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Article

A comparison of marginal odds
ratio estimators

Travis M Loux,1 Christiana Drake2 and
Julie Smith-Gagen3

Abstract

Uses of the propensity score to obtain estimates of causal effect have been investigated thoroughly under

assumptions of linearity and additivity of exposure effect. When the outcome variable is binary

relationships such as collapsibility, valid for the linear model, do not always hold. This article examines

uses of the propensity score when both exposure and outcome are binary variables and the parameter of

interest is the marginal odds ratio. We review stratification and matching by the propensity score when

calculating the Mantel–Haenszel estimator and show that it is consistent for neither the marginal nor

conditional odds ratio. We also investigate a marginal odds ratio estimator based on doubly robust

estimators and summarize its performance relative to other recently proposed estimators under

various conditions, including low exposure prevalence and model misspecification. Finally, we apply all

estimators to a case study estimating the effect of Medicare plan type on the quality of care received by

African-American breast cancer patients.

Keywords

causal inference, confounding, counter-factual inference, doubly robust estimator, propensity score,

stratification, inverse probability of treatment weighting

1 Introduction

The odds ratio is a common measure for the association between exposure to a specific factor and
presence of disease. A complication arises, however, in that the population-average, or marginal,
odds ratio is not equal to the unit-specific, or conditional, odds ratio within the population. Two
important consequences of this fact are that (1) one needs to be clear about the choice of marginal or
conditional odds ratio as the effect of interest, and (2) distinct estimators for each parameter need to
be developed. Estimating a unit-specific odds ratio entails estimating an odds ratio at each
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combination of levels of covariates, often incorporating modeling assumptions. When estimating the
marginal odds ratio, one needs to estimate the averages of the potential outcomes under exposure
and non-exposure across all units in the population, regardless of actual exposure status. Estimating
either parameter requires accounting for variables associated with exposure and/or outcome.
Conditional estimation usually involves stratification or regression modeling, while common
marginal estimation methods often incorporate the propensity score.

Addressing the choice of the effect of interest, someone in the role of a personal physician or
therapist customizing treatment for individual patients at a time would be interested in a conditional
odds ratio given the patient’s risk factors. On the other hand, someone making a policy decision to
be applied uniformly to a population or community would more likely be interested in the marginal
odds ratio within that population. In this paper, we compare various marginal odds ratio estimators
via simulation. We also apply these estimators to data on the quality of care received by African-
American breast cancer patients in Medicare Managed Care Organization (MMCO) and Fee-For-
Service (MFFS) plans. Since the result of such an analysis would be to advocate for a health
insurance policy directed at an entire population, the parameter of interest would necessarily be
marginal.

1.1 Confounding and collapsibility

Meaningful conditional and marginal estimates must be adjusted for confounding variables. We
employ the comparability-based definition of confounding (e.g., Miettinen and Cook,1 Greenland
and Robins,2 and Wickramaratne and Holford3), which is distinct from collapsibility. Thus, we will
say X is a confounding variable when (1) X is unbalanced in sub-populations defined by exposure Z,
i.e., PðXjZ ¼ 1Þ 6¼ PðXjZ ¼ 0Þ, and (2) X is a risk factor of the outcome Y after accounting for Z,
i.e., PðY ¼ 1jX,ZÞ 6¼ PðY ¼ 1jZÞ.

An effect measure is said to be collapsible over a covariate if the marginal and conditional
measures are equal to one another.4 Gail et al.5 show that in the generalized linear model where
gðE½YjX,Z�Þ ¼ �0 þ �1Xþ �Z, independence between X and Z ensures collapsibility only when g is
the identity or log link function. In particular, the odds ratio is not collapsible over covariates even if
those covariates are independent of treatment and therefore not confounding the effect measure.
Greenland et al.6 discuss confounding and collapsibility in depth, extending the concept of
collapsibility to a non-constant conditional effect by necessitating that the collapsed effect
measure equal the appropriately weighted average of the conditional measures.

1.2 The potential outcomes model

To be explicit about the distinction between marginal and conditional parameters and their
relationship via collapsibility, it will be useful to introduce the potential outcome approach
suggested in Neyman7 and developed by Rubin.8,9

We let Y1i be the outcome experienced by unit i if exposed (Zi¼ 1) and Y0i be the outcome
experienced by unit i if not exposed (Zi¼ 0). The unit-specific effect of exposure is a comparison
of Y0i and Y1i, while the population-average effect is a comparison of the means of Y0 and Y1. For a
binary outcome, these means are given by PðY0 ¼ 1Þ and PðY1 ¼ 1Þ, respectively.

The obvious problem arises that one cannot observe both Y1i and Y0i for a given i. The value
which is observed depends on Z and is called the observable outcome, Yi ¼ ZiY1i þ ð1� ZiÞY0i.
Since only one of Y1i and Y0i is observed, inference in the potential outcomes model can be thought
of as a missing data problem.

2 Statistical Methods in Medical Research 0(0)
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When exposure is independent of the distribution of potential responses, i.e., ðY0,Y1ÞkZ
(Dawid10), and 05PðZi ¼ 1Þ5 1 for all i, exposure is said to be strongly ignorable. Exposure can
also be strongly ignorable given a set of covariates, X, i.e., 05PðZi ¼ 1jXÞ5 1 and ðY0i,Y1iÞkZjX.
In order for causal inferences to be made, it must be assumed that exposure is strongly ignorable
given X and X are measured before exposure or otherwise not affected by exposure.

Strong ignorability requires that each unit has a non-zero probability of being exposed and a non-
zero probability of being unexposed, or that any unit in one subgroup could well have been in the
other. In fact, this is necessary in order for the potential outcomes Y1 and Y0 to be meaningful – if an
unexposed unit could not possibly have been exposed, it makes no sense to describe its outcome
under that impossible condition. One consequence of this philosophical restriction is that non-
manipulable characteristics such as race or gender generally cannot be considered exposures or
causes of an outcome.11 However, when such comparisons are of interest, the methods described
below can still be used to estimate population average adjusted probabilities. For example, instead
of estimating PðY1 ¼ 1Þ, it may be of interest to estimate EX½PðY ¼ 1jX ¼ x,Z ¼ 1Þ�, where the
expectation is taken with respect to the distribution of X in the full population (sample) of
exposed and unexposed units. Due to the lack of potential outcomes, these estimates can no
longer be considered causal, but are still useful as they allow comparisons among entire sub-
populations while controlling for imbalance in relevant covariates. For a more detailed
explanation and worked example, the reader is referred to Li et al.12

1.3 Definitions of odds ratio parameters

We define the simple comparison of the odds of the disease among the exposed relative to the odds
of disease among the unexposed as the crude odds ratio

 crude ¼
PðY1 ¼ 1jZ ¼ 1Þ

PðY1 ¼ 0jZ ¼ 1Þ

�
PðY0 ¼ 1jZ ¼ 0Þ

PðY0 ¼ 0jZ ¼ 0Þ

Notice that PðY1 ¼ 1jZ ¼ 1Þ can be estimated consistently using a random sample of exposed
units because Y1 is observable for every unit with Z¼ 1, and similarly for PðY0 ¼ 1jZ ¼ 0Þ. As the
crude odds ratio compares the odds of outcome among two different subgroups of individuals, those
with Z¼ 1 vs. those with Z¼ 0, without accounting for the possible confounding influences of X, the
crude odds ratio has a merely associative interpretation, rather than a causal one.

The marginal, or population average, odds ratio compares the odds of disease if every unit in the
population were exposed to the odds if none were exposed

 marg ¼
PðY1 ¼ 1Þ

PðY1 ¼ 0Þ

�
PðY0 ¼ 1Þ

PðY0 ¼ 0Þ

Generally, PðY1 ¼ 1Þ and PðY0 ¼ 1Þ cannot be estimated directly, so additional assumptions are
needed to estimate  marg. If exposure is strongly ignorable, as is often the case in a randomized trial,
then ðY1,Y0ÞkZ and  crude ¼  marg.

The conditional, or unit-specific, odds ratio is a function of the covariate X

 condðxÞ ¼
PðY1 ¼ 1jX ¼ xÞ

PðY1 ¼ 0jX ¼ xÞ

�
PðY0 ¼ 1jX ¼ xÞ

PðY0 ¼ 0jX ¼ xÞ

Loux et al. 3
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When X contains all of the covariates which are predictive of disease,  condðxÞ measures the effect
of exposure for individuals with X¼ x. Though in general the conditional odds ratio is allowed to
vary with x, the commonly used logistic model yields a constant conditional odds ratio when no
exposure–covariate interactions are present.

A fourth odds ratio parameter often of substantive interest is the odds ratio among the exposed.
Here, the (observable) odds of outcome among the exposed are compared to the (unobservable/
counter-factual) odds of outcome among the same units had they not been exposed, i.e.,

 exp ¼
PðY1 ¼ 1jZ ¼ 1Þ

PðY1 ¼ 0jZ ¼ 1Þ

�
PðY0 ¼ 1jZ ¼ 1Þ

PðY0 ¼ 0jZ ¼ 1Þ

Similarly, we could be interested in the odds ratio among the unexposed, which would condition
all probabilities on Z¼ 0. Throughout this paper, we will focus on the marginal odds ratio, noting
these alternative causal parameters for completeness only.

2 The Mantel–Haenszel estimator

2.1 Matching and subclassification on covariates

The Mantel–Haenszel (MH) estimator13 is a common method to obtain a combined odds ratio
from subclassified or stratified data. The notation for the kth subclass is given in Table 1, where
ak, bk, ck, and dk are cell frequencies and nk is the total number of observations in table k. The within-
table odds ratio is estimated as  ̂k ¼

akdk
bkck

and the MH estimate is given by

 ̂MH ¼

P
k

akdk
nkP

k

bkck
nk

¼
X
k

ŵk ̂k

where ŵk ¼ ð
bkck
nk
Þ=ð
P

l
blcl
nl
Þ so that

P
k ŵk ¼ 1.

If  condðxÞ ¼  cond is constant across values of x and observations are subclassified so that
covariate values are constant within tables, the MH estimate is consistent for the conditional
odds ratio.14 Such subclassification can arise two ways: (1) observations can be subclassified on
unique combinations of discrete covariates, leading to standard large-strata asymptotics, or (2)
observations can be matched on covariates, leading to sparse asymptotics.14

When observations are subclassified into bins defined by continuous covariates, covariate values
are not constant within the subclass. Since the odds ratio is not collapsible across covariates, within-
table odds ratios do not estimate  cond and the MH estimator is not consistent for  cond.

Table 1. A Mantel–Haenszel subclass.

Z¼ 1 Z¼ 0

Y¼ 1 ak bk m1k

Y¼ 0 ck dk m0k

n1k n0k nk

4 Statistical Methods in Medical Research 0(0)
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2.2 Matching and subclassification on the propensity score

The propensity score was defined by Rosenbaum and Rubin15 as the probability of exposure given
a set of covariates, eðxÞ ¼ PðZ ¼ 1jX ¼ xÞ. Rosenbaum and Rubin show that exposed and
unexposed subpopulations with common propensity score have balanced distributions of X and,
when exposure is strongly ignorable given X, it is strongly ignorable given e(X) as well. These
properties allow the researcher to summarize the confounding of X, which may be high-
dimensional, by a univariate score.

Two of the most common uses of the propensity score are matching and subclassification.16

However, in a Monte Carlo study, Austin17 shows that matching and stratifying on the
propensity score lead to biased estimates of the marginal odds ratio. In another simulation paper,
Austin et al.18 show that such methods also lead to biased estimates of the conditional odds ratio.

As we show below, the bias of the propensity-matched MH estimator is related to the amount of
variability of the prognostic score (as defined by Hansen19) within propensity-defined strata. Given
logit models for exposure and outcome with logit PðY ¼ 1jX ¼ x,Z ¼ zÞ ¼ �ðxÞ þ �z, the
prognostic score is given by �ðxÞ and we have  condðxÞ ¼ e� for all x. If there exists a function f
such that �ðxÞ ¼ f ðeðxÞÞ, in other words, if �ðxÞ is constant in propensity-defined strata, then
matching on e(x) will lead to cancellation of �ðxÞ and will estimate the conditional odds ratio. On
the other hand, if �ðxÞ is independent of e(x), the distribution of �ðxÞ within strata will equal the
distribution across the population, and matching on e(x) will estimate the marginal odds ratio.
Proofs of the convergence of  ̂MH in these extreme cases are given in Appendix 1. When �ðxÞ and
logit eðxÞ are moderately correlated,  ̂MH converges to a value between  cond and  marg, as shown in
the simulations of Section 4.8.

3 Recently proposed marginal odds ratio estimators

3.1 Stratified probability estimator

In response to Austin,17 a number of potential estimators for the marginal odds ratio were proposed.
The first comes in Graf and Schumacher20 and is similar to the MH estimate described in Section
2.2. Using the notation from Table 1, Graf and Schumacher subclassify observations based on the
propensity score and suggest estimating the probabilities of outcomes within each subclass by

p̂1k ¼
ak
n1k

and p̂0k ¼
bk
n0k

then weighting within-subclass estimates by the relative sample size within each subclass to obtain
the estimates

p̂j,SP ¼ n�1
X
k

nkp̂jk for j ¼ 0, 1

The marginal odds ratio can then be estimated by

 ̂SP ¼
p̂1,SPð1� p̂0,SPÞ

ð1� p̂1,SPÞp̂0,SP

As with the MH estimator, the simulations of Section 4 show the convergence of  ̂SP will depend
on the size and number of subclasses, and a substantial bias may remain if the subclasses are

Loux et al. 5
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particularly large. However, as seen in Appendix 2, matching will also lead to a biased estimator as
within-strata exposure rates should estimate the propensity score. This is not generally the case in a
matched analysis.

3.2 Regression-based estimators

Graf and Schumacher also suggested an estimator based on a logistic (or more generally any
binomial) regression model. This estimator was also examined by Zhang.21 If a logistic model is
assumed to hold so that

logit PðY ¼ 1jX,ZÞ ¼ �0 þ �
TXþ �Z

then maximum likelihood estimates �̂0, �̂, and �̂ can be obtained and used to estimate

p̂j,ML ¼ n�1
Xn
i¼1

exp �̂0 þ �̂xi þ �̂j
n o

1þ exp �̂0 þ �̂xi þ �̂j
n o for j ¼ 0, 1

with the marginal odds ratio estimated by

 ̂ML ¼
p̂1,MLð1� p̂0,MLÞ

ð1� p̂1,MLÞp̂0,ML

In fact, this is how Austin17 calculated  marg, running a regression on the entire simulated
population. Zhang states that ‘‘this can be regarded as an imputation method that replaces each
potential outcome, observed or not, by its predicted value based on X,’’ a reference to the missing
data aspect of the potential outcomes model.

Another logistic regression-based estimate was proposed by Stampf et al.22 In this estimator, the
estimated propensity score, êi ¼ êðxiÞ is used as a covariate in the model for the outcome

logit PðY ¼ 1jZ, êÞ ¼ �0 þ �1êþ �Z

As with the previous regression estimate, maximum likelihood estimates are obtained and used to
estimate the marginal probabilities

p̂j,COV ¼ n�1
Xn
i¼1

exp �̂0 þ �̂1êi þ �̂j
n o

1þ exp �̂0 þ �̂1êi þ �̂j
n o for j ¼ 0, 1

with the marginal odds ratio estimated by

 ̂COV ¼
p̂1,COVð1� p̂0,COVÞ

ð1� p̂1,COVÞp̂0,COV

3.3 Inverse propensity weighted estimator

Another estimator spurred by Austin17 was given by Forbes and Shortreed.23 Here, the estimated
propensity score is used as the basis for a weighting scheme in the vein of Lunceford and Davidian24

6 Statistical Methods in Medical Research 0(0)
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to estimate the marginal probabilities of outcome under exposure and no exposure. The estimates
for PðY1 ¼ 1Þ and PðY0 ¼ 1Þ are, respectively

p̂1,IPW ¼
Xn
i¼1

Zi

êi

 !�1Xn
i¼1

ZiYi

êi
and p̂0,IPW ¼

Xn
i¼1

1� Zi

1� êi

 !�1Xn
i¼1

1� Zið ÞYi

1� êi

Weighting with the inverse probability of being exposed (Z¼ 1) and not being exposed (Z¼ 0)
can be interpreted similar to the Horvitz-Thompson estimator in the sample survey literature.25 In
this context, the Yi of an exposed unit represents ê�1i units in the population and similarly for the Yi

of an unexposed unit when weighted by ð1� êiÞ
�1. Previous authors (e.g. Hernan and Robins26)

have shown p̂1,IPW and p̂0,IPW to be consistent for EðY1Þ ¼ PðY1 ¼ 1Þ and EðY0Þ ¼ PðY0 ¼ 1Þ,
respectively. The estimate

 ̂IPW ¼
p̂1,IPWð1� p̂0,IPWÞ

ð1� p̂1,IPWÞp̂0,IPW

is then consistent for  marg by continuous mapping.

3.4 Doubly robust estimator

An odds ratio estimator which has not been explicitly discussed incorporates the doubly robust
(DR) estimator of Robins et al.,27 also called the augmented inverse propensity weighted (IPW)
estimator. Let mj ðX,�j Þ be the outcome model for the subgroup with Z¼ j, with covariate vector �j
estimated by �̂j via maximum likelihood. Then

p̂1,DR ¼ n�1
Xn
i¼1

ZiYi

êi
þ 1�

Zi

êi

� �
m1ðXi, �̂1Þ and p̂0,DR ¼ n�1

Xn
i¼1

ð1� ZiÞYi

1� êi
þ 1�

1� Zi

1� êi

� �
m0ðXi, �̂0Þ

are consistent estimates of PðY1 ¼ 1Þ and PðY0 ¼ 1Þ, respectively, and the marginal odds ratio
can be estimated by

 ̂DR ¼
p̂1,DRð1� p̂0,DRÞ

ð1� p̂1,DRÞp̂0,DR

The estimators p̂1,DR and p̂0,DR are called DR because Robins et al show that consistency is
ensured so long as at least one of the propensity score model or outcome model is correctly
specified. Further, when both models are correctly specified, these estimates are known to be
asymptotically efficient in the class of semi-parametric estimators. Though consistent, neither
p̂1,DR nor p̂0,DR are restricted to be between 0 and 1, potentially yielding a negative  ̂DR,
particularly in small samples or samples where Zi=êi or ð1� ZiÞ=ð1� êiÞ may be extremely large.

3.5 Handling extreme weights

Both the IPW and DR estimators incorporate the inverse of the propensity scores as weights, which can
lead to exceptionally variable estimates with even a few extreme propensity scores, i.e., eðxiÞ � 0 for an
exposed unit or eðxiÞ � 1 for an unexposed unit. In the simulations below, we estimate themarginal odds

Loux et al. 7
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ratio without concern for this issue, as well as using stabilized weights (Robins et al.28) and truncated
weights (Cole and Hernan29). Stabilized weighting, denoted below as STAB, replaces the weight Zi=êi
withZip=êi for the exposed subjects and ð1� ZiÞ=ð1� êiÞwith ð1� ZiÞð1� pÞ=ð1� êiÞ for the unexposed
subjects, where p is the proportion of the sample which is exposed. For all three estimators, weights are
successively truncated at 100, 50, 20, and 10, with odds ratio estimates given for each.

4 Simulations

Except where otherwise noted, all simulations began with a population of two million units, each
consisting of three covariates, X1, X2, and X3, simulated from mutually independent standard normal
distributions. The binary exposure, Z, was simulated from logistic models logitPðZ ¼ 1jX ¼ xÞ ¼ �Tx,
and the binary potential responses Y1 and Y0 were also simulated through logistic models, with
logitPðY0 ¼ 1jX ¼ xÞ ¼ �Tx and logitPðY1 ¼ 1jX ¼ xÞ ¼ �Txþ �. For each population, the true
values of  cond,  crude, and  marg were calculated. With Y1 and Y0 explicitly generated for all units,
PðY1 ¼ 1Þ and PðY0 ¼ 1Þ can be computed by simple proportions, unlike the calculation of  marg in
Austin,17 which involved Monte Carlo integration similar to that done in Section 3.2. We drew 1000
samples of size 2000 and observed X, Z, and Y, the observable response. For each sample, the marginal
odds ratio was estimated using the methods described in Section 3.

The propensity score was estimated from the sample via logistic regression using X1, X2, and X3 as
predictors. Subclassification on the propensity score was done using quintiles and deciles. The
regression-based estimators were calculated using logistic regression for the outcome model. In
estimating  ̂DR, we used logistic regression on the exposed and unexposed units, respectively, to
model m1ðX, �̂1Þ and m0ðX, �̂0Þ.

Funk et al.30 show that the model-based standard errors for the DR propensity-based estimators
lead to less than nominal confidence interval coverage and suggest bootstrapping for standard errors
and confidence intervals. We follow these suggestions, resampling 1000 bootstrap simulations in
each sample, returning the bootstrap standard error as well as 2.5% and 97.5% bootstrap quantiles
for 95% confidence intervals.

The simulations in Sections 4.1 through 4.6 below were designed to investigate the estimators’
performance under three model specification scenarios: correct specification, missing a quadratic
covariate, and discretizing a continuous covariate, each under moderate (50%) and low (10%)
exposure prevalence. Section 4.8 investigates the bias of the MH estimator when matched on the
propensity score.

4.1 Correct specifications, moderate exposure rate

For each unit exposure was generated by setting �T ¼ ð1, 1=2, 1=3Þ. Potential responses were
simulated with �T ¼ ð2, � 1, 1Þ and � ¼ log 3. Calculating the population parameters yielded
 crude ¼ 4:073, cond ¼ 3:000, and  marg ¼ 1:799. Table 2 shows summary data from the 1000
samples. The columns give the empirical bias, percent bias, empirical standard error (SE) from
the 1000 samples, average bootstrap standard error, the ratio of the empirical error to the
boostrap error, root mean squared error, true coverage rates of 95% bootstrap confidence
intervals, and, for the weighted estimators, the average number of truncated weights per sample.
The numbers in parenthesis indicate the number of strata for the stratified probability (SP)
estimators and the truncation weight for the IPW, STAB, and DR estimators.

By subclassifying on the propensity score, SP yields noticeable bias with five subclasses. The other
estimators, with the possible exception of IPW under extreme truncation, are all essentially unbiased

8 Statistical Methods in Medical Research 0(0)
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for  marg. Of these, the ML estimator is the most efficient but the differences between ML and DR
are negligible. This would be expected since maximum likelihood estimates are well known be to
asymptotically efficient under the correct model. The bootstrap standard errors accurately estimate
the true empirical standard error throughout.

4.2 Correct specifications, low exposure rate

In the above simulation there were few extreme weights so the implications of stabilization and
truncation were not well-exposed. Now, we simulate data using models similar to those
in Simulation 1, with the inclusion of an intercept in the exposure model:
logit PðZ ¼ 1jX ¼ xÞ ¼ �2:7þ x1 þ ð1=2Þx2 þ ð1=3Þx3. The low exposure prevalence will lead
to low propensity scores, even among the exposed units, which will induce large weights.
The outcome models were exactly the same as in Simulation 1. The odds ratio parameters
were  crude ¼ 4:587, cond ¼ 3:037, and  marg ¼ 1:798. Table 3 gives the resulting summary data.

Broadly speaking, Table 3 shows more bias in this situation than in the more balanced exposure
situation of Section 4.1. We will focus our attention on the IPW, STAB, and DR estimators, as those
are the ones affected by weight truncation. With truncation set to 20, about 1% of observations are
affected, while truncation to 10 affects about 3%. In all IPW and DR estimates the coverage level is,
at best, slightly below the nominal 95%. We see a bias for IPW, likely due to the large weights of
some observations. Truncating the weights, though, does little to improve the estimate. The bias
increases, as expected, but the reduction in standard error is not enough to compensate for the

Table 2. Results for Simulation 4.1.  marg ¼ 1:799.

Method Bias % Bias Emp SE Boot SE SE ratio rMSE Coverage Avg. trunc

MH (5) 0.357 19.85 0.202 0.202 0.997 0.410 0.521

SP (5) 0.149 8.26 0.163 0.168 0.970 0.221 0.854

MH (10) 0.270 15.02 0.192 0.194 0.987 0.331 0.678

SP (10) 0.056 3.09 0.157 0.162 0.971 0.167 0.948

ML 0.006 0.34 0.139 0.139 0.997 0.139 0.952

COV 0.013 0.70 0.144 0.145 0.994 0.144 0.948

IPW 0.011 0.61 0.160 0.162 0.987 0.160 0.950

STAB 0.011 0.61 0.160 0.162 0.987 0.160 0.950

IPW (100) 0.011 0.61 0.160 0.162 0.987 0.160 0.950 0.000

STAB (100) 0.011 0.61 0.160 0.162 0.987 0.160 0.950 0.000

IPW (50) 0.012 0.66 0.160 0.162 0.987 0.160 0.950 0.039

STAB (50) 0.011 0.61 0.160 0.162 0.987 0.160 0.950 0.000

IPW (20) 0.024 1.36 0.157 0.160 0.985 0.159 0.949 0.966

STAB (20) 0.013 0.71 0.159 0.161 0.988 0.160 0.951 0.096

IPW (10) 0.078 4.32 0.158 0.160 0.986 0.176 0.920 8.307

STAB (10) 0.024 1.35 0.157 0.160 0.986 0.159 0.949 0.958

DR 0.009 0.49 0.144 0.147 0.978 0.144 0.953

DR (100) 0.009 0.49 0.144 0.147 0.978 0.144 0.953 0.000

DR (50) 0.009 0.49 0.144 0.147 0.978 0.144 0.953 0.039

DR (20) 0.008 0.45 0.144 0.146 0.983 0.144 0.953 0.966

DR (10) 0.008 0.44 0.143 0.144 0.989 0.143 0.952 8.307

MH: Mantel–Haenszel; SP: stratified probability; ML: maximum likelihood; COV: propensity covariate adjusted; IPW: inverse

propensity weighted; STAB: stabilized weighting; DR: doubly robust.
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introduced bias; in fact, the standard error increases for truncations more strict than 50. Overall, the
root mean squared error increases for truncations more strict than 100, and the coverage rates never
increase, holding steady only with the initial truncation and shrinking dramatically from there.

For the STAB and DR estimates, the results are better. Weight stabilization reduces the influence
of extreme weights, with an average number of truncations always less than 1. The truncations lead
to a negligible increase in bias and an only slightly larger decrease in standard error. This leads to a
slight reduction in the rMSE, though coverage rates remained constant. Truncation does not
introduce a bias to the DR estimate due to the double robustness property (the outcome model is
still correct), and the standard errors reduce slightly. The coverage rates of the bootstrap confidence
intervals are consistently between 94 and 95 percent. While weight truncation has little effect on the
empirical standard error and rMSE of DR, even a very liberal truncation can greatly improve the
overly conservative DR bootstrap standard errors dramatically, bringing it more in line with
the truth without adversely affecting coverage rates.

4.3 Quadratic misspecification, moderate exposure rate

In the current simulation we included a quadratic term in the data generating process. The linear
part of the exposure generating model was �1=2þ x1 þ ð1=2Þx2 þ ð1=3Þx3 þ ð1=2Þx

2
3. The potential

outcomes were generated using �1=2þ 2x1 � x2 þ x3 þ ð1=2Þx
2
3, including an extra logð3Þ term for

the exposed outcomes. The analysis of the samples ignored the quadratic term, using the covariates
only in linear terms. The results of the simulations are given in Table 4.

Table 3. Results for Simulation 4.2.  marg ¼ 1:798.

Method Bias % Bias Emp SE Boot SE SE ratio rMSE Coverage Avg. trunc

MH (5) 0.570 31.68 0.454 0.473 0.959 0.728 0.657

SP (5) 0.211 11.74 0.588 0.605 0.971 0.625 0.960

MH (10) 0.424 23.59 0.426 0.445 0.958 0.601 0.789

SP (10) 0.132 7.34 0.539 0.522 1.032 0.554 0.954

ML 0.037 2.05 0.257 0.263 0.979 0.260 0.943

COV 0.180 9.99 0.339 0.351 0.966 0.384 0.910

IPW 0.108 6.01 0.563 0.555 1.014 0.573 0.925

STAB 0.108 6.01 0.563 0.555 1.014 0.573 0.925

IPW (100) 0.154 8.59 0.522 0.534 0.978 0.544 0.928 0.701

STAB (100) 0.108 6.02 0.563 0.555 1.014 0.573 0.925 0.002

IPW (50) 0.280 15.56 0.496 0.520 0.954 0.570 0.905 3.789

STAB (50) 0.110 6.10 0.561 0.554 1.012 0.571 0.925 0.007

IPW (20) 0.707 39.32 0.516 0.543 0.950 0.875 0.587 21.179

STAB (20) 0.118 6.57 0.548 0.548 0.999 0.560 0.925 0.098

IPW (10) 1.251 69.54 0.588 0.615 0.956 1.382 0.140 57.360

STAB (10) 0.153 8.52 0.523 0.534 0.978 0.544 0.929 0.695

DR 0.037 2.05 0.391 0.678 0.576 0.393 0.940

DR (100) 0.032 1.78 0.368 0.377 0.974 0.369 0.943 0.701

DR (50) 0.029 1.62 0.352 0.362 0.972 0.353 0.947 3.789

DR (20) 0.034 1.86 0.341 0.353 0.965 0.342 0.941 21.179

DR (10) 0.030 1.68 0.340 0.351 0.969 0.341 0.947 57.360

MH: Mantel–Haenszel; SP: stratified probability; ML: maximum likelihood; COV: propensity covariate adjusted; IPW: inverse

propensity weighted; STAB: stabilized weighting; DR: doubly robust.

10 Statistical Methods in Medical Research 0(0)

 by guest on July 19, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [4.7.2014–12:33pm] [1–21]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140080/APPFile/SG-SMMJ140080.3d (SMM) [PREPRINTER stage]

Biases were relatively consistent across estimators, with a slight increase in bias for the IPW
estimator with strict truncation. Coverage of all confidence intervals was very low, usually between
35% and 45%. The IPW and STAB estimators had larger standard errors than the DR estimators,
but that translated into increased confidence interval coverage.

4.4 Quadratic misspecification, low exposure rate

To simulate low exposure, the same models were used as in 4.3, though an intercept term of –3.3 was
included in the exposure model. Again, the quadratic term was not included in the data analysis.
Results are given in Table 5.

The biases are substantially larger here than in the previous simulation. Also, truncation of
the IPW estimators leads to very poor confidence interval coverage, much like in Section 4.2.
Under this misspecification, though, STAB seems to perform better than DR. In fact, DR
without truncated weights resulted in a highly variable estimate. Even mild truncation
brought the DR estimate in line with the others, but did little to improve confidence interval
coverage.

4.5 Categorical misspecification, moderate exposure rate

Here we use the same data generating model as in Section 4.1; however, we categorize X3 into tertiles
before running any analyses. The results are shown in Table 6.

Table 4. Results for Simulation 4.3.  marg ¼ 1:794.

Method Bias % Bias Emp SE Boot SE SE ratio rMSE Coverage Avg. trunc

MH (5) 0.781 43.51 0.245 0.243 1.009 0.818 0.031

SP (5) 0.515 28.68 0.200 0.202 0.993 0.552 0.157

MH (10) 0.694 38.65 0.236 0.235 1.005 0.733 0.067

SP (10) 0.423 23.60 0.194 0.196 0.991 0.466 0.297

ML 0.367 20.43 0.177 0.174 1.013 0.407 0.356

COV 0.362 20.16 0.179 0.177 1.007 0.403 0.386

IPW 0.369 20.54 0.200 0.196 1.020 0.419 0.447

STAB 0.369 20.54 0.200 0.196 1.020 0.419 0.447

IPW (100) 0.369 20.55 0.200 0.196 1.020 0.419 0.447 0.004

STAB (100) 0.369 20.54 0.200 0.196 1.020 0.419 0.447 0.000

IPW (50) 0.370 20.60 0.199 0.196 1.018 0.420 0.446 0.017

STAB (50) 0.369 20.55 0.200 0.196 1.019 0.419 0.447 0.004

IPW (20) 0.378 21.06 0.197 0.194 1.013 0.426 0.412 0.571

STAB (20) 0.370 20.63 0.199 0.196 1.018 0.420 0.445 0.039

IPW (10) 0.420 23.41 0.193 0.193 0.999 0.462 0.299 6.383

STAB (10) 0.378 21.05 0.197 0.194 1.013 0.426 0.416 0.571

DR 0.398 22.16 0.188 0.188 1.001 0.440 0.334

DR (100) 0.398 22.16 0.188 0.188 1.001 0.440 0.334 0.004

DR (50) 0.398 22.16 0.188 0.188 1.001 0.440 0.334 0.017

DR (20) 0.397 22.14 0.187 0.187 1.001 0.439 0.332 0.571

DR (10) 0.393 21.88 0.184 0.184 1.001 0.433 0.325 6.383

MH: Mantel–Haenszel; SP: stratified probability; ML: maximum likelihood; COV: propensity covariate adjusted; IPW: inverse

propensity weighted; STAB: stabilized weighting; DR: doubly robust.
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For the non-stratified estimators, the bias incurred due to categorizing a continuous covariate is
on the order of excluding a quadratic covariate. The bias of the SP estimators is reduced to the level
of the others. Bootstrap standard errors accurately reflect the empirical standard errors, but the
noticeable bias leads to poor confidence interval coverage for all estimators. No estimator sticks out
as clearly better or worse than the others.

4.6 Categorical misspecification, low exposure rate

Here we use the same data generating model as in Section 4.2, categorizing X3 into tertiles before
running any analyses. Table 7 gives the results of the simulations.

Again, bias is noticeable for all estimators. The reduction in SE obtained by truncating the IPW
weights does not outweigh the increase in bias as coverage levels drop dramatically for truncation
cutoffs more strict than 50. The STAB and DR estimates are less affected by truncation, with the
STAB having a slightly larger standard error and coverage level than DR.

4.7 Summary

Both forms of misclassification introduced substantial relative bias into the estimates. Even a bias of
0.35, roughly the bias seen in Sections 4.3, 4.5, and 4.6, denotes a relative bias in effect estimate of
nearly 20% for an odds ratio of 1.8 (0:35=1:8 � 0:194). In both misspecification cases, severe
truncation (truncation at 20 or 10) increases the bias of the IPW estimators without reciprocal

Table 5. Results for Simulation 4.4.  marg ¼ 1:797.

Method Bias % Bias Emp SE Boot SE SE ratio rMSE Coverage Avg. trunc

MH (5) 1.362 75.79 0.617 0.681 0.906 1.495 0.124

SP (5) 0.936 52.06 0.649 0.738 0.878 1.138 0.594

MH (10) 1.168 64.97 0.580 0.641 0.906 1.304 0.224

SP (10) 0.860 47.88 0.661 0.733 0.903 1.085 0.665

ML 0.660 36.74 0.384 0.409 0.938 0.764 0.458

COV 0.698 38.85 0.432 0.472 0.915 0.821 0.524

IPW 0.552 30.74 0.793 0.844 0.939 0.966 0.841

STAB 0.552 30.74 0.793 0.844 0.939 0.966 0.841

IPW (100) 0.596 33.16 0.657 0.726 0.905 0.887 0.823 1.514

STAB (100) 0.551 30.68 0.788 0.834 0.945 0.962 0.841 0.006

IPW (50) 0.743 41.37 0.614 0.682 0.900 0.964 0.683 5.487

STAB (50) 0.546 30.38 0.769 0.819 0.939 0.943 0.843 0.047

IPW (20) 1.221 67.93 0.620 0.685 0.905 1.369 0.228 23.906

STAB (20) 0.551 30.66 0.715 0.776 0.922 0.903 0.843 0.360

IPW (10) 1.865 103.79 0.696 0.767 0.907 1.990 0.017 59.164

STAB (10) 0.599 33.32 0.655 0.725 0.903 0.887 0.820 1.612

DR 1.849 102.89 20.404 45.188 0.452 20.478 0.586

DR (100) 1.139 63.36 0.795 0.959 0.829 1.389 0.466 1.514

DR (50) 0.968 53.85 0.626 0.664 0.943 1.152 0.470 5.487

DR (20) 0.835 46.45 0.548 0.582 0.941 0.998 0.519 23.906

DR (10) 0.815 45.37 0.540 0.572 0.943 0.977 0.534 59.164

MH: Mantel–Haenszel; SP: stratified probability; ML: maximum likelihood; COV: propensity covariate adjusted; IPW: inverse

propensity weighted; STAB: stabilized weighting; DR: doubly robust.
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gain in efficiency. Exposure prevalence also influenced the results, with estimates becoming much
more volatile and sensitive to misspecification when exposure rates were low. In most cases the ML,
STAB, and DR (appropriately truncated) estimators tended to out perform the COV and IPW
estimators, though recommendations for making decisions between ML, STAB, and DR
are difficult to make, as it is unclear whether one is consistently better than the others. Even
though poor model specification may lead to biased estimators of the coefficients �j used in the
ML estimator (which relies on a correct specification of the outcome model), Monte
Carlo integration seems to ‘‘average away’’ these potentially substantial biases in �̂jxij into a
reasonably reliable estimate of the marginal odds ratio. Similarly, any gains from using DR over
STAB seem to be relatively minor and may not necessitate a recommendation for the more
complicated estimator.

We also found the bootstrap standard errors to accurately estimate the empirical standard errors
throughout and so second the suggestion of Funk et al.30 in applying bootstrapping for standard
error and confidence interval estimation.

4.8 The relationship between exposure and outcome models

In this subsection, we return our focus to the MH estimator, demonstrating that when using data
matched on the propensity score the MH estimate converges to a value between  cond and  marg. If
we assume that logit eðxÞ ¼ �Tx and logit PðY ¼ 1jX ¼ x,Z ¼ zÞ ¼ �Txþ �z are the correct models,
then the bias of  ̂MH in estimating  marg is strongly related to the correlation between �TX and �TX.

Table 6. Results for Simulation 4.5.  marg ¼ 1:8.

Method Bias % Bias Emp SE Boot SE SE ratio rMSE Coverage Avg. trunc

MH (5) 0.583 32.41 0.224 0.225 0.995 0.625 0.137

SP (5) 0.350 19.47 0.186 0.189 0.981 0.397 0.465

MH (10) 0.544 30.25 0.220 0.222 0.994 0.587 0.195

SP (10) 0.320 17.76 0.186 0.190 0.979 0.370 0.539

ML 0.304 16.87 0.173 0.175 0.990 0.349 0.533

COV 0.270 15.02 0.170 0.171 0.994 0.319 0.598

IPW 0.315 17.50 0.188 0.189 0.994 0.367 0.554

STAB 0.315 17.50 0.188 0.189 0.994 0.367 0.554

IPW (100) 0.315 17.50 0.188 0.189 0.994 0.367 0.554 0.000

STAB (100) 0.315 17.50 0.188 0.189 0.994 0.367 0.554 0.000

IPW (50) 0.315 17.50 0.188 0.189 0.994 0.367 0.554 0.000

STAB (50) 0.315 17.50 0.188 0.189 0.994 0.367 0.554 0.000

IPW (20) 0.315 17.51 0.188 0.189 0.994 0.367 0.554 0.052

STAB (20) 0.315 17.50 0.188 0.189 0.994 0.367 0.554 0.000

IPW (10) 0.320 17.79 0.186 0.188 0.992 0.370 0.539 2.872

STAB (10) 0.315 17.51 0.188 0.189 0.994 0.367 0.554 0.047

DR 0.316 17.56 0.182 0.183 0.990 0.364 0.529

DR (100) 0.316 17.56 0.182 0.183 0.990 0.364 0.529 0.000

DR (50) 0.316 17.56 0.182 0.183 0.990 0.364 0.529 0.000

DR (20) 0.316 17.56 0.182 0.183 0.990 0.364 0.529 0.052

DR (10) 0.317 17.60 0.181 0.183 0.990 0.365 0.526 2.872

MH: Mantel–Haenszel; SP: stratified probability; ML: maximum likelihood; COV: propensity covariate adjusted; IPW: inverse

propensity weighted; STAB: stabilized weighting; DR: doubly robust.
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As discussed in Section 2.2 and Appendix 1, if cor �TX,�TX
� �

¼ 0, then  ̂MH is consistent for the
marginal odds ratio; however, if cor �TX,�TX

� �
¼ 1,  ̂MH is consistent for the conditional odds ratio.

To detail the relationship between cor �TX,�TX
� �

and E  ̂MH

� �
, we ran simulations using 13

distinct � � � combinations with  cond ¼ 4. After generating two million units, we computed the
conditional and marginal odds ratios for the population. We then took 10,000 samples of size 2000
and computed the MH estimator matched on the propensity score. Figure 1 gives the bias for the
empirical mean of  ̂MH for various correlations between �TX and �TX. Simulations using the same
� � � combinations with  cond ¼ 2 yielded similar results (not shown). From these simulations, it is
clear that the stronger the correlation between �TX and �TX, the closer  ̂MH converges to the
conditional odds ratio.

5 Comparing breast cancer quality of care

The data used in this section come from the linked Surveillance, Epidemiology and End Results
Medicare database. Here, interest is in comparing the quality of breast cancer care for African-
American patients in MMCO insurance plans against those in MFFS plans. For our purposes,
adequate quality of care is defined as having received radiation therapy after breast-conserving
surgery31 (1 for adequate, 0 for inadequate).

We began with 2856 (30.5% MMCO) African-American women diagnosed with breast cancer
between 1992 and 2004 prior to receiving breast-conserving surgery. After a variable selection
procedure which excluded those variables which may have been affected by exposure (Medicare

Table 7. Results for Simulation 4.6.  marg ¼ 1:799.

Method Bias % Bias Emp SE Boot SE SE ratio rMSE Coverage Avg. trunc

MH (5) 0.823 45.76 0.520 0.529 0.982 0.973 0.455

SP (5) 0.427 23.76 0.598 0.641 0.932 0.735 0.914

MH (10) 0.784 43.57 0.515 0.523 0.986 0.938 0.492

SP (10) 0.394 21.93 0.608 0.603 1.007 0.724 0.904

ML 0.394 21.88 0.335 0.339 0.989 0.517 0.723

COV 0.540 30.02 0.403 0.412 0.979 0.674 0.638

IPW 0.370 20.56 0.572 0.599 0.956 0.681 0.886

STAB 0.370 20.56 0.572 0.599 0.956 0.681 0.886

IPW (100) 0.378 21.00 0.560 0.586 0.955 0.675 0.885 0.420

STAB (100) 0.370 20.56 0.572 0.599 0.956 0.681 0.886 0.000

IPW (50) 0.458 25.47 0.533 0.565 0.944 0.703 0.828 3.907

STAB (50) 0.370 20.56 0.572 0.599 0.956 0.681 0.886 0.000

IPW (20) 0.919 51.10 0.565 0.588 0.960 1.079 0.397 21.667

STAB (20) 0.370 20.55 0.571 0.597 0.956 0.680 0.886 0.010

IPW (10) 1.571 87.32 0.657 0.675 0.973 1.702 0.038 54.463

STAB (10) 0.377 20.97 0.560 0.587 0.955 0.675 0.886 0.393

DR 0.388 21.55 0.498 0.533 0.934 0.631 0.868

DR (100) 0.388 21.59 0.493 0.502 0.981 0.627 0.867 0.420

DR (50) 0.382 21.21 0.474 0.479 0.991 0.609 0.867 3.907

DR (20) 0.360 20.03 0.454 0.457 0.995 0.580 0.861 21.667

DR (10) 0.353 19.64 0.451 0.453 0.995 0.573 0.857 54.463

MH: Mantel–Haenszel; SP: stratified probability; ML: maximum likelihood; COV: propensity covariate adjusted; IPW: inverse

propensity weighted; STAB: stabilized weighting; DR: doubly robust.
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service) and those with no significant association to either exposure or quality of care, the relevant
covariates included indicators for urban v. non-urban residence and marriage status, age at
diagnosis, year of diagnosis (three categories: 1992–1996, 1997–2000, 2001–2004), and indicators
for state and health service area (HSA). For simplicity, subjects with missing values, mostly with
respect to radiation therapy, were dropped from the analysis. This left a total of 2720 (30.3%
MMCO) women in the sample.

Table 8 gives the distribution of the discrete covariates and outcome in the remaining sample. The
average ages at diagnosis were 72.8 years for the MMCO group (SD¼ 5.82) and 75.2 years for the
MFFS group (SD¼ 7.17). From the last row of Table 8, the crude (unadjusted) odds ratio is
estimated as 1.74.

Propensity scores were estimated via logistic regression on the covariates mentioned above, using
state and HSA as random effects.12 A review of the fitted propensity scores showed encouraging
signs of comparability among the MMCO and MFFS groups – the propensity scores in the MMCO
and MFFS groups had the same support (see Figure 2(a)) and there were very few extreme weights.
The propensity scores ranged from 0.02 to 0.65 with median 0.26. The weights in the MMCO group
(Zi=êi) ranged from 1.55 to 22.13 with median 2.39, while the weights in the MFFS group
(ð1� ZiÞ=ð1� êi)) ranged from 1.021 to 2.818 with median 1.268. The total of the MMCO
weights was 2682 while the total of the MFFS weights was 2715, both very close to the total
sample size of 2720. Figure 2(a) shows the smoothed densities of the propensity scores – though
both groups have support over the same range, the distributions are markedly different. The
weighted densities given in Figure 2(b) are much more similar, and also very similar to the
distribution of the propensity scores in the combined group of all patients. Table 9 gives
the distributions of the discrete covariates weighted by the (unstabilized) propensity scores. For
all covariates, the propensity-weighted proportions brings the distributions in the MMCO and
MFFS groups closer together – in many cases the difference is almost indistinguishable.

Figure 1. Relationship between E  ̂MH

� �
and cor �TX; �TX

� �
.

Note: x-axis is not linear.
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The weighted average of the ages in the MMCO group was 74.1 (weighted SD¼ 6.20), compared to
the MFFS group weighted average age of 74.5 (weighted SD¼ 6.97). Again, both the weighted
means and standard deviations are closer than the unadjusted values. These results suggest
weighting can effectively remove the bias introduced by the recorded variables, lending credibility
to the IPW, STAB, and DR approaches of estimating the marginal odds ratio.

Using the marginal odds ratio estimators discussed in Section 3, estimates of  marg are shown in
Table 10. The standard errors come from the standard deviation of 1000 bootstrap replications of
the data; similarly, the 95% confidence intervals come from the 2.5th and 97.5 percentiles of the
bootstrap distributions. For the IPW, STAB, and DR estimates, the final column gives the number
of weights which were truncated at the values in the parentheses. The estimates are all fairly
consistent, showing the MMCO patients are more likely to receive radiation therapy after breast-
conserving surgery, with odds ratios ranging from about 1.39 to 1.57 compared to MFFS patients.
Similarly, the confidence intervals all span roughly 1.2 to 1.8. As mentioned previously, the weights
are reasonably well-behaved. With the most restrictive weight of 7.5, only 47 (about 1.7%) of the

(a) (b)

Figure 2. Density plots of fitted propensity scores.

Table 8. Proportions for discrete variables.

MMCO MFFS

Urban 0.925 0.830

Married 0.383 0.310

Year 1992–1996 0.306 0.293

Year 1997–2000 0.432 0.417

Year 2001–2004 0.262 0.290

Adequate care 0.708 0.581

MMCO: Medicare Managed Care Organization; MFFS: Medicare Fee-For-

Service.
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weights were truncated. In this application, weight truncation yielded little change in the estimate or
standard error.

6 Discussion

We have refined the results of Austin,17 showing that stratifying on the propensity score leads to the
MH estimator converging to a value between  marg and  cond, with its location relative to each
dependent upon the relationship between the prognostic function of the covariates in the outcome
model and the linear function of the covariates in the propensity model. If the prognostic function in

Table 10. Estimates of  marg.

Estimator  ̂ St. err. 95% CI Truncated

SP (5) 1.57 0.174 (1.369, 1.786)

SP (10) 1.51 0.231 (1.200, 1.768)

ML 1.39 0.140 (1.270, 1.588)

COV 1.39 0.154 (1.264, 1.601)

IPW 1.53 0.191 (1.361, 1.796)

STAB 1.53 0.191 (1.361, 1.796)

IPW (20) 1.52 0.191 (1.361, 1.796) 1

STAB (20) 1.53 0.191 (1.361, 1.796) 0

IPW (15) 1.52 0.189 (1.376, 1.803) 2

STAB (15) 1.53 0.191 (1.361, 1.796) 0

IPW (10) 1.52 0.192 (1.397, 1.823) 10

STAB (10) 1.53 0.191 (1.361, 1.796) 0

IPW (7.5) 1.53 0.198 (1.397, 1.831) 47

STAB (7.5) 1.53 0.191 (1.361, 1.796) 0

DR 1.47 0.169 (1.284, 1.685)

DR (20) 1.47 0.169 (1.284, 1.685) 1

DR (15) 1.47 0.168 (1.290, 1.689) 2

DR (10) 1.46 0.171 (1.294, 1.697) 10

DR (7.5) 1.45 0.178 (1.283, 1.695) 47

SP: stratified probability; DR: doubly robust; IPW: inverse propensity weighted.

Table 9. Weighted proportions for discrete variables.

MMCO MFFS

Urban 0.852 0.858

Married 0.340 0.329

Year 1992–1996 0.301 0.296

Year 1997–2000 0.423 0.421

Year 2001–2004 0.276 0.283

Adequate care 0.696 0.600

MMCO: Medicare Managed Care Organization; MFFS: Medicare Fee-For-Service.
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the response model is independent of the propensity score, then the estimator converges to  marg, but
if the prognostic function and propensity score are highly correlated, convergence is towards  cond.

In Section 4.1, which could be considered an ideal situation for causal inference, all of the
estimators were relatively similar. When all models were correctly specified, ML was the most
efficient, though the efficiency trade-off for guarding against misspecification by using DR is
minimal. When exposure was rare in the population (Section 4.2), there was little change in the
relative efficiency of the estimators, and the double robustness property of DR was displayed in the
ability to remain unbiased for the marginal estimate while truncating extreme weights, essentially
purposely misspecifying the true propensity score model. When compared to DR, the simpler IPW
estimator performed nearly as well in cases where neither exposure group was small, but was affected
more by the extreme weights found in Section 4.2 when exposure had low probability across the
population. The stabilization of STAB mitigates the effect of the truncation, yielding less biased
estimates with better confidence interval coverage rates.

The model misspecifications in this analysis were chosen to represent near correct models, under
the assumption that in practice researchers will have some notion of how covariates relate to
exposure and outcome without necessarily perfect knowledge. In these cases, the ML, STAB, and
DR estimators outperformed the COV and IPW estimators, though there is little evidence to suggest
the use of one over the others. Previous work32 has shown that misspecifications in the propensity
score lead to smaller biases than misspecifications in outcome model. With this in mind, we may
prefer STAB and DR over ML to mitigate particular misspecifications not investigated here.

The data analysis of Section 5 was qualitatively similar to the simulation in Section 4.1 in that
neither exposure group was particularly small, there was good overlap in the support of the
propensity scores, and the weights were reasonably well-behaved. Here again, the estimation
methods yielded similar point and interval estimates for the effect of insurance model on rate of
radiation therapy after breast-conserving surgery.

Odds ratios can be delicate parameters to estimate due to their non-linear interpretation as well as
their non-collapsibility. All of the methods in Section 3 proved adequate at estimating the marginal
odds ratio and yielded similar results under ideal circumstances. In less than ideal circumstances,
some clear distinctions arise, though it is still difficult to make a general statement about the best
estimator in terms of both bias and efficiency, regardless of what theory dictates. As a general rule,
the results of these simulations agree with advice that often the design of an observational study is
more influential to the results than the details of the analysis (e.g., Rubin33).
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Appendix 1. Matching on the propensity score leads to an inconsistent

estimate of wcond and wmarg

Following Breslow and Day,34 let

p1ðxÞ ¼ PðY ¼ 1jZ ¼ 1,X ¼ xÞ

¼ PðY1 ¼ 1jX ¼ xÞ

p0ðxÞ ¼ PðY ¼ 1jZ ¼ 0,X ¼ xÞ

¼ PðY0 ¼ 1jX ¼ xÞ
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with qj ðxÞ ¼ 1� pj ðxÞ for j ¼ 0, 1. Assuming the conditional odds ratio is constant for simplicity, we
can write  cond ¼

p1ðxÞq0ðxÞ
q1ðxÞ p0ðxÞ

and  marg ¼
E p1ðXÞð ÞE q0ðXÞð Þ

E q1ðXÞð ÞE p0ðXÞð Þ
. Assume units are matched on the propensity

score, e(X), allowing the covariates to vary within strata defined by the propensity score. Define X1k

and X0k as the covariates for the exposed and unexposed units in the kth discordant pair,
respectively, k ¼ 1, . . . , n, and similarly for the outcomes Y1k and Y0k. Let Rk ¼ Y1kð1� Y0kÞ and
Sk ¼ ð1� Y1kÞY0k.

Case 1:
p0ðxÞ ¼ f ðeðxÞÞ:

To show  ̂MH is unbiased for  cond, it is enough to show that
E½
P
k

ðRk �  condSkÞjfeðX1kÞ ¼ eðX0kÞg
n
k¼1� ¼ 0 (per Robins et al.35)

E
X
k

ðRk �  condSkÞjfeðX1kÞ ¼ eðX0kÞg
n
k¼1

" #

¼
X
k

E RkjeðX1kÞ ¼ eðX0kÞ½ � �  condE SkjeðX1kÞ ¼ eðX0kÞ½ �

¼
X
k

p1ðX1kÞq0ðX0kÞ �  condq1ðX1kÞ p0ðX0kÞ

¼
X
k

p1ðX1kÞq0ðX1kÞ �  condq1ðX1kÞ p0ðX1kÞ

¼ 0

Thus, when p0ðxÞ ¼ f ðeðxÞÞ,  ̂MH is consistent for the conditional odds ratio.

Remark:

When  cond is constant, p1ðxÞ ¼
p0ðxÞ cond

1�p0ðxÞþp0ðxÞ cond
, so p1ðxÞ is also a function of e(x).

Case 2:
p1ðX1kÞkp0ðX0kÞjeðX1kÞ ¼ eðX0kÞ:

Similar to above, we need to show E E
P
k

ðRk �  margSkÞjfeðX1kÞ ¼ eðX0kÞg
n
k¼1

	 
	 

¼ 0

E E
X
k

ðRk �  margSkÞjfeðX1kÞ ¼ eðX0kÞg
n
k¼1

" #" #

¼
X
k

E E RkjeðX1kÞ ¼ eðX0kÞ½ �½ � �  margE E SkjeðX1kÞ ¼ eðX0kÞ½ �½ �

¼
X
k

E p1ðX1kÞq0ðX0kÞ½ � �  margE q1ðX1kÞ p0ðX0kÞ½ �

¼
X
k

E p1ðX1kÞ½ �E q0ðX0kÞ½ � �  margE q1ðX1kÞ½ �E p0ðX0kÞ½ �

¼ 0

So,  ̂MH is consistent for the marginal odds ratio.
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Remark:

Since p1ðXÞ is a function of p0ðXÞ for a constant conditional odds ratio (see above), this case
occurs when ð p1ðXÞ, p0ðXÞÞkeðXÞ

Since the convergence of  ̂MH depends on the relationship between the propensity score and
outcome models, in general  ̂MH is consistent for neither the conditional nor marginal odds ratio.

As the marginal odds ratio is closer to unity than the conditional odds ratio (Armitage36),
matching on the propensity score will tend to underestimate the conditional effect and
overestimate the marginal effect.

Appendix 2. SP estimator using matched data

In Section 3.1, the SP estimator for PðY1 ¼ 1Þ is written as

p̂1,SP ¼
XK
k¼1

nk
n

ak
n1k

notice we can write ak ¼
P

i2Ik
ZiYi, where Ik indexes the observations in strata k. Thus, p̂1,SP

becomes

p̂1,SP ¼
XK
k¼1

X
i2Ik

nk
n

ZiYi

n1k

¼ n�1
XK
k¼1

X
i2Ik

ZiYi

n1k=nk

Compare this to

n�1
Xn
i¼1

ZiYi

êi

which is known to be unbiased for PðY1 ¼ 1Þ. If observations are stratified based solely on êðxÞ, then
n1k=nk gives an estimate of PðZ ¼ 1Þ within the stratum of êðxÞ. In the matching case, however,
n1k=nk is artificially fixed (and often constant) in all strata. For example, in 1 : 1 matching
n1k=nk ¼ 1=2 for all k as we get

Eðp̂1,SPÞ ¼ 2n�1
XK
k¼1

X
i2Ik

EðZiYiÞ

where EðZ1YiÞ ¼ E½EðZiYijY1i, xiÞ� ¼ êiEðY1Þ ¼ êiPðY1 ¼ 1Þ, so

Eðp̂1,SPÞ ¼ PðY1 ¼ 1Þ � 2n�1
XK
k¼1

X
i2Ik

êi

Thus, in this case n1k=nk does not give an appropriate propensity score-based weight, leading to a
biased estimate of PðY1 ¼ 1Þ. A similar argument shows p̂0,SP is biased for PðY0 ¼ 1Þ.
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