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ABSTRACT: We evaluate the accuracy of local-density approx-
imations (LDAs) using explicit molecular dynamics simulations of
binary electrolytes comprised of equisized ions in an implicit
solvent. The Bikerman LDA, which considers ions to occupy a
lattice, poorly captures excluded volume interactions between
primitive model ions. Instead, LDAs based on the Carnahan−
Starling (CS) hard-sphere equation of state capture simulated
values of ideal and excess chemical potential profiles extremely
well, as well as the relationship between surface charge density
and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in
molecular simulations is found even in systems where ion correlations drive strong density and free charge oscillations within the
EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.

1. INTRODUCTION

Electric double-layers (EDLs) form adjacent to charged
surfaces in electrolytes, regardless of whether the charge is
fixed (e.g., via charged surface groups or specific ion
adsorption) or arises due to an externally applied electrostatic
potential (e.g., on an electrode). Ions in the electrolyte
rearrange to screen this interfacial charge over a length scale
that is determined by the characteristics of the electrolyte.
EDLs play a central role in colloidal1 and polyelectrolyte
science,2 micro- and nanofluidics,3 surface conductivity,4 “blue
energy” systems,5 and in electric double-layer capacitors6 that
store energy electrochemically across the EDL. Detailed ion
density profiles within EDLs have been measured experimen-
tally using various techniques and materials,7 e.g., from X-ray
reflectivity measurements of liquid−liquid interfaces8,9 and
Langmuir monolayers.10 Rational design and engineering of
EDL capacitors,11 electrokinetic flows,12 or capacitive deion-
ization systems13−15 require accurate double-layer models of
electrolytic and ionic liquid systems.7,16

Models and simulations have been developed to interpret
and predict EDL structure and capacitance. Simple mean-field
approaches remain popular because they are relatively easy to
use, yet they still capture essential EDL properties. The most
widely used are local-density approximations (LDAs),17 which
assume that ions interact with mean fields (electrostatic or
steric) rather than explicit ion−ion interactions. By nature,
LDAs neglect nonlocal correlations between ions and can
therefore fail at large potentials or in concentrated electrolytes,
both of which are experimentally relevant.1,18 As described by
Gillespie in a recent review,19 they can also fail on more basic
theoretical grounds near interfaces or electrodes if locally
averaged concentrations are not used, where the averaging is

performed over an ion-sized volume. Despite these well-known
shortcomings, LDA models have been proposed to treat short-
ranged enthalpic20 and steric interactions between equi-
sized21,22 and asymmetric23 ions for ionic liquids,24 electro-
chemical cells,6,13 and liquid−liquid interfaces.8,10

We recently showed that all EDLs described by any particular
LDA have self-similar scaling and thus collapse onto a single
master curve when plotted against suitably derived similarity
coordinates.25 Such similarity coordinates can be derived
directly from experimentally or computationally determined
EDL profiles, without assuming any particular form for a LDA.
This model-free test reveals whether it is possible for any LDA
to successfully describe a particular EDL and therefore whether
there is any sense in attempting to identify an appropriate LDA.
Nonetheless, the procedure gives no information regarding
which LDA would be appropriate.
In what follows, we compare the most common LDAs

against extensive molecular dynamics (MD) simulations, which
explicitly treat both electrostatic and steric interactions between
ions. In particular, the neglect of steric interactions between
ions has long been known to yield aphysical predictions near
highly charged walls and/or concentrated electrolytes.17 Our
MD simulations employ a variant of the so-called primitive
model (PM), treating ions as charged Weeks−Chandler−
Andersen26 spheres in an implicit solvent. We compare MD
results with predictions from the Bikerman21 (Bik) and
Carnahan−Starling27 (CS) LDAs, each of which accounts for
finite ion size in a continuum solvent by introducing an excess
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term to the chemical potential of each ion. In particular, the
CS-LDA treats ions as comprising a structureless hard-sphere
fluid, via the Carnahan−Starling equation of state.27 The Bik-
LDA, on the other hand, assumes ions to occupy a lattice,
wherein each site is occupied either by an ion or by solvent,
such that solvent is increasingly displaced by ions at large
surface charge densities.17,24 Because the Bik-LDA can be
solved analytically yet qualitatively captures the effect of ion
saturation, it remains one of the most popular LDAs.
Although both Bik- and CS-LDA capture qualitative features

of ion crowding within the EDL, quantitative assessments of
the accuracy of their approximations require explicit compar-
ison with atomistic simulations or, ultimately, experiments. We
find the CS equation of state accurately predicts the excess
components of the chemical potential, as measured directly in
our PM simulations, over a wide range of electrolytes and
volume fractions over substantial portions of all EDLs. By
contrast, the Bik-LDA performs rather poorly, even qualita-
tively, in capturing MD results. Consequently, the CS-LDA
outperforms the Bik-LDA (and, obviously, the Gouy−Chap-
man LDA that does not account for steric interactions at all) in
predicting integrated quantities like EDL capacitance as well as
local quantities like charge density profiles and components of
the chemical potential.
LDAs permit only monotonic density profiles28 and thus fail

to capture the oscillatory density profiles that arise when ions
pack at high concentrations. We define and measure a
correlation length, cor, to parametrize the breakdown of the
LDA approximation in our simulated EDLs. Beyond the cor-
thick correlated layer, nonlocal effects are negligible, where-
upon the CS-LDA accurately predicts PM EDL profiles over a
wide range of electrode charge densities and bulk volume
fractions. Somewhat surprisingly, the CS-LDA captures the
EDL capacitance well, even in cases where significant density
oscillations appear in the MD simulations. Thus, while the CS-
LDA fails to describe (oscillatory) EDL structures in highly
concentrated regions of the EDL, it nonetheless captures mean
and integrated quantities associated with the EDL quite well.

2. ELECTRIC DOUBLE-LAYER MODELS

We start by reviewing salient features of the two comple-
mentary approaches to treating EDLs: explicit molecular
dynamics and mean-field approximations. In what follows,
both approaches treat the solvent implicitly and consider EDLs
that are fully charged. LDAs assume ions to interact via average,
mean-field interactions rather than with other ions individually.
They account for steric (and other) interactions by
incorporating physically motivated chemical potentials that
depend on local quantities alone, neglecting, e.g., explicit ion−
ion correlations.17 Molecular simulations, on the other hand,
account explicitly for interactions between each pair of ions at
each time step and can thus naturally capture size-induced and/
or electrostatic correlations among ions with pairwise
interaction potentials.
2.1. Mean-Field Local-Density Approximations. Local-

density approximations require the chemical potential of each
ion species at every point in space r to depend only on local
quantities such as the density of ions n±(r) or electrostatic
potential ϕ(r), via

μ μ ϕ μ= * + + +T k T n q er( ) ( ) lni i i i i
LDA B ex (1)

where kB is the Boltzmann constant, T is temperature, qi is ion
valence, and e is the elementary charge. Equation 1 expresses
the LDA chemical potential μLDA

i in terms of a standard
chemical potential μ*

i , an ideal component, a contribution from
the mean electrostatic field ϕ, and an (as-yet undetermined)
excess chemical potential μex

i , respectively. Far from the surface
(r→ rB), all quantities assume constant (bulk) values, to give

μ μ μ ϕ μ→ → = * + + +T k T n q er r( ) ( ) lni i i i i i
LDA B B B B B ex,B

(2)

Subtracting eq 2 from eq 1 gives a relative chemical potential,
which we normalize by the thermal energy scale kBT to give

μ
μ μ

ϕ μ̃ =
−

= ̃ + ̃ + ̃ ≡
k T

n qr( ) ln 0i
i i

i i i
LDA

LDA B

B
ex

(3)

In eq 3, the ion number density ni has been nondimension-
alized by the bulk value nB

i

̃ =n
n
n

i
i

i
B (4)

and electrostatic potentials have been nondimensionalized by
the thermal potential to give

ϕ
ϕ ϕ

ϕ
̃ =

− B

T (5)

where

ϕ =
k T
q eiT
B

(6)

In what follows, we consider symmetric electrolytes, wherein
ions have identical sizes, equal and opposite valence q± = ± q,
and an electroneutral bulk (for which ϕB = 0 and with nB

+ = nB
− =

nB so that μex,B
+ = μex,B

− = μex,B). The bulk values μB
± of the total

chemical potential for each ion species are thus equal

μ μ=±
B B (7)

Using eq 3, we solve for the free charge density

ρ = + = −μ ϕ μ ϕ+ + − − − ̃ + ̃ − ̃ − ̃+ −
e q n q n qen( ) (e e )B

( ) ( )ex ex (8)

which, when nondimensionalized by 2qenB, is given by

ρ ρ̃ = = −μ ϕ μ ϕ− ̃ + ̃ − ̃ − ̃+ −

qen2
1
2

(e e )
B

( ) ( )ex ex

(9)

LDA models for electric double layers use Poisson’s equation
to relate the electrostatic potential to the free charge density
established by the ions. When nondimensionalized, as in eqs 5
and 9, Poisson’s equation becomes

λ ϕ ρ∇ ̃ = − ̃D
2 2

(10)

The Debye length λD

λ
πλ

=
n

1
8D

B B (11)

naturally arises and gives a characteristic length scale over which
the electrolyte screens the surface charge. Equation 11
expresses λD in terms of the Bjerrum length

λ
πε

=
qe

k T
( )

4B

2

B (12)
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which represents the distance at which the thermal energy scale
kBT balances the electrostatic energy between ions in a uniform
continuum with permittivity ε. We nondimensionalize all
lengths by λD unless otherwise indicated.
Using ρ as given by the equilibrium relation eq 8 in Poisson’s

equation, eq 10 gives the general modified Poisson−Boltzmann
equation

λ ϕ ϕ∇ ̃ = ∇̃ ̃ = −μ ϕ μ ϕ− ̃ − ̃ − ̃ + ̃− +1
2

(e e )D
2 2 2 ( ) ( )ex ex

(13)

Closing the LDA description requires a form for the excess
chemical potentials μ̃ex

± , after which the LDA equations can be
solved self-consistently by imposing constraints on the
electrostatic potential at the charged interface

ϕ ϕ̃ = ̃(0) 0 (14)

and in the bulk

ϕ ϕ̃ ̃ = ̃ ≡z( ) 0B B (15)

Equations 3 and 8 are fairly general and can be modified for
electrolytes with additional species or to incorporate nonlocal
excess terms that account for ion−wall interactions, such as a
wall excess chemical potential contribution μw

ex(z).
29

The classic Poisson−Boltzmann equation describes the
simplest mean-field LDA model and assumes ideal, point-like
ions in a structureless continuum solvent. In this idealized limit,
the excess terms in eq 1 vanish to give an ideal electrochemical
potential

μ ϕ̃ = ̃ ± ̃ ≡± ±nln 0GC (16)

so that ions follow a direct Boltzmann distribution, n ̃± = exp
(∓ϕ̃), whereupon eq 13 reduces to the (nonlinear) Poisson−
Boltzmann equation

ϕ ϕ∇̃ ̃ = ̃sinh2
(17)

The Gouy−Chapman (GC) solution satisfies the nonlinear
Poisson−Boltzmann equation for planar surfaces at arbitrary
surface potential.30,31 The potential drop across a GC EDL is
related to the surface charge Σ according to

ϕ
Σ̃ =

Σ
Σ

=
̃⎛

⎝
⎜⎜

⎞
⎠
⎟⎟2 sinh

2GC
GC

ref

0

(18)

where we have scaled surface charge density by the natural scale

λ
πλ λ

Σ = =qen
qe

2
4ref B D

B D (19)

Equation 17 can be linearized in the limit of low potentials
(ϕ̃ ≪ 1)

ϕ ϕ∇̃ ̃ = ̃2
(20)

giving the Debye−Hückel (DH) EDL with potential

ϕ ϕ̃ = ̃ − ̃zexp( )DH 0 (21)

and surface charge

ϕΣ̃ = ̃
DH 0 (22)

When the bulk electrolyte is dilute, all LDAs reduce to the DH
form sufficiently far from the surface, even for highly charged
electrodes.28

Despite its near-ubiquitous use, the GC-LDA (and eq 17
more generally) has long been known to fail for various
reasons. Boltzmann-distributed densities grow exponentially
with ϕ̃ and can yield volume fractions exceeding close packing
of finite-sized ions at reasonable potentials.21,22 The point-like
ion assumption can be relaxed, while remaining within the LDA
framework, by incorporating an excess chemical potential that
accounts for steric interactions between ions. In what follows,
we consider equisized ions of diameter σ and excess chemical
potentials that depend on the local volume fraction of ions Φ

Φ =
Φ + =

Φ
̃ + ̃

+ −
+ −

⎛
⎝⎜

⎞
⎠⎟

n n
n

n nr( )
2 2

( )B

B

B

(23)

which approaches a constant bulk value, given by

π σΦ = n
3B B

3

(24)

The Bikerman LDA (Bik-LDA) adopts a mean-field lattice-
gas model for the EDL, where at most one ion can occupy each
lattice site,21 with empty sites representing implicit solvent. The
Bikerman excess chemical potential

μ
= − − Φ

k T
ln(1 )ex

Bik

B (25)

is derived from the configurational degeneracies of non-
overlapping ions among available lattice sites.24 At sufficiently
high potentials, lattice sites saturate with counterions.22

Following eqs 2 and 3, the Bikerman chemical potential is
expressed relative to its bulk value to give the dimensionless
relation

μ ϕ̃ = ̃ ± ̃ +
− Φ

− Φ ̃ + ̃
≡± ±

+ −

⎛
⎝⎜

⎞
⎠⎟n

n n
ln ln

1
1 ( )/2

0Bik
B

B

(26)

Equation 26 can be solved for n ̃± to reveal a Fermi−Dirac
(instead of a Boltzmann) form for the density dependence on
electrostatic potential. The Bikerman free charge density is
inserted into eq 10 to obtain

ϕ ϕ
ϕ

∇̃ ̃ =
̃

+ Φ ̃
sinh( )

1 2 sinh ( /2)
2

B
2

(27)

The capacitance relationship between surface charge and
potential drop across the EDL is given for the Bik-LDA by

ϕΣ̃ =
Φ

+ Φ ̃2
ln[1 2 sinh ( /2)]Bik

B
B

2
0

(28)

In the case of point-sized ions, ΦB → 0 and eqs 26−28 recover
the GC-LDA and Poisson−Boltzmann eq 17.
More accurate models for excluded volume contributions to

the bulk chemical potential frequently rely on integral equation
expansions of a homogeneous hard-sphere fluid.32,33 The
Carnahan−Starling (CS) equation of state27 is an accurate
approximation34 that combines the hard-sphere equations of
state from the virial and compressibility routes35 to obtain

μ
= Φ − Φ + Φ

− Φk T
(8 9 3 )

(1 )
ex
CS

B

2

3
(29)
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The ideal and electrostatic chemical potentials and eq 29 are
expressed relative to the bulk to obtain the dimensionless total
CS-LDA chemical potential17,36

μ ϕ̃ = ̃ ± ̃ + Φ − Φ + Φ
− Φ

−
Φ − Φ + Φ

− Φ
≡

± ±nln
(8 9 3 )

(1 )

(8 9 3 )
(1 )

0

CS

2

3

B B B
2

B
3

(30)

To solve the CS-LDA, just as with all LDAs, each ion
distribution is determined by solving each chemical potential
expression in eq 30: {μ̃CS

+ ,μ̃CS
− = 0,0}. While this can be done

analytically for the Bik-LDA, it must be done numerically for
the CS-LDA. Nonetheless, the free charge density can then be
determined and used in eq 10 to determine ρ̃CS(ϕ̃). Both CS-
and Bik-LDA recover the GC limit as ΦB→ 0 when the excess
chemical potential vanishes.
Charge−voltage curves are relatively straightforward to

measure, and the capacitance is important in various electro-
chemical energy storage devices. The functional relationship
between the surface charge density and the applied potential ϕ̃0
across the EDL, from which the capacitance follows naturally,
can be obtained for any LDA17

∫ϕ ϕ ρ ϕ ϕΣ̃ ̃ = ̃ − ̃ ̂ ̂
ϕ ̃

( ) sgn( ) 2 ( ) dLDA 0 0 0 LDA
0

(31)

The integral, or total, capacitance is given by Σ̃LDA/ϕ̃0, and the
differential capacitance, by dΣ̃LDA/dϕ̃0. In what follows,
however, it will become clear that charge−potential curves
(eq 31) effectively integrate out spatial oscillations in ion
density profiles and can thus hide discrepancies between the
predictions of LDAs and molecular simulations.
2.2. Molecular Dynamics Simulations of Primitive

Model Electrolytes. The primitive model is the simplest
model to incorporate finite ion sizes into electrolyte dynamics,
by treating ions as hard-spheres with diameter σ and valence q
in an implicit solvent between uniformly charged plates. In this
work, we use molecular dynamics simulations of the PM EDL
in the canonical ensemble, where the number of ions N, volume
V, and temperature T are held constant.
The potential energy of ions depends on pairwise ion−ion

interactions and single-body ion−wall interactions. The
reduced Coulomb potential

λ̃ ≡ =U r
U r

k T
q q

r
( )

( )
sgn( )i j

Coulomb
Coulomb

B

B

(32)

describes the electrostatic interaction between point charges
separated by distance r. To lessen numerical difficulties
associated with hard-sphere repulsions, we employ the repulsive
Weeks−Chandler−Andersen26 (WCA) potential

σ σ

σ

̃ =
ϵ̃ − ≤

>

⎧
⎨⎪

⎩⎪

⎡
⎣⎢

⎤
⎦⎥U r

r
r

r

r

( )
( )

if

0 if

WCA
WCA

6 6 2

12

(33)

to account for finite-size effects between ions. A characteristic
repulsive interaction, described by energy scale ϵ̃WCA = ϵWCA/
kBT, penalizes ions separated by less than the WCA diameter σ.
As with hard-sphere systems, WCA ions separated by more
than σ do not interact. The WCA diameter σ is not, strictly
speaking, equivalent to a hard-sphere diameter. Instead, we will

determine an effective hard-sphere diameter, as described
below.
The very steep WCA potential dictates an effective minimum

interion separation distance rmin ∼ (σ). Therefore, the
dominant contributions to pairwise interactions depend on
the relative magnitudes of λB and σ. Choosing λB ≪ σ, as we do
here, ensures that strong ion−ion interactions are predom-
inantly steric in nature rather than electrostatic. As a result, ions
remain dissolved (i.e., do not aggregate or precipitate out of
solution), and any non-mean-field correlations arise due to
steric, rather than electrostatic, interactions.
As described above, two length scales appear naturally in any

electrolyte: the Debye screening length λD (eq 11), which
depends on ion concentration, and the Bjerrum length (eq 12),
which depends upon ion valence. These two length scales, in
turn, specify the surface charge density scale Σref. Finite ion
diameters σ introduce another dimensionless parameter, the
bulk volume fraction ΦB (eq 24), which can be expressed in the
form

σ
λ λ

Φ =
24B

3

B D
2

(34)

Nondimensionalizing all lengths by λD, then, reveals any PM
EDL to be characterized uniquely by four dimensionless
parameters: ΦB, λB/λD, Σ/Σref, and ϵ̃WCA. Appreciable depend-
ence is seen only for the three parameters ΦB, λB/λD, and Σ/
Σref, as simulations show significant insensitivity to ϵ̃WCA, so
long as it is (1) or greater, as we take throughout this work.
Steric repulsions between ions and electrodes depend only

on the distance from walls. The electric field term

̃ ̃ = − Σ̃ ̃U z q z( ) i
field (35)

accounts for the potential energy ions experience between two
walls with equal and opposite surface charge density. The wall
potentials are the repulsive part of the 9-3 potential,37

analogous to the WCA interaction used between ions

δ
λ

δ
λ

δ λ

δ λ
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̃
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̃
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⎩
⎪⎪

⎡
⎣
⎢⎢
⎛
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(36)

and

λ

δ
δ λ

δ
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3
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(37)

with characteristic energy ϵw and wall thickness parameter δw.

3. METHODS
We perform MD simulations between walls separated by a distance L,
with 2D periodicity in the transverse directions, using LAMMPS

38 to
compute primitive model electric double layers. Periodic dimensions
and wall separations L are chosen to exceed all other length scales so
that they do not impact computation results. The system is maintained
at constant temperature with a Langevin thermostat.39 Charge-
centered WCA ions of diameter (0.001 ≤ σ/L ≤ 0.0122) and
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characteristic energy ϵWCA= kBT are confined between two repulsive
walls with uniform charge density ±Σ, thickness δw = L/500, and
characteristic energy ϵw= kBT (eqs 32−37). We evaluate the Coulomb
potential with a particle−particle particle−mesh slab Ewald sum40 with
the default accuracy of 10−4. For each PM electrolyte (specified by
{ΦB; λB/λD; ϵ ̃WCA}) and equal and opposite surface charge densities
±Σ̃, we equilibrate (800−1400) ions for 5 M time steps and then
collect 50 k snapshots over 50 M steps, requiring 50−100 CPU hours
per run. By averaging over bins of width λD (i.e., a nondimensional
thickness of 1), we then compute time-averaged ion densities, voltages,
and spatial profiles of the excluded volume excess chemical potential
using Widom insertion41 using 250−500 M total test insertions per
simulation.
In what follows, we compare CS- and Bik-LDA predictions for ion

concentrations, charge densities, and chemical components with
results that are computed from MD simulations of PM EDLs. To do
so, we first determine an effective hard-sphere ion diameter from the
WCA potentials that we have assumed. Barker et al.33,42 match the
configurational partition function for a system of particles with an
arbitrary pairwise potential to a reference system of hard-spheres; they
prescribe an effective hard-sphere diameter σeff from the WCA
diameter σ

∫σ = − ̂
σ

− ̃ ̂ r[1 e ] dU r
eff

0

( )WCA

(38)

Direct comparisons with hard-sphere simulations reveal eq 38 to
deviate by ≲2%.43 We compute σeff for eq 29 to calculate the CS-LDA.
The effective size of the WCA ions we use in our simulations is
essentially constant at σeff/σ = 0.9048 ± 10−5 for (0.5 ≤ σ ≤ 6.1).
Previous studies that employ the Bik-LDA have chosen the lattice

spacing to be given by the solvation shell diameter for ions in aqueous
electrolytes,22 from fits to experimental data,17 or by enforcing voltage-
dependent expressions to distinguish between differently sized cations
and anions in the case of ionic liquids.24 To compare with PM
simulations, however, we choose the Bik-LDA diameter to match the
CS-LDA results in the low-Φ limit, yielding σBik = 2σCS. With this
choice, Bik-LDA chemical potentials match the low-Φ simulations well
(Fig 1a), but they diverge at even moderate values Φ ≈ 0.1.
Conversely, choosing σBik so that μex

EV diverges at close packing fits
simulation data very poorly everywhere. While the simplicity of the
Bik-LDA admits its analytical solution, its detailed predictive
capabitilities are generally quite poor. It is thus better suited for
simple calculations that explore the qualitative consequences of steric
interactions.

4. RESULTS AND DISCUSSION
4.1. Diffuse Electric Double-Layer Descriptions. Figure

1 shows excluded volume chemical potentials measured from
221 PM EDL simulations, wherein ion valences are chosen to
span the range of weakly charged ions. Figure 1a also shows
steric contributions computed from fully periodic Monte Carlo
simulations of uncharged WCA particles, which explicitly
exclude electrostatic correlations and wall-ordering effects.
For comparison, predictions for μex

EV from both CS- and Bik-
LDAs are shown as a function of local packing fraction Φ
within three distinct spatial regimes: in the bulk (Figure 1a), for
ion−wall distances between 3σ and 6σ (Figure 1b), and within
3σ from the wall (Figure 1c). CS predictions are practically
indistinguishable from values measured from MD simulations
in the bulk (Figure 1a), provided we use the effective hard-
sphere diameter given by eq 38. Bik-LDA, however, gives only
reasonable agreement in the dilute limit (Φ→ 0) and predicts a
steric contribution that diverges at much lower Φ than is
observed. If, by contrast, the ion size was chosen to fit the
divergence, then the Bik-LDA would under predict throughout
the range of Φ. In all cases, then, the CS-LDA outperforms the
Bik-LDA over all volume fractions.

Far from the electrode, PM ions interact as they would in a
purely homogeneous system (Figure 1a). CS accurately
describes bulk-like excluded volume interactions in both dilute
and highly packed regimes. Closer to the wall, steric
contributions cannot be described solely from the local volume
fraction. In the intermediate region between the bulk and wall,
the PM chemical potential no longer collapses onto CS due to
emergent size-induced correlations at Φ ≳ 0.40 (Figure 1b).
Adjacent to the electrode, both LDAs fail dramatically beyond
Φ ≳ 0.10, where ion ordering becomes significant (Figure 1c).

Figure 1. Local-density approximations for the excluded volume excess
chemical potential and primitive model measurements from weakly
and strongly charged electric double layers 0 ≤ Σ̃ ≤ 15. (a) Bulk
measurements from PM EDLs [markers] and uncharged WCA
particles [μex

WCA] collapse onto the Carnahan−Starling LDA [μex
CS]

when using the effective hard-sphere diameter from eq 38 in eq 29.
The Bikerman LDA [μex

Bik] fails at all but infinitesimal volume fractions,
even when determining a best fit with the effective lattice size as a free
parameter. (b) Between 3 and 6 ion diameters from the electrode, CS
fails to capture μex

EV for Φ ≳ 0.40 due to significant ion ordering. (c)
Adjacent to the electrode, CS works only for semidilute volume
fractions Φ ≲ 0.10.
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Having compared Bik- and CS-LDA models with measured
excluded volume chemical potentials from PM EDLs of
different ion charges, sizes, and bulk concentrations, we now
turn to a closer evaluation, looking at detailed profiles of a
smaller subset of simulations. Specifically, we examine weakly
charged ions over a range of wall surface charge densities. We
use these simulations to elucidate where and when the LDA
approach breaks down for low-valence PM EDLs, which cannot
approach closer than the Bjerrum length (σ > λB). We simulate
8 sets of PM EDLs, each of which has a different ion diameter
σ. Eleven different surface charge densities (0 ≤ Σ̃ < 7.1) are
simulated for each σ, yet the bulk volume fraction ΦB is
enforced to be constant for all Σ̃ simulated for each σ. Both the
Bjerrum length (λB/λD = 0.0068 ± 0.0002) and screening
lengths (λD̅ = 14.6 ±3%) were held fixed for these 88
simulations.
Figure 2 compares the surface charge density versus voltage

predictions from the Debye−Hückel, Gouy−Chapman, Biker-

man, and Carnahan−Starling local-density approximations
against the primitive model simulation results. In the limit of
small voltages (or, equivalently, low surface charge densities),
capacitance curves measured from MD simulations and
computed from LDAs all collapse onto the (expected) linear
DH-LDA capacitance. The MD results depart from the DH,
GC, and Bik-LDAs predictions once the dimensionless surface
charge density Σ̃ or potential drop ϕ̃0 become (1). The DH
and GC-LDAs, which neglect steric effects, always overpredict
the capacitance of PM EDLs once the volume fraction becomes
nonzero.
The Bik-LDA is better than GC in that it does not predict

divergent capacitances. Instead, it underestimates the capaci-
tance because the Bikerman excluded volume chemical
potential, eq 25, grossly overpredicts measured values for μex

EV

(Figure 1). Over the studied range of ΦB ≤ 0.42, the energy
required to pack lattice ions exceeds that of spherical WCA
ions. PM counterions reach higher concentrations than Bik-
LDA predicts, which, in turn, leads to greater simulated
capacitances at large voltages.

Capacitance curves computed using the CS-LDA, on the
other hand, capture the measured MD results well even at
higher ϕ̃0 and ΦB, with noticeable deviations appearing for ΦB
= 0.37 and 0.42. From Figure 1c, the CS-LDA accurately
predicts μex

EV except near the electrode where, like GC and
Bikerman, it under predicts μex

EV when compared with
simulations. This underestimation leads the CS-LDA to slightly
overpredict the capacitance of strongly charged electrodes Σ̃ ≳
5 and appreciable bulk volume fractions ΦB ≥ 0.10.
Given how well the CS-LDA captures the total capacitance

over a wide range of electrode surface charge densities and bulk
volume fractions (Figure 2), we now examine the detailed
spatial profiles within the EDLs, as predicted by CS-LDA and
measured in PM MD simulations, for moderate and large bulk
volume fractions (Figure 3). We focus on the first 10 ion
diameters from the wall, beyond which the simulated and CS-
LDA chemical potential profiles both converge to their bulk
values. Notably, size-induced oscillations are evident in the PM
simulations for both ΦB = 0.17 and 0.42, at moderate to high Σ̃.
Such oscillations cannot be captured by the CS-LDA, or indeed
any LDA model. Co-ion densities become exceedingly small, n ̃+
≈ exp(−10), near the surface, where Φ is the highest and the
CS-LDA is most prone to failure. The oscillatory region for
counterions is more pronounced at higher charge densities and
larger bulk volume fractions. As expected from capacitance
measurements (Figure 2), the CS-LDA predicts an electrostatic
potential ϕ̃ that is slightly lower than measured from PM
profiles.
Figure 3a,b reveals the ideal component of the co-ion

chemical potential, μ̃ideal
+ = ln n ̃̃+, to agree well with CS-LDA

predictions, with size-induced oscillations appearing only at
high volume fractions. Size-induced oscillations in the ideal
counterion chemical potentials (Figure 3c,d) are much more
pronounced than for co-ions, with obvious ringing even at the
lowest surface potentials. Such oscillations are even stronger at
higher bulk volume fractions, extending many ion diameters
into the bulk. The total electrostatic potential drop, however,
shows no oscillatory ringing for PM EDLs (Figure 3e,f), with
surprisingly good agreement between CS-LDA and PM MD
simulations. The total potential drop for a fixed Σ̃ increases
with ΦB, as excluded volume interactions force screening to
occur over longer distances. Finally, the excess chemical
potential due to excluded volume, measured using Widom
insertion for the PM EDLs, is overpredicted by the CS-LDA at
Σ̃ = 6.8 for ΦB = 0.17 and at lower Σ̃ for the higher volume
fraction ΦB (Figure 3g,h).
Note that the Widom insertion technique becomes unreliable

in highly concentrated regions, e.g., near highly charged walls
and concentrated electrolytes, as overlapping WCA ions would
require an exceedingly large number of insertions to properly
average. EDLs with large packing fractions are prone to ion
layering, as seen in the ln n ̃̃− measurements (Figure 3c,d). The
general LDA approach, which neglects pairwise ion inter-
actions, would fail to describe these highly correlated PM EDL
regimes. Despite the emergence of extended correlated regions
within PM EDLs, whose oscillations cannot be captured by any
LDA,25 the measured capacitance curves appear to be predicted
quite well by the CS-LDA.

4.2. Characterizing Correlations. In general, spatial
correlations of ions near electrodes can be due to either
electrostatic or steric forces and can occur both parallel and
perpendicular to the wall. Because we simulate a limited class of
electrolytes with weakly charged ions, we assume Coulomb

Figure 2. Surface charge density versus total potential drop from 8 sets
of PM EDLs that differ in bulk volume fraction. All simulations
collapse onto LDA predictions in the low charge limit [Σ̃,ϕ̃0] → 0.
Beyond ϕ̃0 ≳ 1, Debye−Hückel and Gouy−Chapman diverge and
Bikerman always underestimates the integrated capacitance (Σ̃/ϕ̃0), so
only semidilute curves are included for clarity. Carnahan−Starling
qualitatively matches PM capacitance, but it consistently gives higher
values at increased charge densities and bulk volume fractions.
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correlations are negligible by comparison to size-induced
correlations for PM EDLs characterized by λB ≪ σ. Figure 3
reveals that even weakly-charged PM ions form correlated
layers near the wall, with oscillations in the ideal and excluded
chemical potential profiles that grow with increasing applied
charge density and bulk volume fraction. Outside of some
correlation length cor (identified below), however, CS-LDA
predictions describe the PM simulations well.
There is some flexibility in defining cor; after all, the CS-LDA

describes the (integrated) capacitive curves quite well. In
principle, one could compare PM to LDA profiles and define
cor wherever deviations exceed some meaningful threshold.
However, this estimate for cor would depend upon the
particular LDA that is chosen and/or some chosen threshold.
Instead, we define cor to correspond to the distance beyond
which oscillations in ρ̃ are indistinguishable from statistical bulk
fluctuations. In so doing, we identify cor from simulated PM
free charge density profiles in a manner that is independent of
any particular LDA model.
Figure 4 illustrates the approach on PM EDLs with Φ̅B =

0.42, simulated for a range of applied surface charge densities. A
quintic spline interpolant ρ̃spline is generated from simulated free
charge density profiles, measured at 250 distinct positions.
Positions z▲ of extrema in ρ̃spline are then located numerically,
by solving dρ̃spline/dz ̃ = 0. These extrema may reflect either
excluded volume correlations or statistical noise. Oscillations

are attributed to steric ion correlations if adjacent maxima and
minima have (σ/2) spacing, in which case cor is found by
identifying the farthest such extremum from the wall. Although
no specific LDA model was used in Figure 4, cor coincides well
with the onset of discrepancies between predicted (CS-LDA)
and measured free charge density profiles.
We apply this algorithm to the 88 PM EDL simulations of

weakly charged ions with fixed Bjerrum and screening length
shown in Figure 2. A contour plot of cor, normalized by σ, as a
function of ΦB and Σ̃, appears in Figure 5. PM EDLs with low
Σ̃ and ΦB exhibit negligible correlations, whereas EDLs with
large Σ̃ and ΦB exhibit the thickest correlated regions, with
correlation lengths up to 7σ, consistent with Figures 3 and 4.
Having extracted cor from PM EDLs, we now explore the

properties of the correlated region. Since size-induced
oscillations are the result of ion layering, the ion diameter is
the appropriate characteristic length scale for the correlated
region. We thus nondimensionalize Poisson’s eq 10 by the ion
diameter and express the potential relative to the surface
potential (rather than the bulk potential ϕB = 0)

λ
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ϕ ϕ
ϕ

ρ∇̃
−

= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟qen2 B

D
2

2 0

T
cor

(39)

From eq 39, we define the reduced correlated free charge
density

Figure 3. Individual components of the chemical potential measured from PM EDL simulations, and compared against predictions from the CS-
LDA, at moderate (Φ̅B = 0.17, left column) and high (Φ̅B = 0.42, right column) bulk volume fractions. The ideal component of the chemical
potentials for (a, b) co-ions, μ̃ideal

+ = ln n ̃+, and (c, d) counterions; (e, f) local electrostatic potential; and (g, h) excess chemical potential due to
excluded volume.
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We integrate eq 39 once to obtain the correlated surface charge
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and again to obtain the voltage drop across the correlated
region
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The ratio of eqs 41 and 42 gives the integrated capacitance of
the correlated EDL region.

A log−log plot of Σ̃cor vs Δϕ̃̃cor reveals the correlated EDL
capacitance to collapse onto a power-law over nearly three
decades of computed values (Figure 6), with a best-fit exponent

around 3/4. Somewhat surprisingly, the CS-LDA predicts the
capacitance of the correlated layers, regardless of whether the
PM electrolytes are semidilute, moderate, or highly concen-
trated. This agreement suggests that the CS-LDA describes the
mean EDL behavior (i.e., the curve that would result if
correlation-based oscillations were removed) so well that it can
capture integrated quantities like EDL capacitance, even if it
misses detailed structure.

5. CONCLUSIONS
The governing philosophy of this work has been to compare
molecular simulations of EDLs formed by primitive model
electrolytes (which account explicitly for pairwise ion−ion
interactions) against EDLs predicted using various LDAs that
have been designed to account for finite ion size. By
nondimensionalizing variables in our systems, rather than
working with parameters specific to a particular electrolyte, we
intend for our results to be extended to a wide range of
electrolytes of specific interest to future researchers. Our results
span a wide variety of (dimensionless) ionic strength, ion
valence, screening length, ion size, and surface charge densities.
One important, qualitative result of this work is that the

Bikerman LDA, which is arguably the simplest to implement
owing to its analytical tractability, is essentially incapable of
capturing any quantitative features of PM EDLs. Choosing the
lattice size to match the low-Φ regions of the EDL leads to
predictions of premature divergences (e.g., close-packing occurs
at potentials that are much too low), whereas choosing the
lattice sizes to match the expected divergences (e.g., Φ at
random close packing) leads to significant underestimation of
steric effects at lower Φ. Such qualitative discrepancies arise due
to the difference between lattice-constrained ions and hard-
sphere (or hard-sphere-like) ions. The Bik-LDA, therefore, is
much better suited to qualitative studies of steric effects, where
analytical simplicity enables one to easily compute the

Figure 4. A model-free method to determine cor from simulated PM
free charge densities with Φ̅B = 0.42. We generate spline interpolants
from discrete profiles, find extrema z▲, and identify cor (☆) by
examining deviations of potentially correlated regions ρ̃(z < z▲) from
exponential fits of bulk-like regions ρ̃fit. Although cor appears to
coincide with onset of deviations from CS-LDA profiles, this approach
is independent of CS or any specific LDA.

Figure 5. Contour plot of the correlation length cor measured from 88
PM EDLs, where λB and λD is held constant, using the technique
described in the text and shown in Figure 4. The correlation length
grows with increasing surface charge density and bulk volume fraction.

Figure 6. Surface charge density versus electrostatic potential dropped
across the correlated layer of dilute and concentrated CS-LDA and PM
electrolytes. CS-LDA captures the correlated capacitances at each bulk
volume fraction. A best fit of data for all bulk volume fractions reveals
correlated PM EDLs to follow a 3/4 power law for nearly three decades
of charge density and surface potential measurements.
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qualitative consequences of steric repulsions rather than any
quantitative predictive capabilities.
The Carnahan−Starling LDA, on the other hand, is

remarkably effective at capturing many important features of
PM EDLs. In particular, capacitance curves for PM and CS-
LDA EDLs match extremely well, and detailed EDL profiles
(e.g., of electrostatic potential, counterion and cation densities,
and chemical potentials) are well-predicted by the CS-LDA.
MD simulations do reveal oscillatory ion densities and chemical
potentials due to steric repulsions between ions, which cannot
be captured by any LDA model. Nonetheless, the CS-LDA
accurately describe the diffuse portion of PM chemical potential
profiles (Figures 1−3) and even captures the capacitance of the
oscillatory (correlated) portions of PM EDLs. This has both
positive and negative consequences: it implies that CS-LDA
computations can be used to faithfully predict the capacitance
of even moderately correlated EDLs, yet it also implies that
measurements of integrated quantities (like capacitance) tend
to mask oscillatory EDL structures. Attempts to extract detailed
EDL profiles (or to test the suitability of LDAs) from
measurements of such integrated quantities may therefore be
misleading. As recently emphasized by Gillespie,19 accurate
models of the density profiles require local averages of ion
concentrations that LDAs inherently neglect. While we did not
consider them here, models that use locally averaged
concentrations to determine excess chemical potentials due to
the excluded volume may much better describe near-electrode
effects.
While the present work has treated a fairly broad swath of

parameter space, it does omit various physical effects that can
play important roles in EDL structure and dynamics. Ion size
asymmetries, for example, will clearly modify the details of the
steric contributions to the excess chemical potential of co- and
counterions in EDLs. Co-ions that are much smaller (or larger)
than counterions will introduce a weaker (or stronger) steric
penalty. Analogous chemical potentials for multiple hard-sphere
sizes have been described by the Boublıḱ, Mansoori, Carnahan,
Starling, and Leland (BMCSL)19,23,32,44 equation of state, and it
would be interesting to analyze such effects in a manner
analogous with this work. Moreover, we expect the structure of
EDLs in electrolytes containing two or more species of
counterions, each with a distinct size, valence, and/or charge
specificity,12 will differ considerably from the binary electrolytes
studied here. Finally, this work has omitted any explicit
treatment of the solvent, instead incorporating solvation shells
in terms of an effective ion size. One could imagine modifying
the current approach to treat solvent explicitly using the
BMCSL, with (uncharged) solvent molecules of one size
interacting with (charged) ions of a different size.
The present work reveals both the qualitative and

quantitative consequences of finite ion sizes in the structure
and properties of electric double layers and of the ability of
various LDAs to account for finite ion size in predicting
quantitative features of EDLs. We hope that our work
establishes a framework for future studies that account for
the additional physicochemical phenomena.
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