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The purpose of thils paper 1s twofold: +to Introduce the reader
to the subject of instabilities exhibited by relativistic particle
beams, and to summarize the present state of our knoﬁledge concerning

these phenomena.
}

Most of the materlel in the first part of the pﬁper is not new.

It has been known to some specialists for.a good many years; what 1s
new 1s that the problems that can be solved are now of much more
interest to the general community of accelerator physicists. Conse-
quently, many accelerator physicists who have not pald much attention
to thése matters may now want to become informed; 1t is my hope that
this paper will provide an introduction to-the field.

| The second part of the article consists of two sections., The
first summarizes the experimeﬁtal Information presently available,
with emphasls upon the degree to which it confirms or disagrees with
+theory. Our current level of understanding 1s delineated: consldering

the generality and relisbility of the théoretical analysis as well as

This work was done under the auspices of the U. S. Atomic Energy

Commission.
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the degree of experimental confirmation, the author expresses his
opinion as to what can be considered relatively well established.
The final section contains a discussion of subjects needing further
investigation and, consequently, supplements the discussioﬁ of areas

of understanding by describing the peripheral areas of uncertainty.
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- I. INTRODUCTION TO THE PHYSICS OF BEAM INSTABILITY

Section I.l below consists of a categorization of the diverse
phenomena assoclated with self-fields of relativistic particle beans.
An important part of thls section 1s an extended bibliograﬁhy of the
many theoretical papers on instabilities of beams in particle accel-
erators. Sectlon I.2 discusses the two different mathematical methods
that have been employed to analyze instabilitlies; Section I.3 consists
of three examples that have been selected to demonstrate both the
varilety of physical phenomena and the methods employed for their
analysis. |

1. Categorization of Self-Field Phenomena

The physical phenomena associated‘with sélfufields may be
elther those 1in which the self-field is statlc, or those in which the
self-field takes on a dynamical behavior. In Table I, thésé two
categories are listed with a number of different subcategories.
Numerous references have been Iindicated in the table, including
the majority of theoretical papers on the subject prior to this
conference. Experimental papers have not been included; comparison
wilth experiment will be made in Section IX.l, and approprlate refer-
ences glven there. Similarly, contributlions to this conference are
not referenced, but are discussed in Section IT.1l., Although an effort
has been made to make the bibliography relatively complete, surely
many papers--especially in the non-English literature--have escaped
this reviewer's attentlion; the bibliography should, nevertheless,

serve as a ubeful guide to the literature.

Foo
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. " The phenomena in which the self-field 1is static a?e basically
simpler, as is evidenéed by the historical priority of their investi-
gation. Most of these effects are not Instabilities and are included
only for completeness and orientation of the reader, Phenémena of the
class in vwhich the self-field is dynamic are more difficult to envision
and, in general, are assoclated with instabilities, or potential
instabilities. Sometimes, as‘in the negative-mass instabllity, the
self-tield motion is rather simply described. (Here, for an initially
uniform béam and in the frame of reference in which the unperturbed
particles are at rest, the instability corresponds to a; exponential
growth of a small density fluctuation.) In other cases, such as the
transverse coherent resistive instability, the self-field motlon is
most easily described 1n & frame of reference that is neither the
laboratory frame nor the frame in which the particles'are'at rest. A
mathematical approach.(and assoclated physical reasoning) that concen-
trates on the particles, and does not ascribe dynamical variables to
the self-fleld, is clearly not particularly convenient for the analysis
of such cases, | |

2. Mathematical Methods

Two different methods have been employed to study self-fleld
phenomena. The 1t'irst 1s the Single. Particle Motion approach, swummarilzed
in Fig. 1. In this method one assumes a current and charge distribution
from which ohe computes self-fields and then determines single-particle
motion. Thi; method 18 particularly errective when the charge and current

distributiors ‘are known, as, for example, in the instability studies of

\
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a,single particle interacting with an intense beam of a storage ring.
The method can be employed even when the charge and current distributions

are not known, by making the calculation self-consistent. An example

of thls is given in Section I.3¢, where the charge distribution is

m

characterized by a few simple parameters which are easlly determined
self-consistently. Thils method is often difficult to apply in problems
where the self-field has dynamical properties, and does not~~in an
obvious way--yield the phenomeﬁon of landau damping.

The second approach is the Collislonless Boltzmann Equation
(or Vlasov Equation, or--in the USSR-~the Kinetic Equation) method.
This is a very powerful theoretical technique that has proved essential
in the study of.plasmas; it 1s equally effective when employed to study
the instabilitlies of relativistic particle beams. More than that, it

is a straightforward approach (it is "easy to use"), and the resulting

yet both unobvious and strikingly effective.

The essentlals of the approach are indicated in Fig. 2. One
can readily see that the method Iinvolves characterizing the properties
of the system with a Hamiltonian that is a functional of the (unknown)
distribution function. As in the Single Particle M>tion approach, one
must employ Maxwell's equatlons and Hamilton's equations. The new
feature, in this approach, 1s the solution of the equation dw/at = 0 .
The basis of this equatlon is well known, and amply discussed 1n the
literature; it 1s Just Liouville's theorem with the subtlety that the

Hamiltonian is a functional of the distribution function itself, For

N
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long~range forces, in which case direct particle-particle collisicns
are unimportant compared with particle-particle interactions mediated
by the self-field, this equation is a very good approximstion.

For static self-field phenomena ¥(q,p,t) is independent of
time and the Boltzmann equation becomes a time-independent but
nonlinear equation. This equation was first employed, iﬁ accelerator
physics, to study longitudinal space-charge effects.5 In thilis initial
work attention was limited to distribution functions corresponding to
a uniform density in a restricted region of synchrotron phase space;
the analysis ylelded self-consistent "bucket" shapes, gur interest is
in Instabllities, sc no further attention will be devoted, here, to the
problem of determining stationary distribﬁtion functions.

Almost all investigations of dynamical self-field effects have
proceeded from the linearized Boltzmann equation. This ié not really
a compromising approximatlon, as our concern is normally not with the
mode of development of an instabllity, but only with the criterion for
its onset--which is given exactly even In linear approximation. Thus
the linear theory is excellent for obtalning threshblds and for
suggesting ways of avolding instabilities; the growth rates, however,
are valld only for small growth. Some nonlinear work 1s described in
Ref, 13,

Dynamicael studies require, first, a static solution weq(q,p) .

Linearizing the Boltzmann equetion by letting

\!f{.q_)p;t) = ‘Veq(‘q"p) + ‘{’l(C.'up}'t) ’ (:'-)



one obtains
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where
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OH( a4,Db, \Ve )

dp = - “___8____3_ : v
at q

eq
(dj, ) d [ BH( QJP;\Veql v }

dt 1 op Eweq 1

(ap\ [ on(q,pv. ) ]

\at/, = ’B%[_Tc'v;q—ﬁ“‘ (TR (3)
and the partial derivatives include differentlation of the q and p
within ¥ . and \irl . The equation 1s still (usually) a partial
differentialfintegral equation--and time dependent--but it is‘linear.
This approach was first used to study the negative-mass instability,lo’ll
an application discussed in detall below.

The reader can find some general comments concerning mathematical
approaches in Ref. 29. Finally, it should be emphasized that Landau

30

damping”” 18 automatically contailned in the linearized Boltzmann equation

approach, as will be seen in the example to follow. Some of the

73
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mathematical complexities associated with lLandau damping are discussed
in Ref. 31, while Ref. 32 gives a particularly lucid--and expansive--
discussion of the phenomenon. The reader first approaching this subject

30 32

should find the articles by Landau” and Hereward” most 1lluminating.

3., Examples

In this section we discuss first a static self-field effect,
employing the Single Particle Motion method. Then we study a dynemilc
self-field Instability by use of the Collisionless Boltzmann Equation
approach.’ Finally, in large part because of the interesting new

: |

physical results obtained, we study the transverse coherent resistive
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(a) Incoherent Transverse Space-Charge Limit by Single Particle Motion

Method
Proceeding according to the general outline of'Fié. 1l, we first
assume a charge and current distribution, which in this calculation is
taken to be a uniform beam of circular cross section, with minor radius

a and major radius R . The azimuthal direction is 3 and the vertical

direction k , so that

Ne 5 for rSa,
(2nR)(ra”)
p =
0 for - r > a,
J = pﬁcé‘, (%)
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where the beam has been taken to have N particles of velocity PBc .

If we ignore (the negligible) effects of curvature associated with the

major radius R , then Maxwell's equations imply

i

n A
2np(z k + x 1)

é;self

Hopp = 28(zL - x%). (5)

The Lorentz force equation, plus Hamilton's equations (in this

simple case Just F = 7 my & ), imply, for motion in the Q direction,

2
dz
7'-m0 dte = e( 6.'.7. - B }{x)
2 H
d"z 2 0 :
ym —= = 2npe(l - B )z ~ ef z ..
0 4¢2 %z | (6)

We have included the external fileld, of course; letting

.5
o
i
jad
1T
iy
.
-3
S

and changing to 6 as the independent variable, we obtain

) 2 '
E e s Fna. (@)
as 7mof3c

Noting that ﬁhe solution to Eq. (8) has a © dependence of the form

exp(1 Q ©), &nd introducing the classical particle radius T, = eg/mocg,

we obtain

N

>
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: Rr. N
2 2 0 /
@-qf = - — 0 (9)
9% BRI
vhere 7 = (1 - 52)~l/2 = E/moé2 .

Finally, effects not explicitly in our Hamiltonian--namely,

machine Imperfections--limit the @ value to nonintegral and non-half~

2 2

integral values, so that Q2 - QO is restricted, Letting AQ2 = Q

we have the result, equivalent to that first obtained by Kerst:l

na 2
N = = __._Z_E_ 2", (lO)
Rr
0
1+ An2 4 11 T T P N e - As o om ; \
withn 44 t*”p.gca“.y o tne oraer of 0.25 (for non-AG devices).

It now remains to be demonstrated that the single-particle
motion is consistent with the assumed charge and curren£ aistribution;
in thils case~-if the effects of nonlinearities in the external fileld
and the effect of the machine imperfections are ignored--it is true.
This point is discussed more carefully in Refs. 2 and 3, where the
Boltzmann equation method 1s employed.

The electrodynamlics in the above calculation is rather poorly
done; no effect of the surrounding media has been included. Simply by

improving this aspect of the analysls one can arrive at the formula

N - & h2 4 égg zFl
- 2
2Rro

with

..QO)

7

N
s A
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2] .2 2, .2
Z =€ [l +-L£-%—3§Z—)J + € b (1 5 1By") h ,

272
o B(7° - 1) ‘e B(y" - 1) b2 +b) ()

appropriate to an ellipticael beam of major radius & and.minor radius b,
between conducting walls (vacuum tank) with separation 2h , and iron
(magnet) surfaces of separation 2g . The coefficlents are, for parallel
plane‘iron and conducting surfaces, € = ﬂe/hB and € = ﬂ2/2h . The
coefficient 1n 1is the fraction of the beam neutralized, and B 1s the
percent of the circumference occupied by beam. Detaills' of the deriva-
tion, and coefficients for more complicated geometry, ére glven by

, Laslett;u it is sufficient to notice that the presence of the surround-
ing media can have significant consequences. For example, Eq. (11)
implies that at high enefgy N increases only lineally.with Y --while
Eq. (10) (incorrectly) predicts a 73 dependence.

(b) Negative-Mass Instability by Collisionless Boltzmann Equation Method

We turn now to one of the most stralghtforward applications of
the Boltzmann Equation method; namely, the study of small density
fluctuations in an otherwise azimuthally uniform beam of particles. Ve
consider, hefe, only the longitudinal degree of freedom and (guided by
aeeper insight) employ the azimuthal angle ¢ and its time derivative
¢ eas indepeédent variables, even though they are not a set of canonically
conjugate coérdinates and momenta, |

For‘§his case Weq(¢, ¢) = weq(d), since the unperturbed beam
1s assumed té be azimithally uniform but having a possible spread in

particle energles. If we let
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¥d, ¢, t) = .xveq@f) + (g, 8, %), | (12)

the linearized Boltzmann equation becomes

awl avl (i (13)
4 = 0. 13
ot dt 1 Eﬁ

Hamilton's equations imply
/gg ar -(df) dE
at/ = TH{ T T \Em at

dB

= (4

[l

iy
+
2y}
[}
Cr

where f 1is the particle frequency, E is the particle energy, and
£ 1is the longitudinal electric field. In this problem (ng/dt)eq 18
zero; that 1s, only the perturbed distribution has any essoclated field.

E;. Solving Maxwell's equations-~-detalls are glven in Ref. 10--we f£ind

2

£ = ;55;5 5% fwl(¢, g, t)ag , ~ (15)

wvhere g 1s a geometrical factor, which for a circular beam of minor

radius a between conducting planes separated by a distence G is

- 26
g = 1 + 2 fn m). (16)

The formula for é; should be rather evident: The integral is simply
the charge at azimuth ¢ , and the field is proportional to the charge

. ,
gradient; thé factor R is required on dimensional grounds, and.
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2he 7-2 takes account of the lorentz contraction in the azimuthal

direction., Combining these equations, we have

dy
v 27 4df N\ 2 eq
3 > gt (% EE,/ eg d¢
1, 3 1 eq 3 v. af = o
ot oF T R 3 1 - ’

(17)

which 18 a linear partial differential integral equatlion with three
independent variebles. But it can easily be solved! Assume wl is

of the form '

. . 1( ¢ - wt)
Wb v o= e (6)

where n 15 an integer (because of the boundary condition on ), and

o 1s to be obtained from the equation., We find

lm2<f‘ %g) eeg in ay (¢)
(nf - T, (F) = - 7 " [wa -0,
(19)

from which 1t 18 clear that

[Constant] dweq(d)

V(B = 5 el (20)
ng - o ag
Inserting this, we obtain--after canceling the constant-- |
o ay_ (§)
hﬂ2¢2 (f %% ——%ﬂu—w
1= —— [, (21)
7Y R n¢ - W

J

\
BN

i
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which 1s a dispersion relation, l.e., an equation for w as a function
of n . We can see the implications of Eq. (21) by taking a simple
example for Weq , nanely a beam with a uniform spread of particle

energles within a band of full width A4F . 'Thus, take

N . ’ ;
T2 (247 for ¢eq-A.<¢<¢eq+A,

€q
0 otherwise,
(22)

where |

it

oA o ;‘@ (2E) . - (23)
eq ‘

Clearly dweq/dd contains two & functions; the integral in Eq. (21) is -

trivial, and one readlly obtains
1/2

., 2 2
S Mj% (e o o %)eq (ae)® | . (2w

s1€e

eq

One can see that 1f (AE) 1s very small and df/dE 1s negative, then

®w will have a complex term and the perturbation will grow exponentlially.

On the other hand, there exists an energy spread (4AE) that will
stabllize the beam for any given intensity N, which is Just Landau
damping. The physics 1s described in detail 1n Refs. 10 and 11, along
with an expansive dlscussion, in Ref. 10, of the Landau damping--namely,
the proper definition of the singularity in Eq. (21) as well as the

dependence 0%,the result upon the choice of Weq(d) .
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The reader should appreciate--from the block diagram of Fig. 2,
and this example--the general features of an instablllity calculation
using fhe Boltzmann Equation Method. Often, in the literaﬁure, the
basic simplicity 1s obscured by very involved mathematical details.
Take, for exsmple, the rather impenetrable paper (LNS)16 on the
transverse resistive wall instabllity for a uniform beam. The analysis
is fundamentally no mofe complicated than In the above example: One
assumes a circular beam of minor radius a , inside a circular tank of
minor radius b , having walls of conductivity o . Thg equilibrium

distribution function is chosen to be of the form

v = —I_ #(x, E), . (25)

eq (2n)2 R

where f(x,E) describes the distribution of betatron amplitudes and

energy in the beam, and is normalized
ff(x,E)x xaE - 1. (26)

Assumming a wave of the form exp[i(né - wt)], one finds a dispersion

relation

1 = wy (U + (1 +4)V]T, (27)

where wo is the average revolution frequency; U and V come from

Mexwell's equations,

- 7’(\\‘1



. e2 N a2
U = 3 5 \1- 73
21 QO 0 v4 0 Ra b
and . /2 ,
2 w
V = e NB 3 ' 8, ' ) ’ ‘ ‘ (25)
1 QO.7 mO b” g

and all other symbols have been defined previously. The dispersion

integral I is

f(x <2 ax dE |
5 (29)
(o - nﬂ(x E) - [Q(x,E)Q(x,E)]
where Q(x,E) 1s the circulation frequency end @{x,E) the § value

for a particle of betatron amplitude x and energy E (ﬂ.w wo) . The
theory 1s evidently similar--in structure-~to the simplef'problem, but
the increased difficulty associated with solving both Maxwell's equations
and the linearized Boltazmann equation should be emphasized.

It is not difficult to obtain from Egs. (27), (28), and (29) the

main results of INS: If we take f£(x,E) = 8(E)8(x)/x , then

o ='(ntQdey 3 (U+V+1v); o (0)

for n>Q (V changes sign as w does) and the lower choice of sign

there 1is an instabllity with growth time
: 3 1/2
A TRy 7D F81tcr(n-Qo)J
o Vo= TFo [ BcR :
. 0
As in the negative-mass problem, lLandau damping can prevent an instabllity,

(31)
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and one can showl6 that the spread in the quantity S = [n - Q(x,E)]a(x,E)

required to prevent growth is AS 2 !U] + V.

(c) Transverse Resistive Instability for a Bunched Beam by Single Particle

Motion Method

We consider, for simplicity, the case of 8 single bunch. Since
the bunch is assumed rigld, the only dynamical varliable i1s its transverse
coordinate. The dynamics 1s very simple--much a&s in the first example
above--but the electrodynamics is more complicated. Consequently we
concentrate first on thg solution of Maxwell's equations, following the
analysis of Robinson.2 B

The Important polnt--in fact the physical basis of the instabllity
~~1s that in a resistive vacuun tank, fields due to a particle decay,
after the particle has left, only very slowly in time. The decay 1s so
slow that a bunch traveling about a circulaf accelerator returns soon
enough to be subject to its own wake field. Clearly, depending upcn
its phase--relative to the wake field--the motion can be damped or
undamped. We shall see this 1n detail, but first we must compute the
wake fleld of an osclllating chérge.

. Consider a conducting medium, of conductlvity o , located
above the y = O plaﬁe, and subject to the fields of a particle moving

wilth velocity B ¢ in the % direction. Within the conductor,

CJE - %IEJZ !
dE 2@
z _ _ 1 X
oy : - c ot
=0 6, (32)

o e P AP e R -l 7 ot e e

N
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which clearly yields35

A )4-7(0' Z (55)
with a solution

Z 1/2 4Bc

. o)
_ [Constant] R <
J, = "—*;;7r*-—~ exp [- o %}'} , (3k)

where R = UxBg/c . We may evaluate the constant in Eq. (34) by
}
equating the integral of J, (over y) to the product of c/br

times the change in éi , obtaining

)

@
. X0 (Bs,l/z L R ﬁ] 559
2 T 3P N\B/ a2 TP|TWEe T >

where the field ég; has been taken as a step function that 1s zero
for t <0, and equal to éZio for t 20 . Conséquently the electric

field at the metal surface due to a general time-dependent magnetic field

is
1/2 ¢ ,
E(30,8) = —F7 (Bﬁ} f i S
=0, = . .
(36)
For a pulse of charge moving parallel to the surface, @i = acgy ;
while ®
[
y Foatt = 0 (37)
-0

2y

{

N
=] AT
iR
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and
>
I'a)

/_w £, et - 52 . (38)

i

Te last 1s valid for a pulse of length 1L 1inslide & tube of
radius b , when L >>b . Expanding the denominator in Eq. (36) for

t large, and using Egs. (37) and (38), yields
1/2
. Ne (B 1
Eon - () S5 (39)

This result, of Robinson, is vaiid for long times (t 5 L/c), but
because the conductor was assumed.planar it becomes incorrect for time
t > Rbg/Bc , which is a very long time;lg thus Eq. (39) suffices for
our purposes., Notice that éaé 1s‘falling off only algebraicelly in

time.

An analogous ealenlation™ ™ for an cscills
amplitude ¢ exp(iwt) in the 3 direction, moving in the '% direction
with speed Bc, and passing the point of observation at time t' ,

yields

5(1:) - Nef e (40)
x x b0 o2t - gr)L/2

for the wake field. In this case 6%: is larger than é;y in the
asymptotic regime. Notice that (?2 has the same phase as that of
the particle at the moment when it passes the point of observation;

subsequently éz_ simply decreases slowly (t-l/e) in time (not
oscillating, for example). The range of validity of Eq. (40) is the

same as that of Eq. (39).

AN

5
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. We are now in a position to follow the Single Particle Motion

approach, and quickly obtain results concerning the resistive instability.

Assume the transverse motion is of the form

£ exp(1l Qg t), | (1)

where the value Q (presumably near to QO) is to be determined In
the analysis. From Eq. (40), ignoring the major radius curvature of
the vacuum tank (a very good approximation), the asymptotic wake field

from the previous turn is proportional to

£ exp [1Qay(t - 2r/w,)]
1/2 .

(k2)
(2r/ws)

Consequently, as in Eq. (6), but summing over all previous turns, wve

have
2
2 2 '
S o+ oy @y | & exp(1 Qo t)
dt
( i -iEﬁQ -ihﬁQ
= k £ exp(i Q @y t """'"'"77' -—"a—"~"i7— cen s
Eﬂﬁn ﬁ»

(43)

where k, is a positive constant. We have neglected in Eq; (43) the
"local" fields which have, in fact, a negligible effect on this particular
calculation.:“The local fields are, however, important for the proper
computation of thesholds. Ignoring the slow variation of amplitude {the

general result 1s the same when amplitude variation is included )

we have
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e—ldﬁQ

Qy = @ = s,
0 L. i

(1)

with k & positive constant. Thus

k emigﬂQ

2 Qog(l - e

(45)

Q = QO [ l - ~127tQ) J

where the positive sign must be tsken to be consistent with the initial

assumption of Eq. (41). Now,

ksin2:rQ (LF6)

ImQ = )
h Qo(l - cos 27 Q)

vhich, since instability occurs (Eq. 41) for Im Q <0 , implies

instability when I + % <Q<1I, vhere I 1is an integer. Correspondingly

when I <Q<T1I+ % , the motion 1s stable.

It should be noted that the instabllity can be prevented by

Landau damping; the criterion for stability can be obtained from the

Boltzmann equation approach.7’18’22

Conversely, the stable zones remaln

stable in the more complete analysis; this result heas yet to be confirmed
by experiment.

| Extension of the theory to many bunches is straightforward,22 as

23

is the extension to two beams in an electron-positron storage ring.
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. II. PRESENT STATE OF KNOWLEDGE OF INSTABILITIES

If I were to summarize in a paragraph the main content of this
section--énd such a summary must perforce be inexact--I would observe
that the need to conquef a diversity of practical problems.associated
with the instabillities of relativistic particle beams has preclipltated
considerable activity during the past few years. This activity--by
both experimentalists and theorists-~has resulted in a tremendous
Increase in our understanding of the diversity of préfound and subtle
aspects of cooperative behavior exhibited by these many-particle systems.
Concomitant with our increased knowledge there has come‘the abllity to
deslgn and construct particle-handling devices 1n which we expect to be
able to control, avoid, or operate succeséfully desplte all presently
known beam instabilities. There are, of course, new subjects to be
investigated theoretically and many predictions to be confirmed
experimentally, but the present spirit 1s one of confldence--brought

forth, we trust, from understanding rather than ignorance.

1. Theory and Experiment

It 1s convenient, in reviewing our present situation, to follow
the categorization of effects as outlined in Table I.

The major instabllity assoclated with a static self-field is
that of a single particle in one heam of & stofage ring interacting

with the Intense nonlinear fileld of the other stored beam. The theory

Beck and Gen&reau; the comparlson of theory with phenomena observed on

the PrinceboﬁLStanford electron storage ring 1s given in a contribution

N
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by Barber et al. Experimental observatons at Novoslbirsk are reported

in a contribution by Auslander et al., The agreement is good. For proton
storage rings the effect is of much more concern because of the absence
of any radiation damping. There are profound questlons coﬂcerning the
long-time stability of single-particle motion in nonlinear fields, and,
in particular, in the necessarily somewhat stochastic flelds assoclated
with an Intense beam. The CERN group has attacked these questions

34

theoretically, and also computationally; the numerical work (which is

still in progress) indicates that 1f resonances are avolded in accordance
i
with the work of Courant,7 then there is no observable iong-term growth
--at least in the first (one-dimensional) model--but the theoretical
studies by Schoch indicate that more compiicated models may exhibit
observable growths. Experimental studies on long-time beam stability
employing the CERN PS and also the CERN electron model aré reported in
contributions by Bacomnier, de Raad and Steinbach, and Pentz; again,
with no beam growth in the (necessarily short) times available for
observation. This subject 18 of immediate concern only to the CERN
group, and it is being very éétively investigated by them; Jjudging from
the reports on the CERN IRS, presented to this meeting, there already
exlst optimistic opinions on the outcome of tﬁese studies.

Another beam instability, or at least an effect which has the
consequence of leading to beam enlargement, is the Touschek or AdA
Effect.35 This 18 not a self-field effect, but rather an incoherent
particle-péé}icle interaction within a single intense beam, It seems

to be well understood theoretically, and the theory is very well
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canfirmed by observations on a number of different storage rings. One
aspect of this phenomenon is analyzed in the contribution by Bruck and
LeDuff.

Moving on to the dynamic self-fleld phenomena, we coanslder, first,

10,11

the negative mass instabllity. The linear theory has been checked

most completely in experiments on the Bevatron in which the predicted
36

functional dependence of threshold upon energy spread was confirmed,
Similar experiments on the Cosmotron57 were, for diverse technical reasons,
not definitive, although--like the Bevatron--in rather good quantitative
agreement with the theory. The instability has also been observed and
28,39

studied at a number of other accelerators. Nonlinear effects,
self-stablllized bunches, and even the interaction of one self-stabilized
bunch with another have been extensively explored in a se;ies of beauti-
ful experiments by Barton and Nielsen;uo similar observations sare
reported in the contribution of Samoilov and Sokolov. An initial
attempt at a theoretical analysls 1s contalned Iin the contribution of
Perelstein; Ref. 40 also has some contributions to the theory of the
negative-mass instability in thé nonlinear regime. I think, in sumﬁary,
we can feel confideﬁt about the basic correctness of the linear theory,
and put some reliance upon the quantitative predictions of threshold
criteria.

The longitudinal resistive instability of a uniform beam has
been observed, 1f at all, only at MURA. The confrontation of theory
with definitive experiment 1g difficult; the MURA group has attempted

to differeriate the resistive-wall instabllity from an alternative
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h¥ypothesis of a two-stream instabllity by messuring the sign o
(small) frequency shift associated with the coherent motion. - The
experimentb’l yields a slgn in agreement with the resistive-wall theory,
and the measured threshold and growth rate are also in quaﬂtitative
agreement with this theory. Naturally, confidence in this theory
must be somewhat restrained until the effect has been observed and
studled in more detall at a number of laboratoriés; one of the strong
arguments in favor of the theory is that it very closely paralleis the
theories of the negative-mass and transverse resistive-wall Instabil-
ities which are, themselves, s0 well conflrmed experimentally. |

The transverse coherent instability of a uniform beam has been
studied by the MURA group and reportedul-—in greater detall in & series
of Internal reports.h2 The qualitative agreement with theory (the
instability is observed for n » 3 and Q = 2.7) is good, but
quantitative compafison with the linear theory indicated observed
growth rates up to 100 times the theoretical values and thresholds at
significantly smaller currénts than the theoretical values (less than
1/50). Recently, however, thé MURA group has changed the termination
of thelr clearing electrodes, with the dramatic effect of converting
the n =5 mode from growing at 100 times the theoretical growth rate
to damping et approximately the same rate!LLB Theoretical analysis~-
still in a preliminary state--by Lasletthu indicates that clearing
electrodes cian have a significant effect on the phenomenon. In
particular, %or the MURA 50-MeV electron machine resonances are likely

for n Z;h:;@ahd the clearing electrode can easily become the dominant

N
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element. The present situatlion 1s, then, one of uncertainty: Further
theoretlcal or experimental work needs to be done before one will be
able to compare the MURA experiments with the INS theory;l6 elther the
experiment must be modified to approximate the simple geométry of the
theory, or the theory must be extended so as to include the actual
geometry of the MURA experiment.

Transverse coherent instabilitles of bunched beams have been

k5

cbserved at a number of accelerators: the Cosmotron, the Princeton-
Stanford storage rings (see the report by Barber et al.), the Argonne
|
7ZGS (see the report by Martin et al.), Nimrod (see the contribution by
Cray), the AGS (see the con£ribution by van Steenbergen), and the CERN
PS.25 The comparison of theory and experiment is, in general, sur-
prisingly good; more detailed comparisons can be made following
numerical evaluation of the recent theory of bunched beamé.z2 I think
that the resistive theories can be considered basically confirmed by
experiment, but this statement is correct only when the theoriles are
extended to include more general situations than the idealized geometry

employed in the work of INS. ‘In particular, the influence of ions,25

and varlous medla and diverse wa11526"28 (see also the contribution of
Balbekov and{KolomenskiJ), must be Included in the analysis. Perhaps
the most Important result of the various experiments 1s the clean
demonstration of the control of the instability, elther by feedback or
by artificially increasing the Iandau damping with nonlinear lenses,

There 18 a phenomenon in linacs that is closely related to the

effect just‘a13cussed: namely, the interaction of the bunched beam
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with the transverse modes of the linac rf cavities. Analysis of this
instability (see the contribution by Gluckstern and Butler) appears to
agree well with observation, thus cbnstituting another areg of confildence.
Two-beam trangverse coherent instabilitles have been observed on
the Princeton-Stanford electron storage rings (contribution of Barber
et al.). Unfortunately--from the point of view of learning about
Instabllities-~the instabi;ity threshold was greatly increased by
separating the @ values’of the two beams (with quadrupoles) and
increasing the vertical thickness of the beams (with skewed quadrupoles);
thus an experiment on qpéntum electrodynamics became possible and the
rings have since been devoted exclusively to the experiment. The sole
comparison of theory and experiment consists of noting that the theory
suggested the modificatlons that did, in fact, prove successful. Quan-
titative comparisons with the maﬁy detailed predictions of the theory25
will have to await observations at Novosibirsk, Orsay, or Frascatl, or
subsequent work at Stanford. Thus although the comparison of theory
with experiment is scant, the theory is being taken seriously and is
forming the basis for the design and construction of a number of
facilities. A variety of ways to avold coherent instabilities, such
as a proper choice of Q values, feedback, use of octupoles, or loading
of the vacuum tank with dlelectric, are discussed in Refs. 46 and 47.
The final instability to be discussed is the interaction of
intense beams with rf cavities. A contribution to this meeting by
Auslander et al. describes both experimental and theoretical work on

this subject, ‘The paper of Lebedev and Zhilkov presents a sophisticated
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Jheory. The subject appears to be well understood, and one can evident-

ly feel confident concerning our mastery of it.

2. Areas Requiring Further Investigation

The preceding section was primarily devoted to thé comparison
of theory and experiment. It was seen that there are only a few’
experimental observations (primarily associated with nonlinear phenomena)
that are not understood; or, at least, for which an explanation has not
been put forth. On the other hand, there is a wealth of theoretical
work that awaits experimental confirmation. The further areas of

i
investigation for experimentalists 1s thus relatively clear: VWe are
primarily interested in avoiding instabilities, consequently emphasis
should center on the small-amplitude regiﬁe, and, in particular, on
confronting the theoretical threshold formulas (with their multitudinous
dependence upon machine and beam parameters) with experimental checks.

In consideration or those areas requiring further theoretical
investigation the comments are, necessarily, of a more technical nature
than in the rest of this paper; they are primarily addressed to those
working on beam instability problems, but should prove of general
interest by indicating the directions that further theoretical work
may be expected to take. It 1s convenient, once again, to consider
the instapnliities one by one, following the order of Table I.

We consider, first, the negative-mass Instability. The most
Interesting questicn is: How serious is it? Experimental evidence
appears confi}ctive, or et best unclear; the instabllity seems to
result in béam-loss in some accelerators like the Cosmdtron,uo but in

the Bevatron, beam loss (which 1s unexplained) doesn't seem to correlate
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with the presence or absence of longitudinal structure in the begm
(Chupp, Elioff, and Wenzei contribution to this conference). Theoretical
arguments have been presented for longitudinal bunching's leading to

m loss: (i) by leading to local increases in charge deﬁsity, as
bunches pass each other in an rf bucket during synchrotron motlon, and
hence to loss by exceeding the transverse space-charge limit, and (i1)

by self-stabilized bunches' affecting each other in such a way as to

eject a bunch from a stable rf bucket. Neither of these mechanlsms has

.yet been described gquantitatively, although the second has been likened

J
to Brownian motion in a potential well (the noise being an approximation

to the fields of the many bunches).

A second question, of some interest, is: What 1s the effect of
rf longitudinal bunching on the negative-mass instability? The present
theories are for uniform beams; they seem, however, to fi% experiments
on bunched beams, which fact should be understood, I1f possible. Perhaps
related to this, are the very curious, and unexplained, phenomena
reported by Maloy. He observes that at one (intensity-dependent) point
in the acceleration cycle at Cal Tech particles move freely from one rf
bucket to another, with most of the particles concentrating in two of the
four buckets for a short time and then subsequently redistributing them-
selves approximately equally!

Perhaps the most exciting subject, apropos the negative-mass
instability, 1s the recent suggestion by Briggs and Neilus that 1t can

be prevented by appropriate cholce of vacuum chamber wall material!
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Further theoretical work would be interestiﬁg--in suggesting a variety
of materials and design--but experimental work is the most pressing.

In regard to the transverse resistive instability in a uniform
beam, we have already commented upbn the special experimental and
theoretical work needed in associatlon with the MURA accelerator.

More generally, and closely related to the work of Bfiggs and Neil,
further theoretical work must be done on the effect of various wall
materials as well as that of lons and assoclated low-energy electrons.
Also of Importence is removing some of the approximatiops in the
present theory (none believed to be severe, but presumably of some
gquantitative significance) such as (1) including resistance in all
the vacuum tank walls, and (ii) including longltudinal forces in the
solution of the Boltzmamm egquation.

The theoretical work on bunched beams is very recent; some
extensions of it are obvious, and will be worked out as time permits.
This includes, for example, (i) more careful evaluation of the fields
assoclated with & bunch to include the case in which bunches are
sufficiently ciose that near fields (in contrast to wake fields)
become important, and (11) numerical studles of the many-bunch problem
to bridge the gap between the soluble problem of all bunches of equal
intensity and the soluble case of very different bunches (see Ref. 22).

A more complicated problem is to include--as must be done for
the uniform beam also--the effect of lons and low-energy electrons.
Only then cag comparison be made, 1n detall, wlth the observed pressure-

dependent ifstabilities on the CERN PS (in mode n = 6, with Q = 6.3)




and on the AGS (in modes n =8, 9, with Q = 8.7). Perhaps an extension
of Hereward's work25 to bunched beams will suffice, but an incorporation
of hisbion-production mechanism and the dielectric properties associlated
26,28

with neutralization into one theoretical structure is clearly

desirable.

Of partlcular importance 1s further study of the nonlinear
"window shade" phenomena observed by the MURA group;ue not because
large-amplitude nonlinear effects are themselves important, but because
the proposed theory would appear to suggest a mechanism‘by which insta-

- bllities can develop in the regime that according to linear theory is
stable.,

A further‘important topic is the question of possible coherent
motion within the bunches (which have been assumed rigid ;n the analysis
to date). One expects these high-order modes normally to be strongly
damped by rf mixing, but quantitative results are needed to ascertain
the intensity at which this 1s no longer true.

In regard to two-beam coherent motlion, topics requiring further
study have already been discussed to a limited extent; we will refrain
from further comments primarily because the theory is in a state of
very rapid development--stimulated, as it is, by the considerable
Interest in 1its predictions--so that problems recorded here would

most likely be solved before this article appeared in print.
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Table I. Physical phenomena associated with self-filelds.

Static self-field effects

1.

=

e

‘Incoherent transverse space'charge 1imit

Linear approximation
Nonlinear approximation
Influence of surrounding media on transverse
space-charge limit
Tongltudinal space-charge limits
Single particle--intense beam Iinteractions
Linear approximation '
Nonlinear approximation

I T

Beam~-r{ cavity interaction

Dynamlc self-field effects

l.

[O)Y

™ =

Negatlive mass instability
Linear approximation
Nonlinear approximation
Longitudinal resistive instability of é’uniform beam
Longitudinal resistive‘instability of é bunched beam
Transverse coherent resistive well instability
of a uniform beam
Transverse coherent resistive wall instability
of & bunched beam
Two-béam transverse coherent instability -
Beam-rf cavity instabilities
Trans?erse coherent instability with general

resistive media
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FIGURE CAPTIONS

Flg. 1. A block diagram of the Single Particle Motion approach to
seif—field phenomena.

Fig. 2. A block dlagram of the Collisionless Boltzmann Equation approach
to a self-field phenomena, The symbols q and p represent the set
of generalized coordinates and momenta describing the dynamical
behavior of a particle. The partial derivatives include differen-
tiation with respect to the q and p dependence introduced through

the arguments of the distribution function.- ‘
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