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Goals of the Research 

Machine learning is concerned with the mechanisms by which intelligent systems im­
prove their performance over time. Early rese(;lrch in artificial intelligence emphasized issues 
involving learning, and in recent years machine learning has reemerged as one of the cen­
tral research areas of AI. There are two clear reasons for the growing interest in learning, 
one practical and one theoretical. On the practical side, a better understanding of learning 
methods would let us automate the acquisition of the domain-specific knowledge bases for 
new expert systems, and thus greatly speed the development of applied AI programs. On 
the theoretical side, expert systems are unattractive because they lack the generality that 
science requires of its theories and explanations. On this dimension, the study of learning 
may reveal general principles that apply across many different domains. 

Although the field of machine learning has made significant strides over the past decade, 
we feel that most of this work has been limited along important dimensions. In this paper, 
we outline a research plan that responds to these limitations, and that we believe will extend 
our understanding of learning in important directions. Before proceeding, we should briefly 
review how our approach differs from earlier work in the area. 

• Learning in a reactive environment. The vast majority of machine learning research has 
focused ~n bounded, symbolic domains such as occur in puzzles and mathematics. In 
contrast, we are examining learning in a complex, reactive environment that cannot be 
completely predicted. 

• An integrated model of learning. Previous machine learning research has tended to focus 
on a single facet of learning. Instead, we are studying the interaction between methods 
for concept formation, procedural learning, and motor learning, and we plan to develop 
an integrated cognitive architecture and a common representational scheme that supports 
all these forms of learriing. 

• A model of continuous learning. Existing work in machine learning has studied short­
term learning, involving runs of a few CPU hours at most. We plan to model learning 
over much longer periods of time, and to address problems of memory organization (such 
as indexing and retrieval) that are introduced by such continuous learning. 

• Goal-based learning mechanisms .. The majority of machine learning research has ignored 
the role of the learner's goals. In contrast, goals will have a central place in our cognitive 
architecture, directing the learner's search for useful concepts and procedures. 

• Modeling human learning. Few machine learning researchers have attempted to model 
the mechanisms of human learning. We plan to use knowledge of human behavior to 
constrain our architecture, and we hope the resulting models will lead to empirical pre­
dictions about human learning. 

Taken together, we believe that these research biases will lead us down quite different paths 
than those taken ill previous efforts, and the following pages partially confirm this belief. 
Moreover, we feel that the resulting framework will lead us to a qualitatively better under­
standing of learning, and thus to a better understanding of intelligence in general. 
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Now that we have reviewed the motivations underlying our approach, let us turn to the 
research through which we hope to accomplish our goals. We begin with a description of the 
simulated world we have developed as our task domain. With that as background, we move 
on to the aspects of learning that we intend to explore in this environment. After outlining 
our initial desl.gns for a cognitive architecture, we address four aspects of learning that we 
have chosen as foci - object concepts, stored procedures, cognitive maps, and problem solving 
heuristics. Our research is still in its preliminary stages, and we have tested only a few of 
our theoretical ideas by constructing running systems. Undoubtedly, our ideas will change 
as we gain more experience with the details of the task domain, so this document should be 
read more as a research proposal than a final report. 

A Simulated Environment for Machine Learning Research 

If one is concerned with complexity and reactivity, then the real world is an ideal task 
domain. Unfortunately, the field is still far from understanding low-level perceptual and 
motor behavior in sufficient detail to seriously consider building robots that learn. However, 
a simulated environment that approximates the real world would enable one to sidestep the 
issues of low-level vision and motor control, and to focus immediately on higher level issues 
of learning. There is some precedent for this approach to st~dying intelligent beh~vior. 
Winograd (1972) employed a fairly complex blocks world in his studies of natural language 
understanding and problem solving, while Becker (1970) has described another simulated 
world. Unfortunately, Winograd's simulation was completely predictable and non-reactive, 
while Becker's environment was too simple to support interesting tasks. 

The Simulated Environment 

We have implemented a simulated environment that is both complex and reactive, and 
which we believe will provide a suitable domain in which to study different forms of learning 
and their interaction. The simulation is implemented in the C programming language and 
runs in Unix 4.2 on Vaxen and similar machines. 

The environment supports three-dimensional solid objects. Primitive objects consist of 
spheres, cylinders, circles, and polygons, but these can be combined to form complex objects 
such as tables and chairs. Complex objects are defined hierarchically, with primitive objects 
as terminal nodes in each object tree. Each object has a number of features, including its 
physical dimensions, orientation in space, texture, and color. In addition, sounds and odors 
exist for brief periods after they are generated. 

One major aspect of the real world is that it changes over time, and the simulated envi­
ronment also has this characteristic. Time proceeds in discrete steps, with objects obeying 
the laws of Newtonian physics. The positions of objects at each time increment are updated 
as a function of their previous positions, velocities, and the forces applied to them. The 
world supports three basic forces - gravity, torque, and friction - and these determine the 
motions of objects in the world. Collisions can cause the direction of motion to change, 
leading to phenomena such as bouncing balls. With respect to forces and collisions, complex 
objects are rigid figures that act as units. 
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Although we have made efforts to simulate the real world as closely as possible, we have 
been forced to omit many details. Thus, only objects with regular shapes are supported, and 
liquids and gases are notably absent. However, we believe that the environment contains 
sufficient variety to provide real challenges to our models of learning. We have described the 
environment Tn more detail elsewhere (Langley, Nicholas, Klahr, & Hood, 1981; Carbonell 
& Hood, 1985). 

Simulated Agents 

The environment also supports simulated robots which are composed of primitive obj.ect 
types. We have experimented with a number of basic designs, all relatively simple. For 
instance, one organism has a cylindrical body with one eye and no arms. 1 The existing 
simple robots are sufficient to let us explore initial navigation and recognition tasks, but we 
plan to implement more complex versions in the near future. 

The body of the simulated robot is controlled by an intelligent agent. The agent has 
control over a few primitive actions, such as applying a linear force in any direction (allowing 
rectilinear motion), applying rotational force to the left or right (allowing turning), and 
turning the eye to the left or right (allowing changing views). These basic effectors can be 
applied with varying amounts of force, and they are the building blocks from which more 
complex behaviors are constructed. Future organisms will have effectors controlling each of 
their joints, allowing even greater variety in motor behavior. 

The agent also has sensing abilities that let it determine the shapes and distances of 
objects in its field of view. Rather than model the complex process of transforming retinal 
images into three-dimensional representations, we assume that the agent directly perceives 
complete shape descriptions. Thus, the sensory interface provides the agent with the shapes, 
dimensions, orientations, and distances of objects. Research by Marr (1982) and others 
suggests that bottom-up visual processes lead to such shape descriptions, making this a 
reasonable simplification for our purposes. 

However, the agent does not have direct access to information about all objects. The 
agent is only provided with descriptions for objects located in its cone of vision. Moreover, 
one object may occlude another, causing the latter to be blocked from view. Finally, infor­
mation is made 'fuzzier' with distance, making descriptions less certain when an object is 
far from the robot. In other words, the agent's knowledge of the world is incomplete, and 
this provides a natural motivation for movement and information gathering. 

Although vision is the primary sense, it is not the only one. The agent can also hear 
sounds and note smells occurring in the environment, it can feel the texture of objects that 
it touches, and it has direct perception of the position of its body parts. This multi-modal 
fl.ow of information provides the opportunity for noting correlations between senses and using 
these relations in learning. 

1 We are currently extending the simulation to support jointed arms. Until we have this capa­
bility, the forms of motor behavior described in later sections will be impossible. 
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The Graphics User Interface 

In addition to the simulated world and the sensory-effector interface, we have also devel­
oped a graphics-based user interface. This is also written in C and runs on Perq-II graphics 
workstations; - The interface allows the user to view the simulated environment from any 
point in three-dimensional space, including the viewpoint of the learning system. It includes 
facilities for easily creating new objects, and we plan to add capabilities for directing a tutor 
organism by remote control; this will be necessary for the work on learning by imitation 
described below. 

The graphics capability will prove essential for debugging extensions to the simulated 
environment. However, it will also be necessary for understanding the behavior of our 
learning systems. Since we are developing programs that will learn over long periods of 
time, we must deal with knowledge structures too large for traditional debugging methods. 
In many cases, we hope to be able to infer the system's goals and rules from its behavior, 
and for this we must be able to observe this behavior in relation to the environment. We also 
plan to implement graphics tools for displaying knowledge structures as they are retrieved 
during preformance and modified during the learning process. Thus, we feel that powerful 
graphics workstations will be essential to the success of the project. 

Design for a Cognitive Architecture 

In recent years, attempts to develop computational models of human learning and per­
formance have led to the notion of a cognitive architecture. Theoretically, a cognitive ar­
chitecture represents the invariants of the human information processing system. Th.ese 
characteristics are 'hard wired' into the system and thus affect behavior in a wide range of 
situations. However, a cognitive architecture does not attempt to specify how these invariants 
are implemented at the hardware (neuron) level; rather, it describes them at a functional 
level. Such an architecture contains significant theoretical assumptions about representa­
tion, performance, and learning, and thus constrains cognitive models considerably more 
than general formalisms such as Lisp or Prolog. We will see examples of such assumptions 
as we proceed. 

Classes of Cognitive Architectures 

A number of cognitive architectures have been proposed over the last five years, but most 
fall within two major classes - production system formalisms and schema-based approaches. 
One well-known example of the former is the ACT architecture, which Anderson (1982) 
has used to model a variety of psychological phenomena surrounding the acquisition of 
skilled behavior. Another more recent example is Laird, Rosenbloom, and Newell's (1984) 
SOAR, which combines the production system approach with the problem space hypothesis 
- that all cognitive behavior involves search through some problem space. Perhaps the best 
known schema-based framework is Schank's (1982) MOPS architecture, in which knowledge 
is organized into interconnected structures that describe scenes and events. 
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Within this classification, our architecture must be grouped with the schema-based ap­
proaches, since it contains interconnected 'scripts' or procedures containing sequentially ·or­
dered information about 'scenes'. However, it differs from earlier schema-based frameworks 
in the nature of these scripts; while earlier approaches assumed a very abstract, propositional 
representation of states and events, our architecture posits a much lower-level sensori-motor 
representation. We will see examples of this representation in later sections. 

PREDICTION 

LEARNING 

PROBLEM 
SOLVING 

RECOGNITION 

Figure 1. Memories and processes of the cognitive architecture. 
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Types of Memories 

Figure 1 presents an overview of the architecture in terms of memories and mechanisms. 
The cognitive architecture includes four basic memories: 

• Schema memory. This contains general knowledge about the world, including object 
concepts (such as table and balD and stored procedures (such as throw and bounce). 
These schemas are 'fuzzy' in that they can match against items in the other memories 
to greater or lesser degrees. 

• Perceptual memory. This contains descriptions of what the agent has experienced in 
the world, as well as specific beliefs that it has inferred from these observations. This 
includes instances of object concepts and procedures (e.g., the dog chased the ball). 

• Goal memory. This contains descriptions of the agent's goals, including desired states 
(transform goals) and desired actions (apply-operator goals). 

• Expectation memory. This contains the agent's predictions about what will occur in the 
environment, including the locations of various objects and the occurrence of procedures 
and events. 

There are two interesting aspects to these memories. First, both objects and procedures 
are represented at a sensori-motor level, including details about shape, size, location, and 
orientation of objects. Second, the contents of the four memories have nearly identical forms. 
In other words, it is possible for the same description to occur as a schema, a perception, 
a goal, and an expectation; however, this description will be interpreted quite differently 
depending on the memory in which it occurs. 

Each of these memories contain both 'object-like' elements and 'procedure-like' elements. 
Thus, one can believe that a chair is nearby, and that another agent just sat in that chair. 
Similarly, one can desire to see food, as well as wanting to eat that food. In ~ddition, 
most memories have both a ·short-term (active) partition and a long-term partition (which 
stores past experiences). The exception is schema memory, which contains only long term 
structures. 

In addition to the four basic memories, the architecture also includes a motor buffer 
and iconic memory. The former holds motor commands for very brief periods of time, and 
these commands cause the effector interface to alter the simulated environment. The iconic 
memory plays an analogous role for perception, holding low-level perceptions for brief periods 
of time until attention mechanisms transport some of these descriptions into perceptual 
memory. 

Types of Processes 

Each main memory has an associated process that is responsible for modifying the con­
tents of that memory. These processes may access information from any of the four memories, 
but they may write only to their associated store. These processes include: 

• Recognition. This process is responsible for recognizing instances of schemas (object con~ 
cepts or stored procedures), and adding this information to perceptual memory. This in-
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volves retrieving candidate concepts (possibly using goals) and invoking a partial match­
ing mechanism to determine the degree of match between concepts and sense data. For 
example, one may recognize an object as an instance of a chair. 

• Prediction_. This process is responsible for generating expectations f~om beliefs about 
the current state of the environment and previously generated predictions. For example, 
one may predict that a chair has a fourth leg, even though this component is occluded 
by other objects. 

• Problem solving. This process is responsible for generating subgoals in response to 
existing goals and beliefs. This involves a combined process of forward-chaining and 
backward-chaining known as means-ends analysis. Goals describing primitive actions 
are deposited into the motor buffer rather than goal memory. 

• Learning. This process is responsible for modifying the contents of schema memory. 
This can occur as the result of accurate or violated expectations, successful or failed 
goals, and correct or incorrect classifications. Learning involves both the creation of new 
schemas and the incremental modification of existing structures. 

The contents of schema memory play a central role in each of these processes. The object 
concepts and procedures stored in this memory are essential. in recognizing objects and 
events, in making predictions about events to come, and in carrying out actions and creating 
subgoals. Other memories may modify these processes (e.g., goals may slant the recognition 
mechanism), but long-term schemas are the major determiners of behavior. 

Clearly, each of these processes is quite complex, and we have only attempted to sum­
marize them here. In the following pages we describe them in more detail, but we have not 
organized our treatment along the lines used above. Instead, we have divided the architec­
ture according to alternative forms of knowledge. The first of these involves object concepts 
(such as tables and chairs) and their recognition. The second concerns the recognition and 
application of stored procedures (such as throwing a ball). The third involves knowledge 
of spatial relations in terms of 'cognitive maps'. Finally, we examine the use of goals and 
heuristics in the problem solving process. In each case, we consider the representation, of 
knowledge, the mechanisms that operate on these representations, and the processes by 
which these structures are learned. 

The Formation of Object Concepts 

The vast majority of AI research on concept learning has assumed that concepts can be 
represented in terms of necessary and sufficient conditions (Mitchell, 1977; Hayes-Roth & 
McDermott, 1978; Michalski, 1980). Although this view holds for mathematical concepts 
such as 'triangle', it -seldom works in the real world. For instance, some birds (like robins) 
are more prototypical than others (like penguins), and some chairs are better than others 
(some may have broken legs). Rosch and Mervis (1975) have discussed this issue at length, 
and have noted that humans acquire certain categories earlier than they master others. One 
aspect of our model focuses on the acquisition of such object concepts. However, before we 
can address the issue of how such 'family resemblance' concepts are learned, we must find · 
some way to represent them and to use them during recognition. 
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Representing 0 bject Concepts 

We hypothesize that object concepts are represented as abstract prototypes, in which 
some features are labeled as more criterial than others. We envision structural descriptions 
similar to Binford's (1971) generalized cylinders, with actual numeric values replaced by 
means for each parameter. For instance, one might represent a prototypical chair as consist­
ing of four legs, a seat, and a back arranged in particular spatial relations to each other.2 In 
addition, each component would have associated numeric means, such as orientation, length, 
and diameter (normalized for the overall size of the object). 

In addition to associating a mean value with each numeric feature, we also associate 
a variance based on the degree to which instances of the concept have varied along that 
dimension. A high variance implies that a wide range of values are acceptable, while low 
variances imply that only small variations from the mean can be tolerated. We posit that 
the criteriality of a numeric feature is equivalent to the inverse of its variance. This gives 
low criteriality to features with widely varying values, and high criteriality to features with 
nearly constant values. For instance, the legs of a chair are nearly always half the length of 
the entire chair's height. Thus, this feature would have a low variance and be highly criteria!, 
giving it an important role in judgements of prototypicality. 

Clearly, some concepts (such as food) must be defined in functional rather than strucliural 
terms. Many of our everyday concepts have structural components, and we have chosen to 
focus on these in our initial work, but the architecture also provides a natural explanation 
of functional definitions. As we will see later, procedural concepts describe common event 
sequences, and each procedure may refer to object concepts that occur as arguments to that 
procedure. Now assume that stored procedures are indexed by the objects to which they can 
be applied. One may then interpret the set of procedures that can be applied to any given 
object concept as the functional definition of that object concept. Although we will not focus 
on such modes in the present paper, the basic architecture shows promise for function-based 
reasoning about the usefulness of given concepts. 

Recognizing Object Concepts 

Now that we have considered the representation of object concepts, let us turn to their 
recognition. We have seen that traditional AI approaches to concept learning assume neces­
sary-and sufficient conditions, and it is natural that most have employed complete matching 
methods for concept recognition. However, in rejecting the 'all-or-none' assumption, we 
are inevitably led to replace this with some form of partial matching mechanism. Hayes­
Roth (1978) has argued that partial matching is computationally expensive, and the best 
known algorithm is exponential in the general case. Therefore, we must take advantage of 
constraints to make the task manageable. 

Recall that we are assuming different weights on the various conditions composing the 

2 Not all descriptions need be so visually oriented, and even primarily visual concepts may 
have other associated features. However, since vision plays such a major role in human concept 
recognition, we will focus on visual fe~tures in our examples. 
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concept's 'definition'. To a certain extent, we can constrain the partial matching process by 
attempting to match more criterial conditions (those with higher weights) first, and leaving 
less criteria! features and relations until later. We envision a beam search through the space of 
partial matches, which is computationally much more attractive than an exhaustive version. 
Like all heuristic search approaches, the method is not guaranteed to find the optimal solution 
(in this case the best partial match), but it will nearly always find a satisfactory one with 
considerably less effort. 

However, recall that an experienced agent must choose between hundreds (or even thou­
sands) of competing concepts, and it is unlikely that the above method will suffice. But 
suppose we assume that concepts are created because their instances have been instrumen­
tal in achieving the learner's goals (more on this below). In this framework, it is natural 
to organize concepts around the goals they help satisfy. 3 If we index concepts by the goals 
with which they are associated, then the agent can use its currently active goals as probes to 
retrieve potentially relevant concepts. As a result, the partial match is constrained to. those 
concepts likely to aid in achieving the current goal, presumably a few instead of thousands. 

Since it is central to the recognition process, we should say a little more about the partial 
matching mechanism. Given the description of some object and the characterization of some 
concept, the matcher returns a mapping between the two structures, along with the degree 
to which the match was successful. If the match was high, then the agent can infer that the 
object will prove useful for satisfying the goal under which its concept was indexed. If the 
match is only fair, then it may still"want to use the object, provided no better objects are 
found in the immediate vicinity. For instance, one may sit on a table (thus treating it as a 
chair) when no chairs are available. 

There remain questions about the manner in which the matches for different feature are 
. combined into an overall prediction for an object. We assume that the degrees of match for 
all features are combined linearly, with each feature weighted by its criteriality; the resulting 
sum represents the degree to which the object matches the concept. Missing structural 
components (e.g., an occluded leg of a chair) have scores of zero assigned to their features. 
Since one can seldom observe all components of object, a visual object concept will almost 
never achieve a perfect match; however, a given object will certainly match some concepts 
better than others. 

The Clustering Process 

Now that we have considered the representation and recognition of object concepts, let 
us examine how they might be acquired. An inspection of the_ concept formation task reveals 
three issues that must be addressed: 

1. Clustering. One must decide which objects to group together into an abstract class, such 
as table or chair. 

2. Characterization. One must generate some intensional description of the objects in the 

3 More precisely, object concepts should be indexed by the procedures in which they occur, with 
procedures themselves being indexed by the goals they satisfy. 
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class, so that future instances can be recognized. 

3. Indexing/Storage. One must store the characterization in such a way that it can be 
retrieved when needed, as during the recognition process. 

The vast majority of AI research on concept learning has occurred within the paradigm of 
learning from examples (Winston, 1975; Hayes-Roth & McDermott, 1978; Mitchell, 1977; 
Michalski, 1980). In this approach, the clustering problem is sidestepped, since a tutor 
provides positive and negative instances of the concept to be learned. In addition, there is 
no significant storage problem, since only one or a few concepts must be acquired. In other 
words, the task of learning from examples can be viewed as 'distilled' characterization. 4 

Although much has been learned from this approach, we believe that learning in a reactive 
environment requires one to deal with all three issues, and our model has responses to each. 

Since children learn.many concepts before they come to understand language, it is clear 
that they do not learn from examples in any traditional sen.se. However, by rejecting this 
approach to concept learning, we must :find-some other solution to the problem of clustering 
objects. We have already argued that goals are important to the recognition and retrieval 
of object concepts, but we believe that they are equally important to the clustering process. 
More precisely, we feel that objects are grouped together on the basis of their ability to 
satisfy (more or less) common goals. 

In describing their means-ends analysis theory of problem solving, Newell, Shaw, and 
Simon (1960) distinguish between various types of goals. Our concern here is with apply­
operator goals, in which one desires to apply an operator to some object or state. Such 
apply goals that can be used to direct the clustering process. For instance, suppose the 
agent is tired, and decides to apply the operator sit-down. 6 This operator requires some 
object upon which to sit, and the agent will scan its immediate environment for a likely 
candidate. The important point is that by applying its operator to candidate objects, the 
agent will discover that some objects produce better results than others. These will be good 
instances of 'sittable' objects, while others (such as chairs with uneven legs, or with a tack 
on their seat) will be poor instances. In any case, only objects to which the operator has 
been successfully applied are passed on to the characterization process. 

We are assuming that means-ends analysis is one of the main mechanisms underlying 
problem solving. Of course, it is clear that some behavior (even some search behavior) does 
not involve means-ends reasoning, and it is likely that the clustering problem is not always 
solved in this manner. However, we believe that the majority of human concepts are goal­
based, and that they result from goal-based problem solving. It is interesting to note that 
although the majority of machine learning research emphasizes the importance of search, 

4 The term 'generalization' is often used in place of 'characterization'. However, we prefer the 
latter term, since .the former has the second meaning of starting with some specific hypothesis and 
making it more general over time. 

5 Obviously, the action sit-down is not primitive in any sense; it is a high-level procedure that 
must also be acquired from experience. We discuss the issue of procedural learning in a later 
section. 
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little work has focused on the role of goals in learning. 6 

Characterization and Indexing 

Let us now turn to the mechanism of characterization, by which the learner goes from 
instances of some concept to a description of that concept. We are assuming that the 
clustering process has determined which instance or object should be incorporated into which 
concept description, and that it also provides the degree to which that object satisfies the 
relevant goal. The task of characterization is to modify the existing description to better 
predict the 'goodness' of the current object. The environment can seldom be completely 
predicted, so we do not require that the concept perfectly summarize the instances it covers. 

We also assume that instances are processed incrementally, since the agent generally 
interacts with one object. at a time (or a few at most). Thus, each instance leads to only 
minor modifications in the concept description. However, before a concept description can be 
.altered, it must first be created, and issues arfse about the nature of such initial descriptions. 
Since early descriptions are based on a single instance, one might make each feature very 
specific by having a criteriality of one. As additional instances are observed, variation will 
likely be noted, and constraints on feature values will become looser. Alternatively, one might 
begin with low criterialities and increase them if additional evidence warrants this step;~The 
first approach is similar to generalization learning (modified to deal with prototypes), while 
the second is similar to discrimination learning. A third alternative would be to employ 
the number of instances in determining the degree of match, improving the fit when fewer 
objects have been observed. This would lead to a form of 'recognition by analogy' at the 
outset, and more abstract forms of recognition after additional experience had been gained. 

Once a stable description has been formed, the feature values of new instances are used 
to modify the means and variances associated with each numeric feature. By retaining 
the number of instances that have been observed so far, one can easily compute the new 
values for each feature. This may lead to gradual changes in the concept description over 
time. For example, if the learner began to see chairs with longer legs, his coefficients for the 
'length of leg' features would slowly be revised. Thus, this method can respond to changing 
environments, unlike most traditional approaches to concept learning. 

However, if the agent encounters an object with feature values that fall far outside 
previous experience, this is an occasion to generate a disjunctive version of the cu~rent 
concept. For instance, if one sees a chair in which the legs are substantially longer than 
expected (such as a baby's high-chair), then it is natural to distinguish this from other 
chairs that more closely match one's expectations. Such variants are stored near to the 
initial concept, but are characterized independently of the original version. Note that this 
implies the order of presentation is relevant to learning. If gradual changes in feature values 
are observed, a single concept will be learned; however, if instances with extreme values are 
alternated, disjunctive concepts will be acquired instead. 

6 Recent papers by Ohlsson (1983), Anderson (1983), and Laird, Rosenbloom, and Newell (1984) 
describe exceptions to this trend. 



PAGE 12 A COGNITIVE ARCHITECTURE FOR LEARNING 

In addition to the processes of clustering and characterization, concept formation also 
requires one to store the concept description in some manner that will let the agent efficiently 
recognize future instances of the concept. We have already discussed the retrieval process, 
and the role t_!iat goals play in indexing concept descriptions. The storage process is simply 
the means by which new concepts are indexed under the goals they satisfy. Complications 
may arise when the same concept proves relevant to multiple goals, but there is nothing to 
prevent the learner from generating multiple indexes for a concept. Basically, we believe that 
the storage process is relatively straightforward, at least compared to the complementary 
mechanisms for clustering and characterization. 

In summary, our model of concept formation relies heavily on goals for both the clustering 
of instances and the retrieval on candidate concepts. Since the problem solving process relies 
on procedural schemas to generate such goals, let us now turn to the acquisition of procedural 
concepts. 

The Acquisition of Procedural Concepts 

In addition to object concepts for describing its world, an intelligent agent must have 
some form of procedures for accomplishing its goals. These may be generated from known 
components on the fly, or they may be stored in plans that can be accessed when needed. 
The former involves problem solving and search, and we discuss these in a later section. The 
latter relies on stored procedures, and in this section we consider the representation, use, 
and acquisition of such procedures. 

We plan to explore procedural learning in two contexts - learning to manipulate objects 
and learning navigation skills. Both of these involve higher level planning components as well 
as lower level physical skills. Below we argue that higher level components can be learned 
by imitation, while the lower level ones will require trial-and-error practice, though guided 
by the acquired plans. Both tasks should also provoke goal-based concept formation, since 
different classes of objects can be manipulated in different ways (some can be lifted, while 
others cannot), and different types of objects have different implications for navigation (some 
can be pushed aside, while others must be avoided). 

Representing Procedures 

In our framework, procedures have much in common with object concepts. We represent 
a procedure as a sequence of state descriptions, in which each state is described with the 
same sensori-motor level language as used for object concepts. But despite this similarity, 
procedures differ from object concepts in two important respects - they are sequential in 
nature, and they involve the application of operators. As an example, let us consider the 
throw procedure, which might consist of six ordered states: 

1. The agent is near an object but is not holding it; 

2. The agent is enclosing the object in his hand, in front of his body; 

3. The agent is enclosing the object in his hand, above and ·behind his head; 
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4. The agent is enclosing the object in his hand, in front of his body at eye level; 

5. The agent is holding his hand in front of his body at eye level, not enclosing the object. 

6. The agent's arm is hanging to his side, and the object is in the air in front of the agent. 

Of course, the actual descriptions would be stated using a scheme similar to Binford's gener­
alized cylinder notation, but the English paraphrases convey the basic idea.7 The similarity 
to object concepts should be clear. In fact, we believe that each state description also con­
tains mean values and variances for numeric features (e.g., giving the position of the hand 
behind the head), which translate into expected default values and the allowed variance for 
each feature. 

However, unlike simple object concepts, the state descriptions that make up procedures 
are ordered sequentially and are connected by operators. 8 The interpretation of these oper­
ators differs somewhat from the standard sense of 'operators' in heuristic search problems. 
Rather than applying an operator once, each operator is applied iteratively until some halt 
state is reached. For instance, in the throw procedure, the lift-arm operator would be applied 
repeatedly until one reached the desired state in which the arm was above and behind the 
head. This 'repeat-until' notion is very similar to Miller, Galanter, and Pribram's (1960) 
Test-Operate-Test-Exit (TOTE) units, and seems particularly well suited for representing 
motor procedures. Moreover, there is evidence (Keele & Summers, 1976) that human niotor 
activity is organized along a similar lines. 

These operators may take arguments, such as the speed and force with which they. 
should be applied. The arguments may be passed on from the calling procedure to its 
subroutines, since in order to throw objects with varying force, one must evoke the lift-arm 
and move-arm-forward operators with varying force. In addition, state descriptions may be 
connected by more than one operator, letting actions occur in parallel. Thus, in throwing 
a ball, one also moves the opposite arm forward (for balance) while moving the grasping 
arm behind the head. However, such parallel motions typically begin and end at the same 
time, employing the same test to determine when to halt. (In fact, Klapp and Greim (1979) 
present evidence that humans are not able to carry out two movements of different duration.) 
Finally, we should note that procedures can be organized hierarchically, with the operators 
of one procedure expanding to a lower level procedure. Thus, the procedure making a double 
play would contain the throw procedure as one of its components (actually occurring twice 
in this case). 

7 Again, we do not mean to limit our descriptions to visual features, especially in representing 
motor skills. Other forms of information (such as proprioceptive feedback) would also be included, 
but we have focused on the visual aspects here for the sake of clarity. 

8 Actually, many everyday object concepts can exist in multiple states. Doors can be open 
or closed, lights can be on or off, and many of these even vary continuously. We can represent 
such objects in terms of the procedures for causing their state changes. Thus, one might have a 
procedure for opening a door. In some cases (such as the weather), the state changes cannot_ be 
controlled by an agent, and the operators must be omitted. One can still recognize such procedural 
concepts, but can never enact them. This representation of state changes is similar to De Kleer 
and Brown's (1983) representation for qualitative mental models. 
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Recognizing Procedural Concepts 

Like object concepts, stored procedures can be used for recognition, in this case for 
. the recognition of familiar events. In many cases, one is attempting to understand another 
agent's goals and strategies based on his observed behavior. This is the plan recognition 

·)problem studied by Schmidt and Sridharan (1978), Schank and Abelson (1977), and others. 
[The task confronting our model differs from these in that our system must interface with an 
·\external world, and must deal with actual scenes rather than the abstract representations 

. :;output by natural language systems. 
:.) 

I We will start by considering the process of matching a given procedure against a sequence 
· .~f observations, and then address the issue of retrieving plausible procedures. Recall that 
~rocedures are composed of two different structures - state descriptions and the operators 
~onnecting them. In understanding another's actions, one can never observe the operators 
:themselves; one can only infer them based on their effects. For instance, suppose the agent 

· ~ees another agent grasp an object, lift his arm behind his head, move the arm forward 
~apidly, and then release the object. Actually, the agent would not see this at all. Rather, 
he would see a series of 'snapshots' in which the other agent's position (and the object's) 
had changed. One must infer that certain low-level operators were applied to achieve these 
}tate changes, and one must divide this sequence into episodes (grasping the object, lift~ng 
,the arm) by matching against procedures in memory. . 

f Suppose. the system ·is considering the throw concept, and attempting to match an ob­
~erved sequence of events against this procedure. It begins with the description of the start 
hate. This is probably the most abstract of the state descriptions in the throw concept, since 
I 

·it involves the most variation. This means that many scenes would match well against it. 
· Jfowever, the next state description in the throw procedure is more constrained - the agent 

· . must be holding an object in front of its body. Of course, one will observe many scenes 
between these which are not explicitly represented in the throw concept. 

However, an important relation must hold between these states and the two descriptions 
(the ungrasped and the grasped object) - each successive state must take the agent closer to 

. ,the grasped state. We will call this the progress constraint. In computational terms, every 
~uccessive scene must have a better partial match to the grasped state description. If this 

··;relation holds, then the throw procedure usefully describes the agent's behavior;· otherwise, 
some other concept may be more appropriate. Once the agent has actually grasped the object 
.(and a nearly perfect match is found), the next episode is initiated. Now each successive 
1state must be closer to the succeeding description, in which the agent's arm is cocked behind 
his head. This process continues until the final description of the throw concept has been 

/observed, in which the agent's arm is relaxed, and the object is flying through the air some 
' distance from the thrower. 

Like object concepts, procedural concepts can be matched to a greater or lesser degree. 
Since each state description consists primarily of object concepts in particular configurations, 
we can use the same partial matching mechanism as we use for recognizing object concepts. 
Some descriptions may have little variance and are thus highly constrained, while others 
allow many specific scenes to match. Tentatively, we have defined the total degree of match 
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for a procedural concept as the average degree of match for its component descriptions. Thus, 
the throw procedure would average over the degree to which each of its five descriptions were 
matched by some observed scene, assuming that each of these was matched sufficiently well 
(in sequence) to retain the throw hypothesis. Thus, some instances of throw will be more 
prototypical than others, just as some chairs better fit the standard notion of chair. 

Procedural structures share another issue with object concepts, in that they must be 
indexed in some manner that narrows the search for relevant concepts, enabling the partial 
matching process to be computationally tractable. The progress constraint will help sig- · 
nificantly, since many competing procedures will be eliminated from the competition early 
on. However, two other types of information can also greatly constrain the search for useful 
matches. First, each procedural concept contains descriptions of the objects involved in that 
procedure. These may be more or less constrained, but suppose we assume that procedures 
are indexed by the objects to which they can be applied. Given such connections, whenever 
one notices an -object changing state, one simply retrieves all procedures in which that class 
of objects occur. Few (or possibly none) of these will explain the observed state change, but 
the set of resulting hypotheses will be much smaller than the set of known procedures, and 
one can reasonably apply the above partial matching method to this reduced set. 

The second method takes advantage of the inferred goals of t~e observed agent. Sup_pose 
that procedures are indexed not only by the objects involved in them, but by the final effects 
of the procedure (such as an object flying through the air). If we know the goal of the 
agent (e.g., to rapidly transfer an object from his possession to another's possession), then 
these indices can be used to retrieve potentially useful procedures (in the transfer case, the 
throw procedure). Moreover, since procedures are organized hierarchically, the invocation 
of a high-level procedure leads one to consider its component procedures as well. This 
expectation-driven approach to procedure recognition will only apply when one can infer an 
agent's goals, but it should be very useful in such cases. 

Applying Procedures 

Unlike static object concepts, procedural concepts can be 'run' to produce behavior and 
thus affect the external world. Let us consider how our model will produce such behavior, 
given the representation of procedures we have described. We will not examine. how the 
agent decides to evoke a particular procedure here; such decisions fall within the realIIl: of 
problem solving, which we discuss in a later section. 

Suppose a procedure like throw is called with a few arguments specifying parameters 
such as speed, force, and direction. Before the procedure can be applied, it must first 
be retrieved from memory and expanded into its components. These components consist 
of (1) intermediate state descriptions and (2) the operators connecting these descriptions. 
Naturally, if the current state of the agent and/or the relevant objects do not closely match 
the initial state description, then the procedure cannot be applied. In this case, the agent 
must retrieve or construct (through problem solving) some procedure for transforming the 
current state into the required starting state. Once this has been achieved, the procedure 
can proceed. 
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Research on human motor behavior (Keele & Summers, 1976; Summers, 1981) suggests 
two modes of operation, which have been labeled closed loop and open loop processing. 
In the former, the agent continually checks against predicted feedback (both visual and 
proprioceptive) to ensure that he is carrying out the action correctly. Closed loop behavior 
typically occurs when the details of a procedure are still being acquired,- and performance is 
gradually improving. In open loop behavior, the agent ignores predicted feedback and carries 
out the procedure much more quickly than in closed loop mode. Feedback can still be used 
for error recovery (e.g., if someone grabs the agent's arm while throwing), but it is generally 
bypassed. Open loop behavior typically occurs after a procedure has been overlearned and 
automatized. 

Although we are not attempting to model human motor behavior in detail, we believe 
that the closed loop/open loop distinction is useful for any system that operates in a reactive 
environment. Moreover, these two forms of processing arise naturally from the representation 
we have proposed for procedures. In closed loop mode, the agent starts from the initial state 
description and applies the specified operators. After each application, the resulting state 
is compared to the succeeding state in the procedure's definition. If the observed state of 
the world matches the predicted state sufficiently well, then the agent moves on to the next 
operator and repeats the process. For instance., in throwing one stops lifting one's arm at a 
certain position behind the head, and then moves the arm forward from that position;~ 

However, for many real-world procedures the same operator must be applied repeatedly. 
This occurs if the observed state matches the predicted state better than the previous state -
in other words, if some progress has been made toward the expected state. If this occurs, the 
operator is repeated, a new state is generated, and the test is again repeated. This 'repeat­
until' process continues until the expected state is achieved, at which point the agent moves 
on to the next operator.9 In our throw example, the lift-arm operator is applied repeatedly 
until the desired/expected position behind the head is reached. However, if progress stops 
at some point before reaching the expected state, some problem has arisen and t·he agent 
must abandon the procedure. In throwing an object, another person may grab the agent's 
arm, thus halting the process before reaching the cocked position. 

Thus, in closed loop behavior the agent is continually comparing the current state of the 
world to the next desired/ expected state, and continues applying the same operator( s) until 
an acceptable match is found. In contrast, during open loop behavior the agent bypasses 
the match process entirely (or ,uses it only occasionally as a backup). However, this forces 
one to use some other method for specifying the number of times each operator should be 
applied. 

In our framework, each instance of an operator (within a given procedure) has associated 
parameters that specify the length of time it should be applied, as well as the degree of 

9 The 'repeat-until' metaphor is only partially correct. Actually, the degree to which an operator 
is applied is proportional to the difference between the current state and the goal state. In other 
words, an operator is initially applied with large increments, but these decrease in size as the goal 
is approached. In using this approach, we are borrowing from extensive earlier work within the 
framework of servomechanisms (Arbib, 1972). 
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application. Like the numeric features of object concepts, these parameters contains both a 
mean and a variance. When a procedure is first acquired, both values are unspecified, but 
as the agent runs the procedure in closed loop mode, he begins to acquire data about the 
duration and force for each operator application, averaging the observed values. At any point 
in the learning process, the agent can run the procedure in open loop mode if absolutely 
required, ignoring feedback and relying on the estimated values. However, these estimates 
will be poor early in the learning process, and open loop behavior will usually lead to poor 
results. As more closed loop experience is gained, knowledge is transferred from the state 
descriptions (the tests) to the estimated number of operator applications (the generators). 
Eventually, the agent can run the procedure in open loop mode and perform as well as it 
would in closed loop mode. 

Although the closed loop/open loop distinction is based on data from low-level human 
motor behavior, we believe that higher level analogs will also prove useful. Basically, we think 
the distinction will hold for any procedure that requires interaction with the world, and that 
involves the repeated application of subprocedures. This includes low-level motor phenomena 
such as throwing a ball, but it also includes high-level phenomena such as navigating around 
a number of obstacles to a goal object. Of course, this is ultimately an empirical question, 
but we plan to test the usefulness of both concepts in our research on procedural learning. 

Learning ~y Imitation 

Much of human learning occurs through the imitation of others, and we believe this 
method will prove essential in any environment in which complex procedures can occur. 
Although one can conceive of an agent discovering the throw procedure on its own, it is 
much clearer how one might learn the concept through watching another agent throw. an 
object. At first glance, learning by imitation appears straightforward: one simply stores 
away the sequence of actions carried out by the tutor, and retrieves them when required. 
However, this overlooks some !mportant facts. First, the learner observes only the successive 
states of the tutor; these are an important component of procedures, but before the agent 
can run the procedure himself, he must infer the operators the tutor employed. If the new 
procedure is composed of known procedures, then the learner must recognize the component 
skills before constructing the higher level skill. 

Second, there may be differences between the tutor and the learner, such as their sizes, 
which hand each prefers to use, and so forth. The learner must take such differences into 
account through some form of analogy. In this process, the learner must determine the 
similarities between himself and the tutor, and then use these similarities as a guide to 
learning. At the same time, he must determine the differences and use his basic problem 
solving abilities to fill in the gaps. 

A third complication involves goals. Humans carry out very few actions without having 
some goal in mind, and if the learner hopes to acquire useful procedures by imitation, he 
must determine the goals of the tutor in carrying out an action. Unfortunately, the reasons 
for the tutor's actions are seldom made explicit; in many cases his procedures are so well 
compiled that he cannot recall any but the highest level goals. In these cases, the learner· 
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must infer the goal tree of the tutor, and incorporate these goals into the procedures he 
acquires. 10 Inferring another's goals and subgoals is a challenging task, and may involve 
recalling similar situations and the goals that were useful in these contexts. 

Taken together, these difficulties suggest that the most one can hope to learn by imitation 
is some abstract plan, in which the state descriptions are approximately correct at best. The 
agent must then attempt to fill in the details based on his own experience. This is the role 
of practice, to which we now turn. 

Improving Skills With Practice 

Skill improvement is complementary to learning by imitation. On the one hand, it 
cannot occur unless an initial procedure or plan exists, however fragmentary, and we have 
seen that such plans can be learned by imitation. On the other hand, skill improvement 
fills in the details of procedures that learning by imitation cannot provide. Thi~ view is 
consistent with current psychological theory concerning motor learning (Summers, 1981). 
Since we know that humans improve their motor skills gradually, Anderson's (1983) model of 
knowledge compilation immediately suggests itself as a candidate explanation of this process. 
However, although Anderson's compilation process accounts for the speedup observed in 
motor learning, it does not explain the more efficient motions that occur with practice. 
Although something like knowledge compilation may be involved, some additional learning 
mechanism is also required. Similar comments hold for Laird, Rosenbloom, and Newell's 
(1984) theory of learning by chunking. 

Our model of skill improvement relies on the distinction between closed loop and open 
loop behavior, and on the assumption that practice during closed loop behavior must precede 
effective open loop actions. We believe that two related learning mechanisms are in operation. 
First, the agent runs the new procedure in closed loop mode, observing the extent to which 
the resulting action leads to his desired goals. In our throw example, the agent would (after 
constructing an initial plan by imitation) throw an object at a desired location. If the 
results are poor, the agent 'loosens' the match process responsible for comparing observed to 
predicted states, leading to slight variations in the procedure each time it is evoked. Better 
results draw the means in the expected state descriptions toward the observed values, while 
poorer results push the means away from the observed values. In the case of throwing, the 
initial state descriptions are gradually transformed from ones suitable for the tutor into ones 
suitable for the learner. Thus, the agent carries out a hill-climbing search through the space 
of possible state descriptions, using the initial plan as the starting point. 

While this process is occurring, a second form of learning is also taking place. Each 
time a procedure is run, the agent revises the open loop parameters for each operator in 
the procedure (specifying the length of time and the degree to which it should be applied). 
However, since the means for each operator reflect the knowledge implicit in the expected 
state descriptions, these values will not stabilize until the state descriptions have themselves 

10 This makes the task of learning by imitation appear very similar to the language acquisition 
task, since the language learner must infer an adult's goal tree from a sequence of actions - the 
words that he utters (Langley, 1983). 
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been optimized. Meanwhile, the variance of each operator parameter will be high, since 
the number of times they are applied will vary as the agent experiments with different 
instantiations of the procedure. Ultimately, the closed loop behavior will stabilize, and the 
open loop behavior will eventually come to reflect this. However, since the agent never 
'knows' when -this stabilization occurs, open loop learning must proceed even before this 
situation is reached. Note that we assume simple averages for the open loop parameters, 
rather than ones which are weighted by the degree of goal satisfaction. This is because goal 
information has already been incorporated into the numeric features of the state descriptions 
used in closed loop mode. 

As an example of the basic process, note that one can learn by imitation to go around 
an obstacle, but one learns by trial and error how far to skirt the obstacle, and one slowly 
i:m:proves with practice (inevitably gaining some bruises along the way). We have already 
discussed how variants on the basic plan are tried during closed loop learning. This approach 
is similar to the perturbation method used by Kibler and Porter (1983) on more symbolic 
tasks, but the details of our method differ due to the sensori-motor level representation we 
employ. Now let us turn to another form of knowledge that is necessary for the robust 
application of procedures - cognitive maps. 

The Construction of Cognitive Maps 

Before an intelligent agent can interact with its environment successfully, it must have 
some model of that environment. Such models have sometimes been called cognitive maps, 
and if we want our system to behave robustly in reactive environments, then we must include 
this form of knowledge in our cognitive architecture. Cognitive maps serve a number of 
functions, such as aiding navigation and easing the acquisition of desired objects. Below we 
consider two quite different forms of spatial knowledge, and relate them to other components 
that we have already discussed. 

Local Cognitive Maps 

One common usage of the term 'cognitive map' refers to spatial knowledge of one's 
immediate surroundings. We plan to represent such knowledge in schemas that state the 
positions and orientations of local objects in terms of a three-dimensional coordinate system. 
For instance, such a schema would specify the relative locations of the walls, windows, and 
pictures in a room. Like object concepts, these cognitive maps summarize experience over 
long periods of time, and will be 'fuzzy' in cases where the component objects do not have 
constant locations. For example, the walls and windows in a room never move, while the 
location of furniture in may change over time. The locations of some objects would thus be 
more 'criteria!' to the cognitive map than others, depending on the degree of variation. 

In fact, we feel that such local spatial knowledge is represented in the same manner 
as object concepts and that it is acquired using the same learning mechanisms. The main 
difference lies· in the degree of constancy that occurs in object concepts and local maps. 
Most object concepts vary in their relative location to other objects over time, and thus 
these aspects of their structural descriptions become unimportant. In contrast, the objects 
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composing a local map remain in the same spatial relationship over time, so locational 
information remains a significant part of the description. The result is a 'meta-object' that 
describes both the shapes of stationary objects and their relative positions. In other words, 
we hope to account for this form of cognitive map without introducing additional knowledge 
structures or fearning mechanisms. This seems an important claim, and one that we should 
subject to empirical tests. 

Local cognitive maps can be used in the same ways as object concepts - for recognizing 
familiar scenes, for predicting the location of objects, and so forth. However, since they 
generally describe larger regularities than object concepts, one can also use them for local 
navigation, planning manipulative acts, and the like. Note that cognitive maps do not 
explicitly store all the possible relations between component objects (as would be required 
in a propositional scheme); rather, the numeric information about position and orientation 
permits the computation of any spatial relation that is needed, when it is requested. 

We have argued that local maps are acquired through the same process as that used to 
form object concepts. However, since the visual field cannot take in the whole surroundings 
at once, the learner must look in different directions to construct a model of his local sur­
roundings. Moreover, he may acquire knowledge of object positions by different senses (such 
as sight ·and touch), which are then combined into a coherent '\Vhole. As with object _con­
cepts, an initial local map will be quite specific, since it is based on information over a short 
period of time. But as more experience is gained with this area, variations will be observed 
and the map will become more general. In some cases, component objects will move freely 
or be missing entirely, and these objects will eventually be dropped from the description. In 
other cases, objects may be in two (or a few) stable positions (e.g., a window may be open 
or closed), and this may lead the learner to split the map into two specializations of the 
original map. In cases of slight variation, the map will come to contain means and variances 
similar to those used in object concepts. 

Route Knowledge 

A second usage of 'cognitive map' refers to the route knowledge used in larger scale path 
planning and navigation. While local maps are similar to object concepts, these global maps 
are analogous to stored procedures. Thus, global maps store route information in terms of 
the operators required to traverse those routes, and they refer to local maps in their state 
descriptions; the latter can be used as landmarks to check one's progress towards the goal 
state. Just as procedures are stored hierarchically, so are global maps stored at multiple 
levels of aggregation, with lower level routes being treated as operators by higher levels. 

Route knowledge provides a means for navigating beyond the immediate field of vision. 
In planning a path to some goal object, one retrieves those maps that connect the goal's 
position to the current position, and uses the resulting information to constrain the search for 
a useful route. Kuipers (1983) has proposed computational models of human route planning, 
while Crowley (1984) has described methods for robotic navigation; both approaches share 
the notion of using route knowledge to plan useful paths. One can also use such maps to 
generate expectations which can then be compared against sensory input. This process is 
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essential in carrying out one's plans, since the location of objects may have changed since 
the last time they were observed, and one must be able to modify plans dynamically when 
this occurs. 

Just as we intend to model local maps as object concepts, we also plan to model route 
knowledge as stored procedures, using the same representational scheme and the same learn­
ing mechanisms. 11 Although local maps can be formed simply by observing one's immediate 
surroundings, global maps require the exploration of adjacent local environments. As the 
agent stores sequences of actions that lead to a successfully thrown ball, so he stores the _se­
quences of steps that successfully lead between two locations. The same processes of learning 
by imitation and incremental refinement that apply to procedures also apply to route knowl­
edge. And just as stored procedures may refer to object concepts in their state descriptions, 
so may route knowledge refer to local cognitive maps. 

Problem Solving and Heuristics Learning 

We have already described our scheme for representing procedures in long-term memory, 
for using those procedures in recognition and the generation of behavior, and for acquiring 

·this proce~ural knowledge. However, the very nature of complex reactive environments leads 
inevitably to some situations that cannot be covered by existing procedures. If an agent is 
to respond adaptively to such an environment, it must be able to generate new plans and 
procedures dynamically, and to implement these plans to achieve its goals. The framework 
of means-ends analysis (Newell, Shaw, & Simon, 1960) provides a general approach that 
takes advantage of goals to direct the search for useful plans, and we have incorporated 
this method into our model of performance and learning. Since the resulting plans will be 
specific versions of the abstract procedures we described earlier, we will focus instead on the 
representation of goals that lead to these plans. After this, we describe the version of means­
ends analysis that we plan to employ, and we outline some methods for learning heuristics 
to improve this planning process as the result of experience. 

Representing Goals 

Newell, Shaw, and Simon's (1960) theory of means-ends analysis distinguishes between 
three types of goals - transform goals, apply-opera'tor goals, and reduce-difference goals. In 
many ways, the third goal type is redundant, so our reasoning component uses only the :first 
two goal types. Since most of the agent's goals will relate to desired physical states (either 
in the world or internal to the agent), let us consider how we represent both forms of goals. 

Transform goals involve changing the current state of the world into some desired state. 
For instance, if the agent sees a particular object in the distance and would like to be closer 
to that object (say close enough to pick it up), then it would create a goal to transform 
the current situation into one in which it was the specified distance from the object in 

11 Note that this does not imply that route planning depends on the particular operators stored 
with the procedure. If a given operator or subprocedure cannot be applied, one can always resort 
to problem solving to transform one state description into another. 
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question. This goal would be abstract in the sense that it would ignore many aspects of the 
environment (such as the positions of other objects). However, it would be quite specific 
regarding the agent and the desired object, representing each in terms of the generalized 
cylinder scheme we described earlier. Of course, the generalized cylinder notation cannot 
be used to represent internal states, such as hunger or exhaustion, so we must incorporate 
other notations as well. 

Apply-operator goals refer to applying some operator to a specific object, such as lifting 
one's arm or throwing a ball. In our framework, such operators may be either primitive 
actions (applying a force to part of the agent's body) or complex procedures (constructed 
from lower level operators). In both cases, one requires a transparent representation of the 
operator to employ means-ends analysis, since the method employs both the preconditions on 
operators and their expected results. 12 We have already described our plans for representing 
the initial and final states in complex operators in terms of the generalized cylinder notation 
used for object concepts. The first state of a complex operator (like throw) can be viewed 
as its preconditions, while the final state can be considered as its expected results. Apply­
operator goals must also take arguments which further detail how the op_,erator should be 
applied (e.g., the direction in which to throw an object, how hard to throw it, and so forth). 

Problem Solving through Means-En_ds Analysis 

The method of means-ends analysis centers around the notion of differences between 
states. It can be applied to a problem only if such differences can be computed, making 
it less general than simpler heuristic search schemes like best-first search. Fortunately, one 
can compute differences for many of the problems that arise in the real-world, such as the 
navigation and manipulation tasks that we plan to study. In addition, operators must be 
indexed either by the differences they reduce, or by their preconditions and expected results, 
so that they can be retrieved selectively. We tentatively plan to take the latter approach, 
and to let the resulting differences be represented implicitly. 

Let us consider a simple example of reasoning by means-ends analysis as it might be used 
in our simulated environment. Suppose the agent sees an object in the distance, and creates 
the high-level goal of changing its current location to one close to the object. It would 
then look for operators in long term memory that lead to changes in location, retrieving 
an operator like slide (our simulated robot has no legs, but can move by applying force in 
any direction). The resulting apply-operator goal would specify the operator to be applied, 
along with various arguments, such as the direction in which the agent should move, in this 
case the direction in which the object lies. The agent would then apply the slide operator 
repetitively until it reached the desired location. 

However, suppose that another object blocks the agent's path, preventing it from apply­
ing the slide operator (actually, preventing it from having the desired effect). In this case, 
the agent must create a subgoal to transform the current state into one which satisfies the 
preconditions on the slide operator. In other words, it must find some location which will 

12 This leads to another learning task that we discuss below - the acquisition of transparent 
operator models from before-after state descriptions. 
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allow it to move in a straight line to the desired object. Once such a location (to either 
side of the blocking object) has been identified, the agent searches memory for an operator 
which will let it achieve this subgoal. Again, the slide operator would suggest itself, and an 
apply-operator subgoal would be proposed. If this had the desired effect (i.e., if there are no 
further blocking objects), then the agent will achieve the new state, and refocus its attention 
on the original transform goal. 

However, if we assume the agent can only move forward (rather than sideways), then 
it cannot apply the slide operator directly, since it is no longer facing the object. Again 
it must find some operator that will transform its current state (facing in one direction) 
into another state (facing in the desired direction). This time the turn operator suggests 
itself, and since nothing keeps this operator from applying, the agent would turn, and then 
apply the slide operator iteratively until it reached the original goal state near the object. 
Note that the problem solver does not completely plan out its solution path before actually 
taking action, but that it is able to recover when complexities arise along the way. This 
distinguishes means-ends analysis from other planning methods, such as those implemented 
in STRIPS (Fikes & Nilsson, 1971) and NOAH (Sacerdoti, 1974). 

We are not suggesting anything especially new here, and our discussion has been largely 
a review of an approach to problem solving that was developed 25 years ago. However, 
we feel that this method has been largely abandoned by the A( community, and that ~ore 
research remains to be done within the means-ends analysis framework. In particular, we 
must extend the approach to deal with representations of physical objects and their locations. 
This contrasts sharply with the purely symbolic approach to robot planning taken in STRIPS, 
and we believe that it will lead to insights about the representation of plans and methods 
for generating them. 

Learning Operators and Search Heuristics 

As we have noted, means-ends analysis relies on transparent representations for the 
operators used in problem solving. We believe that one can acquire such representations by 
observing the state of the world before an operator is applied, and comparing it to the state 
of the world after application. Porter and Kibler (1984) have described an approach to this 
problem for symbolic domains (solving simultaneous equations and symbolic integration), 
and Vere (1977) has explored the similar problem of inferring 'relational productions' from 
before-after pairs. We hope to extend these methods to learning operators for our simulated 
environment. In particular, we think that many instances of an operator's application must 
be observed before a general description of its effect can be learned, and that this process 
holds much in common with the process responsible for learning object concepts. 

The second learning process related to problem solving involves acquiring the heuristic 
conditions on various operators. In the heuristic search framework, one begins with a set of 
legal conditions on each operator, but these are not sufficient to eliminate search. For this, one 
must determine additional conditions that specify the situations under which each operator 
should be applied. Researchers in machine learning have devoted considerable attention to 
this problem over the past five years (Mitchell, Utgoff, & Banerji, 1983; Langley, 1983; Kibler 
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& Porter, 1983), and substantial progress has been made. 

However, the existing work on heuristics learning has two limitations. First, nearly all 
approaches have been implemented within the heuristic search framework, focusing on simple 
strategies sucb. as breadth-first and best-first search. As a result, most of the research in 
this area has ignored the key role of goals in learning _search strategies. Second, while ~he 
notion of 'legal' conditions makes sense for abstract problems such as the Tower of Hanoi 
and symbolic integration, it has much less relevance for problems such as manipulation and 
navigation. In the latter domains, the question is not so much whether one can apply an 
operator (such as applying some force), but whether this operator will have the desired effect. 

Our response to the first drawback is to learn search heuristics within the means-ends 
analysis framework. One of the standard approaches in the work on heuristics learning is to 
assign credit and blame on the basis of complete solution paths to some problem (Sleeman, 
Langley, & Mitchell, 1982). Naturally, this approach works only for problems with relatively 
small search spaces. However, the means-ends analysis framework provides a 'solution path' 
every time a goal is achieved, since one knows that the sequence of operators applied while 
the goal was active led to that goal's satisfaction. In addition to letting one deal with large 
problem spaces, this method of credit assignment also enables learning during the search 
process, so that one can take advantage of acquired heuristics before the original (top-level) 
goal is achieved. . - ~ · 

We should note that Newell, Shaw, and Simon's (1960) approach to means-ends analysis 
assumed an ordering on the differences between states, and this information greatly con­
strained the search required to solve problems. Although Eavarone (1969) has shown how 
one can automatically determine the ordering on such differences, we do not believe this 
approach generalizes to reactive environments. As a result, we believe that our implementa­
tion of means-ends will initially require more search than the traditional version. However, 
we also believe that methods for learning search heuristics from experience can be used to 
acquire knowledge equivalent to these difference orderings, and that these methods will prove 
useful within our simulated environment. 

Our response to the second issue is to modify the preconditions of an operator whenever 
it fails to have the expected effect. We assume that the transparent representations for 
most operators are learned under idealized conditions. For example, instances of. the macro­
operator for moving an arm forward would not include cases in which an obstacle blocked the 
arm's motion. As a result, the initial operator descriptions will be overly general, leading the 
agent to apply them in cases where they will not succeed. When this happens, the learning 
system will invoke a discrimination (specialization) process, leading to more a specific version 
of the operator with preconditions that will keep it from being applied to similar cases in the 
future. Moreover, these additional preconditions will lead to changes in the agent's problem 
solving process. In the future, if the agent creates a goal to apply the move-arm-forward 
operator and then finds that the new precondition is violated (e.g., an obstacle is blocking 
the arm), it will create a subgoal to transform the current state of the world into one in 
which this precondition is met. 
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Testing the Theory of Learning 

Naturally, we would like to test our architectural design and the specific models of 
learning that we implement within this framework. In fact, this was one of the original 
reasons for developing our simulated world - to provide a challenging testbed for integrated 
models of the learning process. This simulated world provides two natural classes of problems 
on which to test our models - navigation tasks and manipulation tasks. 

In many ways, navigation problems appear easier since they do not require fine motor 
control or balance. Since our simulated robots have no legs, they move about the world by 
applying linear force (and thus sliding along the floor) and rotational force (and thus turning). 
In this way, the agent can carry out a visual search for some goal object, avoid obstacles lying 
in its desired path, and engage in general exploratory behaviors. At first glance these would 
seem to involve high-level planning rather than fine-grained motor behavior, and certainly 
one can use problem solving methods to generate useful paths. However, note that the most 
efficient paths require near-collisions with objects in the environment, and that humans 
probably acquire such navigational skills gradually by trial and error. 

Manipulation tasks require the agent to interface its body parts with objects in the world, 
and this certainly requires fine control. However, we know that hu~ans initially carry out 
manipulation procedures in an.awkward manner, and our model ·should begin in this fa:Shi.on 
as well. Thus, it should have difficulty in picking up food to eat and may even have trouble 
placing the food in its mouth. Actions that involve trajectories (like throwing or sliding an 
object) are even more difficult to acquire, since the agent loses contact with the object before 
the event is complete. But humans are able to master the fine control of even such complex 
procedures, and we would like our models to have the same ability. 

Naturally, our implementation should also be able to recognize instances of useful object 
concepts and procedures, and it should be able to make use of both local cognitive maps and 
route knowledge. However, each of these behaviors should arise in the context of navigation 
and manipulation tasks, and these should emerge from the agent's innate goals and drives. 
The problem solving process will lead naturally to subgoals and thus to actual behavior, but 
we should briefly describe the top-level goals on which these subgoals will be based. 

We assume that the agent has a few innate drives such as removing hunger, avoiding pain, 
and satisfying curiosity. These are implemented in terms of top-level goals that are added 
to memory under various conditions. For instance, if the agent's energy level drops below 
a certain amount, a goal to raise this amount would be automatically added to memory. 
This would lead the agent to retrieve procedures that it knows lead to reduced 'hunger', 
or to dynamically generate a plan (through problem solving) to satisfy this transform goal. 
Similarly, when the agent sees an unfamiliar object, a goal to approach the object would 
be automatically created, leading the problem solver to retrieve navigation procedures or to 
create a plan to approach the anomaly. The observation of a new action sequence would also 
attract the learner's attention, leading him to imitate the procedure and apply it to various 
objects. 
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Given the complexity of the environment and the likely complexity of our models, objec­
tively evaluating our results will be a difficult process. However, for the interim we will be 
satisfied to develop initial agents that can interact with their surroundings, acquire object 
concepts, stored procedures, and cognitive maps, and use these structures to achieve their 
simple goals. We would also like our models of these processes to roughly correspond to our 
knowledge of human learning and performance, and in the preceding pages we have outlined 
some phenomena that we hope to explain. Clearly, we have set ourselves a difficult task, 
but we believe the nature of that task has already led to insights and approaches that might 
otherwise have been bypassed. 
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