UC Berkeley Archaeological X-ray Fluorescence Reports

Title

Energy-Dispersive X-Ray Fluorescence (XRF) Analysis Major Oxide and Trace Element Concentrations of Silicic Metavolcanic Rock Artifacts from the Johannes Kolb Site (38DA75) Darlington County, South Carolina

Permalink https://escholarship.org/uc/item/49g987h0

Author Shackley, M. Steven

Publication Date

2014-03-03

Supplemental Material

https://escholarship.org/uc/item/49g987h0#supplemental

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at <u>https://creativecommons.org/licenses/by-nc/4.0/</u>

ARCHAEOLOGICAL X-RAY FLUORESCENCE SPECTROMETRY LABORATORY 8100 WYOMING BLVD., SUITE M4-158

ALBUQUERQUE, NM 87113 USA

ENERGY-DISPERSIVE X-RAY FLUORESCENCE (XRF) ANALYSIS MAJOR OXIDE AND TRACE ELEMENT CONCENTRATIONS OF SILICIC METAVOLCANIC ROCK ARTIFACTS FROM THE JOHANNES KOLB SITE (38DA75) DARLINGTON COUNTY, SOUTH CAROLINA

Metarhyolite biface preforms and fragments from 38DA75

by

M. Steven Shackley Ph.D., Director Geoarchaeological XRF Laboratory Albuquerque, New Mexico

Report Prepared for

Chris K. Young Department of Anthropology Eastern New Mexico University Portales, New Mexico

3 March 2014

INTRODUCTION

The non-destructive whole rock analysis here of 105 archaeological specimens from the Johannes Kolb site in northern South Carolina indicates the procurement of stone raw materials from mainly high-silica metavolcanic rocks of Paleozoic age most likely originally from the Uwharrie Mountains of the Carolina Slate Belt to the north in North Carolina, some of which were procured from the Great Pee Dee River alluvium nearby (Horton and Zullo 1991; Rogers 2006). Compositional analysis of the tools from this site, including bifaces and fragments indicates that most of these artifacts were produced from raw materials not present in the nearby river alluvium based on the analysis of the river cobbles. Based on the compositional analysis here, the debitage, both with and without cortex appears to be a result of tool production from the local cobbles rather than the raw materials used to produce most of the finished tools at the site.

In order to aid in the determination of the source of the raw materials from which the artifacts were produced, data from the earlier analysis of metavolcanic rock from the region was included (Glascock and Speakman 2006; see also Bondar 2001). A statistical analysis of the elemental composition was used to both characterize the artifacts and cobbles from the site, and compare to the Glascock and Speakman results.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

All archaeological samples are analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

Trace Element Analyses

All analyses for this study were conducted on a ThermoScientific *Quant'X* EDXRF spectrometer, located in the Geoarchaeological XRF Laboratory, Albuquerque, New Mexico. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 μ m (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 l min⁻¹ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter. Elemental composition is identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity Ka-line data for elements titanium (Ti), manganese (Mn), iron (as $Fe_2O_3^T$), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a quadratic calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements. When barium (Ba) is analyzed

in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2011; Shackley 2011a). Further details concerning the petrological choice of these elements in Southwest obsidians and other volcanic rocks is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

Major and Minor Oxide Analysis

Analysis of the major oxides of Na, Mg, Al, Si, K, Ca, Ti, Mn, and Fe is performed under the multiple conditions elucidated below. This fundamental parameter analysis (theoretical with standards), while not as accurate as destructive analyses (pressed powder and fusion disks) is usually within a few percent of actual, based on the analysis of USGS RGM-1 obsidian standard (see also Shackley 2011a). The fundamental parameters (theoretical) method is run under conditions commensurate with the elements of interest and calibrated with four USGS standards (RGM-1, rhyolite; AGV-2, andesite; BHVO-1, hawaiite; BIR-1, basalt), and one Japanese Geological Survey rhyolite standard (JR-1). The oxides are normalized to the RGM-1 USGS recommended versus measured values.

Conditions of Fundamental Parameter Analysis¹

Low Za (Na, Mg, Al, Si, P)

	Voltage	6 kV	Current	Auto ²
	Livetime	100 seconds	Counts Limit	0
	Filter	No Filter	Atmosphere	Vacuum
	Maximum Energy	v 10 keV	Count Rate	Low
Mi	id Zb (K, Ca, Ti, V	/, Cr, Mn, Fe)		
	Voltage	32 kV	Current	Auto
	Livetime	100 seconds	Counts Limit	0
	Filter	Pd (0.06 mm)	Atmosphere	Vacuum
	Maximum Energy	v 40 keV	Count Rate	Medium
Hi	gh Zb (Sn, Sb, Ba	, Ag , Cd)		
	Voltage	50 kV	Current	Auto
	Livetime	100 seconds	Counts Limit	0
	Filter	Cu (0.559 mm)	Atmosphere	Vacuum
	Maximum Energy	v 40 keV	Count Rate	High
Lo	w Zb (S, Cl, K, Ca	a)		
	Voltage	8 kV	Current	Auto
	Livetime	100 seconds	Counts Limit	0
	Filter	Cellulose (0.06 mm)	Atmosphere	Vacuum
	Maximum Energy	v 10 keV	Count Rate	Low

¹ Multiple conditions designed to ameliorate peak overlap identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

² Current is set automatically based on the mass absorption coefficient.

The data from the WinTrace software were translated directly into Excel for Windows software for manipulation and on into SPSS for Windows for statistical analyses. In order to

evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS obsidian standard is analyzed during each sample run for obsidian artifacts to check machine calibration (Table 1).

DISCUSSION

In many ways the analysis of these artifacts with respect to assignment to source is a partial blind test. While no actual primary source rocks were available, beyond the secondarily deposited cobbles included here, it was possible to compare these data to that derived from some of the 80 regional source rocks reported by Glascock and Speakman from NAA and XRF analyses at the Missouri University Research Reactor Center (MURR; Glascock and Speakman 2006). Twenty years of comparison between laboratories, however, has indicated good agreement on trace elements, in part because both laboratories calibrate using international standards, and in this case, RGM-1, the USGS rhyolite standard. Neutron activation analysis (NAA) measures Sr, Y, Zr, Nb, and Ba poorly which are well measured incompatible elements in volcanic rocks with XRF (see Shackley 2005, 2011a). Therefore, only the XRF results from the *Stone Quarries and Sourcing in the Carolina Slate Belt* were used for comparison (Steponaitis et al. 2006; Glascock and Speakman 2006).

Research Trajectory

Given the relatively large sample, a multivariate statistical versus three-dimensional and bivariate plotting program was initiated. This has proven effective especially when the source is, in part, unknown (Glascock et al. 1998; Shackley 1998, 2007).

While all samples were analyzed for trace elements (Ti-Nb, Ba, Pb, Th), a sample of the cobbles was analyzed for oxides and plotted on a TAS diagram to determine rock type (Tables 2 and 3, Figure 1). Immediately apparent was that these rocks are likely highly metamorphosed

rhyolites (metarhyolites) where some of the alkal-feldspars have changed to quartz during metamorphosis through what is often called greenschist facies metamorphism, but can occur through hydrothermal alteration during emplacement (Ehlers and Blatt 1982; Hatch et al. 1972). This process does not take much time geologically. In southern California and northern Baja California, the Santiago Peak Metavolcanic Province exhibits similar rocks metamorphosed in similar manner, but are Jurassic in age (Balch et al. 1984; Jones and Miller 1982). Hydrothermally altered rhyolites are favored raw materials during the Clovis period in New Mexico from the quarries near Socorro and have a very similar character to samples in this assemblage (Dello-Russo 2004), and fine-grained dacites in northern New Mexico were at times selected for point production during the Folsom period (Shackley 2011b). In all these cases, and presumably the Uwharrie rhyolites, metamorphism has produced an excellent raw material for stone tool production, but at a cost geoarchaeologically. Long-term metamorphism "scrambles" the geochemistry, and sometimes creates rather extensive elemental variability including increasing silica (SiO₂), such as the case here, and variable trace element composition from one area to another (see Bondar 2011 for a regional case).

Statistical versus Geological Interpretation

In order to tease out any variability in this large sample, a cluster to discriminant analysis was first applied using Rb, Sr, Zr, Nb, and Ba as variables which appeared to be most variable in the data and were elements well above XRF detection limits. An average linking/squared Euclidean algorithm was used on the above variables in hierarchical cluster analysis (Figure 2). Cluster analysis is favored for geochemical data since it is often not multivariate normal and cluster analysis is not subject to non-normal issues (see Baxter 1992, 1994). Viewing the cluster dendrograms, one using artifact sample numbers and Glascock and Speakmans quarry (FBL) numbers, and an identical dendrogram using tool types and quarry numbers indicates that the

vast majority of artifacts and quarry data are clustered into one major cluster (digital version of the dendrograms available for clarity). Also, the tools cluster separately from the quarry and other artifacts, a result of most exhibiting very high relative barium composition, not present in the quarry data or artifacts (see Table 2 and Figure 2).

The clusters were saved as prior probabilities for discriminant analysis, and the results were similar. By using the clusters as priors in discriminant, the multivariate normality issue is avoided, or more properly "fudged" so that issues like 3pxn rule (empty cells due to too many variables relative to cases) are avoided. Tables 4-7 display the discriminant results and statistical test of the statistic. The Box's M indicates relatively well measured data, and the classification matrix indicates highly correlated classification; 96.4% correct classification for both original and jackknifed analyses (Tables 4 and 7). The plot of the first two canonical discriminant functions graphically shows the groups as identified in the cluster analysis as expected (Figure 3). Group 1 is that large group of artifacts and quarry data as identified in the cluster analysis. Group 2 is the other smaller group that includes the MURR results from some of the Chatham, Person, and Orange Counties, but not much from that identified as Uwharries quarries (Figure 2). Again, note that most of the tools recovered from the site exhibit a different elemental composition, particularly on Ba, and one could infer from a different rock source.

The three dimensional and bivariate plots of these data indicate similar groupings and clusters as the multivariate analysis, and as usual, are generally more illuminating (Figures 4-6; see Baxter 1992). Figure 4 shows a three-dimensional plot of just the artifact composition. Note that there are essentially two groups based on Nb, Rb, and Ba; the cobbles, and flakes both with and without cortex in one group, and tools in another. Figure 5 is the same plot with the MURR source data superimposed. Note that the vast majority of artifacts, other than the tools, cluster within the Uwharries source data, and some of the other county source data. There is a group of

mainly quarry data below the artifact cluster with only one tool (13-157) and one artifact (13-138) near that cluster. Again, the tools exhibit elemental compositions different from the quarry data in the MURR study. Finally, the bivariate plot of Nb and Rb (Figure 6) further indicates the elemental difference of the tools except for the one depleted in Rb (13-157). As in Figure 5, some of the Chatham County rocks based on the MURR study are near the tools. The caveat for this is discussed immediately below.

Does the statistical analysis make sense geologically? First, without source rock analyzed with this dataset, I had to rely on the MURR results. It is apparent that the tools at the Kolb site were produced from a different source than the other artifacts produced at the site, and these tools are not likely produced from Uwharrie suite rock based on the MURR analysis. Based on the MURR data is seems that many of the rocks collected from the various counties are from the same formation as Uwharrie suite rock somewhere in the Carolina Slate Belt (Rogers 2006). However, many of those rocks are somewhat elementally different from the MURR Uwharrie composition. Again, it is impossible to determine whether this is very real differences in sources, of variability within the metavolcanics in the region. Recall that metamorphosis can modify the composition significantly within one geological formation. Parenthetically, the cobbles exhibit Na and K oxides that are typical for rhyolites and don't show the "high in sodium (Na) and low in potassium (K)" values noted for rocks in the Carolina Slate Belt by Rogers (2006:12). Some of the Uwharrie suite rock analyzed by MURR do have high Na relative to K (i.e. FBL 12, 13, 43-50), again not the case with the cobbles from the site (Glascock and Speakman 2006).

Having said all that, it does appear that: 1) the vast majority of artifacts at the site were produced from local secondary deposits likely from the Uwharrie suite rock, but the tools were produced from different source rock. It seems plausible that these Early Archaic knappers came

to the site with spent and broken tools (see cover image), and re-tooled here with the local stone.

This has been seen throughout North America and easily seen with obsidian artifacts and

elemental compositional analysis at sources and sites (Shackley 1989, 2005).

REFERENCES CITED

Balch, D.C., S.H. Bartling, and P.L. Abbott

1984 Volcaniclastic Strata of the Upper Jurrasic Santiago Peak Volcanics, San Diego, California. In *Tectonics and Sedimentation along the California Margin*, edited by J.K. Crouch, and S.B. Bachman, pp. 157-170. Pacific Section, Society of Economic Palaeontologists and Mineralogists 38

Baxter, M.J.

- 1992 Archaeological Uses of the Biplot-A Neglected Technique? In *Computer Applications and Quantitative Methods in Archaeology*, edited by G. Lock and J. Moffet, pp. 141-148. BAR International Series S577, Oxford.
- 1994 *Exploratory Multivariate Analysis in Archaeology*. Edinburgh University Press, Edinburgh.

Bondar, G.H.

2001 Metarhyolite Use During the Transitional Archaic in Eastern North America. Paper presented at the 66th Annual Meeting of the Society for American Archaeology, New Orleans, Louisiana.

Davis, K.D., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel

2011 Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 45-64. Springer, New York.

Dello-Russo, R.D

2004 Geochemical Comparisons of Silicified Rhyolite from Two Prehistoric Quarries and 11 Prehistoric Projectile Points, Socorro County, New Mexico, U.S.A. *Geoarchaeology* 19:237-264.

Ehlers, E.G., and H. Blatt

1982 *Petrology: Igneous, Sedimentary, and Metamorphic.* W.H. Freeman and Co., San Francisco.

Glascock, M.D., G.E. Braswell, and R.H. Cobean

1998 A Systematic Approach to Obsidian Source Characterization. In *Archaeological Obsidian Studies: Method and Theory*, edited by M.S. Shackley, pp. 15-66. Kluwer/Academic Press, New York and Amsterdam.

Glascock, M.D., and R.J. Speakman

2006 X-Ray Fluorescence Spectrometry Data. In *Stone Quarries and Sourcing in the Carolina Slate Belt*, edited by V.P. Steponaitis, T.E. McReynolds, J.D. Irwin, and C.R. Moore, pp.

169-174. Research Report 25, Research Laboratories of Archaeology, The University of North Carolina, Chapel Hill.

Govindaraju, K.

1994 1994 Compilation of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* 18 (special issue).

Hampel, Joachim H.

1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In *Obsidian Studies in the Great Basin*, edited by R.E. Hughes, pp. 21-25. Contributions of the University of California Archaeological Research Facility 45. Berkeley.

Hatch, F.H., A.K. Wells, and M.K. Wells

1972 Petrology of Igneous Rocks, 13th edition. Thomas Murby & Co., London.

Hildreth, W.

1981 Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research 86:10153-10192.

Horton, J.W., Jr., and V.A. Zullo

1987 An Introduction to the Geology of the Carolinas. In *The Geology of the Carolinas: Carolina Geological Society 50th Anniversary Volume*, edited by J.W. Horton, Jr. and V.A. Zullo, pp. 1-10. University of Tennessee Press, Knoxville.

Hughes, Richard E., and Robert L. Smith

1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. *In Scale on Archaeological and Geoscientific Perspectives*, edited by J.K. Stein and A.R. Linse, pp. 79-91. Geological Society of America Special Paper 283.

Jones, D.A., and R.H. Miller

1982 Jurrasic Fossils form the Santiago Peak Volcanics, San Diego County, California. In *Geologic Studies in San Diego*, edited by P.L Abbott, p. 93-103. San Diego Association of Geologists Publication.

Mahood, Gail A., and James A. Stimac

1990 Trace-Element Partitioning in Pantellerites and Trachytes. *Geochemica et Cosmochimica* Acta 54:2257-2276.

McCarthy, J.J., and F.H. Schamber

1981 Least-Squares Fit with Digital Filter: A Status Report. In *Energy Dispersive X-ray Spectrometry*, edited by K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust, and C.E. Fiori, pp. 273-296. National Bureau of Standards Special Publication 604, Washington, D.C.

Rogers, J.J. W.

2006 The Carolina Slate Belt. In *Stone Quarries and Sourcing in the Carolina Slate Belt*, edited by V.P. Steponaitis, T.E. McReynolds, J.D. Irwin, and C.R. Moore, pp. 10-15. Research Report 25, Research Laboratories of Archaeology, The University of North Carolina, Chapel Hill.

Schamber, F.H.

1977 A Modification of the Linear Least-Squares Fitting Method which Provides Continuum Suppression. In *X-ray Fluorescence Analysis of Environmental Samples*, edited by T.G. Dzubay, pp. 241-257. Ann Arbor Science Publishers.

Shackley, M. Steven

- 1988 Sources of Archaeological Obsidian in the Southwest: An Archaeological, Petrological, and Geochemical Study. *American Antiquity* 53(4):752-772.
- 1989 Early Hunter-Gatherer Procurement Ranges in the Southwest: Evidence from Obsidian Geochemistry and Lithic Technology. Ph.D. dissertation, Department of Anthropology, Arizona State University.
- 1995 Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis. *American Antiquity* 60(3):531-551.
- 1998 Gamma Rays, X-rays, and Stone Tools: Some Current Advances in Archaeological Chemistry. *Journal of Archaeological Science* 25:259-270.
- 2005 *Obsidian: Geology and Archaeology in the North American Southwest*. University of Arizona Press, Tucson.
- 2011a An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley, pp. 7-44. Springer, New York.
- 2011b Sources of Archaeological Dacite in Northern New Mexico. *Journal of Archaeological Science* 38:1001-1007.

Steponaitis, V..P., T.E. McReynolds, J.D. Irwin, and C.R. Moore (eds.)

2006 *Stone Quarries and Sourcing in the Carolina Slate Belt*. Research Report 25, Research Laboratories of Archaeology, The University of North Carolina, Chapel Hill.

Table 1.	Recommended values for	r USGS	SRGM-1	obsidian	standard	and the m	ean and central
tendency	analyses from this study	$\pm = 1^{st}$	standard	deviation	1.		

SAMPLE	Ti	Mn	Fe	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th
RGM-1 (Govindaraju 1994)	1600	279	12998	149	108	25	219	8.9	807	24	15.1
RGM-1 (USGS recommended) ¹	1619±12 0	279±5 0	13010±21 0	150± 8	110±1 0	25 ²	220±2 0	8.9±0. 6	810±4 6	24±3	15±1. 3
RGM-1, pressed powder standard (this study, n=5)	1594±69	283±6	13157±68	149± 2	104±2	25± 2	222±2	9±3	751±2 0	25±.8	18±4

¹ Ti, Mn, Fe calculated to ppm from wt. percent from USGS data. ² information value

Sample	Art. Type	Ti	Mn	Fe	Zn	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th
7	cobbles	375	165	2963	84	149	203	33	266	15	989	20	8
10	cobbles	3 124 1	8 540	1 1238 2	58	61	108	38	211	8	671	18	5
11	cobbles	991	225	9653	38	72	34	46	217	11	656	12	13
18	cobbles	108	289	1435	47	84	68	68	225	9	788	16	9
19	cobbles	5 105 6	518	6 1420 9	59	66	43	67	228	10	627	13	18
20	cobbles	105 1	265	1230 2	48	90	64	101	213	8	779	19	12
21	cobbles	923	264	1110 3	24	63	98	65	213	10	656	37	9
25	cobbles	990	236	1179 8	44	65	95	67	215	10	695	35	5
10-12	cobbles	144 5	479	1512	63	82	125	41	215	6	806	18	9
10-15	cobbles	105	365	1367 1	25	64	39	67	246	10	696	28	10
10-16	cobbles	115 7	304	1198	31	51	72	59	226	8	681	23	10
10-17	cobbles	, 111 5	372	1252 6	76	59	96	58	227	5	782	22	8
13-100	w/cortex	241 8	423	2312	45	59	96	89	232	10	672	27	14
13-101	w/cortex	160 7	295	1289 3	54	84	59	45	235	9	687	14	5
13-102	w/cortex	112 7	232	1107 7	52	92	56	41	221	9	650	14	13
13-103	w/cortex	108 7	215	9643	50	80	58	44	225	10	692	13	10
13-104	w/cortex	121 1	223	1433 5	33	89	83	52	221	11	823	18	12
13-105	w/cortex	903	165	1124 9	23	98	41	30	178	10	852	19	12
13-106	w/cortex	106 9	352	1393 0	29	77	131	28	182	12	781	10	13
13-107	w/cortex	112 9	198	1314 8	25	65	42	42	194	8	535	13	6
13-108	w/cortex	128 4	383	1400 3	61	118	100	52	222	9	729	14	12
13-109	w/cortex	110 3	239	1224 0	54	77	68	52	213	6	551	15	17
13-110	w/cortex	150 3	465	1396 8	33	97	100	53	273	9	653	14	15
13-111	w/cortex	105 7	219	1031 2	47	71	65	42	213	10	703	14	7
13-112	w/cortex	, 147 4	542	ے 1640 4	50	94	82	56	238	9	853	12	13
13-113	w/o	134 8	285	1386 0	43	59	80	54	216	11	763	13	11
13-114	w/o	149	398	1474	98	67	89	53	239	11	675	20	14

Table 2. Elemental concentrations for the rock samples.

	cortex	3		6									
13-115	w/o	122	250	1360	39	98	85	45	199	8	693	14	6
	cortex	5		0		~~						4.0	4.0
13-116	W/O	123	449	1891	45	99	43	85	280	8	737	13	13
12 117	contex	۲ 1/2	111	8 1214	27	70	51	112	226	10	564	11	10
13-117	w/U cortex	143	444	7	21	19	51	112	230	10	504	14	10
13-118	w/o	122	541	1552	44	116	83	65	233	6	896	14	11
	cortex	7		2						-			
13-119	w/o	130	386	1594	91	145	71	44	223	10	931	18	15
	cortex	4		1									
13-120	W/O	986	371	1405	47	90	90	58	232	12	648	18	11
13 121	contex	132	173	0 1358	11	110	00	50	245	10	700	15	18
10-121	cortex	6	475	1000		110	30	55	240	10	700	15	10
13-122	w/o	131	365	1540	33	69	106	66	222	11	625	21	8
	cortex	6		8									
13-123	w/o	140	351	1380	55	77	79	57	224	12	632	26	12
40.404	cortex	9		0	40		74	50	0.07	10	000	00	0
13-124	W/O	138	444	1253	48	11	74	52	227	10	693	20	3
13-125	w/o	131	473	1567	32	81	44	54	249	10	725	12	17
10 120	cortex	3		1		0.	• •	0.	2.0	10	. 20		••
13-126	w/o	161	365	1453	57	75	49	41	236	8	808	22	3
	cortex	6		4									
13-127	w/o	102	282	1141	29	74	41	46	212	9	613	12	8
12 120	cortex	121	242	2	60	00	67	57	224	0	602	16	0
13-120	w/u cortex	6	342	1515 Q	00	80	07	57	234	0	092	10	0
13-129	w/o	141	427	1265	39	100	95	39	173	6	863	12	11
	cortex	5		0					-	-			
13-130	w/o	138	304	1368	34	74	101	79	223	8	631	19	9
	cortex	1		5	~~		~-					~~	_
13-131	W/O	101	373	1596	33	76	67	83	224	4	628	22	5
13-132	w/o	121	270	9 1543	56	86	67	63	252	10	735	15	12
10 102	cortex	7	210	2	00	00	01	00	202	10	100	10	12
13-133	w/o	163	408	1770	92	105	64	59	248	6	683	15	20
	cortex	9		0									
Sample	Art. Type	Ti	Mn	Fe	Zn	Rb	Sr	Y	Zr	Nb	Ba	Pb	Th
13-134	w/o	138	358	1194	34	94	73	47	240	11	737	14	9
12 125	cortex	111	470	1110	22	02	51	67	220	11	057	10	0
13-135	w/u cortex	6	472	1140	32	03	51	07	230	11	007	15	0
13-136	w/o	142	462	1413	45	128	91	63	247	12	104	13	14
	cortex	3		5							0		
13-137	w/o	101	223	1114	42	83	59	48	228	10	681	14	7
	cortex	9		0						-			
13-138	W/O	123	176	4856	21	34	51	47	257	6	829	15	12
13 130	contex	3 135	281	1130	40	87	57	12	217	6	640	15	Q
10-109	cortex	6	201	2	40	07	57	42	217	0	049	15	0
13-140	w/o	122	340	1616	52	74	83	58	231	3	726	18	14
	cortex	8		3									
13-141	w/o	114	229	9643	32	77	71	35	222	9	665	18	15
10 1 10	cortex	0	000	4 - 44	40	70	~~		000		004	00	~
13-142	W/0	128	383	1541	13	73	62	50	220	11	861	32	8

	cortex	7		7	9								
13-143	w/o cortex	111 4	407	1258 8	43	69	50	65	234	9	852	12	8
13-144	W/O	135	374	1581	53	93	102	54	228	11	599	14	11
13-145	w/o	9 855	272	5 1137	40	58	70	45	218	8	601	19	6
13-146	cortex w/o	158	385	5 1569	47	91	103	55	227	9	578	18	18
13-147	cortex w/o	8 147	305	0 1360	37	58	68	55	243	8	473	17	9
13-148	cortex w/o	7 126	612	7 1789	55	62	141	66	240	5	650	20	13
12 140	cortex	8	400	1267	50	70	70	56	214	0	669	15	7
13-149	cortex	3	409	5	59	79	70	50	214	0	000	15	, _
13-150	w/o cortex	114 8	403	1005 5	60	68	96	32	105	9	782	15	5
13-151	Tools	187 5	972	3041 7	23 0	105	124	61	165	580	7	19	7
13-152	Tools	146 7	531	1535 1	10	71	51	58	227	678	9	14	9
13-153	Tools	, 141 5	344	1330	61	76	62	46	219	748	10	15	9
13-154	Tools	100	378	9771	31	50	70	55	171	397	10	13	12
13-155	Tools	193	404	2116	10	107	67	41	217	670	7	13	10
13-156	Tools	8 127	367	1262	32	51	74	31	164	373	9	12	5
13-157	Tools	290	689	3 3565	56	0	276	26	134	18	9	13	12
13-158	Tools	4 125	386	9 1593 7	49	100	104	69	241	878	7	21	11
13-159	Tools	132	445	7 1451 5	53	77	83	66	232	661	8	20	10
13-160	Tools	176	436	1629 6	47	89	61	46	225	699	8	13	11
13-161	Tools	188	600	2085	54	90	72	58	249	513	10	12	8
13-162	Tools	173	570	1308	27	65	138	36	173	6	764	18	11
13-163	Tools	167	385	1567 5	41	75	91	60	241	499	8	18	15
13-164	Tools	128	302	1105	33	141	86	51	167	260	11	15	9
13-165	Tools	121	319	1248	43	55	49	43	230	6	457	12	12
13-166	Tools	995	222	1158	28	56	56	53	200	612	9	18	8
13-167	Tools	113	355	1276	14	67	70	56	232	487	10	16	12
13-168	Tools	141	400	1460	36	68	55	78	249	881	10	14	11
13-169	Tools	170	533	1155	53	89	106	36	221	849	7	17	12
13-170	Tools	129 8	434	1360 4	58	130	65	48	149	956	10	18	18

13-171	Tools	860	278	1373	31	98	83	63	219	591	7	16	8
13-172	Tools	140	358	1 1328	37	75	83	56	243	12	656	19	10
13-3	cobbles	2 791	227	1136	78	77	117	45	142	8	770	14	11
13-80	w/cortex	102	221	1181	46	73	65	38	199	8	512	14	5
13-81	w/cortex	8 113	283	3 1316	44	94	88	45	226	4	662	16	8
13-82	w/cortex	130	362	1533	37	82	92	60	230	5	560	15	10
13-83	w/cortex	135	436	8 1441	27	91	95	32	176	10	946	13	10
13-84	w/cortex	2 805	300	8 1208 7	28	73	41	38	116	6	878	13	9
13-85	w/cortex	145	312	1313	60	63	94	47	210	10	579	13	8
13-86	w/cortex	3 110	219	1254	41	73	66	46	205	6	551	13	7
13-87	w/cortex	3 122	366	4 1269	38	54	82	49	205	10	558	22	6
13-88	w/cortex	995	196	7610	19	68	49	43	183	11	760	13	9
Sample	Art. Type	Ti	Mn	Fe	Zn	Rb	Sr	Y	Zr	Nb	Ва	Pb	Th
13-89	w/cortex	108 9	231	1081	29	62	43	40	219	8	569	14	9
13-90	w/cortex	132 9	587	1805 1	57	87	101	56	241	14	600	13	11
13-91	w/cortex	112	241	1242 7	33	74	65	44	224	11	643	14	10
13-92	w/cortex	123	330	, 1208	28	70	38	49	228	6	552	11	7
13-93	w/cortex	143	269	1455	55	80	80	56	248	10	811	14	11
13-94	w/cortex	117	231	1285	35	64	63	52	233	10	648	15	16
13-95	w/cortex	0 111	404	1242	44	88	50	40	232	9	704	13	9
13-96	w/cortex	132	346	1238	35	53	46	34	208	8	363	10	10
13-97	w/cortex	147	412	7 141 <u>1</u>	50	106	130	51	229	4	647	20	12
13-98	w/cortex	138	491	1573	39	105	48	54	241	10	744	13	16
13-99	w/cortex	223 4	687	9 2773 4	67	105	56	47	212	11	103 7	16	14

Table 3. Major oxides from a sample of the cobble assemblage.

SAMPLE	Na2O	MgO	Al2O3	SiO2	K2O	CaO	TiO2	MnO	Fe2O3	Σ1
	%	%	%	%	%	%	%	%	%	
20	3.559	0	8.62	79.136	3.158	0.451	0.107	0.032	1.248	96.311

21	4.537	0	8.73	79.2	2.143	0.723	0.09	0.037	1.245	96.705
10-15	5.295	0	9.55	76.852	2.671	0.298	0.198	0.051	1.755	96.67
10	4.228	0.021	9.02	78.72	2.381	0.7045	0.115	1.075	1.324	97.588 5
10-12	4.135	0	9.94	76.21	2.815	1.104	0.171	0.072	1.806	96.253
RGM1- S4	3.723	0.007	12.251	74.547	5.151	1.497	0.323	0.042	2.248	99.789

¹ Totals less than 100% due to absence of some major oxides and trace elements from the calculation.

Table 4. Original and jackknifed (cross-validated) classification results for the discriminant analysis.

	1	Classification Re	Suits			
		Average Linkage (Between	Predicte	d Group Mer	nbership	Total
		Groups)	1	2	3	
		1	127	0	1	128
	Count	2	1	21	4	26
Original		3	0	0	13	13
Onginal		1	99.2	.0	.8	100.0
	%	2	3.8	80.8	15.4	100.0
		3	.0	.0	100.0	100.0
		1	127	0	1	128
	Count	2	1	21	4	26
Cross validated ^b		3	0	0	13	13
Cross-validated		1	99.2	.0	.8	100.0
	%	2	3.8	80.8	15.4	100.0
		3	.0	.0	100.0	100.0

Classification Results^{a,c}

a. 96.4% of original grouped cases correctly classified.

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.

c. 96.4% of cross-validated grouped cases correctly classified.

Table 5. Pooled within-groups matrices for the discriminant data.

		Rb	Sr	Zr	Ва	Nb
	Rb	1.000	147	.139	.283	.321
	Sr	147	1.000	089	201	.215
Correlation	Zr	.139	089	1.000	354	.097
	Ва	.283	201	354	1.000	090
	Nb	.321	.215	.097	090	1.000

Pooled Within-Groups Matrices

Table 6. Log determinants for the discriminant data.

Log Determinants									
Average Linkage (Between	Rank	Log							
Groups)		Determinant							
1	5	33.098							
2	5	42.465							
3	5	33.128							
Pooled within-groups	5	42.354							

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Table 7. Box's M results for the discriminant analysis.

Test Results			
Box's M		1283.475	
F	Approx.	37.719	
	df1	30	
	df2	4195.305	
	Sig.	.000	

Tests null hypothesis of equal

population covariance matrices.

Figure 1. TAS plot of samples from the cobble assemblage.

	Dendrogram using Average Linkage (Between Groups) Resolution Datase Cardia	0	Dendrogram using Average Linkage (Between Groups) Resolute Balance Cluster Condex
		ı È	5 10 15 20 25
faires faires		13-102 15	
faires	54	13-141 54	
Taken .	12 87	1346 87	
Takes .	38	13.64 100	
faires.	44	13-138 44	
Taxies Taxie	87	13-81 87	
faires faires	35	13-122 25	
cutties	-	10 2	
faires	9-	13-130 13	
colities	57 51	15-16 11	
faires	34	25 0	
faires faires	66 37	13-130 46	
Taken .	40	13-128 41	
failers .	80	13-137 50	
faires	18	13-05 101	
calibles	24 19	15-15 10	
Takes Unitaries	20	PBL006 111	
Cultures Collines	124	FBL019 124	
Taken .		15-127 40	
faires .	12	1347 100 FB.014 110	
fairs	E1	13-148 61	
faires	45	13.122 45	
faires faires	0	13-134 47	
faires faires	30	13-125 30	
failes Dates	9	13-116 29	
califies		18-17 12	
faires	2h	13-134 17	
Takes coldies		13.40 99	
Coldies Takes	2 24	20 0 13-128 20	
coldies faires	<u>+</u>	10-12 0 13-136 40	
Takes .	se	13.140 56	
faires	26-	13-112 25	
Unitaries	100	FB.003 100	
Takes .	54	1348 14	
Unitaries Unitaries	156	FBL003 150	
Tools	19	13-106 19	
Cubbles Spices	8- 0-	13.3 15	
Owheries	120	FB.023 120 FB.025 133	
faires faires	27	13-118 21	
Taken .	9	1340 8	
faire .	42 90	13-129 42	
Owheries Overlage	121	FBL028 121 FBL026 120	
failes Tools	80 77	13-142 60	
Unitaries Unitaries	10	FBL010 115 FBL008 113	
Unitaries In Unitaries		FB.012 117 ≻ FB.005 114	
fairs Outpriss	10	13-96 102 FB.005 150	
Unitaries Unitaries	125	FBL020 125 FBL021 125	
Takes University	20	13-107 20 FBL002 107	
fairs.	10	13-80 80 FB.004 109	
Orange Co.	162	PB.00 162	
Orange Co.	160	FBLOR 160	
Orange Co.	10	FB.060 150	
Owheres	120	FBL015 120	
Unitaries	123	FBL018 123	
Uninge Lo.	155	PB.052 155	
Durbanies Rakes	12 12	13-144 57	
faires	90	13-00 90	
faires faires	00	1342 88	
Taken I	53	1347 92	
Outure	140	FB.006 140	
Takes .	10	13-06 92	
faires .		13-42 90	
Unitaries Unitaries	100	FBL001 100	
coldes University		7 1 FBL022 127	
Orathan		PB.007 141	
Unitaries	12	FBL054 157 13-134 pt	
faires		13-99 105 FB.027 132	
Outan		PBL028 142	
Outhan	131	PB.004 138	
Outur	136-2	PB.002 134	
Person Co.		FR.045 141	
Curbertani Co		PR.076 100	
Cunterland Ca. Person Co.		PR.0H 147	
Grange Co. Tools		13-157 70	
Durhan Co. Cumberland Co.		PBL040 141	ЫГ
Curberland Co University		PBL042 145 PBL024 129	
Person Co. Durhan Co.		PBL045 142 PBL050 153	- H
Durhan Co. Durhan Co.		PBL047 150 PBL040 152	
Currentered Co. Universities	144	PB.00 144	
Tools Tools	7 8	13-198 21	
Tools Tools		13.188 00	
Tools		13.194 67	
Tools	;h⊔	13-152 65	
Tests		13-158 60 13-159 72	
Tools		13-152 66 13-162 N	
Tools Tools	29	13.162 79	
Tools	24	13-166 70	1
Tests	0 -	13-19 44	Z

Wighter 2:01Arsting Editorial (490097878) ical cluster dendrograms of all data based on Rb, Sr, Zr Nb, Ba. Left=quarry&artifact types; right=artifact numbers (13-x) and quarry designation (FBL-x) from Speakman (2006).

Figure 3. Plot of the first two canonical discriminant functions from the cluster groups.

Figure 4. Nb, Rb, Ba three-dimensional plot of the artifacts only.

Figure 5. Nb, Rb, Ba three-dimensional plot of the artifacts and MURR source data. Compare to Figure 4.

Figure 6. Nb versus Rb bivariate plot of the artifacts and MURR source data.