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Abstract of the Thesis

Novel Coding Strategies for
Multi-Level Non-Volatile Memories

by

Frederic Sala
Master of Science in Electrical Engineering

University of California, Los Angeles, 2013

Professor Lara Dolecek, Chair

Non-volatile memories (NVMs) are the most important modern data storage technology.

Despite their significant advantages, NVMs suffer from poor reliability due to issues such

as voltage drift over time, overwriting, and inter-cell coupling. This thesis applies coding-

theoretic techniques to NVMs in order to improve their reliability and extend their lifetimes.

In particular, we focus on two classes of problems: those related to the use of thresholds to

read memory cells, and those related to inter-cell coupling in the data representation scheme

known as rank modulation.

The first part of the thesis develops the concept of dynamic thresholds. In NVMs, reading

stored data is typically done by comparing cell values against a set of predetermined, fixed

threshold references. However, due to common NVM problems, fixed threshold usage often

results in significant asymmetric errors. To combat these problems, the notion of dynamic

thresholds was recently introduced. Such thresholds are allowed to change in order to react

to changes in cell value distributions. Thus far, dynamic thresholds have been applied to the

reading of binary sequences in memories with single-level cells (SLCs).

In this work, the use of dynamic thresholds for multi-level cell (MLC) memories is ex-

plored. A general scheme to compute and apply dynamic thresholds is provided. We derive
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a series of performance results, based on both practical considerations and theoretical analy-

sis. We show that the proposed threshold scheme compares favorably with the best-possible

threshold scheme. Finally, we develop error-correcting codes that are tailored to take advan-

tage of the properties of dynamic thresholds. Code constructions are provided for different

channel models, including those allowing limited and unlimited numbers of errors of varying

magnitude limitations.

The second part of this thesis is focused on the application of constrained coding to

rank modulation. Rank modulation is an MLC NVM scheme where information is repre-

sented by the rankings of charge levels in an entire block of cells, rather than the absolute

charge level of any particular cell. This scheme resolves certain NVM problems, including

write-asymmetry, as it allows for a transition from any information state to any other solely

through the addition of charge to an appropriate subset of cells. However, the scheme still

suffers from inter-cell coupling errors. Such errors are due to inadvertent charge level in-

creases in cells whose neighboring cells have significantly larger levels.

We introduce constraints that mitigate the inter-cell coupling problem in rank modu-

lation. These constraints typically limit the differences between the ranks of neighboring

elements in a permutation, and thus limit the charge level differences between adjacent cells,

reducing inter-cell coupling effects. In particular, we analyze the single neighbor k-constraint,

where neighboring cells’ ranks cannot differ by more than k. We provide the best-known

bounds for the sizes of sets meeting this constraint, and, for certain cases where the param-

eter k involves a constant term, we derive exact expressions. We perform an asymptotic

analysis. Lastly, we introduce an efficient scheme that allows us to systematically generate

constrained permutations.
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CHAPTER 1

Introduction

This thesis is concerned with applications of coding-theoretic strategies to data storage sys-

tems known as non-volatile memories (NVMs). The thesis begins with some brief comments

on NVMs, including their importance, implementations, downsides, and common solutions.

1.1 Background on Non-Volatile Memories

Recently, NVMs such as Flash, electrically erasable programmable ROM (EEPROM) and

phase-change memories (PCM) have become among the most popular and promising data

storage technologies. NVMs are commonly used in every type of computing device and, in

particular, are ubiquitous in mobile storage. The defining feature of NVMs is their ability

to retain data without requiring a power supply. NVMs have many additional advantages

over traditional magnetic storage technologies. For example, NVMs experience lower failure

rates due to their lack of mechanical parts. They also exhibit very fast seek times, often an

order of magnitude faster in comparison to those of older storage technologies [CGOZ99].

NVMs are made up of large arrays of memory cells, where each cell can store one or more

bits of information. The earliest NVMs featured cells that were only capable of storing a

single bit. These are called single-level cell (SLC) memories, although, in fact, each SLC has

two levels. The term SLC refers to the fact that only one level is actively written; the other

level is the erased state. In order to maximize storage capacity, efforts have been made to

increase the number of bits per cell. Memories with cells representing two bits of information
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Figure 1.1: Flash cell array schematic and Flash cell block diagram. Cells are floating gate
transistors organized in a large rectangular array.

are called multi-level cell (MLC) memories. The term MLC is also applied to cells that store

at least two bits of information. In this thesis, we will use the term in the latter sense.

The current industry standard for Flash memories are cells that store three bits, known as

triple-level cells (TLCs).

NVM chips are organized in the following way: Each chip typically contains multiple

planes, which are divided into blocks. Each block is further divided into pages. Design

considerations, such as the number of cells in a page or a block, are specific to each device’s

manufacturer. Flash memories have a typical block size of order of magnitude between

105 and 106 cells [CGOZ99, Chapter 3]. In [YGS+12] and [GCC+09], the following design

parameters were described for a TLC Flash chip: each block contains 384 pages and each

page stores 8 KB of data. Thus, there are 8192000 memory cells in each block.

The mechanism through which cells store information depends on the particular NVM

technology used in a device. As an example, we describe the typical Flash technology. Each

cell contains a transistor which includes a floating gate in addition to the control gate. The

floating gate is insulated by an oxide layer. When electrons are inserted into this gate, they

are trapped there. Memory states are then determined by the amount of charge present on
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the floating gate. This quantity is determined by measuring the current flow through the

transistor. In SLC devices, the two states are simply determined by whether current flows

or does not flow. In Figure 1.1, we show a block diagram for a typical Flash cell, along with

the schematic for an array of NAND Flash cells.

Sources of Error in NVMs

To read the value of a memory cell, its voltage is compared to a set of predetermined, fixed

reference thresholds. In SLC memories, there is a single threshold v so that a cell value is read

as a 0 if its voltage is determined to be below v and as a 1 otherwise1. Unfortunately, this

approach is prone to errors due to the physical properties of NVMs. For example, in Flash

memories, voltage distributions tend to widen over time, expanding beyond the intervals

between thresholds. As a result, the distributions overlap and form a potential source of

error. This effect, known as charge leakage, is particularly problematic with dense MLCs,

where intervals between thresholds are increasingly small.

There are other potential sources of error in NVMs. For example, inter-cell coupling

refers to parasitic capacitances between physically adjacent cells. Due to these capacitances,

when a large amount of charge is added to a cell, the neighboring cell charge levels can be

inadvertently increased, resulting in error [PR04].

NVMs also exhibit asymmetry in the writing process. It is possible to write to (that is,

increase the charge levels in) a single cell by injecting electrons into it. However, in order

to delete (remove charge from) a cell, an entire block of cells must be deleted [CGOZ99].

The process of erasing a block is time-consuming and permanently damages the device. The

lifetime of a Flash NVM allows for about 105 program/erase cycles [BCMV03].

Write-asymmetry is naturally problematic when the same block is frequently rewritten.

In addition, since the amount of charge added to a cell when writing is subject to variability,

NVM cells are also prone to overwriting. When this occurs, a cell’s charge level has been
1Note that in actual SLC implementations, for practical reasons, a 0 is read if the voltage is above the

threshold, and a 1 is read otherwise.
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Figure 1.2: Two-bit cell charge levels immediately after writing and after some time. Green
lines represent threshold voltages. Boxed cells (highlighted in red) suffer read errors.

brought too high. Removing charge from the cell requires erasing the entire block. For

this reason, avoiding overwriting is critical, so charge must be added to cells very gradually,

which slows down the writing process.

We illustrate the effects of the previously described sources of error in Figure 1.2. Here,

we show a block with 15 MLC cells c1, c2, . . . , c15, each storing 2 bits of information. The

thresholds t1, t2, t3 used when reading are shown as green horizontal lines. The top half of

the figure depicts the cells immediately after having been written. In the bottom half, we

show the block after a certain duration of time has passed. Now, the cell charge levels, shown

in light blue, have changed. The charge levels for cells c2, c4, c5, c9, c12, and c14 are no longer

in their original threshold intervals. These cells will be read erroneously.

Coding Strategies

Due to the popularity of NVMs, there have been a large number of research works applying

coding-theoretic techniques to NVM storage devices. Most of these coding solutions have

focused on resolving the write-asymmetry property of NVM cells. Below, we give a brief

4



overview of the existing approaches.

Write-once memory (WOM) codes were introduced in a seminal paper by Rivest and

Shamir [RS82] in 1982. During this early period, WOM codes found use in magnetic and

optical media storage systems. These codes are developed for a model where the codeword

components can only be increased, never decreased. The ideas in [RS82] were generalized

and extended in [FS84]. Some time later, the capacity of generalized WOM codes was de-

termined in [FHV99].

The increase-only criterion used in WOMs is equivalent to the write-asymmetry condi-

tion, allowing for the application of WOM codes to NVMs. This has been a particularly

fruitful area of research. Efficient multiple-write WOM constructions are given in [KYS+10].

In [Shp12], capacity-achieving binary WOM constructions are developed. In [YS12] and

[GDon], bounds and constructions for high-rate non-binary WOM codes are provided.

The rank modulation scheme was also developed to alleviate write-asymmetry. In rank

modulation, information is not represented by the charge level in a single cell, but rather by

the relative rankings of the charge levels of all the cells in a block [JMB09]. These cell ranks

induce a permutation, so that rank modulation is a form of permutation coding. The scheme

resolves the write-asymmetry issue in the following way: to transition from any permutation

to any other permutation, it is only necessary to add charge to an appropriate subset of cells.

Overwriting is also resolved, as accidentally increasing cell a’s charge level beyond that of

cell b can be trivially resolved by adding sufficient charge to cell b.

Error-correction coding for permutations has previously been explored in [CK69]. More

recently, there have been a series of papers dedicated to studying coding for the rank mod-

ulation scheme in particular. Codes correcting a single error are developed in [JSB10]. In

[TS10], code constructions which correct limited-magnitude rank modulation errors are gen-

erated. In [FSM12], bounds and constructions are provided for codes correcting transposition

errors, where the values of two adjacent cells are flipped. Finally, a framework for developing

codes over permutations from standard Hamming error-correcting codes is given in [BM10].

5



With this approach, it is possible to correct any type of error over permutations. A series of

constructions with various properties are derived using this technique in [MBZ13].

Note that certain problems affecting NVMs, such as charge leakage and overwriting,

result in asymmetric errors. Here the term asymmetric refers to the fact that the errors

exclusively increase (or exclusively decrease) cell values. For example, charge leakage always

results in a decrease in cell charge levels, while overwriting always increases cell charge levels.

The presence of such asymmetric errors in NVMs has renewed interest in the asymmet-

ric channel, first studied in its simplest form as the Z-channel. Codes for the asymmetric

channel have a long history, starting with Berger’s error-detection codes [Ber61] in the early

1960s. Recently, a large number of works have focused on the general problem of codes cor-

recting one or more asymmetric errors. In [CSBB10], codes were developed to correct a fixed

number of asymmetric (and symmetric) limited-magnitude errors. The limited magnitude

error model is particularly appropriate for NVMs, as increases and decreases in charge levels

are typically very small. Optimal systematic asymmetric error-correcting code constructions

correcting any number of errors were provided in [EB10]. In [KBE11], systematic single

asymmetric error-correction constructions were developed. Other works on the subject of

asymmetric error-correction include [TB12a], [TB12b], and [Sch12].

Finally, additional NVM code constructions were provided in [MSV+09], [JBB07], and

[JLB12]. Application of low-density parity-check (LDPC) codes to Flash memories were ex-

plored in [WCSW11] and [ZJB12a]. Solutions focused specifically on phase-change memories

were studied in [JZWB11].

The issue of inter-cell coupling, where the difference between cell charge levels may

inadvertently result in one of the cells’ levels being increased, has also been a focus of cod-

ing works. Constrained codes for Flash memories were studied in [BB11]. In this paper,

algorithms were developed that allow for writing to cells in a particular order, avoiding writ-

ing adjacent cells with significant charge differences consecutively. Applying the notion of

constrained coding to the rank modulation scheme described above in order to resolve the
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c1 c3 c4 c5 c2 c1 c3 c4 c5 c2 c1 c3 c4 c5 c2 

1 2 4 5 3 2 3 1 5 4 2 3 1 4 5 

Figure 1.3: Inter-cell coupling in rank modulation. To transition from (1 3 2 4 5) to
(2 4 3 1 5), c4’s level must rise. Neighboring cell c5’s level also inadvertently rises, resulting
in the incorrect permutation (2 5 3 1 4).

inter-cell coupling issue will be one of the major focuses of this thesis.

An example of a permutation error caused by inter-cell coupling in rank modulation is

shown in Figure 1.3. On the left, we show a block with 5 cells c1, . . . , c5. The order of the

magnitudes of the cells induces the permutation (1 3 2 4 5). Now, if we wish to transition

our block to the permutation (2 4 3 1 5), we need only increase the charge level in cell c4

beyond that of cell c1, which is currently the largest level. This is depicted in the central

panel of the figure. However, increasing the charge in c4 to such a large extent may cause

neighboring cell c5’s charge level to rise. In our example, it has risen beyond the level of c2,

as seen on the right side of the figure. Now there is an error: the two permutation elements

corresponding to c2 and c5 are incorrect.

An entirely different approach to combating NVM problems (particularly charge leak-

age) was introduced in [ZJB11]. In this work, Zhou, Jiang, and Bruck introduced the notion

of dynamic thresholds. With this approach, there are no predetermined thresholds used for

comparison when reading cells. Instead, a new set of thresholds is generated each time a cell

is read, based on specific information known to the cell decoder (that is, the reader). This

technique was shown to be highly effective against errors caused by voltage drift. In this

work, we will apply dynamic thresholds to MLC memories and further develop and extend
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Figure 1.4: Cell charge levels. Top half shows the use of fixed thresholds (in green), causing
six errors. Bottom half depicts dynamic thresholds (purple), which have been set according
to the block’s cell level distributions. Here, only two cells are in error.

this scheme.

Specifically, dynamic thresholds are selected in such a way that the number of cells at

each level in a block remains the same when the cells are read as it was when the cells were

written. (Of course, this information must be provided to the cell decoder.) We show an

example of how this works in Figure 1.4. In the top half, we display the set of 15 cells

c1, . . . , c15 from Figure 1.2. The fixed thresholds, shown in green, cause six cell errors.

In our block, there were originally 2 cells with value 3, 4 cells with value 2, 6 cells with

value 1, and 3 cells with value 0. We generate dynamic thresholds so that when we read

the cell voltages, we will still have two 3s, four 2s, six 1s, and three 0s overall. Such a set

of dynamic thresholds is shown in purple in the bottom half of Figure 1.3. Note that these

thresholds are in different positions than the original fixed thresholds. Reading with these

thresholds, only two cells, c5 and c9, remain in error, a great improvement in the error rate.
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1.2 Outline of Contributions

Below, we present a brief outline containing the contributions of this thesis. The first part of

the work is centered on the previously-described concept of dynamic thresholds. The second

part is concerned with constrained coding in the rank modulation scheme. Our contributions

and future directions for our work are summarized in Chapter 4.

Chapter 2 Contributions

The dynamic thresholding results in [ZJB11] were derived for binary sequences used in the

single-level cell (SLC) case. We apply the notion of dynamic thresholds to non-binary se-

quences, making the technique applicable to MLC memories. We demonstrate that the

advantages of dynamic thresholding are preserved in the MLC case. That is, we show that

dynamic thresholds allow for lower error rates in comparison to traditional fixed thresh-

olds. We also prove that dynamic thresholds perform close to the “best-possible” threshold

scheme. This optimal scheme is not realizable, but serves as a basis for comparison.

Algorithms are introduced to compute dynamic thresholds in MLC NVMs. These al-

gorithms have two flavors. The first is based on the concept of communicating a set of

metadata regarding the distribution of levels in a block of cells. The second requires that

the block’s level distributions are fixed in advance. We also comment on the implementation

of dynamic thresholds in real-life devices which suffer from certain limitations.

Finally, we explore the more general problem of combining dynamic thresholding with

error-correcting codes in order to guarantee the correction of common errors. Though it is

possible to use existing, off-the-shelf codes with the dynamic thresholding scheme, we seek

codes that are tailored to correct only those errors which are found when using dynamic

thresholds. We study codes that correct a certain number of errors of limited magnitude

for each of the computation strategies described above. We also develop codes capable of

correcting an unlimited number of limited-magnitude errors.

9



Chapter 3 Contributions

In Chapter 3, we introduce the concept of constrained rank modulation. The original rank

modulation scheme resolves numerous problems occurring in MLC NVMs. However, it is

still prone to error due to the parasitic inter-cell coupling issue. We develop a constrained

coding scheme for permutations that resolves this coupling problem in the following way:

We introduce constraints that limit the differences between the ranks of adjacent elements

in a permutation. As a result, the differences in the charge levels of neighboring cells are

also limited. Several constraints with varying strength are introduced.

In particular, we study the single neighbor k-constraint, where adjacent elements in

the rank modulation permutation may differ by at most k. We develop general bounds

improving on those in [AK08]. We give an expression for the capacity of codes meeting

the constraint. We introduce a code construction which allows us to efficiently generate k-

constrained permutations. Furthermore, the scheme is shown to be asymptotically optimal.

Finally, we study the sizes of single neighbor constrained codes in two special cases, where

the constraint value k is either a constant, or within a constant of the permutation length n.

We compare the behavior of constrained rank modulation codes in these two extreme cases,

which are particularly useful for application to NVM devices.
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CHAPTER 2

Dynamic Thresholds

2.1 Introduction

In this chapter, we study the notion of dynamic thresholds. We open with some preliminaries,

including mathematical models and a formal definition of dynamic thresholds. Afterwards,

the performance characteristics of the scheme are examined. In order to explore the practical

performance aspect, we model cell distributions as Gaussians with certain parameters and

derive expressions of error probabilities in some small cases. We also give simulation results

using this Gaussian voltage distribution model.

We then compare the particular choice of dynamic thresholds with the “optimal” thresh-

old scheme, which is not realizable, but serves as a good basis for comparison. Finally, we

combine dynamic thresholds with error-correcting codes. We seek codes that are specifically

designed to correct those errors which occur when using the dynamic thresholding scheme.

We begin by introducing some necessary notation. We will be examining blocks of cells

in non-volatile memories. We assume that each cell can take on q levels from the set

F = {0, 1, 2, . . . , q − 1}. Let x = (x1, x2, . . . , xn) ∈ F n be the word written into a block

of cells of length n. We let v(x) = (v1, v2, . . . , vn) represent cell levels after writing x, where

vi ∈ R for i ≤ i ≤ n. The vi’s tend to vary as a function of time due to the various physical

effects experienced by devices discussed earlier.

We are particularly interested in reading a block of cells. To do so, we must interpret the

11



block’s cell voltage vector v(x) according to a set of reference voltages called a threshold.

We define the notion of a threshold vector:

Definition 1. A threshold vector t = (t1, t2, . . . , tq−1) is a vector used when reading a block

of cells in the following way: Read the word y(t,v(x)) = (y1, y2, . . . , yn) such that yi = m if

tm ≤ vi < tm+1, for 0 ≤ m ≤ q − 1 and 1 ≤ i ≤ n, where t0 = −∞ and tq = +∞.

When it is clear which block x and corresponding voltage vector v(x) we are referring to

from the context, we remove them from the expression for the output vector y and write

y(t) or simply y.

We seek to minimize the number of errors that occur when reading the original values

in a block x as y. We will be using the Hamming distance N(x,y) between x and y. In

words, N(x,y) is the number of positions i, 1 ≤ i ≤ n, such that yi 6= xi. For example, if

x = (1, 0, 2, 2) and y = (1, 1, 2, 0), N(x,y) = 2.

We often compare the performance of different thresholds t for a particular block x and

corresponding y. When we do so, we drop the x and y from the expression for distance

and write N(x,y) = N(x, y(t,v(x))) as N(t). Note that N(x,y) is not the only possible

measure of distance between (typically) long vectors x,y. For example, the L1 distance

is defined as L1(x,y) = ∑n
i=1 |xi − yi|. Similarly, we can define the asymmetric distance

da(x,y) = max(A(x,y), A(y,x)), where A(x,y) = |{i | xi > yi}|.

Next, if we read x as y and there exists an entry i with 1 ≤ i ≤ n such that xi = a and

yi = b with a 6= b, we say that an a→ b error has occurred. The number of entries i where

a→ b errors occur is denoted Na,b(t), so that ∑a6=bN
a,b(t) = N(t).

Define k(x) = (k0, k1, . . . , kq−1) to be a vector such that ka of the components of x are

at level a for 0 ≤ a ≤ q − 1. It is clear that ∑q−1
a=0 ka = n. We are now ready to introduce

the concept of the dynamic threshold. Dynamic thresholds are a class of threshold vectors

that satisfy the following property:
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Definition 2. A dynamic threshold td is any threshold vector such that

k(x) = k(y(td)).

That is, td is a threshold vector chosen so that the number of components at each level is

preserved from the input vector x to the output vector y(td).

Additionally, we use the notation [a, b] for the set {a, a+ 1, . . . , b} with a ≤ b and [n] for

the set {1, 2, . . . , n}.

We illustrate these notions with an example. Take n = 5, q = 3, and x = (1, 0, 2, 2, 0).

After some time, the cell voltages are given by v(x) = (1.6, 0.3, 2.3, 1.7, 0.7). Examining x,

we see that k(x) = (2, 1, 2). That is, there are two 0s, one 1, and two 2s in x.

Consider the threshold vectors t1 = (0.5, 1.5) and t2 = (0.8, 1.65). Reading v with t1 we

have y1 = (2, 0, 2, 2, 1) and k(y1) = (1, 1, 3). Then k(y1) 6= k(x) and t1 is not a dynamic

threshold. However, y2(t2) = (1, 0, 2, 2, 0), and k(y2) = (2, 1, 2) = k(x) so t2 is a dynamic

threshold.

2.2 Performance Analysis

In this section, we seek to motivate the use of dynamic thresholds by demonstrating their

performance improvement against fixed thresholds.

2.2.1 Practical Considerations

In [ZJB11], it was shown that for binary sequences, dynamic thresholds are particularly

effective (when compared to fixed thresholds) when the cell levels are modeled by Gaussian

distributions and have variance increasing with time. The same result holds in the non-

binary case.

A simple example of this scenario is depicted in Figure 2.1. Here, a block contains only

two cells x1 and x2 with true values (that is, the values originally written to x1 and x2) a
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Figure 2.1: Distributions v1 and v2 of cells x1 and x2 with true values a and a + 1, shown
immediately after writing and after some time. Initially, v1 ∼ N (a, σ2) and v2 ∼ N (a+1, σ2).
After a period of time, v1 has expanded and its mean has shifted. Note the fixed threshold
t1 and the dynamic threshold t2: t1 cannot react to the change in v1, but t2 does.

and a+ 1, respectively. The distributions v1 and v2 of these two cells are shown immediately

after writing and after some time has passed. The distributions are modeled as independent

Gaussians. These Gaussians have the same variance initially, but after a period of time, the

variance of v1 increases, and its mean is shifted. The fixed threshold t1 cannot adapt to these

changes, leading to a source of error. On the other hand, t2 is shifted to minimize the error

probability. This observation provides the fundamental motivation for our use of dynamic

thresholding schemes.

We illustrate the strength of dynamic thresholds with the following sample analysis. For
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q-level cells, we consider the fixed threshold

t =
(1

2 ,
3
2 , . . . ,

2q − 3
2

)
.

The voltage written into cell h, vh (1 ≤ h ≤ n), is read as a if a − 1
2 ≤ vh < a + 1

2 .

For simplicity, in this example we model the vh as (independent) Gaussians with identical

variance: vh ∼ N (a, σ2), where a is the original value written to xh.

In order to keep our analysis tractable, we take n = 2, so that the block x has only two

cells. Let x1 and x2 have values a and a+1, respectively, so that 0 < a < q−2. If we use the

threshold t to read the word, errors occur when the voltage values v1 and v2 fall outside of

the ath and (a+1)st threshold intervals, respectively. That is, errors occur when v1 < a− 1
2 ,

v1 ≥ a+ 1
2 , v2 < (a+ 1)− 1

2 , or v2 ≥ (a+ 1) + 1
2 . Thus,

Pr {error|t} = Pr
{
v1 < a− 1

2 ∪ v1 ≥ a+ 1
2∪ v2 < (a+ 1)− 1

2 ∪ v2 ≥ (a+ 1) + 1
2

}
,

which, after some manipulation, is seen to be equal to

2
(

1− Φ
(

1/2
σ

)
+ Φ

(
−1/2
σ

))
,

where Φ(x) is the c.d.f. for a zero-mean, unit-variance Gaussian distribution.

Instead, if we employ a dynamic threshold td, errors take place when v1 ≥ v2, since if

v1 < v2, the ath component of the threshold vector td, ta, will be placed between v1 and v2,

and x1 and x2 will be read correctly. Then,

Pr
{
error|td

}
= Pr {vi ≥ vj}

=
ˆ ∞
−∞

1
σ
√

2π
e−

(z−(a−1/2))2

2σ2 Φ
(
z − (a+ 1/2)

σ

)
dz.

This quantity is much smaller than the fixed threshold probability. For example, if σ = 0.25,
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Figure 2.2: Symbol error rate for a pair of cells with adjacent values a and a+1 as a function
of σ for fixed threshold reading versus dynamic threshold reading.

the fixed threshold error probability is ≈ 0.09 and the dynamic threshold error probability

is ≈ 0.0023. The error probability as a function of the deviation is shown in Figure 2.2.

The previous derivation of error probabilities explains the advantage of dynamic thresh-

olds. When using fixed thresholds, a cell can be in error simply by having its charge level

deviate enough to leave its initial threshold interval. With dynamic thresholds, however,

cells have to deviate relative to each other to cause an error. That is, two cells’ voltage levels

must cross over before an error can take place.

Of course, taking the block length to be n = 2 is an extreme case. Here, the value of

the information k(x) regarding the two cells’ levels is very significant, so that error rates are

dramatically improved. Taking the block size to be larger reduces the amount of information

provided by this quantity. Nevertheless, the special case n = 2 is useful because it provides

us with a tractable analysis of the error probability.

We performed simulations to determine whether dynamic thresholds are still effective

when the block size is approximately the typical block size in a real device. In Figure 2.3,

we provide a plot of the results of the simulation. Here, we used triple-level cells (TLCs),

so that q = 8, a block length of n = 105, and voltages modeled as Gaussians with increas-

16



0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

Voltage Standard Deviation

S
y
m

b
o
l 
E

rr
o
r 

R
a
te

 

 

Dynamic Thresholding

Fixed Thresholding

Figure 2.3: Symbol error rate for a block of 105 TLC (q = 8) cells using dynamic thresholding
and fixed thresholding. Here, voltages are modeled as Gaussians with increasing standard
deviation and shifting means.

ing standard deviation and shifted mean over time. The results confirm the advantage of

dynamic thresholds versus fixed thresholds in the typical block-length regime.

2.2.2 Comparison with the Optimal Scheme

Next, we compare our choice of thresholding scheme with the optimal scheme. Define

t∗ = arg mint N(t). We note that computing t∗ requires the knowledge of the initial word x,

so the decoder cannot use the optimal threshold. Even so, the dynamic threshold td performs

worse than the optimal threshold at most by a fixed factor (which depends on the number of

cell levels q and the maximum error magnitude.) In [ZJB11], it was shown that this factor

is 2 when q = 2, such that N(td) ≤ 2N(t∗). We derive general bounds for multi-level cells.

We define l to be the maximum error magnitude under the dynamic thresholding ap-

proach. In general, magnitude limitations model physical limits on the deviation of the

voltages vi. However, to keep our analysis tractable, we impose this limitation on the de-

coded output instead:
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Definition 3. Given a block of cells written as x and read as y with a dynamic threshold,

we say that errors were of limited magnitude l if |yi − xi| ≤ l for 1 ≤ i ≤ n.

This is a reasonable choice: in order for cell i with true value a to experience an error

of magnitude k under dynamic thresholding, its voltage vi must be larger than the voltages

of all cells with values a, a + 1, . . . , a + k − 1 or smaller than the voltages of all cells with

values a, a − 1, . . . , a − k + 1. Thus k must be very small. We begin our analysis with the

case l = 1, which is of practical interest due to the frequency of such errors in non-volatile

memories.

Our approach is to find error patterns that cause a fixed number of errors when using

dynamic thresholding and to lower bound the number of errors caused by these patterns

when using the optimal threshold. Recall that the number of errors from cell value a to cell

value b when reading using threshold t is denoted by Na,b(t). When l = 1, we note that

Na,b(td) = N b,a(td).

This is easy to establish through an inductive argument: Na,b(td) = 0 if |a− b| > 1, so it is

enough to show that Na,a+1(td) = Na+1,a(td). Take a = 0 for the base case. It is clear that

(under dynamic thresholding) N0,1(td) = N1,0(td), since the only possible errors involving

level 0 are 0 → 1 and 1 → 0. Assume that Nk+1,k(td) = Nk,k+1(td). Now, the number of

cells at level k + 1 must not change, so the number of cells transitioning away from k + 1

must be equal to the number of cells transitioning to k + 1:

Nk+1,k(td) +Nk+1,k+2(td) = Nk,k+1(td) +Nk+2,k+1(td).

Subtracting the induction hypothesis, we have that

Nk+1,k+2(td) = Nk+2,k+1(td),
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as desired. This fact leads us to the following theorem:

Theorem 1. For any cell levels v1, v2, . . . , vn, with errors of magnitude limited to l = 1, and

any dynamic threshold td and optimal threshold t∗,

N(td) ≤ 2N(t∗).

Proof. From the above result, when using dynamic thresholds, for every error a → a + 1,

there is a corresponding a + 1 → a error. For such errors, there exists a cell xi = a with

vi ≥ ta and a cell xj = a + 1 with vj < ta. (Here, ta refers to the ath component of td.)

Thus, vj < vi. We have the following (disjoint) possibilities for t∗a :

t∗a ≤ vj < vi, or

vj < t∗a ≤ vi, or

vj < vi < t∗a.

The first case will result in an a→ a+1 error, the second in both a→ a+1 and a+1→ a

errors, and the third in an a+ 1→ a error. Thus, for each pair of errors in the scheme using

td, there is at least one error when using t∗, so that N(td) ≤ 2N(t∗).

At worst, the use of our particular choice of dynamic thresholds results in twice as many

errors as the optimal threshold. We see that (when l = 1) the dynamic threshold scheme

works as well for q > 2 as in the binary case. Notice the following argument: if there exists a

pair of cells with levels a1, a2 with a1 < a2 and they suffer errors a1 → b1 and a2 → b2 where

b1 > b2, the optimal threshold scheme will result in at least one error. The case a2 = a1 + 1

gives the above proof. We exploit this notion to derive a similar bound in the more general

case where 1 < l ≤ q.

By definition, dynamic thresholds do not change the distribution of the values of cells in

the stored word. The received sequence is then a permutation of the original word, that is,

19



a multiset permutation. Every multiset permutation can be expressed as a product of cycles

[Sta00]. Then, any error a→ b is part of a cycle of k errors

a1 → a2 → a3 → . . .→ ak → a1,

where 2 ≤ k ≤ q. That is, there exist cells at positions s1, s2, . . . , sk with levels a1, a2, . . . , ak,

respectively, such that cell xsi suffers an error ai → ai+1 if 1 ≤ i < k and cell xsk suffers an

error ak → a1.

We illustrate this idea with an example for n = 3, q = 4, and l = 2. Let (2, 1, 3) be

written into the cells (x1, x2, x3). After some time, the voltages representing the cells are

determined to be (v1, v2, v3) = (2.4, 1.9, 1.8). The decoder knows that there was one cell at

level 1, one at level 2, and one at level 3. To preserve the number of cells at these levels,

it must pick dynamic thresholds satisfying 1.8 ≤ t1 < 1.9, 1.9 ≤ t2 < 2.4, and 2.4 ≤ t3.

Using these thresholds to read the vi’s results in y = (3, 2, 1), a permutation of the original

sequence (2, 1, 3). The errors are given by the cycle 1→ 2→ 3→ 1.

We are now ready to prove the general bound:

Theorem 2. For any cell levels v1, v2, . . . , vn, with errors of magnitude limited to l > 1,

N(td) ≤ (l + 1)N(t∗).

Proof. Any error must be part of a cycle. Consider the cycle

a1 → a2 → a3 → . . .→ ak → a1

of length l < k ≤ q. Let amin = min{a1, a2, . . . , ak} and amax = max{a1, a2, . . . , ak}. Since

the ai’s are distinct, amax ≥ amin + (k − 1). Now, split up the interval [amin, amax] into

dk−1
l
e + 1 intervals (where each interval, other than the first, has length l) in the following
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way:

[amin, amin], [amin + 1, amin + l], [amin + l + 1, amin + 2l], . . . ,
[
amin +

(⌊
k − 2
l

⌋)
l + 1, amax

]
.

Note that there are bk−2
l
c+1 intervals of length l, and, including the first interval [amin, amin],

there are a total of bk−2
l
c+ 2 = dk−1

l
e+ 1 intervals, as desired.

Since there is a path from amin to amax, there exists ai in the fth interval and aj in the

(f + 1)st interval such that ai → aj. If this was not the case and some interval was skipped,

an error would be larger than the interval length of l, which is not possible. Similarly, as

there is a path from amax to amin, the cycle contains corresponding descending errors. That

is, there exists ai′ in the (f + 1)st interval and aj′ in the fth interval such that ai′ → aj′ .

Now we use the observation derived in the earlier result. We have that initially there exist

cells with values ai and ai′ , respectively, such that ai < ai′ . These cells are affected by errors

of type ai → aj and ai′ → aj′ with aj > aj′ . The optimal threshold results in one error for

each such occurrence, as shown in the proof of Theorem 1.

The cells producing the error above were in the fth and (f + 1)st interval. There is at

least one such error for each of the
⌈
k−1
l

⌉
pairs of adjacent intervals. Thus, for an error cycle

h of length k, usage of the optimal threshold results in at least
⌈
k−1
l

⌉
errors. Call the number

of errors caused by this cycle Nh(t). Then,

Nh(t∗) ≥
⌈
k − 1
l

⌉
,

while Nh(td) = k, so that

Nh(td) ≤ k⌈
k−1
l

⌉Nh(t∗).

Now, for l ≥ 1, we have that
k⌈
k−1
l

⌉ ≤ l + 1,

21



and summing over all error cycles h, we have

N(td) =
∑

h
Nh(td) ≤

∑
h

k⌈
k−1
l

⌉Nh(t∗) ≤ (l + 1)
∑

h
Nh(t∗) = (l + 1)N(t∗).

In the above analysis, we assumed that the cycle h has length k > l. If instead k ≤ l,

there will still be at least two cells whose values are exchanged relative to a threshold, as in

our standard argument. Then, as before, using the optimal threshold will result in at least

one error. Dynamic thresholds result in k errors for a cycle of length k, so

Nh(td) ≤ kNh(t∗) ≤ lNh(t∗) ≤ (l + 1)Nh(t∗),

and our result still holds.

We conclude that, even in the general case, the performance of our scheme is comparable

to that of the optimal scheme, which cannot be used without the decoder already knowing

the original codeword.

2.3 Computing Dynamic Thresholds

Thus far we have analyzed the advantages of replacing fixed thresholds with dynamic thresh-

olds. In this section, we focus on computing dynamic thresholds. First, in order to generate

the dynamic thresholds for each codeword, the decoder needs to know the number of cells

at each level, given by k = (k0, k1, . . . , kq−1). We give several methods of accomplishing

this task. These methods were introduced by Zhou et al. in [ZJB11] for the SLC case. We

generalize them for MLC memories and suggest some improvements.
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2.3.1 Metadata Approach

First, we may have the encoder append the base-q representation of each of the ki’s to a

transmitted codeword of length n. It is sufficient to include ki for i < q − 1, as kq−1 =

n − ∑q−2
i=0 ki can be computed from k0, k1, . . . , kq−2. Then, as 0 ≤ ki ≤ n, the size of

this metadata is (q − 1)dlogq(n + 1)e. The metadata will be used to generate the dynamic

thresholds. For this reason, the metadata must be communicated through a side channel, or,

if it is stored in a set of memory cells, it must be decoded using traditional fixed thresholds.

Furthermore, since it is crucial that the ki’s are reproduced exactly, the metadata should be

protected by a strong error-correcting code.

To compute a dynamic threshold for cell levels ṽ1, ṽ2, . . . , ṽn, we begin by sorting the ṽi’s.

Let v1 ≤ v2 ≤ . . . ≤ vn be the sorted sequence. There must be k0 cells at level 0, so the

threshold t0 must be larger than the first k0 values and smaller than the (k0 + 1)st value.

That is, t0 must satisfy vk0 < t0 < vk0+1. Similarly, there are k1 cells at level 1, so that t1

must be larger than the first k0 + k1 values, and smaller than the (k0 + k1 + 1)st smallest

value, or vk0+k1 < t1 < vk0+k1+1. Thus, it is natural to select the threshold

td =
(1

2 (vk0 + vk0+1) , 1
2 (vk0+k1 + vk0+k1+1) , . . . , 1

2
(
vk0+k1+...+kq−2 + vk0+k1+...+kq−2+1

))
.

This sorting procedure has complexity O(n log n) in both the average-case and the worst-

case. The process does not depend on the number of levels q, as the sequence only needs to

be sorted a single time.

As seen above, it is in fact only necessary to select the k0th, (k0 + 1)st, (k0 + k1)st,. . . ,

(k0+k1+. . .+kq−2+1)st smallest elements from our list, for a total of 2q−2 selections. There

exist algorithms to find the kth order statistic with average- and worst-case runtime O(n),

such as the BFPRT algorithm in [BFP+73]. Thus, we can find a threshold td with worst-

case complexity O(2qn). If q is small compared to log n, this algorithm is more efficient than

sorting the list. If q = 2, this procedure is better than the proposed algorithm in [ZJB11],
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which has worst-case complexity O(γn) for a constant γ.

2.3.2 Balanced Codes Approach

Above, we allowed any possible distribution of levels in our codewords, so that this distri-

bution had to be included as metadata for each transmitted codeword. However, there is

another approach. If we fix the distribution of levels beforehand, and restrict transmission to

codewords having this distribution, we forgo the need for metadata. The decoder will simply

be informed beforehand of the chosen distribution. Of course, by fixing this distribution,

we lose a number of codeword choices. In order to maximize the size of our codebook, we

should pick a “balanced” distribution, where the numbers of cells at each level are as close

as possible. For example, if we have q levels and codewords of length n = eq, we should have

e cells at levels 0, 1, . . . , q − 1, respectively. This approach is referred to as a balanced code.

The number of codewords in the balanced codebook Dn,q with codewords of length n over

F = {0, 1, . . . , q − 1} is

|Dn,q| =
(

n

e, e, . . . , e

)
= n!
e!e! . . . e! ,

where
(

n
e,e,...,e

)
represents a multinomial coefficient. We note that asymptotically, no rate is

lost by using the balanced codebook (for fixed q), as

lim
n→∞

ln |Dn,q|
ln qn = lim

n→∞

ln n!
e!e!...e!

lnn! = 1.

Since we need not send metadata, we may save (q− 1)dlogq(n+ 1)e digits. The downside

of this approach is that the codebook is smaller in the finite-length regime and that it is more

difficult to construct error-correcting codes over the space of balanced codewords. There is

also added complexity in encoding and decoding balanced codes. The binary case of this

problem has been studied extensively. It was introduced by Knuth in his seminal paper

[Knu86]. Less is known about the non-binary case; generalizations of balanced codes were

recently studied in [WISS13], while more general constructions for q-ary constant weight
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codes were provided in [CL07].

2.3.3 Remarks on Real Devices

In this section we comment on the application of dynamic thresholds to real NVM devices,

which have certain limitations.

Timing of dynamic threshold generation

First, dynamic thresholds have been defined over an entire block of cells. This means that

when we wish to read a particular set of cells, we must read the entire block where these

cells are found. However, reading an entire block is slow and permanently wears down the

device. (Note, however, that wear from reading cells is very small in comparison to wear

from erasing cells.)

We solve this problem in the following way: We “refresh” the thresholds in a block

using the dynamic thresholds scheme at some time, then use these new thresholds as fixed

thresholds until the next time they are refreshed. This allows us to avoid constantly re-

reading a block, while still avoiding using inappropriate and outdated fixed thresholds for

the entire lifetime of the device.

Of course, it is necessary to determine when the the thresholds should be refreshed. We

suggest the following possibilities:

• After a fixed timeout of α seconds

• When an entire block of cells is being read, such as in a copy or search operation. Here,

the entire block is read, so there is no delay or wear added by computing thresholds

• After a sufficiently large number of cells are written to

• When the storage system is experiencing little traffic, so that additional delay is not

problematic
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Simple, practical algorithms exist to check for these conditions. For example, for the third

criterion, we need only a single flag and a counter per block of cells. This flag will be set to

“clean” and the counter to zero after a dynamic thresholds refresh. The counter is increased

each time a cell is written to, and, once a limit is reached, the flag is set to “dirty”, triggering

a refresh of the thresholds.

The particular parameters used in the previous conditions can be set according to each

device’s design. For example, in the first criterion, we can decrease error probabilities (at

the cost of additional delay and wear) by setting the timeout value to be very small.

Generating thresholds without discrete voltages

Another issue in current devices is that, in general, cell decoders do not have access to a set

of discrete voltage values for each cell. However, in our model, we assume that the decoder

knowns these values. As a result, implementation of dynamic thresholds would require a

change in the design of NVMs. Instead, we introduce a solution that does not require this

potentially complicated change.

Typically, the decoder is simply given the output of a comparison with the threshold

levels, so that only the final value in {0, 1, . . . , q − 1} is available. Now, we may select

any set of thresholds t and compare the resulting level distribution k(y(t)) with the desired

distribution k(x). We simply adjust the thresholds accordingly, and repeat this process until

k(y(t)) is sufficiently close to the distribution k(x).

For example, if q = 2 and we know (according to metadata or to balanced codes) that

half of the n = 100 cells in a block should be at level 0 and half at level 1, and we use an

initial threshold t(0) so that we read 75 1s and 25 0s, we need only use a threshold t(1) which is

larger than t(0) by a fixed amount. If we have overshot and now too many cells are 0s, we use

t(2) which is between the previous two thresholds, such as, for example, t(2) = (t(0) + t(1))/2,

and so on. This scheme is similar to a binary search algorithm.

26



2.4 Error-Correction Schemes

Though dynamic thresholds reduce error probabilities, we may also wish to guarantee the

correction of common errors. In this section, we develop codes that take advantage of the

properties of the dynamic thresholding scheme. When we rely on the metadata implementa-

tion approach, for the sake of simplicity, we abstract the metadata by assuming that it has

been made available to the decoder with no error.

We note that, in general, we could combine dynamic thresholding with existing, off-the-

shelf codes. However, such codes are not specifically tailored to the conditions which occur

under dynamic thresholding. For example, errors in dynamic thresholding are limited to

those which make the received sequence a multipermutation of the original sequence. We

seek codes that fully take advantage of dynamic thresholding conditions.

2.4.1 Metadata-based (t, l)-DT Error-Correcting Codes

We begin by exploring codes that correct t errors of magnitude limited to l, where 1 ≤ l ≤ q,

1 ≤ t ≤ ρ, and ρ is a constant. We refer to such errors as (t, l)-dynamic thresholding errors,

or (t, l)-DT errors.

We will see that the construction of (t, l)-DT error-correcting codes is connected to several

known coding-theoretic problems. If our dynamic thresholding implementation uses the

metadata approach, the resulting problem is similar to location correction. On the other

hand, if we select the balanced codes implementation, the problem resembles coding for rank

modulation. In this section, we study the metadata approach.

As described above, we will find that correcting (t, l)-DT errors is closely related to the

problem of location correction, studied by Roth and Seroussi in [RS96]. In the location

correction problem, the decoder is provided with the magnitudes of the errors, but does not

know their locations. Our problem differs: the decoder knows the received sequence is a

permutation of the original codeword. This fact only provides some information about the
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error magnitudes. Despite this, it will be shown the two problems are nearly equivalent.

Decomposability Distance

Roth and Seroussi introduced the notions of decomposability and decomposability distance

[RS96]. We present a variant of these concepts which incorporates limited magnitudes:

Definition 4. A vector x ∈ F n is (τ, l)-decomposable if xi has magnitude limited to l1 for

1 ≤ i ≤ n and there are two vectors y and z in F n with the same multiset of (up to) τ

nonzero values such that x = y− z.

Note that here all operations are taken over the ring of integers modulo q. Next, we define

decomposability distance:

Definition 5. For fixed l, the decomposability weight of x ∈ F n is the smallest non-negative

integer τ (if any such τ exists) such that x is (τ, l)−decomposable. If no such τ exists, the

decomposability weight is defined to be n+ 1. The decomposability distance between x and y

in F n is defined as the decomposability weight of x− y.

Decomposability is useful in the context of location correction, as it naturally describes

location error vectors whose component magnitudes are taken from a known, fixed set, while

their locations are free to vary. We will see that decomposability distance is also applicable

to error vectors in dynamic thresholding. Towards this end, we first give an alternative

definition of decomposability.

We define the unit vector ui as the vector with a 1 in the ith position and zeros elsewhere.

If i 6= j, we let ui,j = ui−uj. Denote byWF (n) the set of all vectors ui,j ∈ F n. The following

lemma is equivalent to a result in [RS96]:

Lemma 1. A vector x ∈ F n is (τ, l)-decomposable if and only if its components are limited

to magnitude l and it can be written as a linear combination of τ elements of WF (n). That
1Although we are working in the set F = {0, 1, . . . , q − 1}, we will often interpret the set element a > q

2
as the negative number −(q− a). In this context, magnitude is defined as min{a, (q− a)}. For example, the
magnitude of −1 = q − 1 ∈ F is |q − 1| = | − 1| = |1| = 1.

28



is, there exist τ elements Ek ∈ F n (with 1 ≤ k ≤ τ) and respective vectors uik,jk ∈ WF (n)

such that x = ∑τ
k=1 Ekuik,jk .

We illustrate these concepts with an example. If we take x = (1, 2, 3, 4), y = (1, 4, 3, 2),

and l = 2, then x− y = (0,−2, 0, 2) = −2u2,4, so that x − y is (1, 2)-decomposable. Thus

x−y has decomposability weight 1, and x and y are at decomposability distance 1. On the

other hand, if we had taken l = 1, x − y is not (τ, 1)-decomposable for any τ , so that the

decomposability weight of x − y is n+ 1 = 5, and x and y are at decomposability distance

n+ 1 = 5.

Now we are ready to tie together decomposability and dynamic thresholds. In our prob-

lem, the received vector y is a multiset permutation of the input x with at least n− t fixed

points, as there are at most t errors. Consequently, we have the following lemma:

Lemma 2. Under dynamic thresholding, the (t, l)-DT error vector e = y − x is (t − 1, l)-

decomposable.

Proof. Consider the cells at positions s1, s2, . . . , sk with values a1, a2, . . . , ak, respectively.

Say that the values are permuted by the cycle h of length k such that a1 → a2 → . . . →

ak−1 → ak → a1. Then, these components in the error vector e will have values a2− a1, a3−

a2, . . . , ak − ak−1, a1 − ak. This contribution can be expressed as

h = (a2 − a1)us1,sk + (a3 − a2)us2,sk + . . .+ (ak − ak−1)usk−1,sk .

The claim is clearly true for the first k − 1 components. The last component (at position

sk) is correct, since −(a2 − a1 + a3 − a2 + . . . + ak − ak−1) = a1 − ak, as desired. Lemma 1

implies that h is (k − 1, l)-decomposable (as, of course, |ai+1 − ai| ≤ l.)

The error vector e is the sum of disjoint cycles hi of length ki where
∑
i ki = t. Now,

we have that the cycles hi are disjoint, each of the hi’s is (ki − 1, l)-decomposable, and∑
i(ki − 1) ≤ t− 1. Thus, e is (t− 1, l) decomposable.
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We note some properties of DT error vectors based on this result. First, if the cycles

involved in the multiset are all of length 2, that is, transpositions, then the contribution of

that cycle to the error vector is a single term of the form (a2 − a1)us1,s2 , for a transposition

of the values a1 and a2 at positions s1 and s2, respectively. This contribution is (1, l)-

decomposable, and there are at most t/2 such transpositions, so an error vector made of

transpositions is (t/2, l)-decomposable.

It is clear that this is the “tightest” decomposability level - it is not possible for an error

vector to be (e, l)-decomposable for e < t
2 . More generally, we see that if the largest cycle

in the permutation is of length k ≥ 2, then the error vector is (k − 1, l)-decomposable, and

not (e, l)-decomposable for any e < k − 1.

Recall from the proof of Theorem 1 that in the case where l = 1 (the error magnitude

is limited to 1), the maximum error cycle length is 2. That is, all error vectors are made

up of transpositions of adjacent values. Then, in this case, the error vectors are ( t2 , 1)-

decomposable. We rely on this fact in the next section.

Constructions

Now, consider two codewords c1, c2 and their respective (t, l)-DT error vectors e1, e2 under

dynamic thresholding. It is possible to produce the same received sequence if c1+e1 = c2+e2,

or c1− c2 = e2− e1. Since e1, e2 are (t− 1, l)–decomposable, their difference is (2t− 2, 2l)-

decomposable, and the decomposability distance between c1 and c2 is at most 2t − 2. We

have the following result:

Lemma 3. A code C over F is capable of correcting all (t, l)-DT errors if and only if it has

minimum decomposability distance 2t− 1 with respect to 2l.

We refer to such a code as a (t, l)-dynamic thresholding error-correcting code, or a (t, l)-

DTEC code.

With the above, we have shown the equivalence of our problem and location correction.
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We may now apply Roth and Seroussi’s constructions from [RS96] to the dynamic thresh-

olding problem. These constructions were used to build location-correcting codes (LCCs),

but they also correct (t, l)-DT errors. We begin with a construction for t = 2 and l = q − 1.

This is the smallest positive value of t, as a single error is not possible. From Lemma 2, an

error vector must be (1, l)-decomposable. Recall that a B2 set, also known as a Sidon set,

is a set S with the property that for any four distinct elements a, b, c, d ∈ S, a + b 6= c + d

[BS85]. Then, we have:

Construction 1 : Let C be a [n, n−2] linear block code (of length n and dimension n−2)

over F with the parity-check matrix

H =

 a1 a2 . . . an

a2
1 a2

2 . . . a2
n

 ,

where S = {a1, a2, . . . , an} is a subset of distinct elements of F . Then, C is a (2, q−1)-DTEC

code if S is a Sidon set.

Proof. If two codewords c1 6= c2 can be confused, c1 + e1 = c2 + e2, with e1 6= e2.

Multiplying by the parity-check matrix H, we have e1H
T = e2H

T . Since e1 and e2 are

(1, l)-decomposable, e1 = Kub,c and e2 = Jud,f , with K, J ∈ F . Then,

K(ab − ac) = J(ad − af ), and

K(a2
b − a2

c) = J(a2
d − a2

f ),

and dividing the second equation by the first, we have that ab + ac = ad + af . But, as

ab, ac, ad, af belong to the Sidon set S, we have reached a contradiction.

Construction 1 provides a (2, q−1)-DTEC code. As we have done before, we examine the

common case l = 1. Then, we may define a [n, n− 1] (2, 1)-DTEC code by the parity-check
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matrix

H =
[
a1 a2 . . . an

]
,

where S = {a1, a2, . . . , an} is a Sidon set. The proof of this claim follows along the same

lines as that of Construction 1, but as l = 1, we have that K = J = 1, and we immediately

get the equation ab + ac = ad + af .

So far, our constructions allow for any error magnitude (l = q−1) or an error magnitude

of 1. If the error magnitude is limited to 1 < l < q−1, we can take advantage of this fact by

applying a technique introduced by Cassuto et al. in [CSBB10]. The proof is very similar

to that in [CSBB10]:

Construction 2 : Let C2 be a (t, l)-DTEC code over an alphabet of size q′ = 2l+ 1. Then,

the code C1 over F defined as

C1 = {x ∈ F n | x mod q′ ∈ C2}

is a (t, l)-DTEC code over an alphabet of size q > q′. Here, the notation x mod q′ represents

(x1 mod q′, x2 mod q′, . . . , xn mod q′).

Proof. Due to Lemma 3, it is enough to show that any two codewords x, z ∈ C1 are at

decomposability distance of at least 2t− 1. That is, we must show that the decomposability

weight of x− z (with respect to 2l) is at least 2t− 1, or, x− z is (k, 2l)-decomposable only

for k ≥ 2t− 1.

If there exists i ∈ [n] such that |xi−zi| > 2l, x−z has decomposability weight n+1, and

we are done. If there is no such i, x− z = x− z mod q′. That is, the differences |xi − zi|

are identical in the fields of order q′ and q. As C2 is a (t, l)-DTEC code, x− z mod q′ has

decomposability weight at least 2t − 1, so x− z must also have decomposability weight at

least 2t− 1 in the field of order q, as desired.

Taking Construction 1 as the inner code C2 in Construction 2, with alphabet size 2l+ 1,
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we have a (2, l)-DTEC code C1 over an alphabet of size q. Let w be a codeword in C2. Then,

if xi ≡ wi mod (2l+ 1) for 1 ≤ i ≤ n, x will be a codeword in C1. There are between b q
2l+1c

and d q
2l+1e choices for xi for each w ∈ C2. Then, we can derive some bounds on the number

of codewords |C1|: ⌊
q

2l + 1

⌋n
|C2| ≤ |C1| ≤

⌈
q

2l + 1

⌉n
|C2|.

For example, if l = 11, we have the Sidon set S = {0, 1, 2, 4, 7} for a [5,3] inner code C2 of

size 8. Then, for q = 64, C1 is a (2, 11)-DTEC code with codebook size satisfying

256 ≤ |C1| ≤ 1944.

The length of our codes depends on the sizes of Sidon sets. The bound

|S|(|S| − 3) + 1 ≤ q

for S ⊂ F = {0, 1, . . . , q − 1}, along with several others are proved in [RS96]. This upper

bound is problematic for small l in Construction 2. However, one can take the inner code

C2 over a larger field to get a longer code at the expense of additional redundancy.

Next we seek to derive (t, l)-DTEC codes for t > 2. We do so by relying on generalizations

of Sidon sets called Bt(S) sets, studied in [BS85]. In Bt(S) sets, all sums of t arbitrary

elements are different. Sidon sets represent the t = 2 case. The existence of such sets is

shown in a famous number-theoretic result from [BC62]:

Theorem 3. If s = pu (where p is a prime) and m = (sv+1 − 1)/(s− 1), we can find s+ 1

non-negative integers less than m

d0 = 0, d1 = 1, d2, . . . , ds,

such that the sums

di1 + di2 + . . .+ div ,
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(0 ≤ i1 ≤ i2 ≤ . . . ≤ iv ≤ m), are all different modulo m.

This theorem is frequently cited in the coding literature. It is particularly useful when

constructing codes where codewords must meet some checksum constraint, such as∑n
i=1 ixi ≡

a mod m. Such checksum-based codes are capable of correcting “unconventional” errors,

such as asymmetric errors, insertion/deletion errors, and repetition errors. They were ini-

tially introduced by Varshamov and Tenengolts to correct a single asymmetric error [VT65].

We will use such a construction to develop l-DTEC codes based on the balanced codes ap-

proach in the next section.

Theorem 3 will enable us to build codes for the case t > 2. We give an example for the

l = 1 case. Recall that the error vectors in this case are (t/2, 1)-decomposable, and thus

have error value E = 1. Then, if we generate a set of s + 1 integers a0 = 0, a1, a2, . . . , as

using the above theorem, the parity-check matrix

H =
[
a1 a2 . . . as

]
,

defines an [s, s− 1] (t/2, 1)-DTEC code.

Of course, one can develop general (t, l)-DTEC codes with the approach of Construction

2, which does not depend on t. Decoders for codes similar to Construction 2 are presented

in [CSBB10]. The optimality of codes equivalent to LCCs, such as Construction 1, is shown

in [RS96].

2.4.2 Balanced (t, l)-DT Error-Correcting Codes

We now examine the other implementation approach, based on balanced codes. For the

sake of simplicity, we let n = eq for some integer e. Then, in a balanced code, the space of

possible codewords is

Dn,q = {c ∈ F n | k(c) = (e, e, . . . , e)}.
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That is, the space Dn,q is the set of permutations of the multiset

{0, 0, . . . , 0︸ ︷︷ ︸
e 0s

, 1, 1, . . . , 1︸ ︷︷ ︸
e 1s

, . . . , q − 1, q − 1, . . . , q − 1︸ ︷︷ ︸
e (q−1)s

}.

Each codeword is a multiset permutation that contains each symbol 0, 1, . . . , q− 1 exactly e

times. Note that the size of Dn,q is n!
(e!)q . We seek to construct error-correcting codes over the

space Dn,q. Our approach is inspired by codes over the symmetric group of permutations Sn,

such as rank modulation codes. In [JSB10], [BM10], and [TS10], error-correcting codes for

rank modulation are developed. We will see that a similar approach can be used to construct

(t, l)-DTEC codes for our balanced codes dynamic thresholding implementation.

We note the fundamental differences between Sn and Dn,q. Sn is a group under permu-

tation multiplication, defined as function composition. Dn,q cannot be defined as a group

in this way. Although it is possible to introduce a multiplication operation for elements in

Dn,q, inverses will not be unique. Due to these differences, some care must be taken when

generalizing results originally applied to Sn.

First, we introduce the Kendall tau distance dτ among elements in Dn,q. This measure

of distance is typically applied to elements in Sn, but it is equally applicable for codewords

in Dn,q, that is, multiset permutations.

Definition 6. For c1, c2 ∈ Dn,q, the Kendall tau distance dτ (c1, c2) is defined as

dτ (c1, c2) = |{(i, j) ∈ [n]2 | i 6= j, c1(i) < c1(j), c2(i) > c2(j)}|

(Recall that [n] = {1, 2, . . . , n}.) That is, the distance counts pairs of indices where the

entries in the two permutations are oppositely ordered. For example, for q = 3 and e = 2, let

c1 = (2, 0, 0, 1, 2, 1) and c2 = (1, 2, 0, 0, 2, 1). Then, the pairs of oppositely-ordered indices

are at (2, 1), (2, 4), and (2, 6), so that dτ (c1, c2) = 3.

Additionally, dτ (c1, c2) is at least the smallest number of transpositions of adjacent el-
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ements required to transform c1 into c2. (In the permutation case, where q = n, the two

concepts are equivalent: the Kendall tau distance dτ (c1, c2) is exactly equal to the smallest

number of transpositions of adjacent elements required to transform c1 into c2.)

Although Dn,q is not a group, we still refer to the permutation

e = (0, 0, . . . , 0, 1, . . . , 1, . . . , q − 1)

as the identity multiset permutation. The largest possible dτ distance is e2
(
q
2

)
. This occurs

when the order of the elements in the identity e is exactly reversed, such as (0, 0, 1, 1, 2, 2)

and (2, 2, 1, 1, 0, 0), which have distance 12.

We define an inversion in a multiset permutation c as a pair of indices (i, j) ∈ [n]2 such

that i < j and c(i) > c(j). For example c = (1, 0, 2, 0, 2, 1) has 5 inversions at index pairs

(1, 2), (1, 4), (3, 4), (3, 6), and (5, 6).

Next, we introduce the notion of the inversion vector. Again, this is a concept typically

applied to the elements of Sn which can be easily extended to multiset permutations. The

inversion vector essentially keeps track of the number of inversions involving the various

elements of a multiset permutation. There are several possible definitions. We generalize

the definition in [MBZ13].

Definition 7. For a permutation c ∈ Dn,q, define the inversion vector xc such that

xc((i− 1)e+ a) =
∣∣∣{(j, b), j ∈ [q − 1], b ∈ [e] | j < i+ 1, c−1

b (j) > c−1
a (i+ 1)

}∣∣∣ ,
for i ∈ [q − 1] and a ∈ [e].

Here, c−1
a (j) refers to the position of the ath entry with value j in c, so that for c =

(1, 0, 2, 0, 2, 1), c−1
1 (2) = 3 and c−1

2 (2) = 5.

In words, the entry xc((i−1)e+a), where i ∈ {1, 2, . . . , q−1}, is the number of inversions

in c in which the ath i value is the first entry. We illustrate this idea with an example. Take
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c = (3, 2, 0, 0, 1, 2, 3, 1). There are no inversions beginning with the first 1 (at position 5), so

the first element of xc is 0. The second 1 (at position 8) also is not the first element in any

inversion, so the second element of xc is also 0. There are 4 inversions starting with the first 2

in c: the inversions at positions (2, 3), (2, 4), (2, 5), and (2, 8), so xc((2−1)×2+1) = xc(3) = 4,

and so on. We have that xc = (0, 0, 4, 1, 6, 1).

Note that the length of xc is (q − 1)e = n− e. Also, there are at most e(i− 1) elements

smaller than i located to the right of it in the permutation c, so xc((i−1)e+a) ∈ [0, e(i−1)]

so that

xc ∈ [0, e]× . . .× [0, e]︸ ︷︷ ︸
e times

× . . .× [0, (q − 2)e]× . . .× [0, (q − 2)e]︸ ︷︷ ︸
e times

.

We refer to this space as Gn.

It is well known that there is a bijection between the spaces Dn,q and Gn. That is,

there exists a bijection between our codewords, elements in Dn,q, and their corresponding

inversion vectors. It is possible to recover the original permutation c from its inversion vector

xc. Furthermore, we may introduce the inversion vector L1 distance

d(xc1 ,xc2) =
n−e∑
i=1
|xc1(i)− xc2(i)|.

We have the following lemma, which relates the Kendall tau distance dτ and the inversion

vector distance:

Lemma 4. If c1, c2 ∈ Dn,q are codewords, and xc1 ,xc2 are the respective inversion vectors,

dτ (c1, c2) ≥ d(xc1 ,xc2).

Proof. We begin with the permutation ĉ1 which has a single transposition of adjacent ele-

ments but is otherwise the same as c1. Then, it is clear that dτ (c1, ĉ1) = 1. We show that

d(xc1 ,xĉ1) = 1.

Let the transposition be at locations i and i + 1 (for i ≤ i < n). Let c1(i) = α and
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c1(i + 1) = β. We only consider the case α < β, as, by definition, α 6= β, and the α > β

case is symmetric. When forming xĉ1 , no entries other than the ones corresponding to α

and β can change. The number of inversions in which α is the first element does not change.

Only the entry corresponding to β at location i + 1 can be increased by 1 (from the ad-

ditional inversion formed by the pair (β, α) now at positions (i, i + 1)). Thus the distance

d(xc1 ,xĉ1) = 1.

On the other hand, d(xc1 ,xĉ1) = 1 only implies that dτ (c1, ĉ1) ≥ 1. Since dτ is

at least the number of transpositions of adjacent elements changing one permutation to

another, we may repeatedly apply the single transposition case above to conclude that

dτ (c1, c2) ≥ d(xc1 ,xc2).

Thus, a code over the space of inversion vectors that corrects t additive errors of weight l

will also correct the corresponding errors over the spaceDn,q. In [BM10], Barg and Mazumdar

demonstrated how such a code over the space of inversion vectors can be found. We quote

the following theorem, which relies on Theorem 3 from the previous section. Denote the set

of integers modulo n by Zn.

Theorem 4. Let m = sv+1−1
s−1 and set v to be t, the maximum number of errors. Then,

generate s+ 1 integers d0 = 0, d1, . . . ds according to Theorem 3. Take hi = di−1 + t−1
2 m for

i ∈ [s+ 1] if t is odd and hi = di−1 + t
2m for i ∈ [s+ 1] if t is even. Let mt = t(t+ 1)m if t

is odd and mt = t(t+ 2)m if t is even.

Then, for any error vector e in Zs+1 with t or fewer errors, the sums ∑s+1
i=1 eihi are all

distinct and non-zero modulo mt.

Now we may define the code C by

C =
{

x ∈ Zs+1 |
s+1∑
i=1

hixi ≡ 0 mod mt

}
.

From Theorem 4, C corrects t additive errors of weight l over Zs+1
mt . Our initial goal was to

construct a code over the space of inversion vectors Gn that corrects t additive errors. Let
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s+ 1 = n− e. Following [BM10], we note that Gn is a subset of Zn−en , which is itself a subset

of Zn−emt . Furthermore, since C is a group code with respect to addition modulo mt, we may

take an appropriate coset to form our desired additive error-correcting code over Gn.

Thus, we see that there exist (t, l)-DTEC codes using the balanced codeword approach as

well. We conclude that it is possible to develop dynamic thresholding coding constructions

that correct (a fixed number of) limited-magnitude errors in either implementation.

Further details regarding codes based on Theorem 4 above are discussed in [MBZ13]. In

this work, a number of code constructions for rank modulation are derived from transforma-

tions of traditional Hamming-error correcting codes. Such codes include codes correcting a

fixed number of limited-magnitude errors, such as those discussed above, and others where

the number of errors corrected is a fraction of the codeword length. Through techniques

similar to those previously described, it is possible to generalize these codes to codes over

multiset permutations, producing several more flavors of balanced DTEC codes.

2.4.3 l-DT Error-Correcting Codes

Finally, we wish to correct any number of magnitude l errors (the case where t ≤ n).

Codes that do so for the asymmetric channel have been studied in [CSBB10], [EB10], and

[AAKT04]. We develop such a code to be used in conjunction with dynamic thresholds. We

refer to this code as an l-dynamic thresholding error-correcting code, or an l-DTEC code.

The l-DTEC constructions will be based on the metadata implementation approach.

Again, we assume that the metadata has been made available to the decoder with no error.

We begin by defining an auxilliary distance function which will be useful for defining

our construction. The permutation distance dπ(c1, c2) is a cycle-based measure of difference

between codewords that are permutations of each other. If a cycle (a1, a2, . . . , ak) in a

permutation is such that |ai − ai+1| ≤ l for all i < k and |ak − a1| ≤ l, it will be called an

l-cycle. A permutation that is the product of cycles with length at most l is referred to as

an l-permutation. Let the function g be defined so that g(π) is the smallest nonnegative
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integer l such that π is an l-permutation. Then,

Definition 8. For c1, c2 ∈ F , the permutation distance dπ is given by

dπ(c1, c2) =


∞ if c2 is not a permutation of c1,

g(π) if c2 = π(c1) is a permutation of c1.

Essentially, c1 and c2 are at dπ distance l if the longest cycle required to turn c1 into

c2 has length l. If no such cycle exists, that is, if c1 and c2 are not permutations of one

another, the dπ distance is ∞.

A code of minimum dπ distance of l + 1 corrects any number of errors limited to magni-

tude l. The following construction achieves this minimum dπ distance by selecting a single

codeword from each set of l-permutations.

Construction 3 : Let C be defined as

C = {x ∈ F n | 0 < xi − xj ≤ l =⇒ i > j}.

Then, C is a l-DTEC code.

Note that this approach is effectively the dual of that of the previous section. When

using balanced codes, all codewords are permutations of one another. In our l-DTEC con-

structions, no codewords are permutations of one another. This is a consequence of choosing

between limited or unlimited number of errors in the channel model.

We introduce a natural decoding technique, which we refer to as τ -decoding. First, we

comment on the name of the scheme. Although we defined Construction 3 in terms of the

distance dπ, which measures the size of the largest cycle required to turn one permutation

into another, the τ -decoder will recover the original codeword transposition by transposition.

That is, the decoder will, by stages, reduce the Kendall tau distance between the received

permutation and the original codeword.

The τ -decoder operates in the following way: if the decoder finds yi and yj in the received
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sequence y with i < j and 0 < yi − yj ≤ l, the values of yi and yj will be exchanged. The

decoder repeats this process as long as such pairs can be found. For example, consider the

codeword 12345, where n = 5, q = 6, and l = 2. Assume the errors are

1→ 3, 2→ 1, 3→ 5, 4→ 2, 5→ 4.

The received codeword is 31524. Repeatedly applying the decoding rule, we have the pro-

gression

31524→ 13524→ 13425→ 13245→ 12345.

As described above, τ -decoding reduces the Kendall tau distance dτ between the original

codeword and the received codeword. Recall that the distance dτ is defined as the number

of inversions among two permutations π and σ, where an inversion is a pair (i, j) with i < j,

with either π(i) < π(j) and σ(i) > σ(j), or, π(i) > π(j) and σ(i) < σ(j) ([Ken38]). We have

that:

Theorem 5. When errors are limited to magnitude l and dynamic thresholds and the l-

DTEC code C in Construction 3 are used, τ -decoding recovers the original codeword.

Proof. Using dynamic thresholding, errors will be part of cycles. Let the cells involved be

xp1 , . . . , xpk where p1 < . . . < pk. By definition of C, the cell values also satisfy a1 <

a2 < . . . < ak. The error cycle permutes the ai’s, so that xp1 , . . . , xpk take on the values

π(a1), . . . , π(ak), where π is the permutation induced by the error cycle. Let yα be the

current output after α iterations of the decoding process. We will evaluate the distance

dτ (yα,x) after each iteration. If dτ (yα,x) = 0, we have recovered the original codeword.

The decoding rule at each iteration finds a particular inversion (ai, aj) with i < j and

π(ai) > π(aj) and exchanges their values. We compute the distance before and after one

decoding iteration, i.e., dτ (yα,x) and dτ (yα+1,x). The only possible pairs that might change

(become an inversion or stop being an inversion) after application of the decoding rule are

those which have π(ai) or π(aj) as members. We count the number of such pairs. Consider
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the following (disjoint) sets:

Y1 = {k | k < i, π(ak) > π(ai) > π(aj)},

Y2 = {k | k < i, π(ai) > π(ak) > π(aj)},

Z1 = {k | i < k < j, π(ak) > π(ai) > π(aj)},

Z2 = {k | i < k < j, π(ai) > π(ak) > π(aj)},

Z3 = {k | i < k < j, π(ai) > π(aj) > π(ak)},

W1 = {k | j < k, π(ai) > π(aj) > π(ak)},

W2 = {k | j < k, π(ai) > π(ak) > π(aj)}.

The entries in the permutation where these sets are located:

Y1,Y2︷ ︸︸ ︷
π(a1), . . ., π(ai), π(ai+1), . . . , π(aj−1)︸ ︷︷ ︸

Z1,Z2,Z3

, π(aj),
W1,W2︷ ︸︸ ︷

. . . , π(ak) .

It is easy to see how the members of these sets give rise to inversions. For example, if k ∈ W1,

then, i < j < k and π(ai) > π(aj) > π(ak), so (π(ai), π(ak)) and (π(aj), π(ak)) are inversions.

It is clear that each element of each set contributes to either one or two inversions.

Say that there are M pairs that do not involve π(ai) or π(aj). Then, counting the

contribution of the pair (π(ai), π(aj)), we have the following value for dτ (yα,x):

dτ (yα,x) = M + 1 + 2|Y1|+ |Y2|+ |Z1|+ 2|Z2|+ |Z3|+ 2|W1|+ |W2|.

Now, after application of the decoding rule, the pair (π(ai), π(aj)) becomes (π(aj), π(ai)),

and is no longer an inversion. Moreover, Z2 does not contribute to any inversions, since

i < j < k and π(aj) < π(ak) < π(ai). Then,

dτ (yα+1,x) = M + 2|Y1|+ |Y2|+ |Z1|+ |Z3|+ 2|W1|+ |W2|.
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Thus, we have that dτ (yα,x) > dτ (yα+1,x). Each decoding step strictly reduces the distance,

so there exists a finite s such that dτ (ys,x) = 0 and we will have recovered the original

codeword.

In the case l = 1, this decoder has a simple implementation. The received sequence

is first sorted by value. All errors will then be adjacent, and can be corrected in a single

pass through the list. The original order is then restored. This algorithm has complexity

O(n log n), the complexity of sorting the list.

We note that we can build an l-DTEC code from Construction 3 by including every

codeword from an existing l-asymmetric error-correcting (l-AEC) code, which has minimum

distance l + 1, as shown in [EB10]. Note that although limited-magnitude errors under dy-

namic thresholding are not asymmetric, the permutation property of dynamic thresholding

errors ensures that l-AEC constructions are sufficient to correct l-DT errors. For this reason,

l-DTEC constructions most closely resemble l-AEC constructions. However, several addi-

tional codewords can also be included in addition to the l-AEC codewords, allowing us to

maximize the rate under the dynamic thresholding conditions.

We illustrate this idea with an example of a code based on Construction 3. We take

q = 3, limited magnitude l = 1, and n = 3. An 1-AEC code of length 3 has minimum

distance of 2, requiring codewords to exclusively use symbols from {0, 2}. In our case, we

may add several codewords that are ordered the correct way. Our codewords are then:

(0, 0, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0),

(2, 2, 2), (0, 0, 1), (0, 1, 1), (1, 1, 1), (0, 1, 2), (1, 1, 2), (1, 2, 2).

We see that the first 8 codewords are from the 1-AEC code with minimum distance 2, but

we may add 6 additional codewords that maintain the correct order.

Computing the sizes of the codebooks in Construction 3 can be challenging. We give the

following exact expression for the case q = 3:
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Theorem 6. For q = 3, l = 1 and general n, the number of codewords generated by Con-

struction 3 is 2n +
(
n+1

2

)
.

Proof. If a codeword does not contain any 1s, each digit may be 0 or 2, for a total of 2n

such codewords. If a codeword does contain a 1, it is clear that all its 0s must be to the

left of all its 1s. Similarly, all 2s must be to the right of all 1s. Thus, there is a left and a

right boundary (not in the same position, since there are a positive number of 1s.) There

are n+ 1 positions to place the two boundaries, so that we have a total of
(
n+1

2

)
codewords

containing 1s.

Not including the metadata digits, the rate of such a code is log3(2n +
(
n+1

2

)
)/n. When

our codes are in the finite-length regime, we get the benefit of an additional
(
n+1

2

)
codewords

versus directly combining dynamic thresholding and an existing 1-AEC code with minimum

distance 2.

We note that the construction above is only suitable for higher field sizes q. Furthermore,

asymptotically, the size of the code is d q
l+1e

n, which is the size of the largest l-AEC code

[EB10]. Therefore, our construction is superior to l-AEC constructions for finite-length codes

with q ≥ 4. These conditions match the requirements of MLC non-volatile memories.
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CHAPTER 3

Constrained Rank Modulation

3.1 Introduction

In this chapter, we introduce the notion of constrained coding in the rank modulation scheme.

We begin with some details on rank modulation and the inter-cell coupling issue. Constraints

are given which help reduce this problem. In particular, we analyze the single neighbor k-

constraint, where adjacent cells in the permutation differ by at most k.

The rank modulation scheme for NVM memories was first introduced in [JMB09]. In

rank modulation, information in not stored in individual cells, but rather in entire blocks.

The level of any particular cell does not matter; information is represented by the rankings

of the charge levels in all the cells in a block. Ties between charge levels are not allowed,

so there are n! possible rankings of cells in a block of length n. Thus, rank modulation is a

permutation-based scheme.

We give an example of the above idea. Say we have a block of cells x = (x1, x2, . . . , x5)

of length 5 with charge levels given by v = (2.8, 1.5, 2.6, 1.4, 1.2). Cell x1 has the largest

charge value, followed by cell x3, and so on. The rankings of the charge levels v induce the

permutation σ = (1 3 2 4 5). Any of the permutations in the symmetric group S5 could be

represented by varying the charge levels.

The fundamental advantage of rank modulation is that the scheme resolves the write-

asymmetry issue. In the example above, we can reach any other permutation in S5 from σ
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without ever removing charge from a cell. It is enough to add charge to an appropriate subset

of cells. For example, should we wish to transition to the permutation σ′ = (2 3 1 5 4), we

need only increase the charge level of x3 to 3.0 and the charge level of x5 to 1.45.

Recently, there has been a great deal of interest in rank modulation. A number of variants

of the scheme have been introduced, such as local rank modulation, where the permutation

is induced by a sliding window over a sequence of charge values [ELSB11b], [ELSB11a], and

bounded rank modulation, where permutations are allowed to overlap [ZJ10]. Similarly, in

partial rank modulation, only the largest r cell levels are considered for information rep-

resentation [ZJB09]. Error correction for rank modulation has been explored in [BM10],

[MBZ13], [ZJB12b], and [ZPJ10].

We note that the inter-cell coupling problem is not resolved in rank modulation. Recall

that inter-cell coupling is a parasitic capacitance experienced by physically adjacent cells.

When a cell contains a large charge level, the level of a neighboring cell may be inadver-

tently brought up. To resolve this problem, various types of constrained coding have been

introduced, such as in [BB11]. However, this work deals with cells which store information

according to their absolute charge levels, unlike the rank modulation scheme. In fact, the

effects of inadvertently increasing the charge level in a neighboring cell may be even more

significant in rank modulation: an increase in one cell can dramatically change the resulting

permutation.

We illustrate this idea with an example: again, take the block of cells x with charge levels

v = (2.8, 1.5, 2.6, 1.4, 1.2) and induced permutation σ = (1 3 2 4 5). Say we wish to write the

permutation σ′ = (2 4 3 1 5) to our block. Doing so requires a single operation: increasing

the charge level in cell x4, with current charge level 1.4. This level must be increased beyond

2.8, the current largest charge level in the block x. However, pushing x4 to 3.0 can cause

inter-cell coupling effects, resulting in an increase in the charge in x5 to, for example, 1.8.

Now we have v′ = (2.8, 1.5, 2.6, 3.0, 1.8), with σ = (2 5 3 1 4). We have an error: the 2nd

and 5th positions are incorrect.
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In order to avoid situations such as that in the above scenario, we explore the notion

of constrained rank modulation schemes. We seek codes on permutations which meet con-

straints between the relative rankings of neighboring cells. Such codes retain the advantages

of rank modulation while reducing the effects of inter-cell coupling. The remainder of this

chapter is organized as follows: In Section 3.2, we introduce the constraints and necessary

notation. In Section 3.3, we examine some aspects of the single neighbor constraint. We

derive bounds and an efficient construction. We also analyze the asymptotic behavior of this

constraint. Finally, we examine two special cases where the constraint parameter k involves

constants.

3.2 Types of Constraints

We start by giving some useful notation. Define [n] as the set {1, 2, . . . , n} and let Sn be the

symmetric group of permutations over [n]. We use the one line notation for permutations so

that σ = (σ1 σ2 . . . σn). For example, we have the permutation (2 1 4 3 5) ∈ S5.

Our first constraint is the single neighbor k-constraint:

Definition 9. A permutation σ ∈ Sn satisfies the single neighbor k-constraint if |σi−σi+1| ≤

k for all 1 ≤ i ≤ n− 1.

For example, the permutation (3 1 2 4 5) ∈ S5 meets the 2-constraint, but not the 1-

constraint. Note how this constraint resolves the coupling issue described earlier. Differences

between the rankings of adjacent cells are always limited, so that charge differences between

adjacent cells are also limited. Any transition undergone by a block must be from one

constrained permutation to another, preserving these difference limitations.

We define An,k = {σ ∈ Sn | σ satisfies the k-constraint} as the set of permutations on n

elements that satisfy the single neighbor k-constraint. Of course, An,k ⊆ Sn. In particular,

if n ≤ k + 1, An,k = Sn. Consider a set of k-constrained permutations C ⊆ An,k. Then, we
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define the rate of C as

R(C) = ln |C|
lnn! .

We define the capacity of k-constrained codes as

C(k) = lim
n→∞

ln |An,k|
lnn! .

The single neighbor constraint will be the main focus of this chapter. However, there are

other potentially useful constraints. We give two examples:

Definition 10. A permutation σ ∈ Sn violates the two neighbor k-constraint if |σi−1−σi| > k

and |σi+1 − σi| > k for some 2 ≤ i ≤ n− 1.

Here, we avoid those permutations where a small element is sandwiched between two large

elements. Note that this is a looser constraint in comparison to the single neighbor constraint.

This is because meeting the single neighbor k-constraint guarantees meeting the two neighbor

k-constraint, but meeting the two neighbor k-constraint does not guarantee meeting the

single neighbor k-constraint.

Our constraints so far apply to one-dimensional sequences. However, in NVMs the cells

are organized as a large two-dimensional array. Consider such an array of size m × p and

say the array is filled with permutations on n = mp. Then, we define the two-dimensional

k-constraint in the following way:

Definition 11. The two-dimensional k-constraint is met if the value in the induced permu-

tation σ ∈ Sn of the cell xi,j is within k of the values of the cells {xa,b | a ∈ {i−1, i, i+1}, b ∈

{j − 1, j, j + 1}} for all 2 ≤ i ≤ m− 1 and 2 ≤ j ≤ p− 1.

With this constraint, the neighbors of cell xi include the cells above and below it, and not

just those cells to the immediate left and right.
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1 2 3 4 5 

Figure 3.1: The path-scheme P (5, {1, 2, 3}).

3.3 Single Neighbor Constraint

We proceed to analyze the previously introduced single neighbor k-constraint.

3.3.1 General Bounds

We start with a general bound on the sizes of single neighbor k-constrained rank modu-

lation codes. First, as in [AK08], we represent permutations as paths in structures called

path-schemes. Define the path-scheme P (n,M) as the graph G = (V,E) with V = [n] and

E = {(x, y) | |x − y| ∈ M}. An example is shown in Figure 3.1. The example shows the

case where n = 5 and the set M = {1, 2, 3}.

We define Gk,n as P (n, {1, 2, . . . , k}). In [AK08], it was shown that there is a bijection

between the set of directed Hamiltonian paths in Gk,n and the set of k-constrained permu-

tations. Using this fact, we show the general bound below, which is an improvement on that

given in [AK08].

Theorem 7. The number of k-constrained permutations |An,k| satisfies

(
(k + 1)!

2

)bn
k
c−1

≤ |An,k| ≤
(
k(k + 1)

2

)bn
k
c−1

(2k − 2)n−bnk c+1.

Proof. We count directed Hamiltonian paths on Gk,n. Split up [n] = {1, 2, . . . , n} into

intervals of length k in the following way:

[1, k], [k + 1, 2k], [2k + 1, 3k], . . . ,
[(⌊

n

k

⌋
− 1

)
k, n

]
.
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Each interval has length k, except possibly the last interval, which has length at least k.

Now, consider any Hamiltonian path on Gk,n. Such a path must include an edge going from

a node in the `th interval to a node in the (` + 1)st interval. If this is not the case and the

`th interval is skipped, there is an edge (x, y) with |x−y| larger than k, which is not possible

by definition of Gk,n.

The interval length is k, so the number of possible edges between two adjacent intervals

is k(k + 1)/2. There are bn
k
c − 1 adjacent pairs of intervals. Therefore, we have a factor of

(
k(k + 1)

2

)bn
k
c−1

in our count.

To produce the lower bound, we restrict ourselves to the case where each edge (excluding

the interval-crossing edges counted above) remains inside their outgoing node’s interval.

That is, we count paths where for each interval of length k, there is one edge leaving the

interval, and all other outgoing edges remain inside it. There are k − 1 remaining vertices

in each interval requiring an edge (and possibly more in the last interval). The edges are

selected in (k − 1)! ways. Multiplying, we get the expression

(
k(k + 1)

2 (k − 1)!
)bn

k
c−1

,

which gives the left-hand side.

For the upper bound, we place no restriction on the remaining edges. Each node has at

most 2k possible choices of edges in the path. Two of these are no longer available, due to

the interval-crossing edges already selected. Therefore, we let each vertex take on any of the

2k− 2 possible remaining edges. There are n− (bn
k
c− 1) such vertices, which yields a factor

of

(2k − 2)n−(bn
k
c−1).
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Multiplying by the interval-crossing factor (k(k + 1)/2)bnk c−1 gives the upper bound.

Note that this general bound is quite rough. In order to get better estimates on the

size of An,k, it is necessary to examine particular choices of k, which we do in the following

sections.

3.3.2 An Efficient Construction

In the previous section, we determined a bound on the number of k-constrained permutations

in Sn. Unfortunately, encoding is quite difficult. For example, if we wish to encode a binary

sequence in {0, 1}m as a k-constrained permutation, we would need to use the above bound

to determine some n such that |An,k| ≥ |{0, 1}m| = 2m, and then generate the entire set of

permutations Sn, going through each permutation element by element to determine those

which are k-constrained. Afterwards, some ordering would be imposed on the k-constrained

permutations and used to perform the mapping.

To resolve this difficulty, we introduce the construction Cn,k, which forms a k-constrained

rank modulation code. The sets Cn,k will be built recursively, and we will provide an ef-

ficient encoding scheme to map (binary) sequences to k-constrained permutations in Cn,k.

Furthermore, we will later see that the construction is asymptotically optimal. We begin

with the definition of Cn,k:

Construction 1 : Let Cn,k be defined in the following way:

Cn,k =


Sn n ≤ k + 1

{fn,k(σ) | σ ∈ Cn−1,k} n > k + 1,

where n ≥ 4, k ≥ 2, and fn,k : Sn−1 → Sn is a one-to-many map which takes a permutation

of length n − 1 and places the element n in it (in various positions) to form bk2c distinct

k-constrained permutations of length n. Specifically, fn,k examines the locations to the left

and the right of the positions of the values n − 1, n − 2, n − 3, . . . , n − k in σ, respectively,
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and in that order. The process is stopped when bk2c distinct positions have been found to

place n (and thus yield bk2c distinct k-constrained permutations of length n.)

We give an illustrative example of this technique. Say we wish to encode the binary

sequence (0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0) into a 4-constrained permutation using Construction 1.

First, k = 4 implies that all 5! = 120 permutations in S5 are available to us, so the first

blog2 120c = 6 bits will be mapped to a permutation of length 5. Any map can be used here;

we rely on a lexicographical ordering of permutations such that (0, 0, 0, 0, 0, 0) is mapped to

(1 2 3 4 5). Then, the first 6 bits (0, 1, 1, 0, 1, 0) map to the permutation (2 1 3 5 4).

As k = 4, bk2c = 2, and each subsequent bit is used to determine into which of two

positions the next element goes. If the next bit is 0, this element goes in the first available

position; if it is 1, it goes in the second such position. The element 6 can be placed to the

left or the right of 5 in (2 1 3 5 4) according to the map f6,4. Our binary sequence’s next bit

is 1, so 6 is placed to the right of 5 in the permutation, giving (2 1 3 5 6 4). (If the bit had

been 0, the element 6 would have been to the left of 5, yielding (2 1 3 6 5 4).)

The remainder of the binary sequence is (0, 1, 1, 1, 0), which yields, using the same pro-

cedure, the sequence of permutations

(2 1 3 5 6 4)

(2 1 3 5 7 6 4)

(2 1 3 5 7 8 6 4)

(2 1 3 5 7 8 9 6 4)

(2 1 3 5 7 8 9 10 6 4)

(2 1 3 5 7 8 9 11 10 6 4).

Therefore, we encode the sequence (0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0) as the 4-constrained permu-

tation (2 1 3 5 7 8 9 11 10 6 4).

Based on the above idea, we provide a formal mapping Ω from the space of binary se-

52



quences to Cn,k, where n > k + 1. First, let

g : {0, 1}blog2(k+1)!c → Sk+1

be any injective map from binary sequences to permutations. We also denote the jth

permutation produced by the map fn,k(σ) by fn,k(σ, j), for 1 ≤ j ≤ bk2c. Then, take

any binary sequence x and write it as {x1|x2| . . . |x`}, where x1 ∈ {0, 1}blog2(k+1)!c and

x2, . . . ,x` ∈ {0, 1}blog2b k2 cc. With this, we may write

Ω(x) = fn,k(fn−1,k(. . . (fk+2,k(g(x1), x2), x3) . . . , xl−1), x`).

We comment on the advantages of Construction 1. First, the length of the binary sequence

and the k-constraint immediately provide us with the length n of the permutations necessary

for encoding. Second, generating a single k-constrained permutation in Sn with n > k + 1

is very fast: we select any permutation from Sk+1 and perform at most 2(n− k − 1) checks

while building it to length n. This further implies that a small number of permutations

can be generated very quickly. Finally, the construction provides a systematic technique to

generate exponentially large numbers of k-constrained permutations.

Next, we proceed to prove that the process described in Construction 1 indeed yields the

required bk2c k-constrained permutations at each stage. Before we begin, we explain the use

of the term bk2c. It turns out to be the largest number y of k-constrained permutations that

will (each) always yield y k-constrained permutations in the next stage.

Theorem 8. The function fn,k(σ) in Construction 1 yields bk2c k-constrained permutations

if σ ∈ Cn−1,k, n ≥ 4, and k ≥ 2.

Proof. The proof is inductive. It relies on a simple argument, but requires careful book-

keeping. Let us say that we have a permutation σ ∈ Cn−1,k. We must show that, using the

map fn,k, we may form at least bk2c k-constrained permutations from σ. First, if n ≤ k + 1,
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all permutations in Sn are k-constrained by definition. Similarly, if n = k + 2, the only

prohibited positions for n are those adjacent to the element 1 in σ, leaving n − 2 ≥ bk2c

positions available for n.

Now we focus on n > k + 2. Assume that the result is true for Cn−1,k. Let us refer to

the positions of n− 1, n− 2, . . . , n− k in σ as sn−1, sn−2, . . . , sn−k, respectively. Note that at

least one of the positions adjacent to n− 1 in σ, sn−1− 1 and sn+1 + 1, is available to n. The

smallest possible element adjacent to n− 1 is n− k− 1, since σ is k-constrained. Therefore,

at least one element adjacent to n − 1 is greater than or equal to n − k (or, alternatively,

n − 1 is on the edge of the permutation, so that n can be trivially placed next to it). The

element n can be placed between this element and n− 1. We then have two possibilities:

First, only one position adjacent to n− 1 is available to n. This gives one initial possible

permutation, which we call σ1 ∈ Sn. In this case, the other element adjacent to n− 1 must

be n−k−1. Now, remove n−1 from our permutation σ, yielding a permutation σ′ of length

n− 2. Placing n into this permutation is in fact equivalent to placing n− 1 into σ′, but with

a constraint of k− 1 rather than k. By induction, there are bk−1
2 c distinct ways to do so. In

none of these permutations can we place n where the deleted element n − 1 was. Doing so

would be equivalent to placing n− 1 in sn−1, but, as n− k − 1 is adjacent to this position,

(n − 1) − (n − k − 1) > (k − 1) and the (k − 1)-constraint is violated. Thus none of these

permutations can be identical to σ1.

After generating the permutations which include n, we restore n − 1 to its original po-

sition. Counting the first permutation σ1 and the additional bk−1
2 c permutations, we have

1 + bk−1
2 c ≥ b

k
2c k-constrained permutations.

Next, both positions next to n− 1 in σ are available to n. This gives us 2 permutations,

σ1, σ2 ∈ Sn. We use similar reasoning. Remove n− 1 from σ, yielding σ′. Placing n in σ′ is

equivalent to placing n−1 in σ′ with a k−1 constraint. There are (by induction) bk−1
2 c ways

to do this. Of course, we may not count the permutation which places n in n− 1’s position

sn−1 (prior to its removal), as this is included in the first two permutations σ1, σ2. Counting
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these initial 2 permutations, we have 2 + (bk−1
2 c − 1) ≥ bk2c permutations, as desired.

Now, as fn,k produces bk2c permutations for each stage (beyond the initial n ≤ k + 1

stages), |Cn,k| = (k + 1)!bk2c
n−k−1. Since Cn,k ⊆ An,k, we have the following lower bound:

Theorem 9. The number of k-constrained permutations |An,k| satisfies

|An,k| ≥ (k + 1)!
⌊
k

2

⌋n−k−1

.

This lower bound is better than the left-hand side of Theorem 1. It will be particularly

useful in the asymptotic analysis performed below.

3.3.3 Asymptotic Analysis

In this section, we compute the capacity of An,k. We start with the lower bound from the

previous section. We have that |An,k| ≥ (k + 1)!bk2c
n−k−1. Then, taking logarithms,

ln |An,k|

≥ ln(k + 1)! + (n− k − 1) ln
⌊
k

2

⌋

≥ ln(k + 1)! + (n− k − 1) ln k − 1
2

= (k + 1) ln(k + 1) + (n− k − 1) ln k − 1
2 − g(k),

where g(k) is an error term which is roughly k+1−O(ln(k+1))1. Continuing, as k+1 ≥ k−1
2 ,

we write

ln |An,k| ≥ n ln k − 1
2 − g(k)

= n ln(k − 1)− n ln 2− g(k).
1f(x) = O(g(x)) if there exists M > 0 and x0 such that |f(x)| ≤ M |g(x)| ∀x ≥ x0. Similarly, f(x) =

Θ(g(x)) if there exists M1, M2 > 0 and x0 such that M1|g(x)| ≤ |f(x)| ≤M2|g(x)| ∀x > x0.
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Next, to compute the capacity C(k), we use Stirling’s approximation lnn! = n lnn − n +

O(lnn)) ≤ n lnn, for sufficiently large n. Then,

ln |An,k|
lnn! ≥ n ln(k − 1)− n ln 2− g(k)

n lnn

= ln(k − 1)
lnn − ln 2

lnn −
g(k)
n lnn.

Now take k = Θ(nε), where 0 ≤ ε ≤ 1. Since the right two terms go to zero when we take

the limit, we may write

C(k) ≥ lim
n→∞

ln(Θ(nε))
lnn

= ε.

Now we compute an upper bound for C(k). We start with |An,k| ≤ 2(2k)n, which is given in

[AK08]. Taking logarithms,

ln |An,k|
lnn! ≤ ln 2

lnn! + n ln 2
lnn! + n ln k

lnn!
≤ ln 2
n lnn− n + n ln 2

n lnn− n + n ln k
n lnn− n.

The first two terms on the right-hand side will go to zero when taking the limit n→∞, so

we may write:

C(k) = lim
n→∞

ln |An,k|
lnn! ≤ lim

n→∞

n ln k
n lnn− n = lim

n→∞

ln k
lnn− 1 .

Taking k = Θ(nε) and using L’Hopital’s rule on the expression yields C(k) ≤ ε. Therefore,

we may state

Theorem 10. If k = Θ(nε), where 0 ≤ ε ≤ 1, the capacity of k-constrained rank modulation

codes is C(k) = ε.

We comment on this result. If k is some constant c, then ε = 0 and the capacity C(k) is 0.
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Clearly, such a restrictive constraint is not useful in the context of rank modulation. On the

other hand, if we need only avoid the largest differences among cells, we may set k = n− c,

where c is a constant. Then, ε = 1 and the capacity is 1. We further examine these two

cases in the following section. We also note that the proof of Theorem 3 implies that Cn,k

has asymptotic rate ε, so it is asymptotically optimal in addition to being of practical use.

3.3.4 Constant Case I

We begin with the case where k = c is a small constant. Most existing work with k-

constrained permutations involves this case. For example, there are several known results

regarding c = 2 [AK08]. The generating function for |An,2| follows:

G2(x) = 1− 2x+ 2x2 + x3 − x5 + x6

(1− x− x3)(1− x)2 .

A technique known as the transfer matrix method is used to count the members of An,2. It

is possible to derive similar generating functions for c > 2. However, the transfer matrix

method, which requires computing the eigenvalues of a matrix whose dimensions grow as

nk, quickly becomes unwieldy. We state a different fact regarding the growth rate of An,2.

Theorem 11. limn→∞ |An+1,2|/|An,2| = γ2, where γ2 = 1.46557... is the real root of the

polynomial x3 − x2 − 1.

Proof. The denominator of the generating function for |An,2| contains the term 1− x− x3.

Then, for sufficiently large n, |An,2| satisfies the recursion |An+3,2| = |An+2,2| + |An,2|. The

characteristic polynomial for this recursion is x3 − x2 − 1. It has γ2 as its only real root, so

that |An,2| = cγn2 for some constant c > 0 and large n.

Numerical results show that a similar result applies for k which are constants larger than

2. We believe that for such cases the growth factor γk is similarly a real root of a polynomial

with degree roughly k. Certainly, we know from Construction 1 that γk ≥ bk2c. It is an

interesting question how large the error γk − bk2c is. For example, γ2 − 1 ≈ 0.466.
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3.3.5 Constant Case II

Now we examine the case where k = n−c and c ≥ 1 is some constant. This case is particularly

meaningful for rank modulation, since only the largest possible differences among consecutive

elements are constrained. We compute |An,n−c| through inclusion-exclusion type counting

arguments.

We begin by defining a pattern as a consecutive sequence of permutation elements, where

each two consecutive elements violate the k-constraint. We call a pattern of length ` an `-

pattern. For example, (1 5 9 15) is a 4-pattern for k = 3. In general, the value of k will be

clear from the context.

The largest adjacent difference possible in elements of Sn is n − 1, so the smallest non-

trivial case is c = 2. Then, the only inadmissible 2-patterns of consecutive elements are

(1 n) and (n 1). Now, for each of these there are n − 1 positions to place them (as a

unit) in the permutation over [n], and (n − 2)! ways to permute the remaining elements

{2, 3, . . . , n − 1}. Thus there are 2(n− 1)! permutations which do not meet the constraint,

so that |An,n−2| = n!− 2(n− 1)! = (n− 2)(n− 1)!.

The next case, c = 3, is instructive: there are several 2-patterns to avoid: (1 n), (1 n−1),

(2 n), and their reflections (n 1), (n − 1 1), and (n 2). However, by counting how many

permutations include a particular pattern, we will double count those that include two or

more of the patterns. We must rely on the principle of inclusion-exclusion. There are n! total

permutations. We count the number of permutations that include a particular 2-pattern:

there are 6 such patterns. Each can be placed in one of n−1 positions, and the remaining n−2

elements are permuted in (n− 2)! ways, yielding 6(n− 1)(n− 2)! = 6(n− 1)! permutations.

Next we remove those permutations which include two 2-patterns, as they have been

double-counted. If these are (1 n) and (2 n), the only possible patterns are the 3-patterns

(1 n 2) and (2 n 1). Similarly, we can have the 3-patterns (n− 1 1 n) and (n 1 n− 1). For

these four patterns, we have n− 2 positions to place them in the permutation, and (n− 3)!
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ways to permute the remaining elements, for a total of 4(n − 2)! permutations. Now, if we

include the two patterns (2 n) and (1 n− 1), which do not share any elements in common,

we have (n− 2)(n− 3) positions to place them, 22 ways to orient them, and, lastly, (n− 4)!

ways to permute the remaining elements, yielding another 4(n− 2)! permutations.

Finally we count the number of permutations that include all three patterns. There are

two possibilities: (2 n 1 n−1) and (n−1 1 n 2). Again, there are n−3 positions to place these

two patterns, and (n− 4)! ways to permute the remaining elements, for a total of 2(n− 3)!.

Altogether, we have |An,n−3| = n!−6(n−1)!+8(n−2)!−2(n−3)! = (n3−9n2+28n−30)(n−3)!.

The expressions |An,n−2| and |An,n−3| include a polynomial term and (n − 2c + 3)! as

factors. We have in general,

Theorem 12. Let c ≥ 2 be a constant. The number of permutations satisfying the (n− c)-

constraint |An,n−c| = B(n)(n− 2c+ 3)!, where B(n) is a monic polynomial of degree 2c− 3.

Proof. Let Dj
n,k represent the number of permutations in Sn that contain (at least) j 2-

patterns that do not meet the k-constraint. We will give an expression for Dj
n,k.

First, we must avoid the following 2-patterns:

{(n 1), (n 2), . . . , (n c− 1), (n− 1 1), (n− 1 2), . . . , (n− 1 c− 2), . . . , (n− c+ 2 1)},

along with their reflections. There are a total of c(c−1)
2 such patterns (and c(c− 1) including

the reflections). However, not all 2-patterns can be included in a single permutation. For

example, it is not possible to find the patterns (n 2) and (n− 1 2) in the same permutation.

In fact, the largest number of 2-patterns to be found in a single permutation is 2c− 3. This

can be seen from the following (2c− 2)-pattern:

(c− 1 n c− 2 n− 1 c− 3 n− 2 . . . 2 n− c+ 3 1 n− c+ 2).
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Thus, we may write the following expression for |An,k| :

|An,k| = n!−
2c−3∑
j=1

(−1)j+1Dj
n,k,

by the principle of inclusion-exclusion. Essentially, we count the number of permutations

including one 2-pattern. In doing this, we have double counted those permutations that

include two 2-patterns, so we must remove these. Now we have twice removed those which

have exactly three 2-patterns, so we place them back in, and so on.

Next we compute Dj
n,k, the number of permutations that include j 2-patterns. Note that

these patterns may be separate, or may be part of an `-pattern, where ` > 2. For example,

the patterns (1 n) and (2 n− 3) are separate, as they do not have elements in common. On

the other hand, (1 n 2) contains the 2-patterns (1 n) and (n 2) consecutively. Let us say that

our j 2-patterns form w separate patterns p1, . . . , pw, no two of which have any permutation

elements in common.

To see how this works, let us take the case c = 5 and j = 5. Then, the following set of

(separate) patterns can be included in one permutation:

{(3 n− 1 2 n− 2), (4 n), (1 n− 3)}.

The first 4-pattern contains three consecutive 2-patterns, so that indeed there are a total of

j = 5 2-patterns. Since there are three seperate “parts”, w = 3.

Given j and w, we compute how many permutations there are with suitable patterns.

Let us say we select the j patterns (in w parts) from the c(c−1)
2 total patterns in Lj,w ways.

We may reflect any of the separate patterns, yielding a factor of 2w. Next, we note that

the patterns contain w+ j total permutation elements. This can be seen from the following

argument: there are 2j elements in j 2-patterns, but all those which are not the first or last

element in a part are counted in two distinct 2-patterns, so they must be subtracted. There

are j − w such elements, so that 2j − (j − w) = j + w gives the number of permutation
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elements. Thus, there are n − w − j permutation elements not involved in the patterns,

which may be permuted in (n−w− j)! ways. Lastly, there are now n− j positions to place

the separate patterns in the permutation, and w! ways to permute them. Thus, we have a

total of

2w
(
n− j
w

)
w!(n− w − j)!Lj,w

permutations, which is equal to 2w(n− j)!Lj,w. Then,

Dj
n,k =

∑
w

2w(n− j)!Lj,w = (n− j)!
(∑

w

2wLj,w
)

= (n− j) · · · (n− 2c+ 4)(n− 2c+ 3)!
(∑

w

2wLj,w
)

= Ej(n)(n− 2c+ 3)!,

where Ej(n) is a polynomial with degree 2c− 3− j. Thus,

|An,k| = ((n) · · · (n− 2c+ 4)−
2c−3∑
j=1

(−1)j+1Ej(n))(n− 2c+ 3)!.

Now the result is immediate. The largest degree of Ej(n) is 2c − 4 when j = 1, while

n(n− 1) · · · (n− 2c+ 4) has degree 2c− 3 and leading coefficient 1, as desired.

The above theorem also immediately confirms that the capacity of (n − c)-constrained

codes is 1.
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CHAPTER 4

Conclusion

4.1 Summary of Our Results

In this thesis, we explored coding techniques to improve the reliability and lifetimes of NVM

devices. NVMs have become the most popular data storage technology. Furthermore, there

is extraordinary demand for increased storage capacities. For these reasons, reliability has

become a critical issue in NVMs, motivating our application of coding-theoretic strategies

to these technologies.

Two approaches were studied. First, we extended the dynamic thresholds scheme intro-

duced in [ZJB11] to the multi-level cell case. We showed that the advantages of dynamic

thresholds are preserved in the MLC case. In particular, error probabilities are reduced

when using dynamic thresholds versus fixed thresholds. This was demonstrated through an

analysis of small cases and by simulations. We also showed that dynamic thresholds perform

nearly as well as the unobtainable optimal thresholding scheme.

We introduced algorithms to allow decoders to compute dynamic thresholds. These al-

gorithms came in two flavors: the “metadata” approach and the “balanced codes” approach.

We also commented on issues that must be resolved in order to make dynamic thresholds a

practical choice in NVM chips.

The combination of dynamic thresholds with error-correcting codes was explored in depth.

We sought code constructions that are tailored to correct exactly those errors which are ex-
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perienced when using dynamic thresholds. In the error model where only a limited number

of (limited-magnitude) errors may take place, we connected this problem with location cor-

rection (when using the metadata approach) and with generalized rank modulation (when

using the balanced codes approach.) We also introduced a new construction that corrects

any number of limited-magnitude errors.

In the second part of this work, we studied the concept of constrained rank modula-

tion. The purpose of this technique is to resolve the inter-cell coupling issue when using

the permutation-based rank modulation scheme. We introduced various constraints that are

capable of reducing the effects of inter-cell coupling. In particular, we analyzed the single

neighbor k-constraint, where adjacent elements of the rank modulation permutation may

differ by at most k.

For the single neighbor k-constraint, we computed bounds and gave an efficient construc-

tion which is asymptotically optimal. We studied the overall asymptotics of the scheme.

Lastly, we examined two useful special cases, where the constraint parameter k is either a

constant or within a constant of the code length n.

Our work on dynamic thresholds for MLC NVMs has been presented in preliminary

form at the IEEE Asilomar Conference on Signals, Systems, and Computers in Nov. 2012

[SGD12]. A longer version of this work has been accepted for publication to IEEE Transac-

tions on Communications in 2013 [SGD13]. The results regarding constrained rank modula-

tion have been submitted to the 2013 IEEE Information Theory Workshop (ITW) [SD13a].

Finally, another work, “Counting Sequences Obtained From the Synchronization Channel,”

[SD13b] will be presented at the 2013 IEEE International Symposium on Information Theory

(ISIT). This work, though not detailed in this thesis, is closely tied to the goal of improving

the reliability of NVM devices. The paper studies a certain subclass of the synchronization

channel, which allows for the deletion of symbols from (or the insertion of spurious symbols

into) a message. Such channels model, for example, storage systems with backup, where

small changes to the information stored in one system can be seen as the result of insertions
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and deletion errors from the perspective of the backup system.

4.2 Future Directions

There are several possibilities available for future work. For dynamic thresholds, it remains

to be determined in the general case whether the code constructions based on the metadata

implementation are superior to those based on the balanced-codes approach. The metadata-

based codes are linear block codes with easily computed rates. However, the balanced code

constructions are much more difficult to analyze.

The balanced codes are an interesting subject in their own right. These codes can also

be described as error-correcting constant-weight codes or error-correcting multipermutation

codes. Such codes have applications beyond dynamic thresholds. Our development in Chap-

ter 2 can serve as a starting point towards a more complete analysis of such codes. In

particular, it would be interesting to compute sphere-packing and Singleton-like bounds

based on the generalized Kendall tau distance we have given. Similarly, it would be useful to

search for balanced code constructions that correct a number of errors that is a fraction of

the code length. Computing the capacity of such codes is another direction for future work.

It may be possible to derive some of these results by generalizing similar ideas developed for

permutation-based codes in [MBZ13].

Another question regarding dynamic thresholds is whether there is a benefit to mixing

the two implementations: that is, requiring that codewords are balanced within a certain

degree, so that for codewords x1 and x2, k(x1) and k(x2) differ in each component only by

a limited amount. The extreme cases where we either require k(x1) = k(x2) or allow k(x1)

and k(x2) to differ by any amount represent the balanced codes and metadata approaches,

respectively.

There are several potential directions for future work regarding constrained rank mod-

ulation as well. First, it would be useful to generalize the results we have derived for the

single neighbor k-constraint to the two neighbor k-constraint and the two-dimensional k-
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constraint cases. The latter is particularly interesting, as it correctly models how cells are

actually organized in NVM blocks.

Another important aspect is developing a specific model for inter-cell coupling. This is

difficult, since the physical interactions that govern inter-cell coupling are quite complicated.

However, such a model would enable us to determine what the values of the parameter k

should be in general. Furthermore, we would be able to specify exactly how much perfor-

mance each constrained rank modulation scheme provides in terms of reducing error rates.

Lastly, we would also like to combine constrained rank modulation with rank modulation

codes, such as those developed in [BM10] and [MBZ13]. Of course, as a starting point, we

could puncture existing codes by removing all codewords that do not meet a k-constraint.

However, we would like to develop efficient constructions that produce only k-constrained

codewords. A further interesting question is to determine how much code rates are affected

by imposing various constraints.
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