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ABSTRACT OF THE THESIS 

 

Assessing Cardiac Functions of Zebrafish from Echocardiography Using Deep Learning 

by 

Mao-Hsiang Huang 

Master of Science in Electrical and Computer Engineering 

University of California, Irvine, 2023 

Professor Hung Cao, Chair 

 

 

Zebrafish, revered as an invaluable model organism, is widely employed in 

cardiovascular disease research. It facilitates a comprehensive understanding of cardiac 

behaviors and conditions by appraising cardiac functions extracted from heartbeat echo-

videos. Researchers often scrutinize the ejection fraction, a metric indicative of heart 

performance. Nevertheless, current techniques for such evaluations grapple with 

numerous challenges. These methods are laborious, time-consuming, and prone to errors, 

making them unfavorable for large-scale investigations. These limitations are particularly 

troublesome when dealing with massive datasets or when detailed assessments are 

required, hindering their effectiveness in applications like high-throughput screening for 

drug discovery. Addressing these constraints, an approach was conceived to enhance 
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cardiac function analysis in zebrafish. This method utilizes a deep learning model to enable 

the automatic evaluation of ejection fractions from heart echo-videos.  

This thesis outlines an approach hinging on a specific deep learning model 

architecture. The model's accuracy, confirmed using the Dice coefficient and the 

Intersection over Union (IoU) score, stood at a robust 0.967 and a significant 0.937, 

respectively. The testing phase yielded a promising error rate range from 0.11% to 16.96%, 

averaging 5.13%, attesting to the method's accuracy and reliability. Furthermore, this 

method can be assimilated into existing lab settings, synergizing with binary recordings to 

optimize large-scale video analysis and improve high-throughput screenings' efficacy. 

Compared to traditional techniques, this deep learning-based method simplifies zebrafish 

cardiac function monitoring and quantification, thus boosting laboratory efficiency. In 

conclusion, this approach heralds a notable advancement in zebrafish cardiovascular 

research. Enhancing the speed, accuracy, and ease of cardiac function analysis holds 

significant potential to transform the study of cardiovascular diseases, serving as a crucial 

tool for researchers in this pivotal field. 
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CHAPTER 1 – INTRODUCTION 

Cardiovascular disease (CVD) remains an escalating global health concern, 

representing a significant public health challenge. It is a leading cause of morbidity and 

mortality, with an alarming 17.9 million deaths annually, equating to roughly 32% of all 

global fatalities [1]. CVD persists despite the significant financial resources dedicated to 

medical research to curb this health crisis. The persistently high rates of CVD incidence 

necessitate ceaseless efforts from the scientific community. Researchers consistently seek 

innovative strategies to understand heart diseases and potential therapies further. 

Zebrafish (Danio rerio) have surfaced in this endeavor as a beneficial and unique model 

organism to bolster cardiovascular research [2]. Zebrafish offer multiple benefits over 

traditional animal models in cardiovascular studies. First, these tropical fish mature rapidly 

within 2-3 months, making them ideal for high-throughput genetic and drug screening 

studies. Second, they require standard aquarium conditions and regular feeding, making 

maintenance straightforward and cost-effective. 

Notably, zebrafish exhibit a high degree of genetic similarity to humans, with about 

70% of human genes having a zebrafish analog. This facilitates a comprehensive 

exploration of genetic factors contributing to CVD. Zebrafish stand out due to the optically 

transparent nature of their embryos, enabling non-invasive observation of cardiac 

development. This transparency allows real-time heart formation observation using 

standard microscopic techniques [3]. Such visualization and tracking of cardiac 

development and function allow dynamic and longitudinal monitoring of disease 

progression and therapeutic interventions. Furthermore, zebrafish lay hundreds of eggs 
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weekly, accelerating genetic studies. The swift generation of large offspring numbers 

allows efficient screening of genetic variations and deepens understanding of their impact 

on cardiac function. In summary, zebrafish offer multiple benefits, such as rapid 

development, easy maintenance, genetic similarity to humans, optical transparency, and 

high reproduction, making them indispensable for advancing cardiovascular disease 

knowledge. The use of zebrafish in cardiac research continues to grow as scientists uncover 

therapeutic possibilities against cardiovascular diseases. 

Zebrafish and humans share striking physiological similarities, making these 

tropical fish invaluable for medical research, particularly cardiovascular studies. Notably, 

due to a similar prolonged plateau phase in both species, zebrafish's cardiac action 

potential phenotype closely mirrors humans' [4]. This similarity enables a deeper 

understanding of cardiovascular processes that are usually challenging to study in humans. 

Remarkably, zebrafish can regenerate damaged heart tissue, a characteristic they share 

with certain amphibian species. Unlike humans, where heart damage usually results in 

non-functional scar tissue, zebrafish can fully restore their cardiac functionality after 

injury. This regenerative capacity offers a powerful model for studying heart repair and 

regeneration, potentially leading to innovative therapeutic approaches for heart disease [5]. 

Zebrafish are invaluable tools for preclinical drug testing due to their genetic tractability 

and experimental versatility. Researchers can induce heart disease in zebrafish using 

genetic manipulation or chemical exposure, then thoroughly evaluate new drugs' 

therapeutic potential. This includes assessing the drugs' ability to alleviate disease 

symptoms, restore normal heart function, and promote cardiac repair [6]. An example of 

zebrafish's utility in therapeutic testing is antiarrhythmic drug development. Arrhythmias, 
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irregular heart rhythms, can lead to severe complications, including heart failure and 

stroke. Zebrafish have successfully been used to evaluate potential antiarrhythmic drugs' 

efficacy [7]. In conclusion, zebrafish's physiological homology with humans, regenerative 

cardiac ability, and suitability for disease induction and drug testing make them invaluable 

model organisms in cardiovascular research. Their use is expected to grow, driving 

advancements in the understanding and therapeutic development of heart disease. 

Over the past decade, scientists have developed various cardiomyopathy models in 

adult zebrafish, including models for inherited cardiomyopathies. These are linked to 

causative genes such as Myosin heavy chain 7 (MYH7) and Lysosome Associated 

Membrane Protein 2 (LAMP2) [8-10]. These models offer precious insights into heart 

disease's genetic and molecular mechanisms and are helpful for testing potential 

therapeutic interventions. The creation and subsequent analysis of cardiomyopathy 

models in zebrafish often critically depend on the availability of medical imaging data, 

which can sometimes prove limiting. This constraint is especially pronounced for echo-

videos, invaluable tools for assessing cardiac structure and function. Echo-videos facilitate 

real-time visualization and measurement of diverse cardiac parameters, providing 

essential information on the heart's overall health and performance. A significant challenge 

posed by echo-video analysis is the requirement for manual annotation. This particular 

task, usually carried out by expert biologists, involves precisely labeling different video 

aspects. Due to the subjective nature of manual annotation, this process is labor-intensive, 

time-consuming, and susceptible to inconsistencies. Furthermore, when performed by 

untrained individuals, it can lead to errors, introducing potential challenges for subsequent 
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data validation. However, the recent strides in deep learning methodologies offer a 

promising solution to these hurdles.  

Deep learning, an artificial intelligence subfield, leverages the power of intricate 

algorithms and neural networks to facilitate continuous learning and improvement based 

on experiential data. It has shown tremendous potential in developing automated 

segmentation tools explicitly designed for medical imaging data, including echo-videos. 

Deep learning algorithms can be rigorously trained in medical imaging to recognize and 

segment-specific structures within images, such as accurately identifying the cardiac region 

in echo-videos [11]. This process, known as image segmentation, is crucial in computer 

vision and medical imaging. It involves partitioning an image into distinct regions based on 

semantic meaning, greatly assisting in image analysis and interpretation. In recent years, 

deep learning-driven image segmentation techniques have exhibited remarkable 

effectiveness across various applications.  

The encoder-decoder network stands out among the diverse deep learning 

architectures employed for this task. This architecture comprises two distinct components: 

an encoder network, which extracts high-level features from the image, and a decoder 

network, which uses these features to produce a pixel-wise segmentation map [12]. In 

conclusion, while generating and analyzing zebrafish cardiomyopathy models present 

specific challenges, particularly regarding medical imaging data, recent advancements in 

deep learning offer a promising avenue. Utilizing sophisticated algorithms and neural 

networks, deep learning holds the potential to revolutionize medical imaging data analysis 
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and interpretation. This could lead to a more accurate understanding of heart diseases, 

ultimately paving the way for developing innovative therapeutic strategies. 

The Unet architecture, a seminal structure frequently deployed for image 

segmentation tasks across a broad range of domains, has demonstrated efficacy and 

robustness that have propelled it to become a standard reference for evaluating and 

comparing the performance of various image segmentation algorithms [13]. Comprised of 

two primary components—namely a contracting or "downsampling" path and an 

expanding or "upsampling" path, symmetric to one another—the Unet architecture 

presents a carefully balanced design. The contracting path endeavors to capture the 

context from the input image. This is accomplished through convolutional layers, followed 

by max-pooling layers, which progressively diminish the spatial dimensions of the feature 

maps while concurrently increasing their depth. By concentrating on the broader context, 

this network segment absorbs and abstracts the overarching characteristics and patterns 

present within the image. Conversely, the symmetric expanding path places its focus on 

precise localization. This pathway employs a series of up-convolution or transposed 

convolution operations, which progressively enlarge the spatial dimensions of the feature 

maps, thus empowering the network to generate a detailed segmentation map. Unet's 

unique design configuration enables it to capture global context information while 

preserving detailed spatial information. This capability renders the architecture highly 

suitable for segmenting objects of diverse sizes and shapes, offering a combination of 

generalization and specificity in its output.  
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Notwithstanding the proven efficacy of Unet, the potential for further enhancement 

remained. In pursuit of augmenting the segmentation performance of Unet, an advanced 

iteration—aptly named Unet++—was proposed [14]. This novel architecture introduces an 

innovative series of nested and dense skip connections between the encoder and decoder 

networks. These skip connections permit Unet++ to capture and utilize multi-scale 

features, resulting in heightened localization accuracy compared to the original Unet. 

Moreover, Unet++ integrates the concept of deep supervision into its design. This 

technique incorporates auxiliary segmentation branches into the network's intermediate 

layers, enabling Unet++ to provide earlier and more frequent feedback during the training 

process and assist the network in learning more efficiently. This methodology has 

enhanced training stability, accelerated the learning process's convergence, and ultimately 

contributed to superior segmentation performance. In essence, Unet++ represents a 

significant leap forward from the original Unet architecture, offering enhancements in 

feature extraction, localization accuracy, and training efficiency. These improvements 

render Unet++ an even more potent tool for image segmentation, capable of tackling 

complex segmentation tasks with remarkable accuracy and robustness. 

In conjunction with these supervised learning architectures, unsupervised image 

and video segmentation models have increasingly drawn interest. Unsupervised learning 

models, which operate independently of labeled training data, have been effectively 

implemented with medical datasets, thus offering an alternative technique for segmenting 

medical images. Utilizing unsupervised segmentation, medical images can be processed in a 

manner that is both efficient and precise with skipping the labeling process.  
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In this thesis, experiments involving unsupervised segmentation and supervised 

image segmentation were conducted. Among these diverse methodologies, supervised 

image segmentation emerged as the most promising technique for the task of heart 

segmentation in echo-videos and the evaluation of the ejection fraction.  Within this 

context, the supervised image segmentation approach exhibited commendable accuracy, 

furnishing a robust and reliable method for the evaluation of the ejection fraction. In 

summation, deep learning-based image segmentation architectures, such as Unet and 

Unet++, have displayed extraordinary promise in medical imaging applications, notably in 

tasks related to object segmentation and ejection fraction evaluation. While unsupervised 

models also present unique advantages, supervised image segmentation has demonstrated 

itself to be particularly effective in tasks that demand high levels of precision and accuracy.  
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CHAPTER 2 – Materials and Methods 

2.1 Experimental animals 

Zebrafish (Danio rerio) were maintained under a 14 h light/10 h dark cycle at 28.5 

◦C. All animal study procedures were performed in accordance with the Guide for the Care 

and Use of Laboratory Animals published by the U.S. National Institutes of Health (NIH 

Publication No. 85-23, revised 1996). Animal study protocols were approved by the Mayo 

Clinic Institutional Animal Care and Use Committee (IACUC #A00002783-17-R20). 

2.2 Dataset 

The present study utilized a dataset consisting of echo-videos of zebrafish. The pro-

duction of video files was achieved by utilizing the Vevo 3100 high-frequency imaging 

system, which is equipped with a 50 MHz (MX700) linear array transducer (manufactured 

by FUJIFILM VisualSonics Inc). This advanced imaging system was employed to precisely 

measure cardiac function indices in adult zebrafish of varying ages and mutant types. To 

ensure the highest level of image clarity and detail, acoustic gel (specifically, Aquasonic®  

100, produced by Parker Laboratories) was applied to the surface of the transducer, 

promoting optimal coupling between the transducer and the tissue interface. To obtain 

these images, the adult zebrafish were anesthetized by using a 0.02% tricaine 

concentration, which lasted approximately five minutes. Subsequently, each zebrafish was 

placed ventral side up and held firmly, yet gently, in place using a soft sponge stage. 
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Regarding image acquisition, the 50 MHz (MX700) transducer was positioned 

directly above the zebrafish, allowing for the clear capture of images from the sagittal 

imaging plane of the heart. B-mode images were within an imaging field of view of 9.00 mm 

in the axial direction and 5.73 mm in the lateral direction. Additionally, the frame rate was 

123 Hz, used medium persistence, and set the transmit focus at the heart's center to ensure 

the utmost image clarity and accuracy. The data acquisition and subsequent processing 

followed protocols as outlined in a report available in the existing literature [15]. The 

application of doxorubicin was also involved, a compound recognized for its capacity to 

induce cardiomyopathy in adult zebrafish [16,17]. Doxorubicin was administered 

intraperitoneally at a dosage of 20 mg/kg. The ejection fraction decline, a key measure of 

cardiac function, became detectable via echocardiography 56 days post-injection (dpi). In 

the orientation of the zebrafish within the echocardiography apparatus, a consistent 

protocol whereby the zebrafish was oriented with its head to the left and ventral side 

facing upwards was adhered to. This consistent positioning facilitated reproducibility and 

standardization across all imaging procedures. 

 The present study utilized a dataset composed of 1005 meticulously curated frames 

sourced from 164 echo-videos, with individual videos contributing between 2 to 10 frames. 

This ensured a diverse and representative data aggregation for the research study, as 

depicted in Figure 1. The selection process was accounting for various influential factors 

such as the visibility and clarity of the heart and ventricular boundaries, alongside the 

diversity of heart states and rhythms. Once the frame selection process was completed, 

each chosen frame underwent a comprehensive manual annotation process. An expert 

collaborative researcher carried out this task—a highly trained biologist with considerable 
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field experience. Vevo Lab software was the tool of choice for this crucial step. This 

software, noted for its precision and extensive features, empowered the biologist to 

accurately delineate the requisite anatomical boundaries within each frame. The resultant 

annotated images featured cyan lines to depict the ventricular boundaries and denote the 

ventricle's long axis (LAX) and short axis (SAX). Such annotations are essential for training 

the deep learning model, as they function as the 'ground truth' from which the algorithm 

derives its learning. Upon completing the annotation phase, corresponding masks 

representing the ventricular area were generated. This was facilitated by ImageJ software, 

an open-source platform with a broad spectrum of features apt for the analysis and 

processing of scientific images. These masks offer a binary representation of the 

ventricular area, a fundamental input for the segmentation model training process. 

To augment the richness and diversity of the dataset—thus enhancing the 

robustness of the deep learning model—this study incorporated data augmentation 

techniques. These techniques encompass operations such as rotation, random brightness, 

sharpening, elastic transform, etc., and serve to inflate the dataset by creating modified 

versions of the existing images. This strategy led to a four-fold increase in the size of the 

dataset, supplying the model with a broader, more comprehensive range of data from 

which to learn. Additionally, for data splitting and model evaluation, group k-fold cross-

validation was employed, with k assigned the value of 5. This approach ensures that the 

same group, in this instance, frames from an identical video, does not feature in training 

and validation sets. Each validation set was composed of frames sourced from videos that 

were unequivocally different from those included in the corresponding training set. This 

precaution was of utmost importance to mitigate the risk of overfitting—a phenomenon 
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that arises when a model acquires a deep familiarity with the training data to the extent 

that it captures noise or random fluctuations inherent in the data. This, in turn, results in 

subpar performance on unseen data. Ensuring the validation set incorporated frames from 

unique videos prevented the model from achieving high accuracy simply by memorizing 

familiar patterns and signal noise. This promoted the model's capacity to generalize its 

learning to new, previously unseen data.  

   

(a) (b) (c) 

Figure 1. (a) A cropped frame extracted from echo-videos; (b) A cropped image labeled by 
VEVOLAB; (c) A mask created by ImageJ and image processing method. 

 

2.3 Cardiac function assessment 

Ejection fraction (EF), an essential metric to evaluate heart function, is quantified as 

the ratio of blood ejected from the ventricle with each heartbeat and can be mathematically 

expressed as follows: 

𝐸𝐹% =  
(𝐸𝐷𝑉−𝐸𝑆𝑉)

𝐸𝐷𝑉
× 100%,     (1) 
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the end-diastolic volume (EDV) and end-systolic volume (ESV) represent the 

ventricular volumes at the end of diastole and end-systole, respectively. The area-length 

method is frequently utilized to calculate EDV and ESV [18] using the following formula:  

𝐸𝐷𝑉 =  
8×𝐴𝑟𝑒𝑎(𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐)2

3𝜋×𝐿𝐴𝑋(𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐)
,     (2) 

𝐸𝑆𝑉 =  
8×𝐴𝑟𝑒𝑎(𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐)2

3𝜋×𝐿𝐴𝑋(𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐)
,     (3) 

this method involves the measurement of the area of the ventricle and the length of 

the ventricular long axis (LAX), which is the line connecting the middle of the base of the 

heart to its tip. 

2.4 Unsupervised segmentation approach 

Unsupervised image and video segmentation methodologies, which circumvent the 

need for pre-labeled training data, have progressively gained traction in computer vision. 

These techniques harbor considerable potential across a gamut of applications. However, 

the formidable challenge lies in discerning and tailoring an appropriate method for 

extracting features from zebrafish echo-videos. 

A method that has drawn attention entails the utilization of modified convolutional 

neural networks (CNNs) [19], a particular category of deep learning models that have made 

notable strides in image analysis tasks. These specially designed CNNs undertake the task 

of ascribing labels to pixels in an unsupervised manner, thereby facilitating image 

segmentation without needing pre-labeled training data. This unsupervised approach's 

feasibility is rooted in optimizing pixel labels and feature representations via gradient 

descent—a widely used iterative optimization algorithm within the machine learning 
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sphere aimed at function minimization. This procedure involves iterative updates to the 

network parameters, enabling the model to learn how to assign labels to pixels most 

effectively. 

A distinct and promising instantiation of unsupervised learning within the video 

segmentation context is exemplified by Dino [20], a self-supervised learning method 

predicated on Vision Transformers (ViTs). Vision Transformers represent a novel 

advancement in computer vision, utilizing transformer models—originally crafted for 

natural language processing tasks—for image classification. Dino employs an innovative 

approach to self-supervised learning, aiming to predict the output of a teacher network—a 

well-trained model that serves as the guiding beacon throughout the learning process. It 

comprises a momentum encoder, which maintains a moving average of the model 

parameters to ensure learning stability. It employs a standard cross-entropy loss function 

for optimization. 

What distinguishes Dino from CNNs and supervised ViTs is its innate capability to 

explicitly encode semantic information pertinent to image segmentation, such as scene 

layout and object boundaries. This unique functionality enables it to discern the structural 

layout of the scene and distinguish between different objects, offering potential benefits for 

tasks necessitating an understanding of spatial relationships within an image. 

Nevertheless, despite the promise held by these unsupervised methods, they come with 

limitations, particularly when confronted with the inherent challenges of echo-videos, such 

as blurring and signal noise (Figure 2). These factors can severely impede the effectiveness 

of unsupervised segmentation methods, compromising their ability to accurately segment 
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the heart region and assess the ejection fraction within zebrafish echo-videos. As a result, 

supervised image segmentation, which harnesses the power of pre-labeled training data, 

has been the solitary method demonstrating adequate accuracy within the context of this 

study. Supervised learning methods hold the advantage of learning directly from labeled 

exemplars, enabling them to develop a more precise comprehension of the segmentation 

task at hand. Consequently, despite the potential shown by unsupervised methods, 

supervised image segmentation has proven to be the most reliable and accurate approach 

for this specific task. 
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(a) (b) 

  

(c) (d) 

Figure 2. Unsupervised segmentation trials utilizing different methods failed to detect 
expected masks. Each image is represented by a distinct color, signifying the model-
generated segmentation regions. (a) An original frame, where individuals without training 
could not accurately classify the ventricle's location due to the lack of ground truth labels; 
(b) An expected mask created manually; (c) A result frame obtained using modified CNNs 
revealing that the model is susceptible to color interference and, as such, is unsuitable for 
echo-videos; (d) A result of Dino demonstrating the model was incapable of detecting the 
ventricle due to background noise. 

 

2.5 Supervised image segmentation approach 

In previous work, members of our lab proposed the ZACAF, a framework based on a 

deep learning model for the automated assessment from bright field microscopy videos 

[21]. This thesis incorporated the usage of segmentation model modules that are readily 

accessible on PyTorch, an established machine-learning framework renowned for its 
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widespread recognition. The models selected for the encoding phase included Resnet [22], 

Efficientnet [23], ResNeXt [24], and Mobilenet [25]. These models were carefully handpicked, 

not merely due to their robust capabilities but also their distinct attributes, which catered 

to a wide array of approaches to address the problem. Resnet34, Efficientnet-b4, and 

ResNeXt-50-32x4d were meticulously singled out for a more granular examination. This 

approach paved the way for a comparative exploration to identify which varied 

architectures demonstrated superior proficiency at extracting pertinent features from the 

dataset under scrutiny while maintaining parameter sizes within relatively consistent 

boundaries. 

Resnet, the first among these models, has garnered widespread popularity in deep 

learning. Characterized by its relatively shallow depth, Resnet has the upper hand in 

alleviating issues such as overfitting and vanishing gradients, common stumbling blocks in 

deep learning. Furthermore, Resnet distinguishes itself through its 'residual learning' 

approach, which learns from residuals or errors instead of the unaltered target. 

Efficientnet, the second architecture, has demonstrated impressive efficacy across 

various image classification tasks. This performance can be attributed to its hierarchical 

structure, which facilitates balanced handling of the network's depth, width, and 

resolution. This unique architectural design empowers Efficientnet to manage more 

complex models and utilize resources more efficiently, conferring an advantage in image 

processing tasks. 

ResNeXt, on the other hand, deploys a unique strategy known as the split-transform-

merge methodology. In this approach, information from multiple pathways is initially split 
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and then independently transformed, post which it is recombined. This procedure bestows 

ResNeXt a high degree of flexibility and adaptability, enabling it to grapple with intricate 

data structures. 

Finally, Mobilenet-v2 was incorporated into this study, given its compact yet potent 

design. With its modest size and reduced computational demands, it has proven to be an 

optimal choice for mobile and embedded devices, ensuring practicality and efficiency. It 

utilizes depthwise separable convolutions, which render it significantly smaller and faster 

than other models while retaining a high degree of accuracy, thereby making it a crucial 

addition to the comparative analysis. 

For the decoder portion of the image segmentation pipeline, Unet (Figure 3) and 

Unet++ were chosen, both highly regarded and extensively employed architectures in deep 

learning for image segmentation. The Unet model is valued for its effectiveness in 

biomedical image segmentation, owing to its expansive symmetric path that accurately 

captures context and location information. Unet++, a more advanced variant of Unet, 

encompasses nested, dense skip pathways to promote feature reuse, thereby providing 

more precise localization and enhancing the model's performance in segmenting complex 

images. 

 The model training procedure in this research was accelerated by utilizing NVidia's 

A10 and H100 GPUs' computational capabilities, which were available via an online cloud 

service platform. Harnessing the potency of these GPUs expedited the procedure, thus 

rendering the training phase both speedier and more efficient. This acceleration is critically 

important considering the inherently complex nature of deep learning models. In this 



 

18 

 

investigation, the dice loss function was employed, a frequently used loss function 

specifically tailored for semantic image segmentation tasks [26]. This loss function is 

distinguished by its proficiency in tackling typical challenges that surface in medical image 

segmentation tasks. A prominent issue in this field is the imbalance between foreground 

and background classes, potentially resulting in suboptimal segmentation outcomes. The 

dice loss function proposes an elegant resolution to this issue. Its design encourages the 

equal penalization of false negative and false positive errors, thereby promoting a balanced 

methodology and assuring superior precision in the segmentation outcomes. 

The experimental findings revealed that using pre-trained weights, a technique 

routinely employed to enhance the performance of deep learning models, had a 

detrimental impact on the model's accuracy. Pre-trained weights represent a form of 

transfer learning, a process whereby knowledge acquired from training on large-scale 

datasets is transferred to boost the model's performance. Nevertheless, in this specific 

scenario, this technique proved to be counterproductive. This unexpected outcome might 

be attributable to the domain shift. In this phenomenon, the distribution of data changes 

between the extensive datasets on which the weights were pre-trained and the specific 

medical datasets employed in this research. Within deep learning, domain shift poses a 

considerable challenge as models trained on a particular dataset may not perform 

optimally on another due to variations in data distribution. Consequently, while pre-

trained weights can prove beneficial in many scenarios, this finding suggest that their 

usage only sometimes enhances performance. It may even have a harmful effect when a 

significant domain shift occurs, as was evident in this research. This underscores the 
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necessity of exercising caution and mindfulness when implementing transfer learning, 

particularly within highly specialized domains such as medical image analysis. 

 

Figure 4. The selected example supervised image segmentation model architecture and its 
associated pro-cess flow. Specifically, Efficientnet-b4 as the Encoder and Unet as the 
Decoder were utilized in this figure. Initially, the frame was cropped from 
echocardiography videos and fed it into the Encoder. The Encoder comprised a convolution 
layer (Conv layer), batch normalization layer (BN layer), and Convolution block (Conv 
Block), each consisting of several convolution layers and batch normalization layers with 
varying scales. Next, the Decoder was utilized, which included the De-coder block, 
convolution layer, and sigmoid function. Each decoder block contains a convolution layer, 
batch normalization layer, and rectified linear unit (ReLU) activation function. Upon com-
pleting the deep learning model, a segmentation mask was obtained. Subsequently, contour 
detection was utilized to locate the ventricle, with the LAX determined via the midpoint of 
the left base connected to the right tip of the heart. 
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2.6 Quantitative comparison of approaches 

2.6.1 Dice coefficient 

The dice coefficient (DC) is a commonly used evaluation metric in image 

segmentation tasks. It measures the degree of similarity between two objects, where a 

score of 1 denotes perfect agreement or complete overlap, and a score of 0 indicates no 

overlap. The calculation of the dice coefficient is obtained by taking twice the intersection 

of the two objects and dividing it by the sum of the pixels in both objects. In the case of 

binary segmentation, the formula can be expressed as: 

𝐷𝑖𝑐𝑒 =  
2|𝐴∩𝐵|

|𝐴|+|𝐵|
,      (4) 

where A and B represent the two objects being compared, and the absolute values of 

A and B denote the total number of pixels in each object. The intersection of the two objects 

is the number of pixels that both objects have in common. 

2.6.2 Intersection over union 

Intersection over union (IoU), also known as the Jaccard Index, is a widely used 

metric for evaluating the performance of image segmentation algorithms. This metric is 

calculated by taking the ratio of the area of overlap between the predicted segmentation 

and the ground truth segmentation to the area of union between them. IoU ranges from 0 

to 1, with 0 indicating no overlap and 1 indicating perfect overlap. For binary 

segmentation, the IoU can be computed using the following formula: 

𝐽 =  
|𝐴∩𝐵|

|𝐴∪𝐵|
,      (5) 
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where A and B represent the predicted and ground truth segmentation masks, 

respectively. The intersection between A and B refers to the set of pixels where both A and 

B have a non-zero value, while the union between A and B refers to the set of pixels where 

either A or B has a non-zero value. This metric is commonly used in deep learning-based 

segmentation models, as it provides a reliable measure of the accuracy of the model's 

predictions compared to the ground truth segmentation.  

2.6.3 Receiver operating characteristic 

The receiver operating characteristic (ROC) curve serves as a graphic 

representation of a binary classifier's diagnostic competence as the discrimination 

threshold is adjusted. For the incorporation of ROC curves in this image segmentation 

model, the preliminary step was the calculation of a probability map corresponding to the 

target segmentation. Herein, each pixel is attributed with a probability value indicating its 

likelihood of being a part of the foreground. As the next step, the threshold was adjusted to 

classify a pixel as foreground or background, facilitating the computation of the true 

positive rate and the false positive rate at each respective threshold. 

The area under the ROC curve (AUC), a critical metric, provides a quantitative 

measure of the model's precision in pixel classification, irrespective of the selected 

threshold. In an ideal scenario, a flawless classification model would be characterized by an 

AUC of 1, whereas a model whose performance equates to that of random classification 

would exhibit an AUC of 0.5. The ROC curve and the AUC together serve as indicators the 

image segmentation models’. 
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CHAPTER 3 – Results 

The results provided in Figure 4 elucidated the model's performance characteristics 

when trained using a combination of the dice loss function and the Adam optimizer, a 

highly respected optimization algorithm within the realm of deep learning. The model was 

configured with a learning rate of 0.001, a pivotal hyperparameter that prescribes the 

magnitude of the step during the gradient descent process. When combined with a decay 

rate of 0.8 that was applied after every 20 epochs, the chosen learning rate facilitated the 

sculpting of a finely calibrated learning curve that promoted superior model optimization 

throughout the training. During the model training phase, this study incorporated an early 

stopping strategy. This technique, frequently employed in machine learning paradigms, 

safeguards against overfitting by prematurely terminating the training process when no 

significant improvement in the model's performance on the validation set is observed over 

successive iterations. Beyond its primary role in preventing overfitting, this strategy is also 

instrumental in conserving computational resources, a key consideration given the often-

extensive computational requirements of deep learning models. 

Among the encoder-decoder architectures utilized in this research, the Unet++ and 

Efficientnet structures emerged as distinct frontrunners. These architectures achieved 

exceptional validation Dice coefficients of 0.967 and validation IoU scores of 0.937, 

respectively. These scores underline Efficientnet's proficiency in skillfully extracting 

pertinent features from the specific frames in this dataset, even when maintaining 

parameter sizes comparable to other encoder architectures. In a noteworthy observation, 

the Mobilenet_v2 architecture, despite its comparatively lower parameter count, achieved 
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an IoU score comparable to those of other encoders. This result underscores its potential as 

a practical choice for lightweight segmentation tasks, suggesting its possible utility in 

scenarios where computational resources might be limited. 

  

(a) (b) 

Figure 5. The dice coefficient (a) and intersection over union (b) results with k-fold cross-
validation for all selected architectures, with the x-axis representing different encoder 
architectures and the y-axis denoting the metrics. The model selection process was based 
on the higher validation result achieved by each architecture. The Unet++ and Efficientnet 
architectures outperformed the rest, achieving a validation Dice coefficient of 0.967 and 
validation IoU score of 0.937. Notably, over-fitting was observed, as indicated by the 
difference in training and validation metrics across all architectures. 

 

The model consistently demonstrated high-performance levels throughout the 

application of the k-fold cross-validation training process, a method renowned for 

providing a robust estimation of a model's performance. The Area exemplified this 

consistency Under the Curve (AUC) values surpassing 0.93 in all instances. Along with 

these remarkable AUC scores, the detailed outcomes of the Receiver Operating 

Characteristic (ROC) analysis were presented in Figure 5. 
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Figure 6. The receiver operating characteristic (ROC) curve and the area under the ROC 
curve during the k-fold cross-validation training process. AUC values exceeding 0.93 in all 
instances. 
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The principal aim of this research endeavor was to design a pioneering 

methodology that facilitates the automatic calculation of the ejection fraction in fish 

populations. In this scenario, this research sought to deploy image processing techniques 

as an innovative and potentially influential solution to this challenge. The methodology 

relies primarily on identifying the ventricular area within the fish's heart. After this, 

measurements of the identified ventricle's size were conducted in parallel with 

determinations of the left axis length (LAX) extracted from meticulously selected frames. 

The left axis length is a cardinal parameter as it offers insights into the heart's dimensions 

and the potential capacity of the ventricle (Figure 6). 

To evaluate the proposed method's performance, a dataset with 27 videos was 

utilized. These videos covered three distinct categories of fish, thus offering a varied range 

of data to scrutinize. For analysis, frames were manually selected and labeled to ensure the 

most informative snapshots were employed to assess this method's capabilities. The 

findings obtained from this investigation were illuminating. The method's error rate was 

discovered to span between a minimum of 0.11% and a maximum of 16.96%, as depicted in 

Figure 7. This range provides insights into the variability of the results, suggesting that 

while the model is generally accurate, there can be instances where the error is marginally 

higher. Perhaps of greater significance, the mean error across all the conducted tests was 

determined to be a mere 5.13%. This statistic affirms the exceptional accuracy of the 

automated EF assessment method. Such a low average error implies that this method is 

robust and reliable, consistently delivering precise results. This research endeavor 

illuminated the potential of the proposed method in revolutionizing EF calculation in 

zebrafish and possibly in other fish species. The indications suggested that this method can 
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significantly augment both efficiency and accuracy of EF computations, thus reducing the 

time consumed in manual evaluations and mitigating the propensity for human error. 

 

Figure 7. Comparison of automatic and manual volumes measurements. The solid lines in 
the figure corresponded to the ventricle contour and the LAX, detected by the proposed 
method. The cropped images, labeled manually with dotted lines, correspond to the manual 
label for each frame. The figures in the same row were selected from the same fish group, 
and the measurements are in pixels. 
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Figure 8. Bland-Altman plot for 27 sets of measurements of the EF evaluation using manual 
and automatic methods. Each point in the figure represents the assessment result from a 
different video, and the measurements are in pixels. 

 

CHAPTER 4 – Discussion 

The critical role of medical image segmentation in evaluating and analyzing cardiac 

function cannot be overstated. This process carries significant weight in the realm of avant-

garde scientific research and within the confines of clinical settings. Traditional manual 

segmentation demands a prodigious amount of time and meticulous precision, two factors 

that often hinder its practicability and utility. Furthermore, the outcome of this labor-

intensive manual process is frequently characterized by substantial variability, a 

discrepancy that arises from differences in interpretation among human evaluators. This 

inherent variability has a pronounced effect on the reliability and reproducibility of the 
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results, thereby underscoring the urgent need for and the desirability of automated 

segmentation methodologies. In the study, an exploratory expedition to scrutinize the 

segmentation of cardiac imaging was embarked on, specifically of zebrafish.  

In the recent past, unsupervised learning methodologies have captivated the 

research community's interest and experienced a surge in popularity in the domain of 

image and video segmentation. It has shown substantial promise when applied to more 

voluminous and diverse datasets, such as the Densely Annotated Video Segmentation 

(DAVIS) dataset [27]. The main allure of these methodologies stems from their innate ability 

to extract pertinent features from datasets without the necessity for labeled data. This 

capability is particularly beneficial when data labeling becomes an onerous task due to the 

sheer magnitude of the data involved or where labeling is infeasible due to other 

constraints. However, the efficacy of unsupervised learning algorithms has its limitations. It 

is intrinsically tied to the quality and complexity of the dataset involved, as highlighted by 

previous research [28]. These factors become exponentially critical in medical imaging, 

wherein a high level of detail and complexity often characterizes the images. Substandard 

dataset quality or limitations in its complexity can significantly impair the effectiveness of 

unsupervised learning algorithms. 

In this study, the quality of the zebrafish cardiac imaging dataset posed several 

impediments that negatively influenced the performance of the unsupervised learning 

methods under scrutiny. To begin with, the relatively limited size of the dataset, coupled 

with the blurred images, posed formidable challenges for unsupervised learning 

methodologies. These dataset characteristics crippled the algorithms' ability to identify 
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pertinent features and patterns effectively, leading to less-than-optimal segmentation 

results. 

Secondly, the high degree of variability inherent in the dataset presented another 

obstacle, especially regarding classification tasks. This proved particularly challenging for 

individuals who need a background or expertise in the field. The variability was not merely 

confined to discrepancies between videos sourced from different fish; it was also observed 

within the same fish group. Videos obtained from the same group often exhibited divergent 

visual characteristics, adding complexity to the classification task. Such visual appearance 

variations could perplex algorithms, making it arduous to establish consistent classification 

rules and, consequently, diminish the effectiveness of the unsupervised learning methods. 

In conclusion, despite the promising potential that unsupervised learning methods 

present for automating image and video segmentation tasks, their effectiveness is 

inextricably linked to the quality and complexity of the data they are applied to. In the case 

of the zebrafish cardiac imaging dataset, several challenges that emphasize the necessity 

for meticulous consideration of data quality as dataset characteristics when deploying 

these methods were identified.  

During the investigation, integrating the Efficientnet and Unet++ architectures 

yielded the most favorable segmentation outcomes when applied to the zebrafish heart 

imaging dataset was observed. This compelling discovery underscores the potential 

advantages of combining different architectures in a hybrid model to leverage their 

strengths. In this specific scenario, the objective was to enhance the performance of 
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automated image segmentation tasks, which was evidently achieved by amalgamating 

these two architectures. 

In this study, to counteract the common issue of overfitting, this approach involved 

implementing data augmentation techniques, a strategy widely utilized in the domain of 

deep learning. This technique involves the generation of new training samples by applying 

various transformations to existing data. This strategy intends to enhance the dataset's 

diversity and size, thereby bolstering the model's capability to generalize. Regrettably, 

despite the proactive measures to combat overfitting through data augmentation, this issue 

persisted in the remaining architectural models. This inability of data augmentation to 

improve performance may be attributable to the highly specialized nature of the dataset, 

the temporal information embedded in the videos, and the limited variability within the 

dataset. Cumulatively, these factors have rendered the data augmentation strategies 

impotent in improving the model's consistency across the dataset. 

An intriguing finding that emerged from this study was the substantial 

improvement in model accuracy observed when the encoder component of the model was 

conjoined with the Efficientnet architecture. This result implies that Efficientnet displayed 

a particular prowess in extracting valuable features from the zebrafish heart imaging 

dataset, a strength that consequently improved the model's overall performance. Turning 

the attention to the decoder architecture, the Unet model generated results that were on 

par with those of Unet++, despite a substantial disparity in their training times. It is 

noteworthy that Unet++ demanded more than a third of the total training time required by 

Unet, thereby establishing Unet as a more time-efficient choice for this specific task. This 
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finding holds particular significance when working with nascent or smaller datasets, where 

the minimization of training time can be a critical factor to consider. 

The Intersection over Union (IoU) score represents a critical performance metric in 

image segmentation tasks. Its pivotal role is particularly emphasized in biomedical image 

analysis, where high precision and accuracy are not only expected but fundamentally 

required. An IoU score in the lower range signifies a diminished overlap between the 

predicted segmentation and the ground truth. This suggests a divergence in identifying and 

delineating an object or area within the image. This discrepancy can lead to inaccuracies in 

subsequent calculations, including, but not limited to, measurements of area and the length 

of the left axis (LAX). This study identified a potential complication that manifests as an 

inaccurate representation of the ventricular shape by the segmented area. Should the 

segmentation model need to capture the precise shape and dimensions of the ventricle, 

discrepancies could emerge in the subsequent EF evaluations. This concern warrants 

substantial attention, especially in the context of biological structures, given their inherent 

complexity and wide range of variability. The dice loss function, which enjoys widespread 

application in image segmentation tasks, quantifies the similarity between the predicted 

and ground truth segments, focusing exclusively on their intersection. Despite its extensive 

usage, the Dice loss function might exhibit potential limitations, particularly its ability to 

accurately account for the shape patterns inherent within the images. This could 

potentially culminate in instances where the model fails to acknowledge some of the 

subtler aspects of the ventricular structure, consequently jeopardizing the accuracy of the 

segmentation results. This study achieved an impressive IoU score of 0.937, which hints at 

a high level of accuracy in the segmentation results. However, it is vital to acknowledge 
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these potential limitations, as they offer insights into areas ripe for refinement and 

enhancement. In conclusion, this research underscores the importance of meticulous 

consideration of both the unique attributes of the dataset and the complexity of the 

machine learning model architecture. This is especially significant when working with 

smaller, specialized datasets like the zebrafish heart imaging dataset. Understanding these 

nuances and potential pitfalls is vital to engineer accurate and reliable segmentation 

models. This understanding emphasizes the need for a delicate balancing act, wherein both 

the dataset's characteristics and the complexity of the machine learning model must be 

optimally attuned to achieve the best possible results. 

Considering the limitations above, it becomes evident that future research 

endeavors should strategically focus on examining larger and more comprehensive 

datasets of superior quality. Expanding the dataset's size and enhancing its quality could 

augment the efficacy of unsupervised learning methods. Such improvements could 

empower unsupervised models to derive more sophisticated patterns and insights, 

enhancing their competency in performing image segmentation tasks. In addition to 

amplifying the dataset's scope and quality, future studies could combine supervised and 

unsupervised learning methodologies to bolster the accuracy of medical image 

segmentation. This integrated approach could potentially harness the advantages of both 

paradigms, enabling models to learn from labeled and unlabeled data, which, in turn, could 

enhance their overall performance [29]. 

One feasible trajectory for further research could be implementing a supervised 

segmentation model predicated on the video model. This approach holds considerable 
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promise to boost segmentation accuracy substantially. Nevertheless, this pathway 

necessitates substantial volumes of labeled data, implying that extensive labeling efforts 

would be required. Given the limitations posed by the original scope of this study, such a 

pursuit was deemed infeasible. Therefore, subsequent work could also target the selection 

of the most suitable unsupervised algorithm, capable of extracting features that can 

provide robust support to model training effectively. By synthesizing all these strategies, it 

might be possible to navigate the multifaceted challenges posed by smaller, specialized 

datasets, propelling the field of automated medical image segmentation.  

CHAPTER 5 – Conclusion 

The prospect of harnessing the power of deep learning algorithms for the 

segmentation and assessment of cardiovascular metrics presents a promising direction for 

future research endeavors. The utilization of such technology carries distinct advantages, 

particularly in its capacity to substantially enhance the accuracy, efficiency, and objectivity 

of interpreting and analyzing complex biomedical data. The complexity and remarkable 

specificity inherent to such data often pose formidable challenges to traditional manual 

methods, accentuating the potential benefits and transformative impact of incorporating 

cutting-edge machine learning techniques. Furthermore, integrating automation into image 

processing and analysis can significantly alleviate the burden placed on researchers. It 

effectively mitigates the time and effort typically expended on labor-intensive manual 

tasks. Such a stride forward in technological advancement fuels the acceleration of 

research and amplifies the precision and replicability of data interpretation. 
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However, despite these substantial benefits, this investigation illuminates the 

inherent challenges and constraints of applying deep learning methodologies on compact, 

domain-specific datasets, such as those deployed in zebrafish studies. These datasets' 

confined size and specialized nature pose significant hurdles for deep learning models. The 

need for more training data may render these models susceptible to overfitting, a prevalent 

issue where the model excessively learns the training data, thereby performing poorly on 

unseen data. This predicament can lead to diminished generalization capabilities and 

decreased overall predictive accuracy, undermining the models' effectiveness and 

reliability. Future research endeavors will benefit significantly from investigating larger, 

superior-quality datasets. By expanding the size and enhancing the quality of datasets, the 

effectiveness of unsupervised learning methods can be increased. Such improvements 

would enable unsupervised models to uncover more sophisticated patterns and insights, 

enhancing their proficiency in image segmentation tasks. Moreover, an integrated 

approach that combines the merits of supervised and unsupervised learning 

methodologies can provide a valuable avenue for augmenting the accuracy of medical 

image segmentation. This integration could harness the potential of both paradigms, 

facilitating models to learn from labeled and unlabeled data, which could amplify their 

overall performance.   

On a broader scale, developing an automated system for segmenting zebrafish 

embryos from echo-videos utilizing supervised deep learning methods signifies a 

substantial progression in biomedical research. Further optimization and refinement of 

these deep learning models are anticipated to pave the way for accurate and efficient 
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evaluation of cardiovascular metrics derived from echo-videos, thus enhancing research 

efforts in cardiovascular development. 
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