM2.5, PM10, NO2, and O3. Results also showed that higher annual income 

increased the risk for GDM when exposed to PM and ozone. Age had a small influence on 

GDM risk, with mothers over 30 years old being more susceptible to PM exposure. Mothers 

with a pre-pregnancy BMI considered underweight, normal weight, or overweight were 

more susceptible to the impacts from PM10 exposure, and overweight mothers had a 

significantly increased risk of GDM from ozone. These results are presented in Table 10.  

Table 8: Results from GDM and PM Cox Proportional Hazard models. Odds ratios, 95% confidence index, and p-values 
are presented in the table. Covariates included: mom age, mom race/ethnicity, mom educational level, pre-pregnancy 

BMI groups, season of conception, income level, smoking status, and passive smoking status. Significant positive 
associations are bolded, and significant negative associations are presented in red. The entire GDM time period refers 

to 3-months preconception through the second trimester. Significance level was <0.05. CI = Confidence Index. 

 PM2.5 PM10 
 Hazard Ratio 95% CI P-Value Hazard Ratio 95% CI P-Value 

Entire Pregnancy 1.061 1.033 – 1.098 <0.0001 1.043 1.017 – 1.069 0.0012 

3-Months Preconception 1.040 1.015 – 1.066 0.0016 1.023 0.998 – 1.048 0.0726 

1st Trimester 1.046 1.016 – 1.076 0.0023 1.022 0.991 – 1.054 0.1716 

2nd Trimester 1.022 0.999 – 1.046 0.0618 1.024 1.000 – 1.049 0.0487 

1st and 2nd Trimesters 1.048 1.019 – 1.078 0.0012 1.032 1.003 – 1.062 0.0289 

Entire GDM Period 1.063 1.035 – 1.092 <0.0001 1.040 1.013 – 1.067 0.0028 

 

Table 9: Results from GDM and NO2 and O3 Cox Proportional Hazard models. Odds ratios, 95% confidence index, and p-
values are presented in the table. Covariates included: mom age, mom race/ethnicity, mom educational level, pre-
pregnancy BMI groups, season of conception, income level, smoking status, and passive smoking status. Significant 
positive associations are bolded, and significant negative associations are presented in red. The entire GDM period 

refers to 3-months preconception through the second trimester. Significance level was <0.05. CI = Confidence Index. 

 NO2 Ozone 
 Hazard Ratio 95% CI P-Value Hazard Ratio 95% CI P-Value 

Entire Pregnancy 0.985 0.949 – 1.022 0.4155 1.058 1.023 - 1.094 0.0012 
3-Months Preconception 0.994 0.953 – 1.037 0.7696 1.009 0.982 – 1.038 0.5137 

1st Trimester 1.014 0.984 – 1.046 0.3593 1.008 0.983 – 1.034 0.5387 
2nd Trimester 0.958 0.918 – 1.000 0.0527 1.039 1.010 – 1.069 0.0076 

1st and 2nd Trimesters 0.996 0.960 – 1.033 0.8250 1.024 0.999 – 1.049 0.0600 
Entire GDM Period 0.993 0.959 – 1.029 0.7082 1.043 1.007 – 1.080 0.0179 
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Table 10: GDM subgroup analysis using Cox Hazards Proportional Models. Hazard ratios, 95% confidence intervals, and p-values are presented for each subgroup and each pollutant. 
Negative associations are presented in red, and positive associations are bolded. Significance was ≤0.05. HR = Hazard Ratio, CI = Confidence Interval. 

 PM2.5 PM10 NO2 O3 
 HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value 
Maternal Race/Ethnicity             

African American 1.068 0.944 – 1.209 0.2976 1.052 0.951 – 1.164 0.3290 0.896 0.798 – 1.006 0.0632 0.980 0.839 – 1.146 0.8025 
Asian 1.071 1.012 – 1.133 0.0169 1.051 1.002 – 1.104 0.0430 1.009 0.952 – 1.070 0.7615 1.037 0.982 – 1.094 0.1968 

Hispanic 1.061 1.025 – 1.099 0.0009 1.047 1.011 – 1.085 0.0108 1.009 0.968 – 1.052 0.6669 1.038 0.985 – 1.093 0.1603 
White 1.031 0.959 – 1.107 0.4080 1.009 0.947 – 1.076 0.7784 0.960 0.863 – 1.068  0.4525 1.118 1.030 – 1.213 0.0078 

Multi/Other 1.055 0.929 – 1.199 0.4073 0.976 0.873 – 1.090 0.6606 0.986 0.848 – 1.146 0.8517 0.952 0.833 – 1.087 0.4673 
Maternal Education             

High School or Less 1.056 1.000 – 1.116 0.0505 1.035 0.982 – 1.092 0.2000 1.021 0.958 – 1.088 0.5231 0.993 0.921 – 1.072 0.8624 
Some College 1.040 0.983 – 1.101 0.1751 0.988 0.935 – 1.044 0.6697 0.946 0.885 – 1.012 0.1083 1.039 0.971 – 1.112 0.2677 

College Degree 1.059 1.014 – 1.106 0.0094 1.038 1.000 – 1.077 0.0495 1.024 0.976 – 1.075 0.3351 1.052 1.006 – 1.081 0.2562 
More Than College 1.133 1.065 – 1.205 <0.0001 1.102 1.045 – 1.162 0.0004 1.081 1.009 – 1.160 0.0275 1.090 1.025 – 1.160 0.0059 

Smoking Status              
Never Smoked 1.070 1.040 – 1.101 <0.0001 1.046 1.018 – 1.075 0.0012 0.985 0.949 – 1.023 0.4439 1.054 1.015 – 1.093 0.0055 

Smoked  1.036 0.964 – 1.114 0.3373 1.008 0.947 – 1.072 0.8054 1.075 0.989 – 1.169 0.0896 1.006 0.934 – 1.084 0.8710 
Passive Smoking             

No 1.064 1.036 – 1.093 <0.0001 1.043 1.016 – 1.070 0.0013 0.994 0.959 – 1.030 0.7488 1.046 1.010 – 1.083 0.0128 
Yes 0.926 0.714 – 1.202 0.5650 0.704 0.523 – 0.948 0.0207 0.869 0.659 – 1.146 0.3203 0.851 0.606 – 1.195 0.3520 

Income Group              
< $43,667 1.049 0.965 – 1.141 0.2624 1.011 0.944 – 1.084 0.7536 0.944 0.924 – 1.070 0.8712 1.004 0.915 – 1.101 0.9361 

$43,668 - $55,930 1.030 0.965 – 1.100 0.3755 1.034 0.974 – 1.097 0.2725 0.964 0.895 – 1.038 0.3323 1.013 0.932 – 1.100 0.7656 
$55,931 - $71,591 1.053 0.994 – 1.116 0.0808 1.042 0.985 – 1.102 0.1530 0.980 0.915 – 1.050 0.7833 1.072 0.991 – 1.161 0.0844 

≥ $71,592 1.079 1.040 – 1.119 <0.0001 1.047 1.012 – 1.083 0.0087 1.024 0.974 – 1.076 0.3609 1.062 1.018 – 1.107 0.0050 
Season of Conception             

Cool 1.064 1.029 – 1.100 0.0002 1.054 1.019 – 1.091 0.0024 1.029 0.985 – 1.075 0.1930 1.020 0.975 – 1.068 0.3873 
Warm 1.060 1.019 – 1.102 0.0037 1.027 0.994 – 1.061 0.1089 0.999 0.956 – 1.043 0.9563 1.063 1.017 – 1.111 0.0067 

Maternal Age Group             
<25 Years Old 1.076 0.976 – 1.187 0.1405 1.035 0.948 – 1.129 0.4429 1.031 0.928 – 1.145 0.5715 1.036 0.921 – 1.165 0.5551 

25 – 30 Years Old  1.016 0.963 – 1.072 0.5622 1.010 0.963 – 1.060 0.6733 0.972 0.916 – 1.030 0.3351 1.059 0.997 – 1.125 0.0626 
30 – 35 Years Old  1.066 1.022 – 1.113 0.0032 1.039 1.000 – 1.079 0.0479 1.010 0.962 – 1.061 0.6927 1.022 0.990 – 1.085 0.1247 

≥ 36 Years Old 1.100 1.050 – 1.152 <0.0001 1.065 1.021 – 1.110 0.0034 1.076 1.022 – 1.133 0.0052 1.055 0.991 – 1.100 0.1090 
Pre-Pregnancy BMI             

Under or Normal Weight 1.073 1.017– 1.133 0.0102 1.059 1.010 – 1.109 0.0165 1.020 0.960 – 1.084 0.5169 1.058 0.998 – 1.121 0.0587 
Overweight 1.064 1.013 – 1.118 0.0136 1.053 1.008 – 1.100 0.0200 1.048 0.993 – 1.106 0.0887 1.065 1.008 – 1.126 0.0258 

Obese Class 1, 2, or 3 1.065 1.024 – 1.107 0.0016 1.021 0.983 – 1.059 0.2848 0.981 0.936 – 1.028 0.4136 1.019 0.965 – 1.077 0.4908 
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COVID-19 Statistical Analyses 

The results from the COVID 

pandemic time analyses are 

presented in Tables 11-16. For PPD, 

6,956 were not affected by the 

pandemic during pregnancy or the postpartum period, 39,778 experienced the pandemic 

within the first year postpartum, 26,010 were pregnant when the pandemic started, and 

43,417 conceived after the pandemic began. Chi-square test results showed significant 

differences in PPD diagnosis between COVID time groups. Mothers who were pregnant 

when the pandemic began in March 2020 had significantly higher rates of PPD compared to 

mothers who conceived after the pandemic. Additionally, mothers in the postpartum 

period had significantly higher rates of PPD compared to all other time groups. 

Experiencing the pandemic while pregnant (HR=1.037; 95% CI, 1.004-1.072) and within 

the first year postpartum (HR=1.051; 95% CI,1.000-1.104) significantly increased the risk 

of PPD with exposure to PM10. O3 exposure remained significantly positive for all four time 

periods. In addition, mothers who conceived after the pandemic began in March 2020 

experienced significantly lower risks for PPD with exposure to PM2.5 (HR=0.945; 95% CI, 

0.909-0.982) and NO2 

(HR=0.927; 95% CI, 0.889-

0.966).  

Table 11: Summary Statistics for PPD COVID Time Periods. Results are 
presented as n (%).  

 
PPD  

(n =21,652) 
Non-PPD  

(n = 94,152) 
Not Impacted 7,927 (27.98) 43,783 (33.03) 
Pregnant When the Pandemic Began 7,398 (26.11) 32,372 (24.42) 
Conceived After the Pandemic Began 4,610 (16.27) 21,397 (16.14) 
Pandemic Began in the Postpartum Period 8,394 (29.63) 35,019 (26.42) 
 

Table 12: Results of chi-square tests for PPD COVID times. Chi-square statistics and 
P-values are presented. Not impacted mothers were those who gave birth before 

March 2019. Pregnant mothers were pregnant in March 2020. Postpartum mothers 
gave birth between March 2019-March 2020. Mothers who conceived after were 

those with a date of conception after March 2020. Significance was <0.05. 

 Chi-Square Statistic P-Value 
Not Impacted and Pregnant 28.22 0.6265 
Not Impacted and Postpartum 4.42 0.0354 
Not Impacted and Conceived After 0.8231 0.3643 
Pregnant and Postpartum  8.06 0.0045 
Pregnant and Conceived After 7.34 0.0067 
Postpartum and Conceived After 27.76 <0.0001 
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For GDM, 43,086 participants gave birth before the pandemic, 24,461 were 

pregnant when the pandemic began, and 40,591 conceived after the pandemic started. 

Results show that mothers who gave birth before March 2020 had lower associations with 

GDM risk with exposure to PM. In addition, mothers who were pregnant when the 

pandemic occurred may have been more vulnerable to the effects from PM2.5 (HR=1.068; 

95% CI, 1.003-1.137), while mothers who conceived after the pandemic did not have any 

significant associations between GDM and air pollution exposure.

Table 13: Summary statistics for GDM COVID time groups. Results are 
presented as n (%). 

 
GDM 

(n = 12,174) 
Non-GDM  

(n = 96,450) 
Not Impacted 4,439 (35.87) 38,737 (40.34) 
Pregnant When the Pandemic Began 2,630 (21.69) 21,831 (22.74) 
Conceived After the Pandemic Began 5,144 (42.43) 35,453 (36.92) 

 

Table 14: Results of chi-square tests for GDM COVID times. Chi-square 
statistics and P-values are presented. Not impacted mothers were those 
who gave birth before March 2020. Pregnant mothers were pregnant in 

March 2020. Mothers who conceived after were those with a date of 
conception after March 2020. Significance was <0.05. 

 Chi-Square Statistic P-Value 
Not Impacted and Pregnant 7.29 0.0069 
Not Impacted and Conceived After 138.03 <0.0001 
Pregnant and Conceived After 53.43 <0.0001 
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Table 15: Results from the PPD cox proportional hazards model for subgroup analyses. Odds ratios, 95% confidence index, and p-values are presented in the table. Covariates 
included: mom age, mom race/ethnicity, mom educational level, season of delivery, income level, smoking status, and passive smoking status. Significant positive associations are 

bolded, and significant negative associations are presented in red. COVID-19 Time Period describes the point in pregnancy when the pandemic began (March 2020); Not Impacted = 
gave birth before March 2019, Postpartum = gave birth between March 2019 – March 2020, Pregnant = pregnant in March 2020, Conceived After = date of conception is after March 

2020. Subgroup analyses was performed with exposure during the entire pregnancy and 12-month postpartum period. Significance level was <0.05. HR = Hazard Ratio, CI = 
Confidence Index. 

 PM2.5 PM10 NO2 O3 
 HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value 
COVID-19 Time Period             

Not Impacted 0.979 0.892 – 1.075 0.6553 1.079 0.992 – 1.174 0.0774 1.027 0.918 – 1.149 0.6410 1.197 1.071 – 1.338 0.0015 
Postpartum 0.981 0.944 – 1.019 0.3186 1.037 1.004 – 1.072 0.0302 0.959 0.916 – 1.004 0.0729 1.136 1.081 – 1.194 <0.0001 

Pregnant 0.980 0.932 – 1.030 0.4285 1.051 1.000 – 1.104 0.0480 0.978 0.924 – 1.035 0.4361 1.076 1.007 – 1.149 0.0302 
Conceived After 0.945 0.909 – 0.982 0.0040 0.979 0.937 – 1.022 0.3261 0.927 0.889 – 0.966 0.0004 1.077 1.017 – 1.140 0.0111 

 

Table 16: Results from the GDM Cox proportional hazards model for subgroup analyses. Odds ratios, 95% confidence index, and p-values are presented in the table. Covariates 
included: mom age, mom race/ethnicity, mom educational level, season of delivery, income level, smoking status, and passive smoking status. Significantly positive associations are 

bolded, and significantly negative associations are presented in red. COVID-19 Time Period describes the point in pregnancy when the pandemic began (March 2020); Not 
Impacted = gave birth before March 2020, Pregnant = pregnant in March 2020, Conceived After = date of conception is after March 2020. Subgroup analyses was performed with 

exposure 3-months preconception through the 2nd trimester. Significance level was <0.05. HR = Hazard Ratio, CI = Confidence Index. 

 PM2.5 PM10 NO2 O3 
 HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value HR 95% CI P-Value 
COVID-19 Time Period             

Not Impacted 0.932 0.890 – 0.977 0.0036 0.952 0.909 – 0.997 0.0355 0.971 0.927 – 1.017 0.2099 1.013 0.968 – 1.060 0.5797 
Pregnant 1.068 1.003 – 1.137 0.0397 1.000 0.955 – 1.046 0.9961 1.052 0.986 – 1.122 0.1252 1.005 0.940 – 1.076 0.8753 

Conceived After 1.003 0.956 – 1.052 0.9033 0.999 0.954 – 1.046 0.9578 1.030 0.977 – 1.086 0.2684 0.961 0.901 – 1.025 0.2249 
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CHAPTER 5: DISCUSSION 

Specific Aim 1 

Based on our results, exposure to ozone during and after pregnancy may increase the 

risk of PPD. Our group’s previous study found that ozone exposure had the largest 

association with PPD risk (Sun et al., 2023), which is similar to what our current study 

reported. We did not find significant associations between PM10 and PPD risk, which is 

different from previous studies. One study from China reported increased risks of PPD with 

exposure to PM10 during pregnancy, while our previous study reported increased risks 

with exposure in the late pregnancy and postpartum period (C. C. Duan et al., 2022; Sun et 

al., 2023). In a previous study, we found significantly positive associations between PPD 

and PM2.5 exposure in the late pregnancy and postpartum period (Sun et al., 2023). We did 

not find these same results in the current study and actually found significantly negative 

associations with exposure in the late pregnancy and postpartum periods. These results 

are different from several other previous studies, which found increased risks with PM2.5 

exposure during pregnancy (Bastain et al., 2021; Niedzwiecki et al., 2020; Sheffield et al., 

2018). A few studies have suggested that NO2 exposure may increase the risk of PPD 

(Bastain et al., 2021; C. C. Duan et al., 2022), although our previous and current studies do 

not support this association (Sun et al., 2023).  

Specific Aim 2  

Our study found that the risk of GDM may increase with exposure to PM2.5 in the 1st 

trimester, first two trimesters, entire pregnancy, entire GDM period, and the 3-month 

preconception period. These results are supported by several studies, including our group’s 

previous GDM and air pollution analysis (Hu et al., 2015; Jo et al., 2019; Kang et al., 2020; 
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Lin et al., 2020; Niu et al., 2023; Rammah et al., 2020; Sun et al., 2022; Ye et al., 2020; Zhang 

et al., 2020). Interestingly, multiple studies reported positive associations with PM2.5 

exposure in the 2nd trimester (Hu et al., 2015; Lin et al., 2020; Rammah et al., 2020; Sun et 

al., 2022; Ye et al., 2020); while we found a positive association, our results were not 

significant, which is supported by three studies (Hu et al., 2021; Yan et al., 2023; Zhang & 

Zhao, 2021). Interestingly, three studies reported no associations with 1st trimester PM2.5 

exposure, but significantly positive associations in the 2nd trimester (Choe et al., 2019; 

Gong et al., 2023; Yu et al., 2020).  

Our results also indicate that PM10 exposure throughout the entire pregnancy, 2nd 

trimester, first two trimesters, and entire GDM period may also increase the risk of GDM. 

Previous research somewhat supports these results. Preconception, 1st trimester, 2nd 

trimester, and first two trimesters PM10 exposure have been reported to increase the risk 

of GDM (Jo et al., 2019; Lin et al., 2020; Niu et al., 2023; Sun et al., 2022; Yao et al., 2020); 

while we found positive associations with all time periods, only the 2nd trimester, first two 

trimesters, entire pregnancy, and entire GDM period were significant.  

We did not find any previous studies that have found an association between GDM and 

O3 exposure during the entire pregnancy and 2nd trimester. Several studies have reported 

positive associations between O3 exposure and GDM, but during the 1st trimester, first two 

trimesters, and preconception period (Gong et al., 2023; Z. Li et al., 2022; Miron-Celis et al., 

2023; Yao et al., 2020); there were also multiple articles that discussed protective effects 

from ozone exposure, including our previous study (Jo et al., 2019; Lin et al., 2020; Pan et 

al., 2017; Robledo et al., 2015; Sun et al., 2022).  
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The biggest difference between our previous GDM and air pollution study and the 

current study was NO2 exposure, which previously had the largest positive association with 

GDM risk (Sun et al., 2022). Several other studies have also reported positive associations 

with 1st trimester and preconception exposure to NO2  (Choe et al., 2019; Jo et al., 2019; Niu 

et al., 2023). While our study did find positive associations with 1st trimester NO2 exposure, 

the results were not significant.  

Specific Aim 3 

Regarding COVID-19 and PPD, interesting results were found. Mothers who were either 

pregnant or in the postpartum period when the pandemic began in March 2020 were the 

most at risk for PPD from exposure to PM10. Additionally, mothers who conceived after 

March 2020 experienced a significantly negative association with NO2 and PM2.5 exposure. 

O3 remained significantly positive, regardless of the COVID time period. For GDM risk due 

to air pollution exposure, the only significantly positive association seen was with PM2.5 

exposure for mothers who were pregnant when the pandemic began. This was different for 

mothers who gave birth before March 2020, who experienced a significantly negative 

association with both PM2.5 and PM10.  

In our study, we found an overall PPD prevalence of 18.70% while our previous study 

from 2008-2018 found a prevalence of 7.54% (Sun et al., 2023). There have been studies 

that have suggested overall mental health deteriorated during the lockdown period 

(Marroquín et al., 2020; Pierce et al., 2020; Wu et al., 2021). In a study that used a 

nationwide online sample of US adults, being under a stay-at-home order and personal 

distancing behavior was associated with higher depression, generalized anxiety disorder 

symptoms, and acute stress (Marroquín et al., 2020). Another study reported that 
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depression, anxiety, distress, and insomnia increased after the COVID-19 outbreak (Wu et 

al., 2021). They found a 31.4% pooled prevalence of depression, compared to a 6.6% 

prevalence before the pandemic (Wu et al., 2021). Another study from the UK used scores 

from the General Health Questionnaire to measure mental distress; they found that in late 

April 2020, more than a quarter of the population earned a score that indicated mental 

distress (Pierce et al., 2020). During the pandemic, many women may have experienced 

stress due to isolation, fear of infection, and lack of social support; this may have put them 

at an even greater risk of developing PPD.  

Studies have found that daily activities were altered during the pandemic lockdown 

periods (Mun & So, 2022; Sumalla-Cano et al., 2022), which may have been influenced by 

more time spent indoors. Two studies reported that almost 50% of individuals experienced 

a decrease in physical activity during the pandemic (Mun & So, 2022; Sumalla-Cano et al., 

2022). Another study that used a population of students found that more than half of their 

population experienced decreased physical activity after the COVID-19 outbreak (Guo et al., 

2021). Regarding diet, one study reported that 21.4% saw an increase in pastries/snack 

consumption, while 48.2% said their pastries/snack consumption stayed the same 

(Sumalla-Cano et al., 2022). In addition, 17% saw an increase in unhealthy diets in a study 

from South Korea (Mun & So, 2022). Eating a healthy diet and regular physical activity are 

suggested as potential ways to prevent GDM (Centers for Disease Control and Prevention, 

2022; Mayo Clinic, 2022a). GDM risk may have been influenced by activity changes during 

the COVID-19 pandemic, such as decreasing physical activity in combination with 

unhealthy diets either remaining the same, or even increasing.  
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Several studies have shown that air pollution levels have decreased over time, 

especially during the COVID-19 pandemic lockdown period (Jiang et al., 2021; Lurmann et 

al., 2015; Naeger & Murphy, 2020). Our study did find lower pollution exposure levels 

compared to the previous study. These averages are presented in the Appendix. In the 

study from 2008-2018, average NO2 levels during pregnancy were 15.86 µg/m3, compared 

to 13.78 µg/m3 in the current study. It has been reported that during the COVID-19 

lockdown period, NO2 levels decreased significantly, and may have been the pollutant that 

decreased the most (Berman & Ebisu, 2020; Elshorbany et al., 2021; Fu et al., 2020; Jiang et 

al., 2021; J. Liu, Lipsitt, et al., 2021; Naeger & Murphy, 2020). This decrease in NO2 may 

have been due to the stay-at-home orders since fewer individuals needed to commute to 

work (Berman & Ebisu, 2020; Fu et al., 2020; J. Liu, Lipsitt, et al., 2021). Some studies 

estimate there was a 60% decrease in automobile usage in Los Angeles, and a 15% 

decrease in vehicle miles traveled (Elshorbany et al., 2021; Naeger & Murphy, 2020) Since 

NO2 is produced mostly from fuel burning related to transportation (County of Los Angeles 

Public Health, n.d.; EPA, 2023a; Fu et al., 2020), the decrease in traffic volume during the 

lockdown period may explain why NO2 exposures were lower. Further, this may partially 

explain why we did not see an association with GDM or PPD. Figure 2 shows NO2 exposure 

levels for the participants in our study. There was a large decrease around March 2020, 

which is slightly lower than the decreases seen in previous years. In addition, the peak 

levels of NO2 were higher before the pandemic compared to the peak levels after the 

pandemic began.  
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Ozone levels increased from the previous cohort; from 2008-2018, the average O3 

exposure during pregnancy was 43.64 µg/m3 compared to 45.90 µg/m3 from 2019-2021. 

This is supported by studies that report increases in O3 concentration during the pandemic 

time (Fu et al., 2020; Jiang et al., 2021). Ozone levels may have increased due to rising 

temperatures (Fu et al., 2020; Jiang et al., 2021); the year 2020 was the second hottest on 

record globally (EPA, 2023e; National Aeronautics and Space Administration, 2021). This 

may offer a potential explanation as to why some associations with ozone were seen in the 

current study that were not previously reported. Figure 3 shows O3 exposure levels over 

time across Southern California. 

PM exposure did decrease compared to our previous study; PM2.5 exposure average for 

the entire pregnancy in the 2008-2018 cohort was 11.69 µg/m3 compared to 11.01 µg/m3 

from 2019-2021. PM10 exposure for the entire pregnancy in 2008-2018 was 28.53 µg/m3 

Figure 2: NO2 exposure levels for participants who gave birth between 2019-2021. The X-axis is the month, and the Y-
axis is the estimated exposure. Exposure estimates are based on preconception, pregnancy, and postpartum exposures. 

Pollutant data is presented in parts per million. 
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compared to 26.60 µg/m3 from 2019-2021. A potential explanation for the decrease in PM 

may be the decreased vehicular traffic, which is known to contribute to PM pollution (EPA, 

2023c). Although the decrease in traffic may have lowered PM concentrations, other 

sources of PM emissions were not impacted by the pandemic shutdowns; these sources 

include food industries, agricultural sources, and biomass burning (Berman & Ebisu, 2020; 

Jiang et al., 2021). In addition, wildfires are known to contribute significantly to PM 

pollution (Aguilera et al., 2021; Jiao et al., 2024; Liu et al., 2016; Ye et al., 2021); in late July 

and August 2020, southern California experienced three large wildfires (Safford et al., 

2022), which may explain the large spike in PM2.5 and PM10 pollution seen in the late 

summer of 2020.  

Interestingly, our results indicated a protective association between PM exposure and 

PPD risk. PM constituents may explain this association. PM2.5 contains several constituents, 

Figure 3: Ozone exposure levels for participants who gave birth between 2019-2021. The X-axis is the month, and the 
Y-axis is the estimated exposure. Exposure estimates are based on preconception, pregnancy, and postpartum 

exposures. Pollutant data is presented in parts per million. 
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including sulfate, nitrate, ammonium, organic carbon, organic matter, black carbon, and 

more (Bressi et al., 2013; Li et al., 2023; Yang et al., 2018).  In our previous PPD and air 

pollution study, we found that PM2.5 black carbon and organic matter were the main 

constituents that increased the risk of PPD (Sun et al., 2023). Sources of black carbon and 

organic matter are primarily the incomplete combustion of various fossil fuels and biomass 

(Bressi et al., 2013; B. Li et al., 2023; H. Li et al., 2022). Specifically, it’s estimated that fossil 

fuel combustion contributes to more than 90% of black carbon emissions (H. Li et al., 

2022). Lower traffic emissions seen during the pandemic shutdowns strongly reduced 

black carbon concentrations (H. Li et al., 2022). One study from the Yangtze River Delta in 

Eastern China investigated the correlation between PM2.5 and black carbon concentrations 

(H. Li et al., 2022). In the pre-lockdown period, black carbon was significantly correlated 

with PM2.5 at 7 of 9 locations; during the lockdown periods, black carbon and PM2.5 were no 

Figure 4: PM2.5 monthly exposure averages for the entire population. The average exposure in parts per million are 
presented in the Y-axis, and the month of exposure is presented in the X-axis. 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

M
ar

-1
7

Ju
n-

17

Se
p-

17

De
c-

17

M
ar

-1
8

Ju
n-

18

Se
p-

18

De
c-

18

M
ar

-1
9

Ju
n-

19

Se
p-

19

De
c-

19

M
ar

-2
0

Ju
n-

20

Se
p-

20

De
c-

20

M
ar

-2
1

Ju
n-

21

Se
p-

21

De
c-

21

M
ar

-2
2

Ju
n-

22

Se
p-

22

De
c-

22

PM2.5 Monthly Exposure Averages 



54 
 

longer significantly correlated (H. Li et al., 2022). The decrease in black carbon may explain 

the decreased odds ratio for PPD risk due to PM exposure.  

Regarding GDM risk, our previous GDM and air pollution paper found increased risks of 

GDM from all PM2.5 constituents. Some PM constituents are produced from sources other 

than traffic sources. For example, agriculture is one of the biggest contributors to ammonia 

emissions, with one study estimating that agriculture contributed to over 80% of global 

ammonia concentrations (Bray et al., 2018; Van Damme et al., 2021; Wyer et al., 2022). It 

was estimated that during the pandemic, agricultural sources of pollutants did not change, 

while pollution from on-road traffic and aircrafts decreased by up to 70% (Jiang et al., 

2021). If agricultural sources did not change their pollutant emissions during the 

pandemic, this may provide a potential explanation as to why we continued to see 

associations between PM and GDM. More research should be done to investigate these 

potential explanations for our findings. PM exposure averages over time in southern 

California are presented in Figures 4 and 5.  

Figure 5: PM10 monthly exposure averages for the entire population. The average exposure in parts per million are 
presented in the Y-axis, and the month of exposure is presented in the X-axis. 
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Biological Mechanisms 

Air pollution exposure may increase the release of inflammatory cytokines and 

reactive oxygen species (ROS) (Lelieveld et al., 2021; Li et al., 2018; Liu et al., 2018; 

MohanKumar et al., 2008). ROS are reactive species that are oxygen-containing; they are 

also known as free radicals (Li & Trush, 2016). Common ROS includes peroxide (•O22-), 

hydrogen peroxide (H2O2), hydroxyl radical (•OH), and superoxide (•O2-) (Correia et al., 

2023; Li & Trush, 2016). ROS are concerning, since they can lead to oxidative stress, which 

is a condition that can cause cell dysfunction, and cell death (Li & Trush, 2016). Oxidative 

stress has been associated with several pathological conditions (Li & Trush, 2016). PM2.5 

contains redox-active components, including copper, irons, and quinones; these 

components lead to the generation of ROS (Lakey et al., 2016; Lelieveld et al., 2021). NO2 

itself is a free radical that has been suggested to decrease antioxidant levels, which further 

promotes oxidative stress (Jarvis et al., 2010; Petit et al., 2017).  While air pollution is 

known to increase inflammatory cytokine production, ROS production may also contribute 

to increased inflammatory cytokine levels (Correia et al., 2023; Mittal et al., 2014). In 

addition, inflammatory cytokines may activate signaling pathways that further produce 

ROS (Correia et al., 2023; Eguchi et al., 2021; D. Yang et al., n.d.).  

PPD Mechanisms 

ROS and inflammatory cytokine production may lead to the development of PPD 

through several pathways. ROS production and inflammatory cytokines have been known 

to dysregulate the hypothalamic-pituitary-adrenal-axis (HPA-axis), which is responsible for 

the body’s stress response (Brianna Chu et al., n.d.; Correia et al., 2023; Dunlavey, 2018; 

Glynn et al., 2013; MohanKumar et al., 2008; Payne & Maguire, 2019). The dysregulation of 
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the HPA-axis results in altered cortisol release, which may contribute to a poor stress 

response (Glynn et al., 2013; Payne & Maguire, 2019; Thomson et al., 2019). Further, the 

release of glucocorticoids from the HPA-axis promotes mitochondrial oxidation to produce 

ATP; this process produces more ROS (Correia et al., 2023; Dinić et al., 2022; Eguchi et al., 

2021; Mittal et al., 2014; Mukai et al., 2022; Newsholme et al., 2019).  

Additionally, the blood-brain barrier (BBB) may also be a potential mechanism for 

PPD and air pollution. The BBB is responsible for regulating the transport of molecules in 

and out of the brain (Cleveland Clinic, 2023b; Daneman & Prat, 2015; Dotiwala et al., 2024); 

inflammatory cytokines and oxidative stress contribute to a weakened BBB, which may 

lead to increased permeability (Archie et al., 2021; Huang et al., 2021; Kadry et al., 2020; 

Mittal et al., 2014). The BBB may also be further weakened from neuroinflammation, which 

may disrupt the tight junctions responsible for maintaining the BBB’s integrity (Cleveland 

Clinic, 2023b; Kadry et al., 2020; MohanKumar et al., 2008). The BBB is also vulnerable to 

PM exposure since it’s been reported that PM may be small enough to cross the BBB 

(Calderón-Garcidueñas et al., 2008, 2015; You et al., 2022). PM can penetrate deep into the 

lungs and enter the bloodstream; from there, can cross the BBB and induce cytotoxicity and 

neuroinflammation, which can further damage the BBB (Calderón-Garcidueñas et al., 2008, 

2015; EPA, 2023d; Manisalidis et al., 2020).  

Finally, lower serotonin levels are often seen in patients with depression (Correia et 

al., 2023; Duan et al., 2018; Payne & Maguire, 2019). Serotonin is produced from 

tryptophan metabolism (Duan et al., 2018; Roth et al., 2021). Tryptophan metabolism may 

either take the serotonin pathway, or the kynurenine pathway (Duan et al., 2018; Roth et 
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al., 2021). When tryptophan metabolism produces kynurenine pathway products, 

serotonin is limited (Duan et al., 2018; Payne & Maguire, 2019). An increase in stress 

hormones, and an increase in inflammatory activity, may promote tryptophan to 

metabolize to kynurenine (Correia et al., 2023; Payne & Maguire, 2019; Roth et al., 2021). 

Normal pregnancy is associated with increased levels of stress hormones, and 

inflammatory cytokines (Palm et al., 2013; Racicot et al., 2014). When there are high levels 

of inflammatory cytokines, such as those seen after air pollution exposure, the degradation 

of tryptophan may be promoted, creating kynurenine instead of serotonin.  These 

mechanisms are summarized in a graph in the Appendix. 

GDM Mechanisms 

It’s proposed that GDM develops from a combination of pancreatic β-cell dysfunction 

and chronic insulin resistance (Plows et al., 2018; Quintanilla Rodriguez & Mahdy, 2023; 

Sharma et al., 2022). Both conditions have been associated with air pollution exposure 

(Alderete et al., 2017; Dang et al., 2018; Wolf et al., 2016). Most pregnant women 

experience some insulin resistance, since hormones produced by the placenta block 

insulin’s function (Cleveland Clinic, 2023a; Sonagra, 2014). When insulin is not able to take 

in glucose, hyperglycemic conditions occur (American Diabetes Association, 2024a; 

Cleveland Clinic, 2023a). β-cells sense high blood glucose levels and produce more insulin 

(Kolb et al., 2020; Newsholme et al., 2019; Plows et al., 2018). This places a large burden on 

β-cells, leading to a decrease in cell mass, and β-cell dysfunction (Dinić et al., 2022; Dludla 

et al., 2023; Newsholme et al., 2019; Plows et al., 2018). The hyperglycemic conditions seen 

from chronic insulin resistance and β-cell dysfunction promotes the production of 
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inflammatory cytokines and apoptotic mechanisms in β-cells (Cerf, 2013; Dinić et al., 2022; 

Maedler et al., 2002).  

ROS produced from air pollution exposure may promote the production of 

inflammatory cytokines. One study reported that ROS increased the expression of the pro-

inflammatory cytokine, IL-β in β-cells, which may then mediate pancreatic β-cell 

programmed cell death (Dinić et al., 2022). In addition, levels of ROS seen in the body 

further increase when insulin is released from β-cells since this stimulates ATP production 

in the mitochondria (Dludla et al., 2023; Eguchi et al., 2021; Mukai et al., 2022; Newsholme 

et al., 2019). ROS are byproducts of this process, which further increases the levels of ROS 

seen in the body (Dinić et al., 2022; Eguchi et al., 2021; Mittal et al., 2014; Mukai et al., 

2022; Newsholme et al., 2019). Pancreatic β-cells also express fewer antioxidants, which 

places them more at risk for oxidative stress when exposed to ROS (Dludla et al., 2023; 

Eguchi et al., 2021; Mukai et al., 2022). Studies have shown that inflammatory cytokines 

and ROS may promote pancreatic β-cell death (Dinić et al., 2022; Stancic et al., 2022). A 

graph summarizing these mechanisms is presented in the Appendix. 

Scientific Impact 

This study contributes to the growing scientific literature investigating the association 

between air pollution exposure and adverse birth outcomes. Our study used a large 

pregnancy cohort in the southern California, USA, region to provide information on the 

pollutants that posed the greatest risk to maternal health during the COVID-19 pandemic 

period. Our results further support the association between PPD and exposure to ground-

level O3, while also showing that the relationship between PPD and PM2.5 decreased 

significantly during the COVID-19 pandemic period. In addition, our results continue to 
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support a relationship between PM2.5 exposure and GDM, while also reporting that the 

association between O3 and GDM may have increased during the pandemic.  

Climate change is projected to increase peak ozone levels and the number of days that 

ozone concentrations exceed the standard maximum daily 8-hour levels (Zhu et al., 2019). 

In the southern California air basin, it is estimated that peak wintertime PM2.5 

concentrations and the number of days exceeding the National Ambient Air Quality 

Standards will increase (Zhu et al., 2019). It is important to continue researching the 

current impacts that air pollution has on human health. This may help policymakers 

develop new policies and create ways to decrease air pollution production and exposure.  

Strengths and Limitations 

This study has several strengths. First, we used a large pregnancy cohort with detailed 

information for each participant. Second, we had detailed residential information that 

allowed us to estimate ambient air pollution exposure throughout the entire study period 

based on the current residential address. By having this information, we were able to 

estimate PPD risk up to 1-year postpartum. Several limitations should be discussed. First, 

while our PPD diagnosis criteria allowed us to identify several PPD cases, some PPD 

patients may not have been included. One study reported that over 50% of depressive 

episodes among pregnant women in the US went undiagnosed (Ko et al., 2012); therefore, 

our results may underestimate the association between PPD and air pollution. Second, our 

exposure averages were estimations of ambient outdoor pollution exposure based on 

residential address. We did not include indoor air pollution exposure. One study that 

investigated indoor and outdoor air pollution changes in California before, during, and after 

the COVID-19 lockdowns reported that the contribution of indoor sources on PM2.5 
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concentrations increased both during and after the lockdowns in residential locations 

(Mousavi & Wu, 2021). This study also reported that before the lockdowns, PM2.5 in 

dining/kitchen areas of residential locations was 20-44% lower than the concentrations 

outdoors; during the lockdowns, PM2.5 concentrations in dining/kitchen areas were 

comparable to the outdoor levels (Mousavi & Wu, 2021). Since our pollution data is based 

on outdoor ambient air pollution, our data may not reflect the total pollutant exposure that 

each participant experienced. Finally, we did not use individual monitors to estimate daily 

exposure based on activity patterns, which may have led to some exposure 

misclassification.  

Future Directions 

Several future studies may be beneficial to further assess the relationship between 

adverse birth outcomes and air pollution, especially during the COVID-19 pandemic 

lockdowns. First, a study that investigates the association by monitoring indoor air 

pollution exposure may be helpful to assess whether pollution exposure from residential 

sources has an association with PPD or GDM. Many individuals stayed home during the 

pandemic lockdowns, which changed their exposure to air pollution; understanding how 

indoor air pollution contributes to GDM or PPD risk may help us further understand the 

health impacts from the COVID-19 lockdowns. In addition, future studies may also 

investigate the association between GDM or PPD and PM2.5 constituents. Several studies 

have supported a relationship between these constituents, and an increased risk for either 

GDM or PPD (Robledo et al., 2015; Sun et al., 2023; Yu et al., 2020). A study that 

investigates the association between PM2.5 constituent exposure during the COVID-19 

pandemic, and the risk of PPD or GDM could help us understand how fine particulate 
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matter influenced birth outcomes during the pandemic time. In addition, future studies 

may use a multi-pollutant model to investigate how multiple pollutants together influence 

the risk of PPD and GDM. This may further provide insight into associations seen during the 

COVID-19 pandemic period since pollutant concentrations changed.  

Conclusion 

In conclusion, PPD risk may have been influenced by exposure to ambient outdoor 

O3 during and after pregnancy, while GDM risk may have been influenced by exposure to 

PM2.5, PM10, and O3. These associations may have been influenced by the COVID-19 

pandemic lockdowns due to several factors, including pollution decreases and increased 

exposure to indoor air pollution. Our study results are different from previous studies that 

have assessed these associations before the COVID-19 pandemic period. Future studies 

should continue to investigate the association between adverse birth outcomes and air 

pollution exposure to further provide information regarding these associations.  
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Table 1A: ICD9/10 Diagnostic codes and medications used in postpartum depression diagnosis.  

300.4 F32.9 Bupropion 
309.0 F33.0 Celexa 
311 F33.2 Citalopram 
 F33.3 Cymbalta 
 F33.41 Desvenlafaxine 
 F33.9 Duloxetine 
 F34.1 Effexor 
 F43.21 Escitalopram 
 F53.0 Fluoxetine 
  Lexapro 
  Paroxetine 
  Paxil 
  Pristiq 
  Prozac 
  Sertraline 
  Venlafaxine 
  Wellbutrin 
  Zoloft 
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Table 2A: Trimester-specific pollutant exposure averages for the total population, PPD cases, and GDM cases. Summary 
statistics are presented for the 1st trimester, 2nd trimester, 3rd trimester, and both the 1st and 2nd trimesters. SD = Standard 

Deviation, Min = Minimum, Max = Maximum, IQR = Interquartile Range.  

Trimester-Speciϐic Exposure Summary Statistics 
 Total Population PPD Cases GDM Cases  
 Mean (SD) Min Max IQR Mean (SD) Min Max IQR Mean (SD) Min Max IQR 

1st              
PM2.5 10.98 (2.91) 3.56 33.52 3.75 10.97 (2.91) 3.57 30.88 3.74 10.99 (2.94) 4.09 21.54 3.80 
PM10 26.64 (7.45) 9.42 118.66 9.31 26.74 (7.47) 9.67 90.89 9.35 26.41 (7.34) 10.98 69.22 9.28 
NO2 13.84 (4.88) 2.70 30.51 7.47 13.73 (4.88) 3.58 28.38 7.37 14.02 (4.91) 3.44 28.51 7.72 

O3 45.30 (9.98) 22.14 84.78 12.00 45.53 (10.12) 22.14 84.08 12.40 45.02 (9.91) 25.44 83.29 11.55 
2nd              

PM2.5 10.77 (2.84) 3.71 38.42 3.39 10.73 (2.82) 4.14 27.18 3.31 10.85 (2.84) 4.21 21.77 3.20 
PM10 26.04 (7.29) 10.57 106.93 8.93 26.16 (7.34) 10.95 76.95 8.97 26.14 (7.32) 11.11 70.34 8.90 
NO2 13.45 (4.79) 2.95 29.04 7.05 13.33 (4.76) 3.40 29.04 6.88 13.35 (4.72) 3.78 27.90 6.87 

O3 45.88 (10.16) 22.14 84.93 12.33 46.19 (10.29) 22.14 84.93 12.74 46.39 (10.16) 23.19 84.93 12.29 
3rd              

PM2.5 10.92 (2.81) 3.84 31.85 3.17 10.87 (2.79) 4.20 31.85 3.12 11.18 (2.90) 4.09 31.85 3.21 
PM10 26.38 (7.24) 10.24 104.28 9.20 26.44 (7.28) 11.14 104.28 9.25 26.83 (7.46) 11.04 104.2

8 
9.54 

NO2 13.54 (4.77) 2.52 28.88 7.12 13.43 (4.79) 3.13 27.60 7.13 13.76 (4.76) 3.46 28.16 7.32 
O3 46.38 (10.00) 21.82 84.91 12.01 46.63 (10.20) 22.14 84.91 12.53 46.67 (10.03) 24.55 83.04 12.40 

1st & 2nd              
PM2.5 10.88 (2.31) 4.07 28.36 2.96 10.85 (2.30) 4.57 27.62 2.93 10.92 (2.30) 4.90 19.11 2.90 
PM10 26.34 (5.98) 10.56 81.50 7.58 26.45 (6.02) 10.56 72.36 7.68 26.28 (5.98) 13.87 59.89 7.69 
NO2 13.65 (4.03) 2.88 27.87 6.10 13.53 (4.04) 4.10 27.29 6.00 13.68 (3.99) 4.37 26.63 6.05 

O3 45.59 (7.94) 22.14 77.51 9.49 45.86 (8.05) 22.14 76.05 9.73 45.71 (7.97) 25.44 77.51 9.61 
 

Table 3A: Preconception pollutant exposure averages for the total population, PPD cases, and GDM cases. Summary 
statistics are presented for the time period 12 months before conception. SD = Standard Deviation, Min = Minimum, Max = 

Maximum, IQR = Interquartile Range.  

Preconception Exposure Summary Statistics 
 Total Population PPD Cases GDM Cases  
 Mean (SD) Min Max IQR Mean (SD) Min Max IQR Mean (SD) Min Max IQR 

3-Months             
PM2.5 11.16 (2.72) 3.70 31.22 3.46 11.15 (2.76) 4.03 28.30 3.51 11.36 (2.81) 4.22 29.48 3.57 
PM10 27.12 (7.02) 9.86 106.20 8.79 27.24 (7.07) 9.86 83.15 8.96 27.36 (7.18) 12.27 82.42 9.00 
NO2 13.94 (4.68) 2.56 28.94 7.18 13.83 (4.70) 3.50 28.61 7.11 14.34 (4.71) 2.69 27.37 7.44 

O3 45.85 (9.53) 22.14 81.52 11.77 46.12 (9.68) 22.14 80.15 12.25 45.48 (9.36) 25.44 79.23 11.83 
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Table 4A: Postpartum pollutant exposure averages for the total population, PPD cases, and GDM cases. Summary statistics 
are presented for either the 6 months following delivery or the 12 months following delivery. SD = Standard Deviation, 

Min = Minimum, Max = Maximum, IQR = Interquartile Range. 

 

Table 5A: Pollutant exposure averages for the total population, PPD cases, and GDM cases. Summary statistics are 
presented for the time period between the 3rd trimester through 12-months postpartum. SD = Standard Deviation, Min = 

Minimum, Max = Maximum, IQR = Interquartile Range. 

3rd Trimester Through 12-Months Postpartum Exposure Summary Statistics 
 Total Population PPD Cases GDM Cases  
 Mean (SD) Min Max IQR Mean (SD) Min Max IQR Mean (SD) Min Max IQR 

PM2.5 11.09 (1.56) 4.36 20.09 2.25 11.04 (1.57) 4.36 20.09 2.14 11.21 (1.54) 4.90 20.09 2.20 
PM10 27.09 (4.19) 13.09 63.38 5.26 27.21 (4.23) 14.46 63.38 4.63 27.17 (4.18) 15.18 63.38 5.17 
NO2 13.77 (3.12) 2.82 26.21 4.56 13.66 (3.18) 3.33 22.90 4.75 13.98 (3.04) 5.41 23.65 4.17 
O3 45.35 (5.73) 22.14 67.62 8.77 46.62 (5.77) 22.14 64.94 8.81 46.35 (5.65) 25.44 65.10 8.72 

 

Table 6A: Pollutant exposure averages for the total population, PPD cases, and GDM cases. Summary statistics are 
presented for the time period between 3-months preconception through the 2nd trimester. SD = Standard Deviation, Min = 

Minimum, Max = Maximum, IQR = Interquartile Range. 

3-Months Preconception Through 2nd Trimester Exposure Summary Statistics 
 Total Population PPD Cases GDM Cases  
 Mean (SD) Min Max IQR Mean (SD) Min Max IQR Mean (SD) Min Max IQR 

PM2.5 10.99 (1.76) 4.57 22.64 2.38 10.96 (1.77) 5.36 21.65 2.43 11.10 (1.75) 4.90 20.90 2.37 
PM10 26.66 (4.46) 12.25 69.21 4.68 26.77 (4.49) 12.25 62.49 5.45 26.71 (4.50) 16.73 53.74 5.50 
NO2 13.76 (3.12) 2.98 25.34 4.68 13.65 (3.18) 4.81 23.37 4.95 13.95 (3.05) 4.96 23.65 4.34 
NOx 22.29 (5.90) 3.75 49.68 9.07 22.05 (5.98) 6.54 47.08 9.44 22.61 (5.80) 7.72 47.72 8.68 
O3 45.70 (5.75) 22.14 65.70 8.58 45.96 (5.79) 22.14 65.45 8.79 45.62 (5.70) 25.44 65.55 8.56 

 

 

 

 

 

 

Postpartum Exposure Summary Statistics 
 Total Population PPD Cases GDM Cases  
 Mean (SD) Min Max IQR Mean (SD) Min Max IQR Mean (SD) Min Max IQR 

6-Months             
PM2.5 11.20 (2.29) 4.46 27.71 3.22 11.15 (2.28) 4.57 22.20 3.18 11.31 (2.29) 4.54 27.59 3.19 
PM10 27.00 (5.67) 10.87 89.04 6.62 27.07 (5.69) 11.50 62.64 6.67 26.94 (5.50) 14.32 62.36 6.37 
NO2 14.08 (4.15) 2.90 28.08 6.39 13.97 (4.18) 3.91 26.29 6.36 14.46 (5.50) 4.09 26.36 6.44 

O3 45.90 (7.58) 22.14 77.68 9.12 46.15 (7.67) 22.14 76.75 9.39 45.42 (7.40) 25.44 77.00 8.84 
12-Months             

PM2.5 11.15 (1.56) 4.36 21.11 2.29 11.09 (1.57) 4.36 19.12 2.34 11.22 (1.53) 4.90 19.08 2.21 
PM10 27.30 (4.11) 12.77 64.30 5.22 27.44 (4.14) 13.71 53.15 5.38 27.26 (4.03) 15.43 53.15 5.11 
NO2 13.84 (3.05) 2.92 25.34 4.46 13.73 (3.11) 3.33 22.63 4.77 14.05 (2.97) 4.97 23.65 4.03 

O3 46.34 (5.33) 22.14 73.03 8.91 46.62 (5.36) 22.14 60.87 9.10 46.25 (5.25) 25.44 61.11 8.76 
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Table 6A: P-Values from the pollution T-Tests. Test results are presented for both PPD and GDM analyses. Signiϐicance was 
<0.05. Insigniϐicant associations are presented in red. 

 PM2.5 PM10 NO2 Ozone 
 PPD GDM PPD GDM PPD GDM PPD GDM 
Pregnancy 0.0003 <0.0001 0.0013 0.0001 <0.0001 <0.0001 <0.0001 0.0003 
3-Months Preconception  0.5989 <0.0001 0.0056 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
1st Trimester 0.4638 0.6932 0.0282 0.0003 0.0002 0.0001 0.0002 0.0027 
2nd Trimester 0.0061 0.0013 0.0072 0.0289 <0.0001 0.0119 <0.0001 <0.0001 
3rd Trimester 0.0027 <0.0001 0.1177 <0.0001 0.0001 <0.0001 <0.0001 0.0022 
1st and 2nd Trimester 0.0321 0.0256 0.0026 0.3750 <0.0001 0.3969 <0.0001 0.0417 
6-Months Postpartum 0.0001 <0.0001 0.0346 0.2358 <0.0001 <0.0001 <0.0001 <0.0001 
12-Months Postpartum <0.0001 <0.0001 <0.0001 0.5083 <0.0001 <0.0001 <0.0001 0.0373 
Conception – 12-Months 
Postpartum 

<0.0001 <0.0001 <0.0001 0.0798 <0.0001 <0.0001 <0.0001 0.4902 

Conception – 6-Months 
Postpartum 

<0.0001 <0.0001 0.0005 0.0319 <0.0001 <0.0001 <0.0001 0.1558 

3-Months Preconception – 2nd 
Trimester 

0.0428 <0.0001 <0.0001 0.0743 <0.0001 <0.0001 <0.0001 0.1512 

3rd Trimester – 12-Months 
Postpartum  

<0.0001 <0.0001 <0.0001 0.0067 <0.0001 <0.0001 <0.0001 0.8567 

3rd Trimester – 6-Months 
Postpartum 

<0.0001 <0.0001 0.0119 0.0004 <0.0001 <0.0001 <0.0001 0.0002 
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Table 7A: Chi-square test results for PPD and GDM analyses. Chi-square statistics and p-values are presented. Insigniϐicant associations are presented in red. Signiϐicance 
was determined at the <0.05 level. 

 Entire Period 
 PPD GDM 
 Chi-Square 

Statistic 
P-Value Chi-Square 

Statistic 
P-Value 

Maternal Race/Ethnicity     
African American and Asian 362.46 <0.0001 414.11 <0.0001 

African American and Hispanic 62.03 <0.0001 99.88 <0.0001 
African American and White 3.88 0.0488 0.0001 0.9941 

African American and Multi/Other 17.14 <0.0001 42.15 <0.0001 
Asian and Hispanic 310.38 <0.0001 455.42 <0.0001 

Asian and White 493.91 <0.0001 1007.47 <0.0001 
Asian and Multi/Other 140.99 <0.0001 132.14 <0.0001 

Hispanic and White 84.46 <0.0001 296.83 <0.0001 
Hispanic and Multi/Other 1.60 0.2066 1.22 0.2695 

White and Multi/Other 10.25 0.0014 65.78 <0.0001 
Maternal Education     

8th Grade or Less and High School or Less 18.20 <0.0001 20.486 <0.0001 
High School or Less and Less Than College 112.88 <0.0001 0.89 0.3467 

Less Than College and College 30.20 <0.0001 2.15 0.1429 
College and More Than College 13.96 0.0002 0.90 0.3427 

8th Grade or Less and Less Than College 29.92 <0.0001 18.78 <0.0001 
8th Grade or Less and College 24.11 <0.0001 16.73 <0.0001 

8th Grade or Less and More Than College 28.133 <0.0001 17.99 <0.0001 
High School or Less and College 40.80 <0.0001 6.79 0.0092 

High School or Less and More Than College 78.53 <0.0001 1.81 0.1783 
Less Than College and More Than College 1.81 0.1784 0.17 0.6770 

IOM Gestational Weight Gain     
Inadequate and Adequate 2.35 0.1254 595.34 <0.0001 

Inadequate and Excess 55.65 <0.0001 1745.24 <0.0001 
Adequate and Excess 88.67 <0.0001 260.07 <0.0001 

Pre-Pregnancy BMI     
Underweight and Normal Weight 18.51 <0.0001 8.32 0.0039 

Underweight and Overweight 52.21 <0.0001 54.13 <0.0001 
Underweight and Obese Class 1 77.21 <0.0001 136.90 <0.0001 
Underweight and Obese Class 2 104.07 <0.0001 208.51 <0.0001 
Underweight and Obese Class 3 116.24 <0.0001 244.61 <0.0001 
Normal Weight and Overweight 106.56 <0.0001 287.59 <0.0001 

Normal Weight and Obese Class 1 201.28 <0.0001 977.16 <0.0001 
Normal Weight and Obese Class 2 241.03 <0.0001 1232.94 <0.0001 
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Normal Weight and Obese Class 3 223.52 <0.0001 1169.64 <0.0001 
Overweight and Obese Class 1 24.71 <0.0001 228.61 <0.0001 
Overweight and Obese Class 2 65.79 <0.0001 439.26 <0.0001 
Overweight and Obese Class 3 76.33 <0.0001 467.00 <0.0001 

Obese Class 1 and Obese Class 2 14.83 0.0001 60.23 <0.0001 
Obese Class 1 and Obese Class 3 26.31 <0.0001 102.15 <0.0001 
Obese Class 2 and Obese Class 3 2.75 0.0972 9.39 0.0022 

Smoking Status      
Never and Ever 419.54 <0.0001 8.26 0.0041 

Never and During Pregnancy 113.67 <0.0001 5.13 0.0235 
Ever and During Pregnancy 0.01 0.9228 0.51 0.4731 

Year of Infant Birth     
2019 and 2020 4.92 0.0265 13.03 0.0003 
2019 and 2021 7.74 0.0054 103.75 <0.0001 
2020 and 2021 24.20 <0.0001 39.63 <0.0001 

Income YOB     
1 and 2 1.38 0.2406 0.23 0.6332 
1 and 3 7.10 0.0077 0.13 0.7152 
1 and 4 12.00 0.0005 4.90 0.0268 
2 and 3 2.70 0.1004 0.03 0.8689 
2 and 4 6.33 0.0119 11.30 0.0008 
3 and 4 0.49 0.4851 13.11 0.0003 

COVID Pandemic Time     
Not Impacted and Pregnant When the Pandemic Began 172.60 <0.0001 7.29 0.0069 

Not Impacted and Postpartum When the Pandemic Began 73.44 <0.0001   
Not Impacted and Conceived After the Pandemic Began 266.38 <0.0001 138.03 <0.0001 

Pregnant and Postpartum When the Pandemic Began 8.09 0.00045   
Pregnant and Conceived After the Pandemic Began 7.26 0.0071 53.43 <0.0001 

Postpartum and Conceived After the Pandemic Began  27.67 <0.0001   
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Table 11A: Pearson’s correlation coefficients for 
pollutant exposures. Correlations presented are 

based on pollution exposures throughout the entire 
pregnancy. 

 PM2.5 PM10 NO2 O3 
PM2.5 1 0.62872 0.64670 0.05806 
PM10  1 0.35163 0.55144 
NO2   1 -0.08523 
O3    1 

 

Table 8A: Pearson's correlation coefϐicients for 
pollutant exposures throughout the ϐirst trimester. 

Correlations are based off the entire study 
population. 

 PM2.5 PM10 NO2 O3 
PM2.5 1 0.75265 0.52235 0.19265 
PM10  1 0.29943 0.53680 
NO2   1 -0.37827 
O3    1 

 

Table 9A: Pearson’s correlation coefϐicients for 
pollutant exposures throughout the second 

trimester. Correlations are based off the entire 
study population. 

 PM2.5 PM10 NO2 O3 
PM2.5 1 0.75150 0.55709 0.17088 
PM10  1 0.32860 0.52190 
NO2   1 -0.34467 
O3    1 

 

Table 10A: Pearson’s correlation coefϐicients for 
pollutant exposures throughout the third 

trimester. Correlations are based off the entire 
study population. 

 PM2.5 PM10 NO2 O3 
PM2.5 1 0.73184 0.58562 0.15635 
PM10  1 0.36181 0.50006 
NO2   1 -0.30979 
O3    1 

 

Table 12A: Pearson's Correlation Coefficients for 
pollutant exposures throughout the 12-months 

postpartum. Correlations are based off the entire 
study population. 

 PM2.5 PM10 NO2 O3 
PM2.5 1 0.37554 0.74125 -0.03319 
PM10  1 0.22196 0.55616 
NO2   1 -0.01345 
O3    1 

 

Table 13A: Pearson's Correlation Coefϐicients for 
pollutant exposures throughout the ϐirst 6-months 
postpartum. Correlations are based off the entire 

study population. 

 PM2.5 PM10 NO2 O3 
PM2.5 1 0.65263 0.69070 0.02537 
PM10  1 0.38179 0.44294 
NO2   1 -0.27589 
O3    1 
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Figure 1A: Graph summarizing the potential mechanisms influencing the risk of GDM from air pollution exposure. Figure was created with BioRender.com. 
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Figure 2A: Graph summarizing the potential mechanisms between PPD and air pollution exposure. Figure was created with BioRender.com. 
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Table 16A: Comparison between our group’s previous air pollution and GDM study and the current air pollution and 
GDM study. Previous results are presented under “Previous Study” and results from this study are presented under 
“Current Study”. Significantly positive associations are labeled as “+”, significantly negative results are presented as 

“-“and non-significant results are presented as “▫”. Significance was ≤0.05. 

 PM2.5 PM10 NO2 O3 
 Previous 

Study 
Current 
Study 

Previous 
Study 

Current 
Study 

Previous 
Study 

Current 
Study 

Previous 
Study 

Current 
Study 

3-Months Preconception + + + ▫ + ▫ - ▫ 
1st Trimester + + + ▫ + ▫ - ▫ 
2nd Trimester + ▫ + + + ▫ - + 
1st and 2nd Trimesters + + + + + ▫ - ▫ 
Entire Pregnancy + + + + + ▫ - + 

 

Table 15A: Comparison between our group’s previous air pollution and PPD study and the current air pollution and PPD study. Previous 
results are presented under “Previous Study” and results from this study are presented under “Current Study”. Significantly positive 

associations are labeled as “+”, significantly negative results are presented as “-“and non-significant results are presented as “▫”. 
Significance was ≤0.05. 

 PM2.5 PM10 NO2 O3 
 Previous 

Study 
Current 
Study 

Previous 
Study 

Current 
Study 

Previous 
Study 

Current 
Study 

Previous 
Study 

Current 
Study 

Entire Pregnancy ▫ ▫ ▫ ▫ ▫ ▫ + + 
1st Trimester ▫ ▫ ▫ ▫ ▫ ▫ + ▫ 
2nd Trimester ▫ ▫ ▫ ▫ ▫ ▫ ▫ + 
3rd Trimester + - + ▫ ▫ ▫ + ▫ 
3rd Trimester Through 6-Months Postpartum + - + ▫ ▫ ▫ + ▫ 
Conception Through 6-Months Postpartum + - + ▫ ▫ ▫ + + 

Table 14A: Comparisons between average pollution 
exposure levels from the previous study (2008-

2018) and the current study (2019-2021). 

 Mean (Standard Deviation) 
 2008-2018 2019-2021 
PM2.5 11.69 (2.25) 11.01 (1.57) 
PM10 28.53 (5.17) 26.60 (4.06) 
NO2 15.86 (3.82) 13.78 (3.09) 
O3 43.64 (5.73) 45.90 (5.46) 
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