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ABSTRACT OF THE DISSERTATION

Novel Efficient Implicit Methods

for Elastic Solids And Cloth

by

Yizhou Chen

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Joseph Michael Teran, Co-Chair

Professor Chenfanfu Jiang, Co-Chair

Physics-based simulation, coupled with the Finite Element Method (FEM), has emerged as

a powerful tool in understanding and analyzing the complex behavior of elastic materials.

Implicit Discretization is essential for efficiently and accurately simulating elastic solids and

cloth.

In this thesis, we first explore ways of creating volumetric mesh for embedding surface

mesh. The embedded surface mesh has many small self intersections. We devise an efficient

and robust way of generating a hexahedron mesh to embed the triangle mesh, so that the

self-intersecting regions are correctly duplicated. We then simulate the hexahedron mesh

using Finite Element Method and interpolate to the embedded triangle mesh.

The second part explores different ways of improving the core simulation solver of Finite

Element Method. We improve on the Position Based Dynamics (PBD)/Extended Position

Based Dynamics (XPBD) framework. PBD/XPBD are known for their robustness under

a very small computational budget. However, they have several limitations. PBD/XPBD
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does not converge when the computational budget is sufficient. PBD/XPBD also supports

limited hyperelastic constitutive models. We devise PXPBD (Primary Extended Position

Based Dynamics) to address these issues. The PXPBD methods improves convergence rate

of PBD/XPBD and support arbitrary hyperelastic models.

PBD/XPBD framework does not support quasistatic simulation either. We note qua-

sistatic simulation is important for generating training data for machine learning based

simulation approaches such as QNN (Quasistatic Neural Network). We also notice that the

constraint-based Gauss-Seidel approach in PBD/XPBD causes loss of information on the

node solve. So we design Position-Based Nonlinear Gauss Seidel (PBNG), where the hyper-

elastic energy from FEM is optimized per node, instead of per constraint. Doing so not only

boosts convergence rate, but also enables high quality quasistatic simulation, which runs

much faster than the existing methods such as Newton’s method.

The last part of my thesis uses a machine learning-based approach to simulate human

musculature effectively. We use a neural network to model the deformation of human soft

tissues such as muscle, tendon, fat and skin with high fidelity. By deploying a biomechanics-

based approach, we estimate the activation of single muscle during deformation. The acti-

vation parameters are then incorporated into an active neural network (ANN). which adds

per-vertex deformation on top of Linear Blend Skinning (LBS). Our neural network achieves

more than 1000X speed up as compared to traditional FEM approaches, but it has the same

level of visual fidelity.
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3.4 Algorithm overview. Given an initial input surface mesh S, there are three

major steps in the computation of the final volumetric extension mesh V : Vol-

umetric Extension, Interior Extension Region Creation, and Interior Extension
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we first partition the nodes of the background grid using the edges cut by S.

We decide which regions are interior and count the copies of each region using

the vertices of VS which have negative sign. For each interior region jI with at

least one copy, we then create a hexahedron mesh VjI ,c for each copy c. (Interior
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meshes VjI ,c by first determining where different meshes overlap, and then using

these hexahedra overlap lists to perform the final merge. . . . . . . . . . . . . . 15

3.5 Mesh conventions. (Left) A sample triangle mesh is shown, along with the

vector mS. The incident elements IS6 for vertex 6 are also shown. The first 10

faces, visible from the front, have been labeled on the mesh. (Right) The left pair

of triangles are consistently oriented; the orientations of the edge induced by the

normals point in opposite directions. For the right pair, the orientations on the

common edge point in the same direction; this is not consistent. . . . . . . . . 16
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3.6 Mesh merge. An example of two meshes merging together. Vertices 2, 3, 4 and

5 merge with vertices 9, 10, 12 and 13, respectively. A new vector m2 is created

to hold all of the hexahedron vertices post-merge, and the extra hexahedron (in

red) is then removed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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3.8 A face surface with self-intersecting lips is successfully meshed. The right-hand
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each left-hand side shows the corresponding surface mesh. The wireframe boxes

represent Dirichlet boundary condition regions. In the bottom four subfigures,

lip intersection is visualized in the input surface and subsequent hexahedron mesh. 21

3.9 Precursor merge. The 12 vertices bordering the cell marked in yellow are

merged into 8 resulting vertices. Blue vertices 0, 1, 4, 5 and green vertices 12,
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not merge with the blue or green vertices since their associated surface element

is topologically distant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.10 Closest facet. (Left) The four vertices in yellow all have ambiguous signs.

(Middle) To sign vertex 5, we generate the local patch S5V , which are the segments

shown in yellow. The closest facet (indicated in cyan) lies on a face. (Right) A

similar process is illustrated for vertex 8, but here the closest facet is a vertex. 39
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3.11 Patch expansion. The local patch SiV corresponding to the yellow vertex is

shown. The initial patch is indicated in red, and the closest facet is a vertex of

the red patch. We add the missing incident triangles (turquoise) and recompute

the closest facet. This is again a vertex with incident triangles not in the patch,

so we repeat the process (with new triangles in dark yellow). The closest feature

is now on an edge, and we proceed to the edge criteria for signing. . . . . . . . 40

3.12 Region over-count. As the process of partitioning the grid only uses connec-

tivity based on grid edges, it is possible for a contiguous region to be split into
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3.15 Edge cut criterion. Grid nodes xi of a region are shown, along with two
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i to avoid

unwanted sewing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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interior, as in the left-most image. . . . . . . . . . . . . . . . . . . . . . . . . . 46
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CHAPTER 1

Introduction

Physics-based simulation is a crucial aspect of computer graphics. Finite Element Method

is a fundamental framework for simulating object deformations efficiently. In this thesis,

we explore various aspects of Finite Element Methods including mesh generation, numerical

method for accelerating convergence rate and machine learning-based approach to model

musculature deformation.

1.1 Grid-Meshing Algorithm for Embedding Self-Intersecting Sur-

faces

The creation of a volumetric mesh representing the interior of an input polygonal mesh is

a common requirement in graphics and computational mechanics applications. Most mesh

creation techniques assume that the input surface is not self-intersecting. However, due to

numerical and/or user error, input surfaces are commonly self-intersecting to some degree.

The removal of self-intersection is a burdensome task that complicates workflow and generally

slows down the process of creating simulation-ready digital assets.

We present a method for the creation of a volumetric embedding hexahedron mesh from a

self-intersecting input triangle mesh. Our method is designed for efficiency by minimizing use

of computationally expensive exact/adaptive precision arithmetic. Although our approach

allows for nearly no limit on the degree of self-intersection in the input surface, our focus

is on efficiency in the most common case: many minimal self-intersections. The embedding
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hexahedron mesh is created from a uniform background grid and consists of hexahedron

elements that are geometrical copies of grid cells. Multiple copies of a single grid cell are

used to resolve regions of self-intersection/overlap. Lastly, we develop a novel topology-aware

embedding mesh coarsening technique to allow for user-specified mesh resolution as well as

a topology-aware tetrahedralization of the hexahedron mesh.

The highlights of our method are the following:

• An efficient technique with reduced use of exact/adaptive precision arithmetic for build-

ing an embedding hexahedron mesh for an input self-intersecting triangle mesh from a

uniform grid that is equivalent to pushing forward one unambiguously defined from a

self-intersection-free state.

• A topology aware embedding mesh coarsening strategy to provide for flexible resolu-

tion/element count.

• A topology aware BCC approach for converting the embedding hexahedron mesh into

an embedding tetrahedron mesh.

1.2 Toward More Accurate and Efficient Simulations of Elastic

Solid and Cloth

Various methods have been proposed for solving the FEM-discretized equations of mo-

tions for large strain hyperelastic solids and cloth [LGL19, NOB16, BML14, TSI05, GSS15,

MMC16, KYT06, ZBK18, ZLB16]. Thorough summaries of the state of the art are given by

Zhu et al. [ZBK18] and Li et al. [LGL19]. The preferred approach in a given application gen-

erally depends on the relative importance of constitutive accuracy, robustness/stability and

computational efficiency. There is no one method that is optimal in all computer graphics

as different applications place different relative importance on these considerations. These

equations are nonlinear, and an iterative solver must be used to improve the accuracy of
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an initial guess by reducing the magnitude of the system residual. While Newton’s method

[NW06] generally requires the fewest iterations to reach a desired tolerance (often achieving

quadratic convergence), each iteration can be costly and a line search is typically required

for stability [GSS15]. However, it is not always necessary to reduce the residual beyond a few

orders of magnitude for satisfactory visual accuracy (see discussion in Liu et al. [LBO13],

Bouaziz et al. [BML14], Zhu et al. [ZBK18]). In these cases, Newton’s method is often

outperformed by alternative techniques. Methods like the Alternating Direction Method

of Multipliers (ADMM) [BPC11, NOB16], the limited-memory Broyden-Fletcher-Goldfarb-

Shanno algorithm (L-BFGS) [Ber97, ZBK18, LBK17, WWD21] and Sobolev preconditioned

gradient descent (SGD) [Neu85, BML14, LBO13, SA07] do not require computation of the

exact energy Hessian and many of these simplifications leverage direct solvers based on pre-

computed matrix factorizations of simplified discrete elliptic operators to allow for reduced

per-iteration cost compared to Newton’s method.

1.2.1 Primary Extended Position Based Dynamics

The Position Based Dynamics (PBD) approach of Müller et al. [MHH07] is remarkably

powerful due to its robust and stable behavior in applications with minimal computational

budgets. PBD has gained wide adoption since there are often no other methods that can

provide comparably reliable behavior under extreme computation constraints. For elastic

materials, PBD uses a constraint view of the material resistance to deformation and is sim-

ilar to strain limiting [Pro95] and shape matching [MHT05] techniques. In the context of

elasticity, this has been shown to be equivalent to a Gauss-Seidel minimization of an elastic

potential that is quadratic in the constraints [LBO13, BML14, MMC16]. However, constitu-

tive control over PBD behavior is challenging as effective material stiffnesses etc. vary with

iteration count and time step size. The Extended Position Based Dynamics (XPBD) ap-

proach of Macklin et al. [MMC16] addresses these issues by reformulating the original PBD

approach in terms of a Gauss-Seidel technique for discretizing a total Lagrange multiplier
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formulation of the backward Euler system for implicit time stepping. This formulation has

similarities to PBD, but with the elastic terms handled properly where PBD can be seen

as the extreme case of infinite elastic modulus (or hard strain constraints). In this case,

the Lagrange multiplier terms can be interpreted as stress-like and associated with enforcing

the constraints (e.g. pressure in an incompressible fluid [BBB07]). With this view, XPBD

handles these terms correctly as weak constraints (e.g. as in weakly compressible materials

[SSJ14, KSG09]) where PBD can be interpreted as a splitting scheme where non-stress based

forces are first integrated, followed by a projection step.

Despite its many strengths, XPBD can only discretize hyperelastic models that are

quadratic in some notion of strain constraint [MMC16, MM21]. This prevents the adoption

of many models from the computational mechanics literature, e.g., for many biomechanical

soft tissues. Furthermore, while XPBD is based on a Gauss-Seidel procedure for the La-

grange multiplier formulation of the backward Euler equations, it simplifies the system by

omitting the Hessian of the constraints and the residual of the primary (position) equations.

The omission of the primary equations is perfectly accurate in the first iteration, but as

Macklin et al. [MMC16] point out, less so in latter iterations when constraint gradients vary

significantly. We observe that this rapid variation occurs for many hyperelastic formula-

tions and that its omission degrades residual reduction. However, the inclusion of this term

introduces instabilities into XPBD.

We provide a modification to the XPBD position update that more accurately guarantees

that the primary residual is zero and may be omitted. We call our approach Primal Extended

Position Based Dynamics (PXPBD). It can be done in two ways. The first (B-PXPBD)

uses fixed-point iteration to zero the primary residual after the Gauss-Seidel update of the

Lagrange multiplier. The second (FP-PXPBD) is a reformulation of XPBD that allows for

arbitrary hyperelastic models. We observe that the constraint Hessians and primary residual

terms are exactly zero and can be omitted with no error if the first Piola-Kirchhoff stress

[BW08] is used as the auxiliary unknown (in place of the Lagrange multipliers in the original
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XPBD). We advocate for two models because each have relative strengths and weaknesses

in their resolution of the primary residual omission in XPBD. B-PXPBD can be done with

a simple modification to an existing XPBD code, however it requires the use of a blending

parameter (see Section 4.1.3.1) since accurate fixed-point iteration is too costly. FP-PXPBD

is a larger modification to an existing XPBD code and requires element-wise Newton solves,

but it exactly resolves the the issues with both Hessian and residual omission in XPBD.

Furthermore, FP-PXPBD allows for arbitrary hyperelastic models while B-PXPBD is based

on constraint formulations as with XPBD.

We demonstrate our method with collision-intensive scenarios by applying it to the

updated-Lagrangian formulation of hyperelasticity where the simulation mesh is embedded

in a regular grid at each time step as in [JSS15]. We summarize our contributions as:

• B-PXPBD: A modification to the XPBD position update that improves residual re-

duction with hyperelasticity.

• FP-PXPBD: A first Piola-Kirchhoff formulation of the XPBD auxiliary variables that

both guarantees zero primal residual for improved total residual reduction and gener-

alizes XPBD to arbitrary hyperelastic models.

• A local affine transformation that decouples strain and translation variables in each

FEM element for added efficiency with FP-PXPBD.

• A Sherman-Morrison rank-one quasi-Newton technique for each first Piola-Kirchhoff

stress in FP-PXPBD.

1.2.2 Position-Based Nonlinear Gauss Seidel

Despite its many strengths, PBD/XPBD has a few limitations that hinder its use in qua-

sistatic applications. First, XPBD is designed for backward Euler and omitting the inertial

terms for quasistatics is not possible (it would require dividing by zero). Indeed Chentanez

5



et al. [CMM20] generate quasistatic training data with XPBD by running backward Euler

simulations to steady state. We show that PBD when viewed as the limit of infinite stiffness

in XPBD (as detailed in Macklin et al. [MMC16]) is an approximation to the quasistatic

equations. Unfortunately, this limit incorrectly and irrevocably removes the external forcing

terms. Second, PBD/XPBD can only discretize hyperelastic models that are quadratic in

some notion of strain constraint [MMC16, MM21]. As noted in [CHC23], simply interpreting

the square root of the hyperelastic potential as the constraint results in instability. This pre-

vents the adoption of many models from the computational mechanics literature. Lastly, as

noted in Chen et al. [CHC23] the constraint-centric Gauss-Seidel iteration in PBD/XPBD

does not reliably reduce time stepping system residuals. We show that in quasistatic prob-

lems this causes artifacts near vertices that appear in different types of constraints (see

Figure 5.2).

We present a position-based (rather than constraint-based) nonlinear Gauss-Seidel method

that resolves the key issues with PBD/XPBD and hyperelastic quasistatic time stepping. In

our approach, we iteratively adjust the position of each simulation node to minimize the

potential energy (with all other coupled nodes fixed) in a Gauss-Seidel fashion. This makes

each position update aware of all constraints that a node participates in and removes the

artifacts of PBD/XPBD that arise from processing constraints separately. Our approach

maintains the essential efficiency and robustness features of PBD and has an accuracy that

rivals Newton’s method for the first few orders of magnitude in residual reduction. Further-

more, unlike Newton’s method, our approach is stable when the computational budget is

extremely limited. Lastly, since our approach is based on Gauss-Seidel, we show that its

convergence is naturally accelerated with successive over relaxation (SOR), Chebyshev and

novel multiresolution-based techniques.

We summarize our contributions as:

• A position-based, rather than constraint-based, nonlinear Gauss-Seidel technique for

hyperelastic implicit time stepping.

6



• A hyperelastic energy density Hessian projection to efficiently guarantee definiteness of

linearized equations that does not require a singular value decomposition or symmetric

eigen solves.

• A node coloring technique that allows for efficient parallel performance of our Gauss-

Seidel updates.

• A novel multiresolution acceleration technique for reducing iteration counts at high

resolution.

1.3 A Neural Network Model for Efficient Musculoskeletal-Driven

Skin Deformation

Animation of human body motion is one of the most important aspects of computer graphics,

and when animations accurately represent the underlying physics and physiology of move-

ment, they can even have broad applications in biological and clinical research. Motion is

typically created at the skeleton level, with the outer skin kinematically driven by the motion

of underlying bones. The highest level of realism is achieved with biomechanical modeling

and physical simulation of soft tissues like the muscle, tendon and fat that lie between the

bones and the visible skin [LSN13, FLP14, PLF14, MZS11, LST09, SGK18]. However, this

requires expensive modeling and simulation which is not feasible in real-time and inter-

active applications. Recent approaches have shown that neural networks can be used to

create efficient character rigs trained to approximate expensive simulation-based techniques

[BOD18, LMR15, LMR23, SGO20, JHG22, CMM20]. In these approaches, a neural net-

work typically provides a trained delta corrective to an efficient technique like linear blend

skinning (LBS) [MLT89]. While promising, past approaches have failed to incorporate how

muscles activate and deform, a key driver of the skin and body deformation we observe in

the real world. We show that a neural network model is indeed able to capture these effects.
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More specifically, we show that a machine learning model can be used to compress the

muscle deformation data generated over a wide range of FEM simulations with the efficiency

of piece-wise linear models and the accuracy of FEM. We first capture inactive, cadeveric

muscle deformation with a passive neural network (PNN) model like many used in the liter-

ature [BOD18, LMR15, LMR23, SGO20, JHG22, CMM20]. Specifically, our network learns

correctives applied to standard LBS deformation of musculotendon geometry designed to

better capture deformations observed with FEM simulation. To capture the effects of active

contraction, we train a second active neural network (ANN) to resolve the deformation of

each muscle as it is activated over a representative range of values. The PNN and ANN

decouple the dependence on skeletal kinematic and muscle activation states to reduce the

volume of training data required in practice. We couple them together by linear blend skin-

ning the active deformation generated by the ANN forward to the given skeletal state. We

demonstrate the efficacy of our approach in a number of representative character animations,

including body building with varying body composition and amount of lifted weight. Our

results demonstrate considerable gains in realism over standard LBS techniques with modest

additional costs. Our primary contributions are as follows:

• A passive neural network for estimating muscle fiber lines of action in inverse dynamics

and activation calculations.

• Decoupled passive and active networks for skeleton driven soft tissue deformation with

tractable training data burden.

• Biomechanics-based estimation of muscle activation that reproduces observed muscle

activity for several common movements.

• A decoupled muscle/fascia/fat model to generate simulated training data.

• Control of body fat percentage during skinning.
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CHAPTER 2

Continuum Mechanics and Finite Element Method

In this section, we review some fundamental ideas from continuum mechanics and derive

the fundamental equations used for finite element method simulations. The equations are

derived from a Lagrangian perspective. The derivations are based on Jiang et al. [JST16].

2.1 Continuum Mechanics

2.1.1 Kinematic Theory

We represent the deformation of the material using the undeformed positionsX, its deformed

positions x and the deformation map ϕ(X, t). We usually call x world positions and X

material positions. More specifically, at a given time t we have x = ϕ(X, t). Differentiate

with time we get:

V(X, t) =
∂ϕ

∂t
(X, t) (2.1)

A(X, t) =
∂2ϕ

∂t2
(X, t) =

∂V

∂t
(X, t) (2.2)

where ϕ : Ω0 → Ωt; Ω0,Ωt ⊂ Rd, d = 2 or 3 is the dimension of the space. Let v(x, t) =

V(ϕ−1(x, t), t) be the velocity in world space.

2.1.2 Deformation Gradient

We define the deformation gradient as the Jacobian of the deformation map ϕ with respect to

the material coordinatesX. It is useful in elastic simulations because most of the hyperelastic
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models use this term for energy computation. We define deformation gradient F as:

F(X, t) =
∂ϕ

∂X
(X, t) =

∂x

∂X
(X, t) (2.3)

In the discrete form F is a 2×2 matrix or 3×3 matrix depending on if the simulation is in

2D or 3D. F can also be a 3×2 matrix if the cloth is simulated because the material space of

cloth is essentially 2D, and the object is being simulated in 3D. We define J(X, t) = det(F)

to be the determinant of F. In the case F is 3× 2, we define J =
√

det(FTF).

2.1.3 First Piola-Kirchoff Stress

For hyperelastic materials, the energy density Ψ is usually a function of deformation gradient

F. We define first Piola-Kirchoff stress to the derivative P = ∂Ψ
∂F

. Note that P is a matrix of

the same dimension as F. It is common in engineering literatures to relate P with Cauchy

stress σ through the relationship σ = 1
J
PFT . Or in other words, P = JσF−T .

2.1.4 Governing Equations

We derive the governing equations based on conservation of mass and conservation of mo-

mentum.

2.1.4.1 Conservation of Mass

Let R(X, t) be the density of the material at position X at time t and ρ(x, t) be the density

at world space such that ρ(ϕ(X, t), t) = R(X, t). For any particle X in the material space,

given a ball Bt
ϵ or radius ϵ around x(X, t), the conservation of mass states that the mass of

the ball Bt
ϵ is constant through out time. In other words,∫

B0
ϵ

R(X, 0)dX =

∫
Bt

ϵ

ρ(x, t)dx =

∫
B0

ϵ

R(X, t)J(X, t)dX (2.4)

Take limit of ϵ→ 0 then we have R(X, 0) = R(X, t)J(X, t).
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2.1.4.2 Conservation of Momentum

We first define the traction field t(·, t,n) : Ωt → Rd. Consider again the ball Bt
ϵ at time t. The

force on the surface is
∫
∂Bt

ϵ
t(x,n(x))ds. It can be shown that there is a matrix σ(x, t) ∈ Rd×d

such that t(x,n(x)) = σ(x, t)n. By Newton’s second law we have the following:∫
∂Bt

ϵ

t(x,n(x))ds+

∫
Bt

ϵ

f extdx =
d

dt

∫
Bt

ϵ

ρ(x, t)v(x, t)dx (2.5)

=
d

dt

∫
B0

ϵ

R(X, t)V(X, t)JdX (2.6)

=
d

dt

∫
B0

ϵ

R(X, 0)V(X, t)dX (2.7)

=

∫
B0

ϵ

R(X, 0)A(X, t)dX (2.8)

For the left hand side of the equation, we change coordinates to material space:

∫
∂Bt

ϵ

t(x,n(x))ds+

∫
Bt

ϵ

f extdx =

∫
∂B0

ϵ

J(X, t)σ(ϕ(X, t), t)F−T (X, t)Nds+

∫
B0

ϵ

FextJ(X, t)dX

(2.9)

=

∫
∂B0

ϵ

P(X, t)Nds+

∫
B0

ϵ

FextJ(X, t)dX (2.10)

=

∫
B0

ϵ

∇XP(X, t) + FextJ(X, t)dX (2.11)

where Fext(X, t) = f ext(ϕ(X, t), t). Then we have the equation R(X, 0)A(X, t) = ∇XP(X, t)+

FextJ(X, t).
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CHAPTER 3

A Robust Grid-Based Meshing Algorithm for

Embedding Self-Intersecting Surfaces

Figure 3.1: (Left) Our method can generate a consistent volumetric mesh for a facial geom-

etry that contains self-intersections e.g. around the lips. (Middle) Two interlocking Möbius-

strip-like bands separate freely at various spatial resolutions of the background grid, despite

many near self-intersections in the surface geometry. (Right) Two bunny geometries can

naturally separate despite significant initial overlaps.

3.1 Algorithm Overview

The input to our algorithm is a triangulated surface mesh S. The output is a uniform-

grid-based embedding hexahedron mesh counterpart V to S that is well-defined (i.e., free

from numerical mesh ”glueing” artifacts) even when S is self-intersecting (see Section 3.8 for

examples).
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(a) Frame 1 (b) Frame 27

(c) Frame 54 (d) Frame 81

Figure 3.2: Two overlapping bunnies naturally separate. The top part of each subfigure

shows the meshes generated by our algorithm, while the bottom part of each subfigure

shows the corresponding surface meshes.

We briefly summarize the three main stages of our algorithm, as detailed in Figure 3.4. In

the first stage, volumetric extension (Section 3.3), we create a hexahedron mesh VS from the

background grid that only covers the input surface S with connectivity designed to mimic it.
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Figure 3.3: Intersection-free mapping. Two mappings from a non-self-intersecting region

S̃V to self-intersecting boundary S are shown. The second mapping (right) requires the

existence of a negative Jacobian determinant.

We sign its vertices depending on inside/outside information derived from the hypothetical

self-intersection-free counterpart S̃. We emphasize that this volumetric extension mesh only

surrounds S. Accordingly, the second stage of the algorithm is interior extension region

creation (Section 3.4). Nodes of the background grid are partitioned using the edges cut

by S, and then we decide which regions are interior. Interior regions will be copied to

approximate the number of times portions of the interior of the hypothetical self-intersection-

free counterpart S̃V will need to overlap after being pushed forward by the hypothetical

mapping ϕS
S̃
. For each interior region jI with at least one copy, we create a hexahedron mesh

VjI ,c for each copy c. In the third stage of the algorithm (Section 3.5), interior extension

regions meshes VjI ,c are sewn together and into the volumetric extension VS to produce the

final output mesh. We additionally provide a coarsening approach in Section 3.6 to provide

user control over the embedding mesh resolution as well as a topologically-aware technique

for converting the hexahedron mesh V into a tetrahedron mesh T .
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Figure 3.4: Algorithm overview. Given an initial input surface mesh S, there are three ma-

jor steps in the computation of the final volumetric extension mesh V : Volumetric Extension,

Interior Extension Region Creation, and Interior Extension Region Merging. (Volumetric

Extension) In this step, we create a precursor mesh for each element in S, and compute pre-

liminary signing information for the vertices. We then merge the precursor meshes to create

the volumetric extension VS and correct the signing information where necessary. (Interior

Extension Region Creation) In preparation for growing the volumetric extension into the

interior, we first partition the nodes of the background grid using the edges cut by S. We

decide which regions are interior and count the copies of each region using the vertices of

VS which have negative sign. For each interior region jI with at least one copy, we then

create a hexahedron mesh VjI ,c for each copy c. (Interior Extension Region Merging) The

merging process begins with copying relevant hexahedra from VS into VjI ,c. First, certain

vertices of VjI ,c are replaced by corresponding vertices from VS. Hexahedra to be replaced

are then removed from VjI ,c before the boundary hexahedra are copied in. We then merge

the various meshes VjI ,c by first determining where different meshes overlap, and then using

these hexahedra overlap lists to perform the final merge.
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✓ ✘

Figure 3.5: Mesh conventions. (Left) A sample triangle mesh is shown, along with the

vector mS. The incident elements IS6 for vertex 6 are also shown. The first 10 faces,

visible from the front, have been labeled on the mesh. (Right) The left pair of triangles are

consistently oriented; the orientations of the edge induced by the normals point in opposite

directions. For the right pair, the orientations on the common edge point in the same

direction; this is not consistent.

3.2 Definitions and Notation

We take a triangle mesh S = (xS,mS) as input. We use xS = [xS
0 , . . . ,x

S
NS

v −1] ∈ R3NS
p to

denote the vector of triangle vertices xS
i ∈ R3 and mS ∈ N3NS

e to denote the vector of indices

mS
j for vertices in xS corresponding triangles tS⌊ j

3
⌋, 0 ≤ ⌊

j
3
⌋ < NS

e . For example, for the mesh

S in Figure 3.5, triangle tS5 is made up of vertices xS
mS

j
with j = 2, 3, 8. We assume that S is

closed (every edge in the mesh has two incident triangles) and consistently oriented (each edge

appears with opposite orientations in its two incident triangles). For each vertex xS
i of S, we

use ISi to denote the set of incident mesh indices j such that i = mS
j . Figure 3.5 demonstrates

these conventions. We output a hexahedron mesh V = (xV ,mV ) with xV ∈ R3NV
p denoting

the vector of hexahedron vertices and mV ∈ N8NV
e denoting the vector of indices in xV

corresponding to vertices in hexahedron hV
e , 0 ≤ e < NV

e . Each hexahedron in the mesh is
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Figure 3.6: Mesh merge. An example of two meshes merging together. Vertices 2, 3, 4 and

5 merge with vertices 9, 10, 12 and 13, respectively. A new vector m2 is created to hold all

of the hexahedron vertices post-merge, and the extra hexahedron (in red) is then removed.

geometrically coincident with one grid cell in a background uniform grid G∆x. We denote

the spacing of this grid as ∆x (uniformly in each direction). For ease of visualization, we

use 2D counterparts to S and V in illustrative figures. In this case, S is a segment mesh and

V is a quadrilateral mesh.

3.2.1 Merging

We construct the final hexahedron mesh V by merging portions of various precursor hexahe-

dron meshes in a manner similar to techniques used in [TSB05, WDG19, WJS14, LB18]. As

with V , each hexahedron in a precursor mesh is geometrically coincident with background

grid cells. All precursor meshes share the same vertex array xV , although its size will change

as we converge to the final V . At various stages of the algorithm, we will merge certain

geometrically coincident precursor hexahedra. To perform a merge, we view the set of all
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vertices in xV as nodes in a single undirected graph and introduce graph edges between

nodes corresponding to geometrically coincident vertices. In subsequent sections, we refer

to such edges in the undirected graph as adjacencies to distinguish them from edges in the

various meshes. Once all adjacencies are defined, we compute the connected components of

the graph using depth-first search. All vertices in a connected component are considered to

be the same and we choose one representative for all mesh entries. We note that this opera-

tion may be carried out on more than two meshes at once and that it can lead to duplicate

hexahedra and in this case we remove all but one. Furthermore, replacing all vertices in a

connected component with one representative results in unused vertices in xV . We remove

all unused vertices in a final pass, changing indexing in mV accordingly. We illustrate the

connected component calculation, vertex replacement and unused vertex removal in Figure

3.6.

3.3 Volumetric Extension

We first create a volumetric extension VS of the surface S. It is a hexahedron mesh that

contains the input surface S and is designed to have topological properties analogous to

S. Since it is an extension of S, we can sign the vertices of VS depending on which side

of the surface they lie on. Overlapping regions in S complicate this process, but it can be

disambiguated by considering the pre-image of the surface to its overlap-free counterpart S̃

under the mapping ϕS
S̃
. Signing points in R3 depending on whether or not they are inside S̃

is well-defined and our procedure for signing the vertices in the volumetric extension VS is

designed considering its pre-image under ϕS
S̃
.

3.3.1 Surface Element Precursor Meshes

In order to mimic the topology of the S, we create its volumetric extension VS from precursor

meshes VS
e = (xV ,mV S

e ) associated with each triangle tSe in S. Note that all precursor meshes
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Figure 3.7: Precursor meshes. (Left) Surface element tS0 creates quadrilateral mesh VS
0 .

(Right) Surface element tS1 creates quadrilateral mesh VS
1 . Each element creates copies of

the grid cells it intersects by introducing new vertices which are geometrically coincident to

grid nodes.

share the common vertex array xV and that this process begins its evolution to the final

V vertex array. For each triangle tSe in S, we define a hexahedron mesh from the subgrid

GV
S
e

∆x of G∆x defined by the grid-cell-aligned bounding box of tSe . We add a new hexahedron

to VS
e corresponding to each background grid cell in G

V S
e

∆x intersected by tSe . We perform

this operation using the intersection function from CGAL’s 2D/3D Linear Geometry Kernel

[The20, BFG20]. The hexahedron is geometrically coincident to the intersected grid cell in

G∆x, however the vertices introduced into the vertex vector xV are copies of the background

grid nodes associated with the sub grid GV
S
e

∆x . Note that even though different triangles may

intersect the same grid cells, their respective hexahedra correspond to distinct vertices in

xV . Further note that mesh elements in VS
e inherit the connectivity of the sub grid GV

S
e

∆x , that

is, hexahedra share common vertices if they are neighbors in GV
S
e

∆x . We sign the vertices in

each VS
e depending on which side of the plane containing the triangle tSe that they lie on. We
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illustrate this process in Figure 3.7. Lastly, we note that these signs are low-cost preliminary

approximations to the signs in the final volumetric extension VS. In some cases the signs

computed in this phase will not be accurate in the volumetric extension, and we provide a

more accurate but costly signing when this occurs (discussed in Section 3.3.2; however, in

many cases, they are equal to the final signs, and their comparably-low computational cost

improves overall algorithm performance

3.3.2 Merge Surface Element Meshes

We merge portions of the precursor meshes VS
e to form the volumetric extension hexahedron

mesh VS by defining adjacency between vertices in xV as described in Section 3.2.1. We

define this adjacency from the mesh connectivity of S using its incident elements ISi for

each vertex xS
i . Geometrically coincident vertices in VS

⌊jSi,0/3⌋
and VS

⌊jSi,1/3⌋
for jSi,0, j

S
i,1 ∈ ISi

are defined to be adjacent if each are on hexahedrons in their respective meshes which

are geometrically coincident. Note in particular that this is different from requiring that

geometrically coincident vertices in VS

⌊jSi /3⌋ for j
S
i ∈ ISi (see the geometry of Figure 3.16). In

other words, all geometrically coincident hexahedra in element precursor meshes associated

with triangles that share a common vertex are merged (see Figure 3.9). Merged vertices retain

the sign they were given in VS
e when possible. However, if merged vertices have differing

signs, e.g. in regions with higher curvature (see Figure 3.10), then we must recompute the

sign from their geometric relation to S.

In regions of higher curvature where the preliminary signs of vertices in VS
e cannot be

adopted in VS, we use an eikonal strategy [OF03] to propagate positive signs from S in the

direction of the surface normal and minus signs in the opposite direction. This is well defined

in light of the assumed existence of the pre-image S̃ of S under ϕS
S̃
. Here, each vertex xV

i

in the volumetric extension VS is associated with some collection of precursor meshes VS
ei

where xV
i was created in the merge of vertices in the VS

ei
. This defines a local patch SiV of

surface triangles tSei in S associated with xV
i . When propagating signs from S to xV

i , only
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(a) Frame 0 (b) Frame 40

(c) Interior view of lips

Figure 3.8: A face surface with self-intersecting lips is successfully meshed. The right-hand

side of each of the first two frames shows the deformed hexahedron mesh, while each left-

hand side shows the corresponding surface mesh. The wireframe boxes represent Dirichlet

boundary condition regions. In the bottom four subfigures, lip intersection is visualized in

the input surface and subsequent hexahedron mesh.
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these triangles are considered. It is important to only use this local surface patch since there

may be triangles in S that are geometrically close to xV
i but topologically distant. Note that

this precludes the use of global point-in-polygon algorithms based on ray casting or winding

numbers since those will not give correct results when S has self-intersection. Instead we

adopt the local point-in-polygon method of Horn and Taylor [HT89]. First, we compute the

closest mesh facet (triangle, edge, or point) in SiV to xV
i . The closest facet calculation is

performed by first storing SiV in a CGAL surface mesh and then using its class functions

and the locate function from the Polygon Mesh Processing package [BSM20, LRT20]. If the

closest facet is an edge or a point, we add triangles from S that are incident to the vertices

in the edge or the point respectively to the patch SiV (if they are not already in it). If more

triangles were added, we recompute the closest mesh facet. We illustrate this process in

Figures 3.10 and 3.11. If the closest facet is a triangle, we compute the sign depending on

the side of the plane containing the triangle that the point lies on. If the closest faces is an

edge or point we use the conditions from [HT89], which we summarize below:

• If the closest facet is an edge, then the sign is −1 if the edge is concave (as determined

by the normals of the incident faces) and +1 if it is convex.

• If the closest facet is a vertex, then there exists a discrimination plane with an empty

half-space. Choosing any such plane, the sign is −1 if the edges defining the plane are

concave and +1 if they are convex.

A discrimination plane is defined by two non-collinear incident edges and it has an empty

half-space if all incident faces and edges lie on one side of the plane or on the plane itself.

3.4 Interior Extension Region Creation

We grow the volumetric extension VS on its interior boundary (defined by vertices with

negative sign) to create the remainder of the volumetric mesh V . We determine where to
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grow the extension by examining connected components of the background grid defined by

its intersections with S. We compute these components using depth-first search (as discussed

in Section 3.2.1), where adjacency between nodes in the background grid is defined between

edge neighbors not divided by S. We again use CGAL’s intersection function from the

2D/3D Linear Kernel to determine whether or not an edge is divided. This is a simplistic

criterion which can lead to an over-count in the number of interior regions, as demonstrated

in Figure 3.12. A more accurate criteria would use material connectivity determined from

the intersection of the surface S with the relevant background grid cells, similar to the CSG

operations in [SDF07]. However, as noted in [LB18] these operations are extremely costly

and our approach is robust to over-counting the number of interior regions since they are all

merged together appropriately in the later stages of the algorithm.

Each connected component of background grid nodes constitutes a contiguous region.

Regions that have a grid node with at least one geometrically coincident vertex in xV with

negative sign are defined to be interior. Exterior regions, those not containing a grid node

with a geometrically coincident vertex in xV with negative sign, are discarded. We create

at least one hexahedron mesh VjI ,c for each interior region jI . Multiple copies of interior

meshes are created near self-intersecting portions of S since here they represent multiple

overlapping portions of the volumetric domain. We illustrate this process in Figure 3.13. We

note that as before, each hexahedron mesh VjI ,c uses the common vertex array xV .

We determine interior regions jI that require multiple copies as those with grid nodes

that have more than one geometrically coincident vertex in xV with negative sign. For these

regions, we create a copy VjI ,c for each connected component c of vertices in xV with negative

sign that are geometrically coincident with a grid node in the region, as shown in Figure

3.14. Adjacency between these vertices is defined if they are in a common hexahedron in

the volumetric extension VS. In general, this will be an over-count as multiple connected

components may ultimately correspond to the same copy. We note that this process is

analogous to the cell creation portion of the method of Li and Barbič [LB18]. They show
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that in the case of simple immersions, the correct number of copies is equal to the winding

number of the region. We do not compute the winding number since our over-count is

typically resolved during the merging process described in Section 3.5. However, failure

cases occur when the background uniform grid G∆x cannot resolve thin features or high-

curvature in S. In these cases, an over-count that cannot be resolved in the later merging

stages occurs. The background grid must be refined to resolve these cases, however using

a strategy similar to that of Wang et al. [WJS14] we use a topology-preserving coarsening

strategy (see Section 3.6) after the algorithm has run to prevent excessively small element

sizes and associated high element counts. We also note again that unlike Li and Barbič

[LB18], we cannot handle non-simple immersions.

As with VS, we construct the first copy of the hexahedron mesh for each interior region

VjI ,0 from precursor hexahedron meshes VjI ,0
i = (xV ,mV jI ,0

i ). Here xi are the grid nodes in

region jI . It should be noted that these are different than the vertices xV
i ∈ xV and that

i = (i0, i1, i2) is used to denote the grid multi-index associated with the node. For each xi,

mV jI ,0
i consists of 8 hexahedra which are geometrically coincident with the 8 local background

grid cells incident to xi. Copies of xi and the 26 background grid nodes surrounding xi

(whether or not they are in region jI) are introduced into xV to achieve this. We again merge

these precursors as described in Section 3.2.1 where adjacencies between the vertices of xV

are defined as follows. For each pair of grid nodes xi and xj in region jI , the geometrically

coincident vertices in xV corresponding to the hexahedra of VjI ,0
i and VjI ,0

j are adjacent if

xi and xj are connected by an edge in G∆x that is not cut by a triangle in S. This edge cut

criteria prevents connection between geometrically close but topologically distant features,

as illustrated in Figure 3.15. We reemphasize that as described in Section 3.2.1 the final

mV jI ,0
is formed by concatenating all of the arrays mV jI ,0

i (modified to account for merged

vertex numbering) and removing any duplicated hexahedra. The remaining copies VjI ,c are

created by duplicating mV jI ,0
with new vertices distinct from those corresponding to VjI ,0

and any other copy.
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3.5 Interior Extension Region Merging

Having created the interior extensions VjI ,c, the merging of these meshes with the volumetric

extension VS and with each other (to account for possible over-counting in their creation)

is carried out in multiple steps. We first merge hexahedra from VS into VjI ,c in a process

described below. We then determine which of the interior extensions should merge to each

other, using hexahedra from VS which merge into multiple VjI ,c to generate a list of overlap-

ping hexahedra between meshes of different regions and copies. Next, we use these overlaps

to determine which copies of the same region are duplicated and merge the duplicates to-

gether. Finally, these overlapping hexahedra are used to define the adjacencies in the final

merging process.

3.5.1 Merge With Boundary

Recall from Section 3.4 that in regions with more than one copy, we create a copy VjI ,c for

each connected component c of vertices in xV located in region jI with negative sign. We

use CjIc to denote the collection of these nodes in the connected component c. For regions

with only one copy, Cj
I

0 instead denotes the collection of all vertices in xV located in region

jI with negative sign, as we do not generate connected components in this case. Not that

for these single copy regions, the vertices of Cj
I

0 need not be connected (see the geometry

of Figure 3.17, where the vertices Cj
I

0 are composed of two connected components on the

outer and inner boundaries). We merge vertices of VjI ,c with vertices in CjIc using the merge

described in Section 3.2.1. Before this merge, we first perform a preliminary merge of vertices

in CjIc which are geometrically coincident. Here, two vertices of xV are adjacent if they are

geometrically coincident and both in CjIc . The effect of this preliminary merge is to close

unwanted interior voids without ‘sewing’ the exterior and without merging topologically

distant vertices of VS, as shown in Figure 3.16. The merge between the vertices of VjI ,c

and CjIc is then defined by the following adjacency. Vertices of VjI ,c and CjIc are adjacent
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if they are geometrically coincident and the vertex of VjI ,c was created from an interior

connected component of vertices in the VjI ,0
i that gave rise to VjI ,c via the merge described

in Section 3.4. Here, an interior connected component is one that contains the center vertex

(as opposed to one of the surrounding 26 vertices) introduced in the creation of VjI ,0
j for

some grid node xj in the region jI . This requirement effectively means that vertices of CjIc
should only merge to the those vertices of VjI ,c which are actually interior to the region, and

not the vertices which are overlapping from a topologically far part of VjI ,c. We illustrate

this in Figure 3.17. Note that after this merge has been performed, we update the indices

in CjIc accordingly as this set will be used in latter steps of the merging procedure.

We next use a strategy different to that in Section 3.2.1 for merging hexahedral elements

in VS to their geometrically coincident counterparts in VjI ,c. This modified merging strategy

is designed to prefer the structure of VS over that in VjI ,c. For instance, if two hexahedra

of VS are geometrically coincident but share only vertices on one face, then they will still

have this connectivity after merging to VjI ,c. We merge the hexahedra in VS incident to

the vertices in CjIc to their geometrically coincident counterparts in VjI ,c. Specifically, for

each vertex xV
i with i ∈ CjIc and kVS

i ∈ IVS

i , the hexahedron ⌊k
VS

i

8
⌋ is marked for merging.

We denote the collection of hexahedra in VS marked to be merged with their counterparts

in copy c of region jI as Ij
I ,c

H . Note that it is possible that some hexahedra of VS are not

included in any such collection. To perform this modified merging procedure, we first remove

hexahedra from mV jI ,c
that are geometrically coincident with a hexahedron from Ij

I ,c
H and

incident to a vertex in CjIc . Note that a hexahedron in mV jI ,c
can only be incident to a node

in CjIc after the merge described in the previous paragraph has been completed. Next, copies

of the hexahedra in Ij
I ,c

H are added to mV jI ,c
. The process following the preliminary merge

is outlined in Figure 3.18.
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3.5.2 Overlap Lists

We next merge differing regions VjI0 ,c along their appropriately defined common boundaries.

The boundary region between any two region copy meshes VjI0 ,c0 and VjI1 ,c1 is grown from

seeds which we define by hexahedra in the respective meshes that are equal and in VS. For

example, suppose that VjI0 ,c0 and VjI1 ,c1 contain such a hexahedron. In this case there are

hexahedra with indices hV jI0 ,c0

e0
, hV jI1 ,c1

f0
∈ N sharing the same vertices as a hexahedron in VS

with index hV S

g0
∈ N such that

mV jI0 ,c0

8hV
jI0 ,c0

e0
+ie

= mV jI1 ,c1

8hV
jI1 ,c1

f0
+ie

= mV S

8hV S
g0

+ie
, ie ∈ {0, 1, . . . , 7} . (3.1)

When these hexahedra exist in two region copies jI0 , c0 and jI1 , c1 we use the notation q =

(jI0 , c0, j
I
1 , c1) to denote a pair of region copies with common boundary (that which will

eventually merge). We define sq0 = (hV jI0 ,c0

e0
, hV jI1 ,c1

f0
) as a seed between the pair of region

copies. Furthermore, we use pq = [sq0 , . . . , s
q

Nq
s −1

] to denote the collection of all such seeds

between jI0 , c0 and jI1 , c1 with Nq
s being the number of seeds. This collection, which we call

an overlap list, is grown into the complete overlapping common boundary between jI0 , c0 and

jI1 , c1.

We expand the initial seed collections pq by first marking background grid cells geomet-

rically coincident with hexahedra in the seeds as being visited. Then, starting with the seed

sq0 , we compute the neighbor hexahedra of each hexahedron in the seed (the neighbors of a

hexahedron are those which share a common vertex). Geometrically coincident neighbors

of the two hexahedra in the seed are added to pq if the background grid cell to which they

are geometrically coincident is unvisited. We then mark the cell as visited, and continue

until every seed has been processed in this way. At the end of this expansion, pq is a list

of overlapping hexahedra that will be used to sew the regions together. We illustrated this

process in Figure 3.19.

27



3.5.3 Deduplication

As mentioned in Section 3.4, the number of copies is generally an over count. We use the

overlap lists pq to deduce which copies c of a region jI are redundant. For each hexahedron

hS
e in VS, we create a list of hexahedra from geometrically coincident counterparts in interior

region copies. This list is formed by considering each pair q: if either hexahedron in a seed of

pq is a copy of hS
e (i.e. it uses the same vertices in xS as in Equation (3.1)), both hexahedra in

the seed are added to the list associated with hS
e . Note that while the hexahedron pairs of the

initial seeds in pq are both copies of hexahedra from VS in accordance with Equation (3.1),

subsequent seeds added during the overlap process may have both, one, or neither hexahedra

equal to copies of hexahedra from VS. Should any list for any hexahedron hS
e in VS contain

hexahedra from multiple copies c0 and c1 of the same region jI , copies c0 and c1 are considered

to be redundant duplicates of each other. Redundant copies are merged using the process of

Section 3.5.1. This process is shown in Figure 3.20.

For each region, we compute connected components of its copies using duplication as the

notion of adjacency. For each connected component of copies, we take the copy with the

smallest index ci as the representative copy. However, this copy’s mesh only has the vertices

of the component ci. Likewise, only copies of the hexes in IciH are in VjI ,ci . We remedy this

by repeating the merge with boundary process of Section 3.5.1 on updated data. Specifically,

we replace the connected component ci of vertices with the union of all components cj for

copies in the connected component of copies. We then form an updated collection of incident

hexahedra IciH before repeating the boundary merge process. Finally, we update the overlap

lists. Any overlap list corresponding to a duplicated copy is recreated using the minimum

representative in place of the original copy to account for updated hexahedron ordering.

Redundant overlap lists resulting from this update are then discarded.
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3.5.4 Final Merge

We now merge the vertices of xV using the pattern of Section 3.2.1 with adjacencies defined

by the overlap lists. For each seed s in an overlap list, the geometrically coincident nodes

of the two hexahedra in s are considered adjacent. We then create the final mesh V by

combining all of the arrays mV jI ,c
from copies which are either the minimum representative,

or not duplicated. Recall from Section 3.2.1 that some hexahedra of VS are not copied into

any copy’s mesh. We add all such hexahedra to V to guarantee that VS is contained in this

final mesh, completing the interior extension region merging process.

3.6 Coarsening

Our method requires high-resolution (small ∆x) background grids for high-curvature/detailed

surfaces. We provide a topology-aware coarsening strategy to provide user control over the

final volumetric mesh resolution/element counts. After the hexhedron mesh V is created,

we coarsen the underlying grid by doubling ∆x. We then create a maximal coarse meshM

based on the fine mesh V . For each index mV
j in V , we define the initial connectivity forM

as mM
j = j. We then bin the center of each fine hexahedron hM ∈ NNM

e into the coarsened

grid and keep track of its multi-dimensional grid index ih
M
. We initialize the position array

xM forM from the coarse grid cell corners of cell ih
M
. Specifically, for each hexahedron in

hM in M we define xM
8hM+ie = x2∆x

ihM
+ oie where oie is an offset from the coarse cell center

x2∆x

ihM
to the eight respective corners of the coarse grid cell ih

M
. To build the final coarsened

mesh, we merge portions of the maximal coarse mesh using Section 3.2.1 where adjacencies

are defined from a hexahedron-wise notion of connectivity. Two maximal coarse hexahedra

hM
0 and hM

1 are connected if their corresponding fine hexahedra hV
0 = hM

0 and hV
1 = hM

1

share a face fVi =
[
fV
i0 , f

V
i1 , f

V
i2 , f

V
i3

]
∈ N4 in V . We define two types of connection: totally

connected and partially connected. Maximal coarse hexahedra are totally connected if they

have the same coarse grid index ih
M
0 = ih

M
1 and their corresponding fine hexahedra hV

0 and
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hV
1 are not geometrically coincident. Maximal coarse hexahedra are partially connected if

they are connected but are not totally connected. We define vertex adjacency from our

notions of hexahedron connectivity. If two hexahedra hM
0 and hM

1 in the maximal coarse

mesh are totally connected, then their eight respective geometrically coincident vertices are

defined to be adjacent, i.e. vertex mM
8hM

0 +ie
is adjacent to vertex mM

8hM
1 +ie

, 0 ≤ ie < 8. If

they are partially connected, then their corresponding fine hexahedra hV
0 , h

V
1 share a face

fVi =
[
fV
i0 , f

V
i1 , f

V
i2 , f

V
i3

]
. We then identify an analogous face in each of hV

0 and hV
1 which we

define in terms of the indices kV
0α, k

V
1α, α ∈ {0, 1, 2, 3}. Only the vertices corresponding to

the analogous face are defined to be adjacent

mM
8hM

0 +kV0α
= mM

8hM
1 +kV1α

, α ∈ {0, 1, 2, 3} . (3.2)

There are two cases that define the analogous face. First, if the fine hexahedron counterparts

hV
0 , h

V
1 are geometrically coincident, then the analogous face is the one on the analogous side

of the coarse hexahedron. If they are not geometrically coincident, then the analogous face is

the one geometrically coincident with the fine face defined from fVi . The general coarsening

procedure is illustrated in Figure 3.21.

3.7 Hexahedron Mesh To Tetrahedron Mesh Conversion

We design a topologically-aware BCC-based approach for the creation of a tetrahedron mesh

T from the hexahedron mesh V . We initialize the particle array for the tetrahedron mesh xT

to be the same as xV , but we add a new vertex in the center of each hexahedron and each

boundary face. Tetrahedra are computed from the faces in the mesh V . Normally a face in V

would have one (boundary face) or two (interior face) incident hexahedra. However, since V

is comprised of many geometrically coincident hexahedra there are more cases. We classify

them as: standard boundary face (one incident hexahedraon), standard interior face (two

non-geometrically coincident incident hexahedra), non-standard interior (more than two in-

cident hexahedra, some geometrically coincident and some not geometrically coincident) and
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non-standard boundary (more than one incident hexahderon, all geometrically coincident).

Each face contributes four tetrahedra to T in the case of standard boundary and standard

interior faces. The tetrahedra consist of two vertices from the face and the cell centers on

either side of the face in the case of standard interior faces. In the case of standard boundary

faces, the face center is used in place of the second hexahedron center. For non-standard

interior faces, we take all pairs of non-geometrically coincident incident hexahedra and add

tetrahedra as if their common face was a standard interior face. For non-standard boundary

faces, tetrahedra are added for each incident hexahedron as if it were incident to a standard

boundary face. We illustrate this procedure in Figure 3.22.

3.8 Examples

We consider a variety of examples in both two and three dimensions. To illustrate the

capabilities of the final mesh connectivites, we treat the objects as deformable solids and

run a finite element (FEM) simulation [SB12]. Performance statistics for the 3D examples

are presented in Table 3.1. All experiments were run on a workstation with a single Intel®

Core� i9-10980XE CPU at 3.00GHz.

3.8.1 2D Examples

3.8.1.1 Single Overlap

Figure 3.23 shows a deformable FEM simulation using a volumetric mesh produced by our

algorithm. As evidenced by the geometry’s ability to separate and freely move, our algorithm

produces a mesh that properly resolves the single self-intersection present in the initial

configuration.
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3.8.1.2 Ribbon

Our algorithm can also handle more complex self-intersections. In Figure 3.24, one end of

a ribbon shape passes through the other, partitioning the surface into several components.

These intersections are successfully resolved, and the mesh is allowed to move as in the

previous example.

3.8.1.3 Face

Figure 3.25 demonstrates a similar scenario. In this case, the lips of the face geometry

initially overlap; and, as an added challenge, the boundary of the input geometry consists

of multiple disconnected components. Our method successfully treats cases like these by

design.

3.8.2 3D Examples

3.8.2.1 Two Boxes & Simple Overlap

We begin our 3D examples by demonstrating that our algorithm is able to quickly generate

consistent meshes for simple self-intersecting geometries. In Figure 3.26, basic hand-made

geometries are allowed to separate and unfurl from their initial self-intersecting states. The

two boxes in the left-hand side of each subfigure were meshed using a background grid

resolution of 66×64×86 cells and ∆x = .00955671, taking 2.80219s to generate the resulting

256,368 hexahedra in the output mesh. The simple overlapping shape in the right-hand side

of each subfigure was meshed using a grid with 194 × 64 × 194 cells and ∆x = .00328125,

resulting in 1,606,296 hexahedra in the output mesh.
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Table 3.1: Performance of generating volumetric meshes using our algorithm for various 3D

examples. All times are in seconds and represent the total runtime of the algorithm.

Example Grid dim. ∆x # Hex Time (s)

Two Boxes 66×64×86 0.00955671 256368 2.80219

Simple Overlap 194×64×194 0.00328125 1606296 24.0179

Double Möbius 294×288×64 0.0347391 903653 33.6324

Twin Bunnies 162×166×128 0.0203027 1525821 31.1815

Dragon 512×690×520 0.0708709 20110457 303.301

Fancy Ball 130×132×128 2.82671 515400 25.8388

Head 512×830×718 0.000501962 62444819 839.951

Sacht 52×104×42 4.26331 112682 9.64888
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3.8.2.2 Double Möbius

Figure 3.27 shows two Möbius-strip-like geometries1 falling and separating under the effects

of gravity, despite substantial intersections at the start of the simulation. This example was

run using a background grid with 294× 288× 64 cells and a ∆x of 0.0347391. The resulting

hexahedron mesh has 903,653 elements. Generating the volumetric mesh using our algorithm

takes 33.6324s.

We also consider repeating this example at multiple spatial resolutions in order to demon-

strate the effect of resolution on the quality of meshing results (see Figure 3.28). The coarsest

grid (corresponding to the leftmost meshes in each subfigure) is 21×19×5 with ∆x = 0.556.

An intermediate grid resolution of 39 × 37 × 9 cells with ∆x = 0.278 corresponds to the

middle meshes in each subfigure. The rightmost meshes in each subfigure come from using

a grid with 75× 73× 17 cells with ∆x = 0.139. Proper separation is achieved at all three of

these tested resolutions, and in particular, our algorithm performs quite well on this example

even at extremely low spatial resolution.

3.8.2.3 Twin Bunnies

Another standard example is the Stanford bunny. Figure 3.2 demonstrates that two almost

completely overlapping bunny meshes can naturally separate under our method. No issues

are encountered as different segments of the bunnies pass through one another. This example

uses a grid resolution of 162×166×128 cells with ∆x = 0.0203027, resulting in a mesh with

1,525,821 hexahedra.

1“Mobius Bangle” by Creative Hacker is licensed under CC BY 4.0.
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3.8.2.4 Dragon

The most complicated geometry we test our method on is the dragon2 shown in Figure 3.29

(and also shown in Figure 3.11). Adequate resolution is required in order to resolve all the

fine-scale features of this mesh; accordingly, we use a grid resolution of 512 × 690 × 520

cells with ∆x = 0.0708709. Our final mesh, generated in five minutes, contains just over 20

million hexahedra.

3.8.2.5 Fancy Ball

Figure 3.30 shows another interesting case where several ball-like geometries3 deform and

collide after being meshed with our algorithm. Each ball has a number of thin cuts and

fine-scale features, which our algorithm is able to resolve using a grid with 130× 132× 128

cells and ∆x = 2.82671. The 515,400 resulting hexahedra are generated in 25.8388s.

3.8.2.6 Head

Modeling of the human body often gives rise to self-intersection. This is particularly common

in the faces, where lip geometries often self-intersect. To that end, we consider a real-world

head geometry in Figure 3.8. Note that the lips separate effectively. This example results

in a volumetric mesh with over 62 million elements, using a background grid resolution of

512×830×718 cells and ∆x = 0.000501962. Generating the hexahedron mesh takes 839.951s.

3.8.2.7 Collection

Various objects from 3D examples are dropped in a tank in Figure 3.31. The objects naturally

deform and collide without meshing or simulation issues.

2“Asian Dragon” by Lalo-Bravo.

3“Abstract object” by sonic art.
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3.8.2.8 Sacht et al. Mesh

Finally, we demonstrate that our method, like that of Li and Barbič [LB18], can successfully

separate the geometry shown in Figure 3.32 that is not supported by the method of Sacht

et al. [SJP13]. In [SJP13], the bristles in this geometry get locked by the surrounding torus.

However, both our method and [LB18] properly resolve all self-intersections. Of note, for a

similar number of output mesh elements (112,682 vs. 112,554), our method runs noticeably

faster than that of Li and Barbič [LB18] (9.65s vs. 22.5s).

3.9 Discussion and Limitations

Our method has various limitations, most of which are attributed to our reduced use of

exact/adaptive precision arithmetic. The most prominent limitations of our approach are in

the types of input surface mesh S that we support. Fine-scale features, e.g., thin parallel

sheets, can cause negatively signed vertices to be located in regions of the grid corresponding

to an incorrect region. This may result in exterior regions erroneously generating copies, or

interior regions creating extra copies which will not be correctly merged or deduplicated.

In these pathological cases, the output mesh will have undesirable extraneous collections of

hexahedra. We resolve these issues by refining the background grid, but very fine features

may require refinement to an unreasonable resolution. However, our coarsening approach

is designed to mitigate this. Even using added resolution and subsequent coarsening, our

methodological simplifications prevent us from handling certain classes of cases that Li and

Barbič [LB18] can handle, e.g., we cannot resolve non-simple immersions. It would be inter-

esting to investigate whether our minimal-exact-arithmetic approach could be extended to

handle non-simple immersions as well. Other future work includes improvements to the al-

gorithm to handle known pathological cases without the need for refinement and subsequent

coarsening, as well as improved detection mechanisms for such cases.
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Lastly, Figure 3.3 illustrates an interesting case which neither our approach, that of Li

and Barbič [LB18] nor that of Sacht et al. [SJP13] can handle. In this case, which is

common near e.g. elbows and even shoulders in an upper torso, a portion of the domain

overlaps in such a way that ϕS
S̃
must have negative Jacobian determinant in some regions.

Our approach returns a mesh for this case, but it does not properly copy the overlap region

and one of the two copies that would be required is rejected. I.e. our approach does not give

a result consistent with creating a mesh in S̃V and pushing it forward under ϕS
S̃
. In Li and

Barbič [LB18], this is noted as a case for which an immersion does not exist and Sacht et

al. [SJP13] explicitly require the Jacobian determinant of ϕS
S̃
to be non-negative. However,

this is a commonly occurring case which would be beneficial to resolve.
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Figure 3.9: Precursor merge. The 12 vertices bordering the cell marked in yellow are

merged into 8 resulting vertices. Blue vertices 0, 1, 4, 5 and green vertices 12, 13, 15, 16 are

merged, respectively. However, magenta vertices 19, 20, 21, 22 do not merge with the blue

or green vertices since their associated surface element is topologically distant.

38



Figure 3.10: Closest facet. (Left) The four vertices in yellow all have ambiguous signs.

(Middle) To sign vertex 5, we generate the local patch S5V , which are the segments shown

in yellow. The closest facet (indicated in cyan) lies on a face. (Right) A similar process is

illustrated for vertex 8, but here the closest facet is a vertex.

39



Figure 3.11: Patch expansion. The local patch SiV corresponding to the yellow vertex is

shown. The initial patch is indicated in red, and the closest facet is a vertex of the red patch.

We add the missing incident triangles (turquoise) and recompute the closest facet. This is

again a vertex with incident triangles not in the patch, so we repeat the process (with new

triangles in dark yellow). The closest feature is now on an edge, and we proceed to the edge

criteria for signing.
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Figure 3.12: Region over-count. As the process of partitioning the grid only uses con-

nectivity based on grid edges, it is possible for a contiguous region to be split into multiple

regions. Shifting some of the vertices of S on the left results in the geometry on the right,

which contains an additional region in the upper right corner since no edge connects this

grid node to the larger blue region.

Figure 3.13: Connected regions. (Left) The surface partitions the background grid into

contiguous regions. (Middle) The exterior regions are removed. (Right) The volumetric

extension VS is shown, along with the negatively signed vertices in green. Multiple geomet-

rically coincident vertices are indicated using blue circles with green centers.

41



Figure 3.14: Copy counting. The two regions from Figure 3.13 having multiple copies are

shown. Each copy is displayed with its corresponding connected component of vertices with

negative sign.

Figure 3.15: Edge cut criterion. Grid nodes xi of a region are shown, along with two

examples showing that adjacent grid nodes may have their common edge cut by a triangle

(cut edges are indicated by the dashed yellow lines). In this case, adjacencies are not built

between the corresponding vertices in VjI ,0
i to avoid unwanted sewing.
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Figure 3.16: Preliminary merge. The construction of the volumetric extension VS may

result in geometrically coincident vertices which do not come from topologically distant parts

of the mesh. Green vertices have negative signs, while purple vertices have positive sign.

Above: The process in Section 3.5.1 merges these vertices into a single vertex. Below: We

do not merge coincident positive vertices, to avoid unnecessarily sewing the exterior.
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Figure 3.17: Vertex adjacency. The merge process between vertices of VjI ,c and CjIc . For

the cell highlighted in yellow, there are 2 hexahedra from VjI ,c and therefore 4 pairs of

geometrically coincident vertices. The two negatively signed vertices (in green) from CjIc are

matched to the vertices which came from an interior connected component (marked in cyan)

and not the ones which did not (marked in pink).

Figure 3.18: Merge with boundary. We illustrate the process of Section 3.5.1 following

the preliminary merge of negatively signed vertices. First, specific vertices of VjI ,c are merged

with vertices of CjIc . Next, hexahedra to be replaced are removed from the VjI ,c. Finally,

copies of hexahedra from VS are added to this mesh.
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Figure 3.19: Overlap lists. A closeup of the overlap region from the geometry of Figure

3.17 is shown here. At the upper left, the seeds for the overlap between the two copies are

shown in purple, as well as the incident negative vertices (green) to the seeds from each copy.

At each step, the current seed is marked with a cyan border. New geometrically coincident

neighbors of the seed hexahedra are then added in the next step. When all seeds have been

traversed, the process stops.

Figure 3.20: Deduplication. We show two of the four copies of the central region (yellow),

corresponding to the right and left segments of VS. Each of copies 0 and 1 create an overlap

list with the upper region (blue). The overlap list for copy 0 creates a pair between a

non-boundary yellow hexahedron and a boundary hexahedron from the blue region. This

boundary hexahedron is in a pair with a boundary hexahedron of copy 1, allowing us to

deduce that copies 0 and 1 of the yellow region are duplicates. We then repeat the boundary

merge process to create a deduplicated copy with complete boundary information.
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Figure 3.21: Coarsening. An example of fine mesh connections. Hexahedra 0 and 1 are

totally connected, while hexahedra 1 and 2 are connected by a face. After merging the

vertices of the coarse mesh (blue), the duplicated hexahedron (indicated in red) is removed.

Figure 3.22: Hexahedra tetrahedralization. (Left) a standard interior face in V . The

centers of the two incident hexahedra are combined with two face vertices to form the

tetrahedra (red). (Middle) a standard boundary face uses a face center instead of the missing

incident hexahedron center. (Right) a non-standard interior face is shown. The right-most

incident hexahedra are geometrically coincident. We form hexahedra pairs/faces (0,1), (0,2)

and treat them respectively as standard interior, as in the left-most image.
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(a) Frame 0 (b) Frame 11 (c) Frame 27 (d) Frame 60

Figure 3.23: A self-intersecting shape is suspended from a ceiling. The geometry deforms

under gravity, and both sides freely move regardless of the initial overlap.

(a) Frame 0 (b) Frame 14 (c) Frame 59 (d) Frame 74

Figure 3.24: A ribbon with a more complicated initial self-intersection is also treated properly

by our method.
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(a) Frame 0 (b) Frame 8 (c) Frame 21 (d) Frame 92

Figure 3.25: A face with multiple boundary components and initially self-intersecting lips is

successfully animated.

(a) Frame 4 (b) Frame 9

(c) Frame 33 (d) Frame 48

Figure 3.26: Simple self-intersecting 3D geometries are able to separate and unfurl with our

algorithm.

48



(a) Frame 0

(b) Frame 20 (c) Frame 44

(d) Frame 78 (e) Frame 110

Figure 3.27: Two intersecting Möbius-strip-like geometries (pink) naturally fall and separate

under our method. The associated hexahedron meshes are shown in the right half of each

frame.
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(a) Frame 0

(b) Frame 16 (c) Frame 33

(d) Frame 84 (e) Frame 115

Figure 3.28: Running the example shown in Figure 3.27 at different spatial resolutions. In

each frame, from left to right, the background grids have ∆x = 0.556, 0.278, and 0.139.
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(a) Frame 0 (b) Frame 100

(c) Frame 200 (d) Frame 300

Figure 3.29: A complex mesh of a dragon is allowed to fall under gravity. The left-hand side

of each subfigure shows the deforming mesh we generate, and each right-hand side shows the

corresponding surface mesh.
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(a) Frame 20 (b) Frame 35

(c) Frame 45 (d) Frame 80

Figure 3.30: Several ball-like geometries with intricate slices and holes are successfully

meshed with our algorithm and then deform and collide under an FEM simulation.
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(a) Frame 60 (b) Frame 80

(c) Frame 100 (d) Frame 200

Figure 3.31: We simulated dropping our 3D examples into a box with a FEM sim.
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(a) Initial State (b) Separation

Figure 3.32: Our method can successfully separate the torus and bristle geometry proposed

in [SJP13].
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CHAPTER 4

Primal Extended Position Based Dynamics for

Hyperelasticity
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Figure 4.1: 30 Objects Dropping (left). Our Blended PXPBD (B-PXPBD) approach

robustly handles large elastic deformations. FEM Residual Comparison (right). B-

PXPBD and FP-PXPBD reduce the backward Euler residual while XPBD stagnate in a

representative step of a hyperelasticity simulation.
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4.1 Methods

4.1.1 Equations

We consider implicit time stepping methods for integrating the FEM-discretized partial

differential equations (PDEs) describing momentum balance with hyperelastic materials

M
∂2x

∂t2
= −∂PE

∂x
+ f ext, PE(x) =

∑
e

Ψ(Fe(x))V e. (4.1)

HereM ∈ R3Np×3Np is a lumped (diagonal) mass matrix, x ∈ R3Np are the deformed positions

of the FEM mesh and the potential energy PE in the system is related to the hyperelastic

potential energy density as Ψ. We use linear interpolation over tetrahedron (3D) or triangle

(2D) meshes in our FEM formulation. V e is the volume (3D) or area (2D) of the undeformed

eth element arising from the piecewise constant terms in an integrands associated with linear

interpolation. f ext are external forces (gravity etc.). The hyperelastic potential Ψ is a

function of the deformation gradient in the eth element (Fe) which is related to deformed

positions as

Fe
αβ(x) =

∑
i

xiα
∂Ni

∂Xβ

(Xe) (4.2)

where Ni are the piecewise linear interpolation functions in the FEM formulation and Xe is

the centroid of the undeformed element. We refer the reader to the Bonet and Wood [BW08]

and Barbič and Sifakis [SB12] for more details.

4.1.1.1 Hyperelastic Energy Density

The hyperelastic potential defines the constitutive response of the material. We demonstrate

our method with the fixed corotated potential from Stomakhin et al. [SHS12]

Ψcor(F) = µ|F−R(F)|2F +
λ

2
(det(F)− 1)2. (4.3)

Here R(F) is the closest rotation to F which we compute from the polar singular value

decomposition [GFJ16] and µ and λ are the Lamé coefficients. XPBD assumes that the
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potential is of the form

PE(x) =
∑
c

1

2
Cc(x)

1

ac
Cc(x) (4.4)

The corotated potential Ψcor can be adapted to this from in terms of the following constraints

(in element) on the deformation gradient

Ĉ1(F) = |F−R(F)|F , Ĉ2(F) = det(F)− 1. (4.5)

The gradient of Ĉ1 is not defined when F = R(F) (a common occurrence) and we use the

modification C̃1 =

√
Ĉ2

1 + ϵ, where ϵ is an arbitrary positive constant to ensure that the gra-

dient is always defined. We use constraints Ce
1(x) = C̃1(F

e(x)) and Ce
2(x) = Ĉ2(F

e(x)) with

weighting µ and λ respectively (in element e). This is equivalent to using the hyperelastic

potential Ψcor + ϵ so it produces the same behavior as the corotated model.

We also demonstrate our method with an anisotropic model for muscle contraction (see

Figure 4.4). Here the potential is

Ψaniso(F) = Ψcor +
σmax

λofl

(fa + αactfp) (4.6)

where the parameter αact ∈ [0, 1] controls the degree of active contractile tension and fa and

fp are based on the anisotropic fiber terms in Blemker et al. [BPD05]. More specifically, fa

and fp are computed as the following:

fp =


0.0076λofle

6.6( le

λofl
−1) − 0.05(le − λofl) le > λofl

0 otherwise

(4.7)

fa =



0 le ≤ 0.4λofl

3λofl(
le

λofl
− 0.4)3 0.6λofl > le > 0.4λofl

−0.6612λofl + le − 1.33λofl(
le

λofl
− 1)3 1.4λofl ≥ le ≥ 0.6λofl

0.6774λofl + 3λofl(
le

λofl
− 1.6)3 1.6λofl ≥ le ≥ 1.4λofl

0.6774λofl le > 1.6λofl

(4.8)

where le = Feve and ve is the fiber direction of the element e.
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Figure 4.2: Equal Budget Comparison. From left to right: Newton (converged), Newton,

FP-PXPBD, B-PXPBD, XPBD. With a limited budget, XPBD-style methods are stable,

whereas the Newton’s method suffers from instability. Frame 0, 10, 60 are shown in the

figure.

4.1.1.2 Implicit Time Stepping

We consider both backward Euler and quasistatic time stepping schemes

M

(
xn+1−xn

∆t
− vn

∆t

)
= −∂PE

∂x
(xn+1) + f ext. (4.9)

Here xn,vn represent the time tn = n∆t position and velocities. Quasistatic time stepping is

the same but with the left hand side of Equation (4.9) replaced with 0. Note that we also may

constrain some vertices xn
i , 0 ≤ i < Np in practice to enforce boundary conditions and these

equations are removed from Equation (4.9), however we omit the explicit representation of

this for concise exposition.

4.1.2 XPBD

Macklin et al. [MMC16] solve Equation (4.9) with the introduction of a Lagrange multiplier

λc associated with each constraint Cc. They assume the potential energy gradient is of the

form

∆t2
∂PE

∂xiα

= −
∑
c

∂Cc

∂xiα

(x)λc (4.10)
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where they introduce λc = −∆t2

ac
Cc as an additional unknown which converts Equation (4.9)

into the system

g(xn+1,λ) = M
(
xn+1 − x̃

)
−
∑
c

λT
c∇Cc(x

n+1) = 0 (4.11)

h(xn+1,λ) = C(xn+1) +
A

∆t2
λ = 0. (4.12)

Here x̃ = xn+∆t(vn+M−1f ext) are the positions updated under the influence of inertia and

external forces, λ is the vector of all Lagrange multipliers and A is a diagonal matrix with

entries equal to ac. The solution is approximated iteratively with xn+1
k and λk denoting the

kth iterates. g(xn+1
k ,λk) is used to denote the residual of the position (primary) unknowns

and h(xn+1
k ,λk) to denote the residual of the Lagrange multiplier (secondary) unknowns.

XPBD uses a nonlinear Gauss-Seidel procedure based on the linearization M+
∑

c λck
∂2Cc
∂x2 (xn+1

k ) −∇CT
c (x

n+1
k )

∇C(xn+1
k ) A

∆t2

 ∆xk+1

∆λk+1

 = −

 g(xn+1
k ,λk)

h(xn+1
k ,λk)

 . (4.13)

In XPBD, the red terms are omitted to enable the update(
CT (xn+1

k )M−1C(xn+1
k ) +

A

∆t2

)
∆λk+1 = −h(xn+1

k ,λk) (4.14)

∆xk+1 = M−1∇C(xn+1
k )∆λk+1. (4.15)

Furthermore, Equation (4.14) is updated in a Gauss-Seidel fashion where the dth Lagrange

multiplier is updated via

∆λ̃k+1d =
−hd(x

n+1
k , λkd)

∇CT
d (x

n+1
k )M−1∇Cd(x

n+1
k ) + ad

∆t2
λkd

, λk+1d = λkd +∆λ̃k+1d. (4.16)

Note that we distinguish ∆λ̃k+1d in Equation (4.16) from from ∆λk+1d in Equation (4.14)

since only one one step of Gauss-Seidel iteration is performed on the linear system. Then

the positions associated with the constraint are updated via Equation (4.15) to create

xn+1
k+1 = xn+1

k +M−1∇Cd(x
n+1
k )∆λ̃k+1d. (4.17)

The system (Equations (4.11)-(4.12)) is then re-linearized (Equation (4.13)) and the process

(Equations (4.16)-(4.17)) is repeated iteratively.
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4.1.3 Primary residual XPBD (PXPBD)

The motivation for the omission of the residual and constraint Hessian terms (red) in Equa-

tion (4.13) is natural. The constraint Hessian is non-diagonal and its retention would pre-

clude the decoupling of primary variables from the Lagrange multipliers in Equation (4.14).

Furthermore, the primary residual term g(xn+1
k ,λk) requires more floating point operations

and generally a gather operation for efficient parallel evaluation. As Macklin et al. [MMC16]

point out, the initial guess of λ0 = 0 and xn+1
0 = x̃ means that g(xn+1

0 ,λ0) = 0. However,

its omission is harder to justify in latter iterates, though Macklin et al. [MMC16] argue that

it is justified when the constraint gradients vary slowly and further that its omission makes

the approach similar to that of Goldenthal et al. [GHF07]. While omission of secondary

information is commonly done in quasi-Newton approaches, we observe that omission of

the primary residual terms can lead to stagnation in residual reduction (see Figure 4.3(a)).

Unfortunately, we also notice that inclusion of this term can cause XPBD to lose its favor-

able stability properties (see Figure 4.3(b)). We note though that if the global system in

Equation (4.13) is solved with sufficient accuracy (e.g. with a Krylov method and without

omission of the red terms), then stability and residual reduction can be achieved, however

this is more costly than Newton’s method for Equation (4.9) since the system size is larger

with the inclusion of the λ unknowns.

4.1.3.1 Blended Primal XPBD (B-PXPBD)

We believe that the stability of XPBD is due to the omission of this primary residual term

g(xn+1
k ,λk). We observe that this omission can be done without any error if the position

update is chosen to guarantee that the primary residual is zero. This can be done by solving

Equation (4.11) for xn+1
k+1 with λk+1 fixed after the update (of a single Lagrange multiplier

λk+1d) in Equation (4.16). We again note that in this context, the Lagrange multipliers λk+1

are similar to stresses. Indeed as the ac are taken to infinity we can see similarities between
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Figure 4.3: (a) Primal Residual Comparison: Stagnation. While XPBD reliably

reduces the secondary residual, its omission of the primary residual in the linearization

causes its primary residual to stagnate, making its true (Newton) residual stagnate as well.

(b) Primal Residual Inclusion: Instability. XPBD is unstable when the primal residual

term is not omitted.

Equations (4.11)-(4.12) and the discretized equations for incompressible fluids and for finite

values of ac the formulation is similar to the compressible formulations in Stomakhin et al.

[SSJ14] and Kwatra et al. [KGF10]. Therefore, the process of solving Equation (4.11) for

xn+1
k+1 with λk+1 fixed is akin to solving for the change in positions given a fixed stress state

(that does not depend on positions).

Unfortunately, solving Equation (4.11) for xn+1
k+1 is complicated by the dependence of

the constraint gradient ∇C(xn+1
k+1) on positions and solving it accurately would be nearly as

difficult as solving the original system in Equation (4.9). Furthermore, this dependence of

the constraint gradient on positions means changing the stress in one constraint propagates

61



to changes in positions in adjacent constraints and therefore throughout the mesh. For

example if fixed point iteration were used to solve for xn+1
k+1 given λk+1 where the only change

to λk was in a single constraint d (as in Equation (4.16)), then first only the positions of

the vertices in the constraint would be changed, but then in the second iteration, any other

constraint gradients with dependence on these positions would change, and all positions

associated with those constraints would change, and so on. This would quickly become

computationally inefficient, however performing one iteration results in an update that only

changes the positions involved in the constraint associated with the Lagrange multiplier

update in Equation (4.16)

xn+1
k+1 = x̃+

∑
c

λkcM
−1∇Cc(x

n+1
k ) +M−1∇Cd(x

n+1
k )∆λ̃k+1d. (4.18)

Note that when the residual g(xn+1
k ,λk) = 0 is zero this update coincides with that of Equa-

tion (4.15). We found that even using this first fixed point iterate was enough to improve

residual reduction, however we also found that it reduced the stability compared to Equa-

tion (4.15). We remedy this by taking a linear combination of the updates in Equations (4.15)

and (4.18)

xn+1
k+1 = ζ

(
M−1∇Cd(x

n+1
k )∆λ̃k+1d

)
+ (1− ζ)∆xfp

k+1 + xn+1
k (4.19)

∆xfp
k+1 = x̃+

∑
c

λkcM
−1∇Cc(x

n+1
k ) + ∆λ̃k+1dM

−1∇Cd(x
n+1
k )− xn+1

k . (4.20)

The parameter ζ can usually chosen to be 0.5. We increase it if we observe instability and

raise it if we see residual stagnation.

4.1.3.2 Implementation

Blended P-XPBD can be implemented as a small modification to XPBD. At themth iteration,

we store ∆xtotal
d =

∑
k<m∆xkd at the dth constraint where

∆xkd = ζ
(
M−1∇Cd(x

n+1
k )∆λ̃kd

)
+ (1− ζ)∆xfp

k . (4.21)
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Then we can obtain ∆xfp
k easily by

∆xfp
k = λkdM

−1∇Cd(x
n+1
k )−∆xtotal

d . (4.22)

Pseudo-code similar to that of XPBD in Macklin et al. [MMC16] is provided in Algorithm

1.

ALGORITHM 1: B-PXPBD Simulation Loop

Initialize ∆xtotal
d = 0.

while not reached maximal iterations do

for constraint d do

1. Compute ∆λ̃kd as in Equation 4.16. ;

2. Compute ∆xfp
k using Equation 4.22. ;

3. Update xn+1 using Equation 4.20. ;

4. Update λk+1d using Equation 4.16. ;

5. Update ∆xtotal
d ← ∆xtotal

d +∆xkd;

end

end

Figure 4.4: Muscle Box Activation. A rectangular bar with both ends clamped falls under

gravity. Two seconds later, the muscle box is activated and contracts along the horizontal

direction. The level of activation is shown on the right side of the images. t = 0.0333, 1.2, 2.9

seconds are shown in the footage.
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ALGORITHM 2: FP-PXPBD Simulation Loop

while not reached maximal iterations do

for element e do

while not converged or reached maximal iterations do

begin Solve Newton system

1. Compute Newton residual via Equation (4.29);

2. Compute be
k+1l via Equation 4.33;

3. Compute δFe
k+1l via Equation 4.34 with the approximation in

Equation 4.48;

4. Compute δxe
k+1l as in Equation 4.32 ;

5. Update the nodes on the element with xn+1
iek+1l+1 = xn+1

iek+1l + δxe
iek+1l;

6. Update Pe
k+1l+1 =

∂Ψ
∂F

(Fe(xn+1
iek+1l+1));

end

end

end

end

4.1.3.3 First Piola-Kirchhoff Primal XPBD (FP-PXPBD)

Noting that the auxiliary Lagrange multiplier variables are similar to stresses, we observe

some convenient properties that arise from choosing an alternative stress measure in an

analogous primary/secondary formulation of Equation 4.9. In a general FEM-discretized

hyperelastic formulation (see Barbič and Sifakis [SB12]), the potential energy gradient has

the expression

∂PE

∂xiα

(x) =
∑
e,β,γ

Pβγ(F
e(x))δαβ

∂Ni

∂Xγ

(Xe)V e (4.23)

where δαβ is the Kronecker delta tensor and P = ∂Ψ
∂F

is the gradient of the hyperelastic

potential energy density with respect to the deformation gradient. This is the first Piola-
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Kirchhoff stress [BW08]. If we introduce it as an unknown (analogous to λc), then tensor

Be
iαβγ = δαβ

∂Ni

∂Xγ
(Xe)V e is analogous to the ∇Cc terms in XPBD since they convert the

auxiliary (stress) terms to force in the expression in Equation (4.10). With this formulation,

an analogous method consists of

g(xn+1,Pn+1) = M
(
xn+1 − x̃

)
+∆t2BP = 0 (4.24)

he(xn+1,Pn+1) =
∂Ψ

∂F
(Fe(xn+1))−Pe = 0. (4.25)

Note that with this expression, the tensor B does not depend on the positional unknowns

xn+1. In contrast, the analogous expression ∇C(xn+1) in Equations (4.11) does have this

dependence, and it is precisely this issue that leads to the red terms in the linearization in

Equation (4.13). Therefore, a formulation based on Equations (4.24) and (4.25) rather than

Equations (4.11) and (4.12) will automatically satisfy the constraint that g = 0 at each

Gauss-Newton iteration and will not require the omission of the constraint Hessian since it

is exactly zero. We adopt this strategy and iteratively solve Equations (4.24) and (4.25)

for primary position unknowns xn+1
k and secondary element stresses Pe

k in a Gauss-Seiedel

manner analogous to that of the original XPBD. We observe that this retains the favorable

stability properties of XPBD, while allowing for accurate residual reduction and application

to arbitrary hyperelastic constitutive models.

This approach shifts the difficulty from the primary Equation (4.24) to the secondary

Equation (4.25). It is trivial to maintain a zero primary residual, which simply requires

plugging the current guess for the element stresses Pk into Equation (4.24) to define the

current guess for xn+1
k . We update this guess iteratively by solving for the positions xn+1,e

k+1

in element e that satisfy Equation (4.25). This is equivalent to solving the nonlinear system

equations for one element with the stresses in all adjacent elements held fixed, with their

dependence on the element positions ignored. We use Ωe to denote set of the mesh vertices
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ie in element e and solve

Me(xn+1,e
k+1 − x̃e) + ∆t2BePe

k+1 = f e (4.26)

∂Ψ

∂F
(Fe(xn+1

k+1))−Pe
k+1 = 0 (4.27)

where f e
ieαk = ∆t2(f ext

ieα −
∑

ẽ̸=e,γ,δ B
ẽ
ieαγδP

ẽ
kγδ), f

ext is the external force. In index notations

Equation 4.26 can be written as:

∑
je,β

miejeδαβ
(
xn+1
k+1jeβ − x̃jeβ

)
+∆t2

∑
γ,δ

Be
ieαγδP

e
k+1γδ = f e

ieαk (4.28)

Here Equation (4.27) can be satisfied trivially by setting Pe
k+1 = ∂Ψ

∂F
(Fe(xn+1

k+1)). With this

simplification, Equations (4.27)-(4.28) can be rewritten as

Me(xn+1,e
k+1 − x̃e) + ∆t2Be∂Ψ

∂F
(Fe(xn+1,e

k+1 ))− f e = 0 (4.29)

where M e
ieαjeβ = mieδiejeδαβ is portion of the mass matrix (where mie is the mass of node ie)

composed of entries only in the element and xn+1,e
k and x̃e are extractions of element-wise

positions from xn+1
k and x̃ respectively. Note that ∂Ψ

∂F
(Fe(xn+1

k+1)) =
∂Ψ
∂F

(Fe(xn+1,e
k+1 )) since the

element deformation gradient only depends on the nodes of the element. Lastly, Be has

entries Be
ieαγδ = δαγ

∂Nie

∂Xδ
(Xe)V e from Equation (4.23).

We use Netwon’s method to solve Equation (4.29). xn+1,e
iek+1l denotes the l

th iteration of the

local Newton procedure for computing the k + 1th global iteration, which modifies the nodes

ie of element e. These nodes are updated in Newton’s method as xn+1,e
iek+1l+1 = xn+1,e

iek+1l+δxe
iek+1l.

To solve for δxe
iek+1l, we make the following approximation:

∂Ψ

∂F
(Fe(xn+1,e

k+1l+1)) ≈
∂2Ψ

∂F2
(Fe(xn+1,e

k+1l )) : δF
e
k+1l +Pe

k+1l (4.30)

and solve the system

Meδxe
k+1l +∆t2Be∂

2Ψ

∂F2
(Fe(xn+1,e

k+1 ))δFe
k+1l = −gk+1l (4.31)
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where ge
k+1l = Me(xn+1,e

k+1l − x̃e) + ∆t2Be ∂Ψ
∂F

(Fe(xn+1,e
k+1l )) − f e. This is a linear system of size

12× 12 (6× 6 in 2D). To reduce the size of the system, we use an affine basis for the change

in positions determined by a Newton step:

δxe
iek+1l = δFe

k+1l(X
e
ie −Xe

com) + be
k+1l (4.32)

where δFe
k+1l are distortional degrees of freedom in the element, be

k+1l are translational

degrees of freedom and Xe
com is the center of mass of the element in the undeformed con-

figuration. Similarly, Xe
ie refer to the undeformed positions of the vertices in the element.

Distortional and translational degrees of freedom can be decoupled for more efficient solu-

tion. This can be seen by first summing over ie ∈ Ωe in Equation 4.31 and noting that∑
ie∈Ωe Be

ieαγδ = 0 (when the interpolating functions Nie satisfy the partition of unity prop-

erty) ∑
ie,je,β

Mieαjeβδx
e
jeβk+1l

+
∑

ie,γ,δ,σ,ν

∆t2Be
ieαγδ

∂2Ψ

∂Fγδ∂Fσν

(Fe(xn+1,e
k+1l ))δF

e
σνk+1l =∑

ie

mieδx
e
ieαk+1l.

Next, by defining tensor De
ieαϵτ = δαϵ(X

e
ieτ−Xeτ

com) relating the original variables to the affine

with δxe
ieαk+1l =

∑
ϵ,τ D

e
ieαϵτδF

e
ϵτk+1l + beαk+1l we see that∑

ie

mieδx
e
ieαk+1l =

∑
ie,ϵ,τ

mieD
e
ieαϵτδF

e
ϵτk+1l +

∑
ie

mieb
e
αk+1l

=
∑
τ

(meX
e
τcom −meX

e
τcom)δF

e
ατk+1l +meb

e
αk+1l = meb

e
αk+1l

where me =
∑

ie∈Ωe mie is the element mass and the undeformed element center of mass is

defined as Xe = 1
me

∑
ie mieXie . Therefore the translational degrees of freedom can easily be

obtained from

be
k+1l =

−1
me

∑
ie∈Ωe

giek+1l. (4.33)
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Once the translational component be
k+1l is determined from Equation (4.33), we multiply

Equation 4.31 on the left side by DeT to reveal a decoupled system of equations for the

distortional degrees of freedom δFe
k+1l(

M̃e +∆t2V e∂
2Ψ

∂F2
(Fe(x

n+1
k+1l))

)
δFe

k+1l = −Ge
k+1l (4.34)

where

Ge
ηνk+1l =

∑
ie,α

De
ieαην

(
gieαk+1l +mieb

e
αk+1l

)
(4.35)

M̃ e
ηνϵτ =

∑
ie,je,α

De
ieαηνM

e
ieαjeβD

e
jeαϵτ . (4.36)

For efficiency note that the matrix M̃e is block diagonal with the structure M̃ e
αβγδ = δαγM̂

e
βδ,

where interestingly M̂e =
∑

ie mie(Xie−Xe
com)(Xie−Xe

com)
T is the affine inertia tensor used

in [JSS15]. This can be seen from

M̃ e
ηνϵτ =

∑
ie,je,α,β

De
ieαηνmieδiejeδαβD

e
jeβϵτ

=
∑

ie,je,α,β

δαη(X
e
ieν −Xe

νcom))mieδiejeδαβδαϵ(X
e
jeτ −Xe

τcom))

= δηϵ
∑
ie

mie(X
e
ieν −Xe

νcom)(X
e
ieτ −Xe

τcom).

However note that unlike in [JSS15] , the matrix M̂e is not in general diagonal.

4.1.3.4 Partition of unity and reproduction of linear functions

We note that the expression in Equation 4.34 relies on the identity DTB = V eI. This

can be shown when the interpolating functions Ni form a partition of unity
∑

i Ni = 1 and
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reproduce linear functions as X =
∑

iXiNi(X). In particular, we show

(DTB)ϵτβν = De
ieαϵτB

e
ieαβν (4.37)

=
∑
ie,α

δαβδαϵ(X
e
ieτ −Xe

τcom)
∂Nie

∂Xν

(Xe)V e (4.38)

= δϵβV
e
∑
ie

(Xe
ieτ −Xe

τcom)
∂Nie

∂Xν

(Xe) (4.39)

= δϵβV
e(
∑
ie

∂Nie

∂Xν

(Xe)Xe
ieτ −

∑
ie

∂Nie

∂Xν

(Xe)Xe
τcom) (4.40)

= δϵβV
e(
∑
ie

∂Nie

∂Xν

(Xe)Xe
ieτ − (

∑
ie

∂Nie

∂Xν

(Xe))Xe
τcom) (4.41)

= δϵβV
e(
∑
ie

∂Nie

∂Xν

(Xe)Xe
ieτ −

∂(
∑

ie Nie)

∂Xν

(Xe)Xe
τcom) (4.42)

= δϵβV
e(
∑
ie

∂Nie

∂Xν

(Xe)Xe
ieτ −

∂1

∂Xν

(Xe)Xe
τcom) (4.43)

= δϵβV
e
∑
ie

∂Nie

∂Xν

(Xe)Xe
ieτ (4.44)

= V eδϵβδτν . (4.45)

4.1.3.5 Quasi-Newton

In general, solving Equation (4.34) for the distortional δFe
l requires the solution of a 9 × 9

linear system (4 × 4 in 2D). However, we generally know (or can compute with minimal

effort) the eigen decomposition of ∂2Ψ
∂F2 (Fe(x

n+1,e
k+1l )) [TSI05, SGK19]. Since M̃e is constant

and block diagonal, its inverse can be precomputed with minimal storage and the inverse of

M̃e + ∆t2 ∂
2Ψ

∂F2 (Fe(x
n+1
k+1l)) can be approximated using the Sherman-Morrison rank-1 update

formula [Hag89]. However, if all eigen modes are used, this computation can be costly. We

therefore use just a few modes in a quasi-Newton strategy, where the cost of the slow down

in Newton convergence must be balanced against higher computational time per iteration,

brought by using more modes in the Sherman-Morrison formula. In the case of the corotated
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model, we can use

∂2Ψ

∂F2
(Fe) = 2µI+ 2µ

∂R(F)

∂F
+ λ

∂ det(Fe)

∂Fe
⊗ ∂ det(Fe)

∂Fe
(4.46)

+ λ det(Fe)
∂2 det(Fe)

∂(Fe)2
(4.47)

≈ 2µI+ λ
∂ det(Fe)

∂Fe
⊗ ∂ det(Fe)

∂Fe
(4.48)

where I is the 9×9 (4×4 in 2D) identity matrix. Note the term 2µ∂R(F)
∂F

+λ det(Fe)∂
2 det(Fe)
∂(Fe)2

is

omitted in the approximation. With this approximation, we can use the Sherman-Morrison

formula for (
M̃e +∆t2V e∂

2Ψ

∂F2
(Fe(x

n+1
k+1l))

)−1

≈ Ze − Ze (We ⊗We)Ze

1 +We : (ZeWe)
(4.49)

where We = ∂ det(Fe)
∂Fe and Ze = (M̃e + 2V e∆t2µI)−1. Note that Ze is constant and has the

same symmetric block diagonal structure as M̃e so its inverse can be precomputed and stored

with only 6 floats (3 in 2D).

While the procedure outlined in Section 4.1.3.5 requires some elaborate notation, we note

that it is effectively a standard Newton’s method for FEM-discretized hyperelasticity on a

single element. The only difference is that the stresses from the neighboring elements do

not change when the element nodal positions change. This is inherent in the introduction

of the stresses Pe as additional variables in Equations (4.24)-(4.25). The stresses from

the neighboring elements just contribute forces that effect the right hand side of the Newton

procedure, but not the matrix in the linearization. We summarize the process in Algorithm 2.

In general, we run with 1-5 Newton iterations. As discussed in Section 4.1.3.5, with our

novel approximation of the Hessian, the cost of solving the linear system becomes trivial.

The major cost of the computation time for both XPBD and FP-PXPBD is computing the

singular value decomposition of Fe. As shown in Section 4.3.1, 4.3.2, 4.3.3 and 4.3.4 the

speed of FP-PXPBD is comparable to XPBD.
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Figure 4.5: Triangle Mesh Coloring. A step-by-step illustration of coloring a mesh in

2D is shown. Each node registers the colors used by its incident triangles. We go over each

triangle to determine its color as the minimal color unregistered by its incident nodes. All

its incident nodes then register the triangle’s color as used.

4.2 Parallelism

Computation of the element-wise updates must be done in parallel for optimal efficiency.

Even though we use a Gauss-Seidel (as opposed to Jacobi) approach, we can achieve this

with careful ordering of element-wise updates. This was discussed by Macklin and Müller

[MM21], however their approach is limited to tetrahedral meshes created from hexahedral

meshes. We provide a simple coloring scheme that works for all tetrahedron meshes. The

coloring is done so that elements in the same color do not share vertices and can be updated

in parallel without race conditions. For each vertex xi in the mesh we maintain a set Sxi

that stores the colors used by its incident elements. For each mesh element e, we find the

minimal color that is not contained in the set ∪xie∈eSxie
. Then, we register the color by

adding it into Sxie
for each xie in element e. This coloring strategy does not depend on the
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topology of the mesh and requires only a one-time cost at the beginning of the simulation.

The process is illustrated in Figure 4.5.

For the grid-based variation mentioned in Section 4.3.5, we do a similar process as the

coloring scheme for the mesh, except the incident points of an element are now a subset of

the grid nodes. Since the particle positions are interpolated by grid nodes, an element would

be incident to all the grid nodes that interpolate to its incident particles on the mesh. So for

each element, we choose its color as the the color with the least color index such that it is

not yet registered by the incident grid nodes. The process is illustrated in Figure 4.6. Since

grid nodes incident to an element change every timestep, the elements have to be recolored

every timestep. We speed up the coloring process by using the coloring results from previous

timestep as an initial guess. We note that Fratarcangeli et al. [FVP16] develop a randomized

and effective ordering technique that could be used here as well.

Table 4.1: Timing Comparisons: runtime is measured for each frame (averaged over the

course of the simulation). Each frame is run after advancing time .033.

Example # Vertices # Elements. XPBD Runtime B-PXPBD Runtime FP-PXPBD Runtime XPBD # iter B-PXPBD # iter FP-PXPBD # iter

Residual Reduction (Figure 4.3(b)) 4K 17K 200ms 200ms 216ms 40 40 40

Equal Budget Comparison (Figure 4.2) 33K 149K 210ms 210ms 200ms 7 7 5

XPBD Hyperelastic (Figure 4.7) 4K 17K 22ms - 44ms 4 - 4

XPBD Neohookean (Figure 4.8) 4K 17K 795ms - 345ms 400 - 40

Simple Muscle (Figure 4.4) 5k 20k - - 160ms - - 4

4.3 Examples

We demonstrate our methods in a variety of representative scenarios with elastic deforma-

tion. Our approach has comparable computational complexity to XPBD, so we only provide

limited run-time statistics in Table 4.1. Examples run with the corotated model (Equa-

tion 4.3) use the algorithm from [GFJ16] for its accuracy and efficiency. All the examples

were run on an AMD Ryzen Threadripper PRO 3995WX CPU with 64 cores and 128 threads.

In each of the examples, we compute the mass mi of node xi from a user-specified density
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Figure 4.6: Grid-based Mesh Coloring. A step-by-step grid-based simplex mesh coloring

scheme for 2D is shown. The illustration assumes the grid uses linear interpolation where

interpolation over a cell only requires the 4 grid nodes on its corners. An element can have

at maximum 12 incident grid nodes. After the first element is colored green, 9 grid nodes

that are incident will register green as a used color. The elements incident to those nodes

then cannot be labeled green.

73



ρ. We denote I to be the set of elements that contain node i. We define

mi =
∑
e∈I

V eρ

ne

(4.50)

Then the mass matrix is set with Miαjβ = δijδαβmi. We compute Lamé parameters µ and λ

with Poisson ratio ν and Young’s modulus E. They are computed as following:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
(4.51)

For all the examples in this paper we set Poisson ratio ν = 0.3 and density ρ = 10.

4.3.1 Residual Comparison

We compare the residual reduction between XPBD, B-PXPBD and FP-PXPBD. Figure

1 (right) shows the residual reduction in a representative time step of a simple elasticity

simulation. While B-PXBD and FP-PXBD continually reduce the nonlinear backward Euler

residual, XPBD stagnates. Note that XPBD effectively reduces the auxiliary residual, but

not the primary residual and that it makes rapid initial progress when the omission of

the primary residual is well-justified. The example setup is the same as the one shown in

Figure 4.3(b). B-PXPBD has blending parameter ζ = 0.5.

4.3.2 Equal Budget Comparison

In Figure 4.2 we compare methods when simulated with a restricted computational budget.

At the left we show Newton’s method run to full-convergence (residual of Equation (4.9) less

than 1e−8), which is computationally expensive. Then, we compare (from left to right) New-

ton’s method, FP-PXPBD, B-PXPBD and XPBD when only allowed 200ms of computation

time per frame. Newton’s method is remarkably unstable, but the XPBD-style methods are

stable and visually plausible. Here we fix the left side of the tetrahedron mesh created from

a 32× 32× 32 grid and apply gravity. The Young’s modulus is E = 1000 and the time step

is ∆t = 0.01. B-PXPBD has blending parameter ζ = 0.1.
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4.3.3 XPBD Hyperelastic

In this example we demonstrate that XPBD is incapable of dealing with certain hyperelastic

models. The top bar is simulated with XPBD and the corotated model, where the constraint

is reformulated as Ce(x) =
√

Ψcor(Fe). The middle bar is simulated with FP-PXPBD and

the bottom bar XPBD as formulated in Equation (4.5). As demonstrated in Figure 4.7,

the top bar becomes unstable after a couple of time steps. The reformulation at the top is

a simple means of addressing general hyperelasticity with a XPBD formulation, however it

does not behave stably. For this example we take a rectangular mesh and clamp both ends

which are then stretched and then squeezed. We set Young’s modulus as E = 1e4 and time

step ∆t = 0.01.

XPBD
Hyperelastic

FP-PXPBD

XPBD

XPBD
Hyperelastic

XPBD
Hyperelastic

FP-PXPBD FP-PXPBD

XPBD XPBD

Figure 4.7: XPBD Hyperelastic. Defining the XPBD constraint as the square root of the

hyperelastic potential is not stable (top). Results at frame 0, 10, 30 are shown.

4.3.4 XPBD Neohookean

In this example we compare XPBD and FP-PXPBD when used with the Neo-Hookean model

proposed in Macklin et al.[MM21]. We generalize the low-rank approximation to the Hessian

from Equation 4.48 to this model as

∂2Ψ

∂F2
(Fe) ≈ µI+ λ

∂ det(Fe)

∂Fe
⊗ ∂ det(Fe)

∂Fe
(4.52)

75



Similarly, we can approximate the Hessian inverse as in Equation 4.49 with Ze = (M̃e +

V e∆t2µI)−1. The test scenario is similar to that in Section 4.3.3. We use Young’s modulus

E = 1000 and time step ∆t = 0.01. Results are shown in Figure 4.8. The top bar is

simulated with XPBD and is run with 100 iterations per time step. However, it does not

converge to the ground truth run with Newton’s method, which is shown in the bottom row.

It is also visibly less volume conserving. On the other hand, FP-PXPBD converges to the

ground truth with 10 iterations per time step.

XPBD

FP-PXPBD

Newton

XPBD XPBD

FP-PXPBD FP-PXPBD

Newton Newton

Figure 4.8: XPBD Neohookean. XPBD is less volume-conserving than FP-PXPBD when

the cube is squeezed. Results at frame 1, 25, 52 are shown.

4.3.5 Grid-Based B-PXPBD Examples

We showcase the versatility and the robustness of B-PXPBD through a variety of collision

intensive examples. We use the grid-based approach of Jiang et al. [JSS15] since this

approach does not require modification of the potential energy to address collision/contact

and therefore clearly demonstrates our solver performance. Here, the backward Euler degrees

of freedom are over a regular grid where the tetrahedron mesh is embedded/interpolated

from its motion. That is, we use B-PXPBD to solve the system of equations for implicit

time stepping outlined in Jiang et al. [JSS15], but where the energy is written in the

XPBD way using the constraints Equation (4.5). This requires a modification to the coloring

76



0 5 10 15
Iters

10-8

10-6

10-4

10-2

N
ew

to
n 

R
es

id
ua

l 2
 N

or
m

Tolerance

Newton
Blended PXPBD
XPBD

(a)

0 1 2 3 4 5 6 7
Runtime(s)

10-8

10-6

10-4

10-2

N
ew

to
n 

R
es

id
ua

l 2
 N

or
m

Tolerance

Newton
Blended PXPBD
XPBD

(b)

Figure 4.9: (a) Grid-Based Residual vs. Iterations. The residual norm vs. iterations

is plotted at a representative time step with grid-based collision. Newton’s method and B-

PXPBD reliably reduce the residual, but XPBD stagnates. (b) Grid-based Residual vs.

Runtime. The residual norm vs. computation time is plotted at a representative time step.

Grid-based B-PXPBD and grid-based XPBD take an extra 1 second at the beginning of each

timestep to compute preprocessing data. Note that B-PXPBD achieves fasters convergence

than Newton’s method.

strategy used for parallel implementation (see Section 4.2 for specifics) but is otherwise a

straightforward application of our techniques so we omit explicit detail.

In Figure 1, we drop 30 objects stacked on top of each other into a glass box. The objects

include bunnies, dragons, balls, boxes and tori. The bunny mesh used is obtained from

[TL94] The total vertex count of the mesh is around 800,000. We visualize the convergence

behaviors of grid-based XPBD, grid-based B-PXPBD and Newton’s method in Figure 4.9.

While the residual of grid-based XPBD stagnates, grid-based B-PXPBD continually reduces

the nonlinear residual. Though grid-based B-PXPBD has a convergence rate that is slower

than Newton’s method, it has a much lower computational budget than Newton’s method.

As the right plot in Figure 4.9 indicates, given the same computational budget, grid-based
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B-PXPBD would reduce residual more than Newton’s method. On average, the grid-based

B-PXPBD takes 17.6s/frame, whereas Newton’s method takes 58.9s/frame. We demonstrate

more collision-intensive scenarios in Figures 4.10, 4.12 and Figure 4.11. For these examples,

the Young’s modulus is E = 1000 and CFL number is .4. B-PXPBD has blending parameter

ζ = 0.5.

Figure 4.10: Four Bars Twisting. Grid-based B-PXPBD is capable of handling large

deformation and complex collisions.

4.4 Discussion and Limitations

Our framework effectively addresses XPBD convergence issues with hyperelasticity and al-

lows for generalization to arbitrary constitutive models. Furthermore, we attain the favor-

able stability and efficiency properties that make PBD and XPBD techniques so powerful.

However, our approach does have limitations.

With B-PXPBD the blending parameter ζ can require numerous simulations to establish

a useful value. FP-PXPBD is more general, but the local step may be more costly and the

Sherman-Morrison formula must be applied on a case-by-case basis for different constitutive

models. Lastly, while the grid-base approach of Jiang et al. [JSS15] is an easy way to

handle collisions within our framework, it is not ideal for many applications since a grid-

based CFL must still be used. Furthermore, it does not naturally allow for use with FP-

PXBPD because the accelerations we apply in the local step are not directly applicable. We

provide two approaches B-PXPBD and FP-PXPBD since both have different strengths and
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Figure 4.11: Muscle. Large-scale muscle simulation using grid-based B-PXPBD. Frames 0,

30, 60, 140 are shown.

weaknesses. While B-PXPBD is simple to implement (and requires only a small modificaiton

to an existing XPBD code), it requires the tuning of the blending parameter and does not

address general hyperelastic models models. Alternatively, FP-PXPBD can be applied to

general models but it requires a larger deviation from an existing XPBD code. Furthermore,

the number of iterations in the Newton method for each element effects the efficiency of

the approach relative to B-PXPBD. In practice, these considerations must be weighed when

deciding which approach to use.
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Figure 4.12: Dropping Dragons. Grid-based simulation with B-PXPBD exhibits many

collision-driven large deformations.
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CHAPTER 5

Position-Based Nonlinear Gauss-Seidel for Quasistatic

Hyperelasticity

5.1 Equations

We consider continuum mechanics conceptions of the governing physics where a flow map

ϕ : Ω0 × [0, T ] → Rd, d = 2 or d = 3, describes the motion of the material. Here the time

t ∈ [0, T ] location of the particle X ∈ Ω0 ⊂ Rd is given by ϕ(X, t) ∈ Ωt ⊂ Rd where Ω0 and

Ωt are the initial and time t configurations of material respectively. The flow map ϕ obeys

the partial differential equation associated with momentum balance

R0∂
2ϕ

∂t2
= ∇X ·P+ f ext (5.1)

where R0 is the initial mass density of the material, P is the first Piola-Kirchhoff stress and

f ext is external force density. This is also subject to boundary conditions

ϕ(X, t) = xD(X, t), X ∈ ∂Ω0
D (5.2)

P(X, t)N̂(X, t) = T(X, t), X ∈ ∂Ω0
N̂

(5.3)

where N̂ is the outward-pointing normal to the initial boundary ∂Ω0 and ∂Ω0 is split into

Dirichlet (∂Ω0
D) and Neumann (∂Ω0

N̂
) regions where the deformation and applied traction

respectively are specified. Here T denotes externally applied traction boundary conditions.

For hyperelastic materials, the first Piola-Kirchhoff stress is related to a notion of potential
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Figure 5.1: Quasistatic Muscle Simulation with Collisions. Left. Our method

(PBNG) produces high-quality results visually comparable to Newton’s method but with

a 6x speedup. PBD (lower left) becomes unstable with this quasistatic example after a few

iterations. Middle. In this hyperelastic simulation of muscles, we use weak constraints to

bind muscles together and resolve collisions. Red indicates a vertex involved in a contact

constraint. Blue indicates a vertex is bound with connective tissues. Right. A dress of

24K particles is simulated with MPBNG on a running mannequin. The rightmost image

visualizes our multiresolution mesh.

82



energy density Ψ : Rd×d → R as

P(X, t) =
∂Ψ

∂F
(
∂ϕ

∂X
(X, t)), PE(ϕ(·, t)) =

∫
Ω0

Ψ(
∂ϕ

∂X
)dX (5.4)

where PE(ϕ(·, t)) is the potential energy of the material when it is in the configuration

defined by the flow map at time t. Note that we will typically use F = ∂ϕ
∂X

to denote

the spatial derivative of the flow map (or deformation gradient). We refer the reader to

[GS08, BW08] for more continuum mechanics detail.

In quasistatic problems, the inertial terms in the momentum balance (Equation (5.1))

can be neglected and the material motion is defined by a sequence of equilibrium problems

0 = ∇X ·P+ f ext (5.5)

subject to the boundary conditions in Equations (5.2)-(5.3). This is equivalent to the mini-

mization problems

ϕ(·, t) =
argmin

Υ ∈ W t
PE(Υ)−

∫
Ω0

f ext ·ΥdX−
∫
∂Ω0

N̂

T ·Υds(X) (5.6)

where W t =
{
Υ : Ω0 → Rd |Υ(X) = xD(X, t), X ∈ ∂Ω0

D

}
. We note that even though the

velfocity does not affect the quasistatic equilibrium equations in Equation (5.5), the time

dependence in the boundary conditions gives rise to solutions ϕ(X, t) that change with

respect to time.

5.1.1 Constitutive Models

We demonstrate our approach with a number of different hyperelastic potentials commonly

used in computer graphics applications. The “corotated” or “warped stiffness” model [MDM02,

EGS03, MG04, ST08, CPS10] has been used for many years with a few variations. We use

the version with the fix to the volume term developed by Stomakhin et al. [SHS12]

Ψcor(F) = µ|F−R(F)|2F +
λ

2
(det(F)− 1)2. (5.7)
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Here F = R(F)SS(F) is the polar decomposition of F. Neo-Hookean models [BW08] have

also been used since they do not require polar decomposition and recently some of them have

been shown to have favorable behavior with nearly incompressible materials [SGK18].

Ψnh(F) =
1

2
µ|F|2F +

λ̂

2
(det(F)− 1− µ

λ̂
)2. (5.8)

Here λ̂ = µ+ λ. λ and µ are the Lamé parameters and are related to the Young’s modulus

(E) and Poisson’s ratio (ν) as

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (5.9)

Note that we distinguish between the λ̂ used in Macklin and Müeller [MM21] and the Lamé

parameter λ; we discuss the reason for this in more detail in Section 5.7. We also support

the stable Neo-Hookean model proposed in [SGK18]

Ψsnh(F) =
1

2
µ(|F|2F − d) +

1

2
(det(F)− 1− 3µ

4λ
)2 − 1

2
µ log(1 + |F|2F ). (5.10)

5.2 Discretization

We use the FEM discretization of the quasistatic problem in Equation (5.5)

fi(x
n+1) + f̂ exti = 0, Xi /∈ Ω0

D (5.11)

xn+1
i = xD(Xi, t

n+1), Xi ∈ Ω0
D. (5.12)

Here the flow map is discretized as ϕ(X, tn+1) =
∑NV −1

j=0 xn+1
j χj(X) where the χj(X) are

piecewise linear interpolating functions defined over a tetrahedron mesh (d = 3) or triangle

mesh (d = 2), and xn+1
j ∈ Rd, 0 ≤ j < NV are the locations of the vertices of the mesh at

time tn+1. Note that we use xn+1 ∈ RdNV
to denote the vector of all vertex locations and

xn+1
iβ to denote the 0 ≤ β < d components of the position of vertex i in the mesh. The forces
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are given as

fi(y) = −
∂P̂E

∂yi

(y) (5.13)

P̂E(y) = P̂E
Ψ
(y) + P̂E

wc
(y) (5.14)

P̂E
Ψ
(y) =

NE−1∑
e=0

Ψ(
NV −1∑
j=0

yj
∂χj

∂X
(Xe))V 0

e (5.15)

f̂ exti =

∫
Ω0

f extχidX+

∫
∂Ω0

N̂

Tχids(X) (5.16)

where P̂E
Ψ
: RdNV → R is the discretization of the potential energy,

∑NV −1
j=0 yj

∂χj

∂X
(Xe) is

the deformation gradient induced by nodal positions y ∈ RdNV
in tetrahedron (d = 3) or

triangle (d = 2) element e with 0 ≤ e < NE, ∂χi

∂X
(Xe) is the derivative of the interpolating

function in element e (which is constant since we use piecewise linear interpolation) and V 0
e

is the measure of the element. We refer the reader to [BW08, SB12] for more detail on the

FEM derivation of potential energy terms in a hyperelastic formulation. Also, note that we

add another term to the discrete potential energy P̂E
wc

: RdNV → R in Equation (5.14) to

account for self-collisions and similar weak constraints (see Section 5.2.1). Similar to the

non-discrete case, the constrained minimization problem

xn+1 =
argmin

y ∈ Wn+1
∆x

P̂E(y)− y · f̂ ext (5.17)

whereWn+1
∆x =

{
y ∈ RdNV |yi = xD(Xi, t

n+1), Xi ∈ ∂Ω0
D

}
is equivalent to Equations (5.11)-

(5.12).
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5.2.1 Weak Constraints

We support weak constraints for self-collision and other similar purposes (as in [MZS11]).

These are terms added to the potential energy in the form

P̂E
wc
(y) =

1

2

Nwc−1∑
c=0

Cc(y)
TKcCc(y) (5.18)

Cc(y) =
NV −1∑
j=0

wc
0jy0j − wc

1jy1j. (5.19)

Here the wc
0j, w

c
1j are interpolation weights that sum to one and are non-negative. This

creates constraints between the interpolated points
∑NV −1

j=0 wc
0jy0j and

∑NV −1
j=0 wc

1jy1j. The

stiffness of the constraint is represented in the matrix Kc. This can allow for anisotropic

responses where Kc = knnn
T + kτ

(
τ 0τ

T
0 + τ 1τ

T
1

)
. Here nTτ i = 0, i = 0, 1 and kn is the

stiffness in the n direction while kτ is the stiffness in response to the motion in the plane

normal to n. τ T
0 τ 1 = 0 and ||τ i|| = 1, i = 0, 1. In the case of an isotropic constraint

(kc = kn = kτ ), we use the scalar kc in place of Kc since Kc = kcI is diagonal. We note that,

in most of our examples, the anisotropic model is used for collision constraints where n is

the collision constraint direction.

5.3 Gauss-Seidel Notation

Our approach, PBD and XPBD all use nonlinear Gauss-Seidel to iteratively improve an

approximation to the solution xn+1 ∈ RdNV
of Equation (5.11) (or equivalently, Equa-

tion (5.17)). Here we introduce detailed notation to help clarify the specific details of our

method as well as its convergence behaviors. We refer to one Gauss-Seidel iteration as the

process of updating all vertices once and use l to denote the iteration count as xn+1,l ≈ xn+1.

During the course of one Gauss-Seidel iteration, individual vertex degrees of freedom in the

approximate solution will be updated in sub-iterates (indexed by k) which we denote as

xn+1,l
(k) ∈ RdNV

with 0 ≤ k < NGS. For example, xn+1,l
(0) = xn+1,l and xn+1,l

(NV −ND−1)
= xn+1,l+1
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Figure 5.2: PBNG vs XPBD. Muscle simulation demonstrates iteration-order-dependent

behavior with XPBD and quasistatics. A zoom-in view under the right armpit region is

provided. Each method is run for 130 iterations. PBNG converges to the desired solution,

binding the muscles closely together. XPBD-QS and XPBD-QS (Flipped) fail to converge,

leaving either artifacts or gaps between the muscles. Details on XPBD-QS and XPBD-QS

(Flipped) can be found in Section 5.9.

for PBNG. To further clarify, with PBD/XPBD in the kth sub-iterate, the nodes in the kth

constraint will be projected/solved for and so NGS will be equal to the total number of

constraints. In our position-based approach, in the kth sub-iterate, only the d components

of a single node ik will be updated. It is important to introduce this notation, since unlike

with Jacobi-based approaches, the update of the kth sub-iterate will depend on the contents

of the k − 1th sub-iterate.

5.4 Position-Based Dynamics: Constraint-Based Nonlinear Gauss-

Seidel

Macklin et al. [MMC16] show that PBD [MHH07] can be seen to be the extreme case of a

numerical method for the approximation of the backward Euler temporal discretization of

the FEM spatial discretization of Equation (5.1)

NV −1∑
j=0

mij

(
xn+1
j − 2xn

j + xn−1
j

∆t2

)
= fi(x

n+1) + f exti , Xi /∈ Ω0
D. (5.20)
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Here mii =
∫
Ω0 R

0χidX and mij = 0, j ̸= i are entries in the mass matrix. However, Macklin

et al. [MMC16] require that the discrete potential energy in Equation (5.15) is of the form

P̂E
Ψ
(y) =

2NE−1∑
c=0

1

2αc

C2
c (y), y ∈ RdNE

. (5.21)

To demonstrate the connection between Equation (5.20) and PBD, Macklin et al. [MMC16]

develop XPBD. It is based on the total Lagrange multiplier formulation

NV −1∑
j=0

mij

(
xn+1
j − x̂j

)
−

P−1∑
c=0

∂Cc

∂xi

(xn+1)λn+1
c = 0, Xi /∈ Ω0

D (5.22)

Cc(x
n+1) +

αc

∆t2
λn+1
c = 0, 0 ≤ c < P (5.23)

where x̂j = 2xn
j − xn−1

j − ∆t2

mjj
f extj and λn+1 ∈ RP is introduced as an additional unknown.

The xn+1 ∈ RdNV
in Equations (5.22)-(5.23) is the same in the solution to Equation (5.20).

P is the number of constraints. Macklin et al. [MMC16] use a per-constraint Gauss-Seidel

update of Equations (5.22)-(5.23)

xn+1,l
i(k+1) = xn+1,l

i(k) +∆xn+1,l
i(k+1), Xi /∈ Ω0

D (5.24)

∆xn+1,l
i(k+1) =

∆λn+1,l
(k+1)ck

mii

∂Cck

∂xi

(xn+1,l
(k) ) (5.25)

∆λn+1,l
(k+1)ck

=
−Cck(x

n+1,l
(k) ) +

αck

∆t2
Cck(x

n+1,l
(k) )∑NV −1

j=0
1

mjj

∑d−1
β=0

(
∂Cck

∂xjβ
(xn+1,l

(k) )
)2

+
αck

∆t2

. (5.26)

Here the k + 1th sub-iterate in iteration l is generated by solving for the change in a single

Lagrange multiplier ∆λn+1,l
(k+1)ck

associated with a constraint ck that varies from sub-iteration

to sub-iteration. However, as pointed out in [CHC23], this Gauss-Seidel procedure does

not converge to a solution of Equation (5.20). [CHC23] isolates the root cause of this as

the omission of the residual of Equation (5.22) in the update of the Lagrange multiplier in

Equation (5.26) and moreover that inclusion of the residual in the update leads to unstable

behavior. We demonstrate this behavior and contrast with our approach in Figure 5.3.

88



5.4.1 Quasistatics

As noted by Macklin et al. [MMC16], the XPBD update in Equations (5.24)-(5.26) is the

same as in the original PBD [MHH07] in the limit αc → 0. By choosing a stiffness inversely

proportionate to a parameter s ≥ 0 and examining the limiting behavior of the equations

being approximated, we see that the original PBD approach generates an approximation to

the quasistatic problem (Equations (5.5)), albeit with the external forcing terms omitted.

More precisely, define ϕs to be a solution of the problem

sR0∂
2ϕs

∂t2
= ∇X ·P+ sf ext. (5.27)

subject to the same boundary conditions in Equations (5.2)-(5.3). This is equivalent to

scaling the αc that would appear in Equation (5.1) (through P) by s. The αc are inversely

proportionate to the Lamé parameters, so as s → 0, the material stiffness increases. Since

the inertia and external force terms in Equation (5.27) vanish as s→ 0, it is clear then that

the original PBD formulation generates an approximation to the solution of a quasistatic

problem with the external forcing f ext omitted. Note that PBD does include the external

forcing term in its initial guess xn+1
i = xn

i +∆tvn
i +

∆t2

mii
f exti . However, the effect of the initial

guess vanishes as the iteration count is increased. We demonstrate this in Section 9.3 of the

paper. Also, note that this is not the case in the XPBD formulation where αc > 0, as it is

the inverse stiffness term.

Unfortunately, XPBD cannot be trivially modified to run quasistatic problems. For

example, omitting the mass terms on the left-hand side of Equation (5.22) makes the Gauss-

Seidel update in Equations (5.24)-(5.26) impossible since there would be a division by zero.

The simplest fix for quasistatic problems with XPBD is to run to steady state using a

pseudo-time iteration as in [CMM20]. This prevents the need for scaling the αc which

inherently removes the external forcing terms and does not introduce a divide by zero in

Equation (5.25). However, this is very costly since each quasistatic time step is essentially

the cost of an entire XPBD simulation. We refer to this technique as XPBD-QS (see 5.9.3 for
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example). In addition to the excessive cost of this approach, we also observe severe iteration-

order dependent behavior of XPBD-QS in the presence of spatially varying constraints and

where constraints of different types affect the same vertices (see Figure 5.2). We believe

the omission of the primary residual noted by Chen et al. [CHC23] is the cause of this

iteration-dependent behavior. Intuitively, the Gauss-Seidel update would have information

about adjacent constraints if it could be added stably.
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Figure 5.3: Left. Clamped blocks under gravity. The green block is XPBD, and the yellow

one is PBNG. Right. PBNG is able to reduce the Newton residual to the tolerance, whereas

XPBD’s residual stagnates.

5.5 Position-Based Nonlinear Gauss-Seidel

To fix the issues with PBD/XPBD and quasistatics, we abandon the Lagrange-multiplier for-

mulation and approximate the solution of Equation (5.11) using position-centric, rather than

constraint-centric nonlinear Gauss-Seidel. This update takes into account each constraint
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that the position participates in. Visual intuition for this is illustrated in Figure 5.6(a). More

specifically, in the kth sub-iterate of iteration l, we modify a single node ik with Xik /∈ ∂Ω0
D

as

xn+1,l
(k+1)ik

= xn+1,l
(k)ik

+∆xn+1,l
(k+1)ik

(5.28)

∆xn+1,l
(k+1)ik

=
argmin

∆y ∈ Rd
P̂E(xn+1,l

(k) + C̃ik∆y)−∆y · f̂ extik
.

Here C̃ik ∈ RdNV ×d is a selection matrix that isolates the degrees of freedom on the node ik

and has entries C̃ik
jαβ = δjikδαβ. We solve this minimization by setting the gradient to zero

0 = fik(x
n+1,l
(k) + C̃ik∆xn+1,l

(k+1)ik
) + f̂ extik

. (5.29)

We use a single step of a modified Newton’s method to approximate the solution of Equa-

tion (5.29) for ∆xn+1,l
(k+1)ik

∈ Rd. We use ∆xn+1,l
(k+1)ik

= 0 as the initial guess. We found that

using more than one iteration did not significantly improve robustness or convergence. Our

update is of the form

∆xn+1,l
(k+1)ik

=
(
An+1,l

(k+1)ik

)−1 (
fik(x

n+1,l
(k) ) + f̂ extik

)
. (5.30)

Here An+1,l
(k+1)ik

≈ − ∂fik
∂yik

(xn+1,l
(k) ) ∈ Rd×d is an approximation to the potential energy Hes-

sian/negative force gradient.

5.5.1 Modified Hessian

We choose the modified energy Hessian An+1,l
(k+1)ik

to minimize its computational cost. The

true Hessian
∂fik
∂yik
∈ Rd×d has entries

∂fikα
∂yikβ

(y) = −
NE−1∑
e=0

d−1∑
δ,γ=0

Ceαγβδ(y)
∂N e

ik

∂Xγ

∂N e
ik

∂Xδ

V 0
e − (5.31)

Nwc−1∑
c=0

(
wc

0ik
− wc

1ik

)2
Kcαβ, 0 ≤ α, β < d
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where Ceαγβδ(y) = ∂2Ψ
∂Fβδ∂Fαγ

(
∑NV −1

j=0 yj
∂Ne

j

∂X
) is the Hessian of the potential energy density

evaluated at the deformation gradient in element e and Kcαβ is the stiffness tensor associated

with weak-constraints.

The primary cost in Equation (5.31) is the evaluation of the Hessian of the energy density

Ceαγβδ(y) which is a symmetric fourth order tensor with d2 × d2 entries. Furthermore, this

tensor can be indefinite, which would complicate the convergence of the Newton procedure.

We use a definiteness projection as in [TSI05] and [SGK19]. However, we use a very simple

symmetric positive definite approximation that (unlike [TSI05, SGK19]) does not require

the singular value decomposition of the element deformation gradient
∑NV −1

j=0 yj
∂Ne

j

∂X
. Also

note that Teran et al. [TSI05] also require the solution of a 3× 3 and three 2× 2 symmetric

eigenvalue problems; our approach does not require this. Our simple approximation is

C̃eαγβδ(y) = 2µδαβδγδ + λJ(F e)−1
αγ (y)J(F

e)−1
βδ (y). (5.32)

Here JFe(y) = det(Fe(y)(Fe)−T (y) is the cofactor matrix of the element deformation gradi-

ent Fe(y) =
∑NV −1

j=0 yj
∂Ne

j

∂X
. We note that the cofactor matrix is defined for all deformation

gradients Fe, singular, inverted (negative determinant) or otherwise. This is essential for

robustness to large deformation. We note that this approximation works for any isotropic

potential energy density Ψ where µ and λ are the associated Lamé parameters computed

from Young’s modulus E. We discuss the motivation for this simplification in Chapter 7,

but note here that it is clearly positive definite since it is a scaled version of the identity with

a rank-one update from the cofactor matrix. With this convention, our symmetric positive

definite modified nodal Hessian is of the form

An+1
(k+1)ikαβ

=
NE−1∑
e=0

d−1∑
δ,γ=0

C̃eαγβδ(x
n+1,l
(k) )

∂N e
ik

∂Xγ

∂N e
ik

∂Xδ

V 0
e + (5.33)

Nwc−1∑
c=0

(
wc

0ik
− wc

1ik

)2
Kcαβ, 0 ≤ α, β < d. (5.34)
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5.5.2 Collision against kinematic bodies

We add support for hard collision constraints against kinematic geometry (collision bodies

that do not deform). At the beginning of each time step, each vertex xi detects its closest

point x̄i on the kinematic body. We use ni to denote the unit outward normal to the collision

body at the closest point. xi is then classified as penetrating if (xi − x̄i) · ni < 0. For each

penetrating xi, we project it to x̄i before the simulation. Then for each PBNG iteration, we

check if ∆xn,l
(k)i · ni < 0. If so, we project ∆xn,l

(k)i to ∆x̄n,l
(k)i = (I − nin

T
i )∆xn,l

(k)i to allow for

sliding tangential to the constraint surface.

5.5.3 SOR and Chebyshev Iteration

PBNG is remarkably stable and gives visually plausible results when the computational

budget is limited, but it is also capable of producing numerically accurate results as the

budget is increased. However, as with most Gauss-Seidel approaches the convergence rate of

PBNG may decrease with iteration count (see Figure 5.12 for details). We investigated two

simple acceleration techniques to help mitigate this: the Chebyshev semi-iterative method (as

in [Wan15]) and SOR. The Chebyshev method uses the update xn+1,l+1 = ωl+1(γ(x
n+1,l+1
PBNG −

xn+1,l) + xn+1,l − xn+1,l−1) + xn+1,l−1. where xn+1,l+1 denotes the accelerated update and

xn+1,l+1
PBNG denotes the standard PBNG update. Here ωl+1 = 4

4−ρ2ωl
for l > 2, 2

2−ρ2
for l = 2

and 1 for l < 2. γ is an under-relaxation parameter that stabilizes the algorithm. For

our examples, we set ρ = .95. PBNG is very stable, and this allows for the use of over-

relaxation as well. We set γ = 1.7. The SOR method uses a similar, but simpler update

xn+1,l+1 = ω(xn+1,l+1
PBNG − xn+1,l−1) + xn+1,l−1. We use ω = 1.7 for this under-relaxation

parameter. Chebyshev and SOR behave similarly in terms of residual reduction and visual

appearance (see Figure 5.12).
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5.6 Cloth Simulation

Our method can also naturally handle cloth simulation by adding a surface mesh contribution

P̃E(y) directly to the potential energy in Equation (5.17). We use the sum of a membrane

hyperelastic potential and a bending term:

P̃E(y) =
∑
t̂

Ψcm(Fmem
t̂ (y))At̂ +

1

2
kb
∑
e

θe(y)
2. (5.35)

The membrane term is a simple generalization of the fixed corotated model [SHS12] to the

case of surfaces

Ψcm(Fmem) = µcm|Fmem −R(Fmem)|2F +
λcm

2
(J(Fmem)− 1)2. (5.36)

Here µcm and λcm are derived from Young’s modulus Ecm in a similar fashion as µ and λ in

Section 5.5. Fmem
t̂

(y) =
∑

i yi
∂χ̂i

∂X
(Xt̂) ∈ R3×2 is the deformation gradient computed over the

triangle t̂ where χ̂i are piecewise linear interpolating functions over the triangles. At̂ is the

reference area of the triangle t̂ and J(Fmem) =
√

det(FmemTFmem) denotes the multiplicative

change in the triangle area under motion defined by y. The termR(Fmem) in Equation (5.36)

is the rotational part of the polar decomposition of Fmem = R(Fmem)SS(Fmem) with the con-

vention that R(Fmem) ∈ R3×2 has orthogonal columns and SS(Fmem) ∈ R2×2 is symmetric.

For bending resistance in Equation (5.35), we adopt a similar approach to Baraff and

Witkin [BW98]. For each edge e with vertices y0
e ,y

1
e that is incident to two triangles with

unit normals n1
e(y),n

2
e(y), we define θe(y) ∈ [0, π) as the bending angle where θe(y) =

atan( (n
1
e(y)×n2

e(y))·(y1
e−y0

e)
n1
e(y)·n2

e(y)
). kb is the bending stiffness parameter. Note that as in [BW98], we

do not use an area weighting on the bending term.

5.6.1 Modified Hessian

Similar to Section 5.5.1, we modify the Hessians of the above models to ensure posi-

tive semi-definiteness. We make the simple approximation ∂2Ψcm

∂Fmem
αγ ∂Fmem

βδ
(y) ≈ 2µcmδαβδγδ +
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λcm

4
J2Lmem

αγ Lmem
βδ where

Lmem = Fmem((Fmem)TFmem)−T + Fmem((Fmem)TFmem)−1. For the bending model, we use

the rank one approximation

1

2

∂2θ2e
∂x2

≈ ∂θe
∂x
⊗ ∂θe

∂x
. (5.37)

The bending potential in Equation (5.35) is quadratic in θe so a rank-one term consisting

of the outer-product in Equation (5.37) is a simple PSD Hessian approximation. See the

Chapter 7 for more details.

5.6.2 Multiresolution Acceleration

When a solid and a piece of cloth have the same particle count, the max topological distance

between the particles in the cloth is bigger than that in the solid because a cloth is essentially

a 2D object. Since Gauss-Seidel only does local updates, it needs to propagate information

further for cloth to converge. In practice, cloth will look overly stretchy when propagation

has not proceeded sufficiently (see Section 5.9.5.). This slowed convergence with increased

resolution is the motivation for techniques like multigrid [Bra77, WLF18]. We develop a

multiresolution techniques along these lines: MPBNG (or multilayer PBNG). For a given

piece of cloth χ0, we remesh it to create a nested mesh hierarchy χ0 ⊃ χ1 ⊃ χ2 ⊃ χn.

Usually the number of vertices is reduced by approximately a factor of 4. These layers

equally divide the stiffness and mass density of the original material as in a multi-species

continua model [AC76]. We then bind each two successive layers using weak constraints

(Equation (5.15)) and define a multi-layer iteration as follows: 4-6 PBNG iterations are first

applied on the coarsest level. Then all particles on ∪i ̸=nχi are iterated over in a standard

PBNG manner. This is done in parallel, utilizing coloring that takes into account all layers

and the constraints between them. After the multi-layer iterations have been applied, we do

a final pass of 6-8 PBNG iterations on the finest layer. The weak constraints are visualized

in Figure 5.4. Note that we found this three-pass approach to be more effective than a
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Figure 5.4: MPBNG Illustration. We visualize the cloth multi-resolution hierarchy.

Straight lines illustrate constraints between vertices on the finer level to their targets on

the coarser level.

standard multigrid V-cycle in practice.

After each multiresolution iteration l, we reduce the stiffness of the weak constraints and

the mass on the coarse layers. We define a scaling factor κl =
√

1− l2

r2des
where rdes is a user-

specified radius of descent. We choose rdes = kmax + rpad where kmax is the maximal number

of iterations and rpad ∈ [.05, 2]. In practice, rpad does require much tuning and rpad = .05

typically suffices. This factor is multiplied to the mass of the nodes on the coarse layers (i.e.
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all layers except χ0) and kc of all weak constraints. As l becomes larger, κl decreases to a

small number, which means the problems converges to the original one. The same approach

can be applied to solid simulation as well, however we observed that MPBNG achieves less

residual reduction than PBNG in this case (with a fixed computational budget).

Figure 5.5: Multiresolution Dress. We illustrate the multiresolution meshes used with

our MPBNG approach in a representative clothing simulation.

5.7 Lamé Coefficients

The parameters of an isotropic constitutive model are often based on Lamé coefficients µ

and λ which are themselves set from Young’s modulus E and Poisson’s ratio ν according to

Equation (5.9). This relationship is based on the assumption of linear dependence of stress

on strain, or quadratic potential energy density

Ψle(F) = µtr(ϵ2(F)) +
λ

2
tr(ϵ(F))2 (5.38)

ϵ =
1

2
(F+ FT )− I. (5.39)
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Furthermore, Equation (5.9) is derived from the model in Equation (5.38) by holding one end

of a cuboidal domain fixed and applying a displacement at its opposite end. The remaining

faces of the domain are assumed to be traction-free. Young’s modulus is the scaling in a linear

relationship between the traction exerted by the material in resistance to the displacement.

The Poisson’s ratio correlates with the degree of volume preservation via deformation in the

directions orthogonal to the applied displacement.

The use of Lamé coefficients with nonlinear models is not directly analogous since the

relation between displacement and traction is not a linear scaling in the cuboid example.

When using Lamé coefficients with nonlinear problems, the cuboid derivation should hold if

the model were linearized around F = I. All isotropic hyperelastic constitutive models can

be written in terms of the isotropic invariants Iα : Rd×d → R, 0 ≤ α < d

I0(F) = tr(FTF), I1(F) = tr((FTF)2), I2(F) = det(F) (5.40)

Ψ(F) = Ψ̂(I0(F), I1(F), I2(F)). (5.41)

See [GS08] for more detailed derivation. Note, when d = 2, I1(F) = tr((FTF)2) is not used.

With this convention, the Hessian of the potential energy density is of the form

∂2Ψ

∂F2
=

d−1∑
α=0

∂Ψ̂

∂Iα

∂2Iα
∂F2

+
d−1∑

α,β=0

∂2Ψ̂

∂Iα∂Iβ

∂Iα
∂F
⊗ ∂Iβ

∂F
. (5.42)

If Lamé parameters are to be used with a nonlinear model, the Hessian ∂2Ψ
∂F2 (F) should match

that of linear elasticity when evaluated at F = I. For example, this is why we adjust the

Lamé parameters used in [MM21] in Equation (5.8). See Chapter 7 for derivation details.

We choose our approximate Hessian in Equation 9 in the paper based on this fact. That

is, by omitting all but the first and last terms in Equation (5.42), our approximate Hessian

is both symmetric positive definite and consistent with any model that is set from Lamé

coefficients (e.g. from Young’s modulus and Poisson’s ratio)

C̃ = µ
∂2I0
∂F2

+ λ
∂Id−1

∂F
⊗ ∂Id−1

∂F
. (5.43)

Again, see Chapter 7 for derivation details.
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(a) (b) (c)

Figure 5.6: (a) Dual Coloring . Node based coloring (top) is contrasted with constraint

based coloring (bottom). When a node is colored as red, its incident elements register red

as used colors. When a constraint is colored yellow, its incident particles register yellow as

used colors. (b) Constraints-Based Coloring. A step-by-step constraint mesh coloring

scheme is shown. The dotted line indicates two weak constraints between the elements. The

first constraint is colored red, all its incident points will register red as a used color. Other

constraints incident to the first constraint have to choose other colors. (c) Node-Based

Coloring. A step-by-step node coloring scheme is shown. The constraint register the colors

used by its incident particles. The first particle is colored red, so all its incident constraints

will register red as used. Other particles incident to the constraints have to choose other

colors.

5.8 Coloring and Parallelism

Parallel implementation of Gauss-Seidel techniques is complicated by data dependencies in

the updates. This can be alleviated by careful ordering of sub-iterate position updates. We

provide simple color-based orderings for both PBD and PBNG techniques. For PBD, colors

are assigned to constraints so that those in the same color do not share incident nodes.

Constraints in the same color can then be solved at the same time with no race conditions.

For each vertex xi in the mesh, we maintain a set Sxi
that stores the colors used by its

incident constraints. For each constraint c, we find the minimal color as the least integer

that is not contained in the set ∪xi∈cSxi
. We then register the color by adding it into Sxi

for each xi in constraint c. With PBNG, we color the nodes so that those in the same color

99



Table 5.1: Number of Colors Comparison. Runtime is measured per iteration (averaged

over the first 200 iterations). PBNG does more work per-iteration than PBD, but has

comparable speed due to improved scaling resulting from a smaller number of colors.

Example # Vertices # Elements. # Particle Colors # Constraint Colors PBNG Runtime/Iter PBD Runtime/Iter

Res 32 Box Stretching 32K 150K 5 39 28ms 26.8ms

Muscles Without Collisions 284k 1097K 13 82 131ms 140ms

Res 64 Box Stretching 260K 1250K 5 39 65ms 137ms

Res 128 Box Stretching 2097K 10242K 5 40 1520ms 1080ms

Dropping Simple Shapes Into Box 256K 1069K 11 52 270ms 140ms

Res 16 Box Dropping 4.1K 17K 5 39 3.6ms 4.1ms

Table 5.2: Methods Comparisons. We show runtime per frame for different methods.

Each frame is 1
30

seconds.

Example # Vertices # Elements. PBNG Runtime Newton Runtime PBD Runtime PBNG # iter PBD # iter Newton # iter

Box Stretching (low budget) 32K 150K 170ms 170ms 170ms 6 6 2 (7 CGs)

Box Stretching (big budget) 32K 150K 1.3s 1.3s 1.3s 40 40 11 (10 CGs)

Muscle with collisions 284k 1097K 67s 430s - 510 - 34 (200CGs)

do not share any mesh element or weak constraint. For each element or weak constraint c,

we maintain a set Sc that stores the colors used by its incident nodes. For a position xi, we

compute its color as the minimal one not contained in the set ∪xi∈cSc. Then we register the

color by adding it into Sc for each element or weak constraint xi is incident to. We observe

that coloring the nodes instead of the constraints gives fewer colors. This makes simulations

run faster since more work can be done without race conditions. We provide more details on

the coloring process in Figure 5.6. The performance gain is listed in Table 5.1. Note that

we use the omp parallel directive from Intel’s OpenMP library for parallelizing the updates.
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Table 5.3: Performance Table of PBNG. Runtime is measured for each frame (averaged

over the course of the simulation). Each frame is written after advancing time .033.

Example # Vertices # Elements # Triangles PBNG Runtime / Frame PBNG # Iter/Frame # Substeps Model

Box Stretching (low budget) 32K 150K 0 170ms 6 1 Corotated

Box Stretching (big budget) 32K 150K 0 1300ms 40 1 Corotated

Muscle with Collisions 284k 1097K 0 67000ms 510 17 Corotated

Res 64 Box Stretching 260K 1250K 0 1300ms 20 1 Corotated

Res 128 Box Stretching 2097K 10242K 0 61000ms 40 1 Corotated

Dropping Simple Shapes Into Box 256K 1069K 0 49800ms 136 17 Corotated

Two Moving Blocks Colliding 8.2K 33K 0 1630ms 136 17 Corotated

Box Stretching 32K 150K 0 1300ms 40 1 Stable Neo-Hookean

Box Stretching 32K 150K 0 825ms 40 1 Neo-Hookean

Armadillos Dropping 344K 1320K 8K 101200ms 360 9 Corotated

5.8.1 Collision Coloring

For simulations with static weak constraints, the coloring is a one-time cost. Otherwise,

the colors have to be updated every time the weak constraint structure changes, e.g. from

self-collision (see Chapter 7). We propose a simple coloring scheme for this purpose: only

nodes incident to the newly added weak constraints need recoloring. We first compute all

nodes xextra
i that are incident to newly added weak constraints. For each xextra

i , we compute

the used color set ∪xextra
i ∈cSc. We use the color of xextra

i from the previous time step as an

initial guess. If it already exists in the used color set, then we find the minimal color that

is not used. This is generally of moderate cost, e.g. in the muscle examples with collisions

(Figures 5.1, 5.2 and 5.15), our algorithm takes less than 680ms/frame for recoloring, while

the actual simulation takes a total of 67s to run.

5.9 Examples

We demonstrate the versatility and robustness of PBNG with a number of representative

simulations of quasistatic (and dynamic) hyperelasticity. Examples run with the corotated

model used in the algorithm from [GFJ16] for its accuracy and efficiency. Example 5.9.2.4,
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5.9.5 and 5.9.6 are dynamic simulations. The rest are quasistatic simulations. All the

examples use Poisson’s ratio ν = 0.3. We compare PBNG, PBD, XPBD, XPBD-QS and

XPBD-QS (Flipped). For XPBD-QS we do the hyperelastic constraints first, followed by

weak constraints. For XPBD-QS (Flipped) the order is swapped. All the examples were run

on an AMD Ryzen Threadripper PRO 3995WX CPU using 8 threads. In Table 5.3, we

provide comprehensive performance statistics for PBNG. In Table 5.2, we provide runtime

comparisons between PBNG and the other methods. Note that for efficiency we did not use

a line search with Newton’s method in our experiments. We note adding line search requires

evaluating Newton residuals multiple times, which would further increase cost. As in Figure

5.7, line search would further reduce number of Newton iterations, making it less stable.

5.9.1 Stretching Block

We stretch and twist a simple block in a simple scenario. The block has 32K particles

and 150K elements. Both ends of the block are clamped. They are stretched, squeezed

and twisted in opposite directions. The block has R0 = 10kg/m3 and Young’s modulus

E = 105Pa. There is no gravity. The simulation is quasistatic. We compare performance

between Newton’s method, PBD, PBNG and XPBD as described in Section 5.4. In Figure

5.7, these methods are run under a fixed budget. Every method has a runtime of 1.3s/frame.

With an ample budget, PBNG converges to ground truth, while PBD and XPBD do not.

In Figure 5.7, we show a simulation where every method has a runtime of 170ms/frame.

Newton’s method is remarkably unstable. PBNG looks visually plausible. PBD and XPBD-

QS have visual artifacts and fail to converge. Residual plots vs. time are shown at the

bottom of Figure 5.7.
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5.9.1.1 Resolution Comparison

In this example, we demonstrate PBNG’s versatility by running the block stretching and

twisting with various resolutions. As shown in Figure 5.8, the top block has 32K particles

and 150K elements. The middle block has 260K particles and 1250K elements. The bottom

block has 2097K particles and 10242K elements. Even at high-resolution (bottom block),

PBNG is visually plausible after only 40 iterations and 61 seconds/frame of runtime.

5.9.1.2 Constitutive Model Comparison

In this example, we apply PBNG to various constitutive models on the same block examples.

All three blocks have 32K particles and 150K elements. Frames are shown in Figure 5.9.

The blocks from top to bottom are run with corotated (Equation 5.7), stable Neo-Hookean

(Equation 5.10) and Neo-Hookean (Equation 5.8) models respectively. With 40 iterations

per frame, they are all visually plausible.

5.9.1.3 Comparison with Linear Gauss-Seidel

In this example, we show the superior performance of the nonlinear Gauss-Seidel strategy

in PBNG against Newton’s method with linear Gauss-Seidel used at each iteration (see

Figure 5.10). We compare on a representative block example with 32K particles and 150K

elements. The simulation is run with both low iteration counts and a high iteration counts.

Note that we match the iteration count instead of runtime, because computation of the

explicit matrix and residual for linear Gauss-Seidel once (620ms) already exceeds the total

simulation cost of PBNG (170ms) in the low iteration count setting. For low iteration counts

PBNG runs with 6 iterations/frame and linear Gauss-Seidel uses 2 Newton iterations with 3

Gauss-Seidel iteration each. For high iteration counts PBNG runs with 42 iterations/frame

and Newton + linear Gauss-Seidel runs 6 Newton iterations with 7 Gauss-Seidel iteration

each.
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Table 5.4: Runtime Breakdown: We compare the runtimes of linear Gauss-Seidel and

PBNG. Newton Overhead refers to the cost of computing the Newton residual and explicit

Hessian in each iteration (a cost which PBNG does not require).

Iteration Count Newton Overhead Linear GS Runtime/Iter PBNG Runtime/Iter Linear GS SOR PBNG SOR PBNG Runtime/Frame Linear GS Runtime/Frame

6 620ms 35ms 27ms 1.3 1.7 170ms 1345ms

40 620ms 35ms 27ms 1.3 1.7 1080ms 5358ms

We observe that PBNG has several advantages. It only uses the diagonal blocks on the

Hessian with local solves, resulting in a much lower per iteration cost than linear Gauss-

Seidel, as shown in Table 5.4. PBNG does not have the overhead of computing the global

Hessian and global residual, which are typically more costly than the entire simulation bud-

get in real-time applications. PBNG achieves clearly superior nonlinear system residual

reduction, as shown in Figure 5.10. Lastly, we observe that linear Gauss-Seidel requires a

smaller SOR ω because it is less stable than PBNG in practice. For this example ω = 1.3

for linear Gauss-Seidel and ω = 1.7 for PBNG.

5.9.1.4 Approximate Hessian Comparison

In this example we demonstrate the efficacy of our Hessian approximation (Equation 5.32).

All four blocks have 4K particles and 20K elements (see Figure 5.11). The top three bars are

simulated using Newton’s method with the exact Hessian and different linear solvers. The

top bar uses an exact solve (QR decomposition). The second bar uses an iterative solver

(BICGSTAB since the true Hessian is not positive definite) and the third bar uses linear

Gauss-Seidel. The bottom bar is simulated using the approximate Hessian in Equation 5.32.

All approaches using the exact Hessian lead to unstable results, while our approximation

leads to a correct converged result.
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5.9.1.5 Acceleration Comparison

In this example, we compare the effects of the Chebyshev semi-iterative method and the

SOR method. In Figure 5.12, we stretch and twist the same block with 32K particles and

150K elements. The top bar is simulated with plain PBNG. The middle bar is simulated

with PBNG with Chebyshev semi-iterative method with γ = 1.7, ρ = .95. The bottom bar

is simulated with PBNG with SOR and ω = 1.7. 10 iterations are used for each time step.

With a limited budget, plain PBNG is less converged than accelerated techniques. Figure

5.12 shows the convergence rate of the three methods vs. the number of iterations at the

first time step. We can see that the acceleration techniques boost the convergence rate.

5.9.2 Collisions

Here we demonstrate our approach with examples that require collision resolution. For all

examples in this section, we use a time step of ∆t = .002s and detect collision every time

step. We illustrate how weak constraints are dynamically created for collision with a simple

two-block colliding example.

5.9.2.1 Two Blocks Colliding

We demonstrate the generation of dynamic weak constraints with a simple example. We take

two blocks with one side fixed and drive them toward each other. This is a dynamic/backward

Euler simulation. The blocks have R0 = 10kg/m3 and Young’s modulus E = 1000Pa. The

weak constraints have stiffness kn = 108 and kτ = 0. The dynamic weak constraints are

visualized in Figure 5.13 as red nodes in the mesh.
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5.9.2.2 Dropping Objects

40 objects with simple shapes are dropped into a glass box. The objects have a total of

256K particles and 1069K elements. The simulation is run with dynamic/backward Euler.

Some frames are shown in Figure 5.14. We show PBNG’s capability of handling collision-

intensive scenarios. The example is run with ∆t = 0.002s, R0 = 10kg/m3, Young’s modulus

E = 3000Pa and weak constraint stiffness kn = 108 and kτ = 0.

5.9.2.3 Muscles

We quasistatically simulate a large-scale musculature with collision and connective tissue

weak constraints. The mesh has a total of 284K particles and 1097K elements. The muscles

have R0 = 1000kg/m3, Young’s modulus E = 105Pa, and the connective tissue (blue) weak

constraint stiffness is isotropic: kn = kτ = 108. Dynamic collision (red) weak constraint

stiffness is anisotropic: kn = 108 and kτ = 0. We show several frames of muscles simulated

with PBNG and dynamically generated weak constraints in Figure 5.15. PBNG takes 67

seconds to simulate a frame, while Newton’s method takes 430s. In Figure 5.1, we show that

PBNG looks visually the same as Newton, while running 6-7 times faster. We also show that

PBD and XPBD-QS fail to converge. In Figure 5.1, we show PBD becomes unstable. In

Figure 5.2, we demonstrate sub-iteration order-dependent behavior with XPBD-QS. XPBD-

QS has weak constraints processed last, which leads to excessive stretching of elements.

XPBD-QS (Flipped) has weak constraints processed first, which degrades their enforcement

and leaves a gap.

5.9.2.4 Dropping Armadillos

We showcase the capability of PBNG with a simulation coupling cloth with solids. In this

example 20 armadillos are dropped onto a piece of cloth with four corners held fixed. Frames

are shown at Figure 5.16. After 3.33s, one end of the cloth breaks free and armadillos drop
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into a glass box. Each armadillo has 17K vertices and 66K particles. The rectangular cloth

has 4K particles and 8K triangles. We set ∆t = 0.004s, R0 = 10kg/m3, E = 1000Pa. For

the rectangular cloth we set R0 = 10kg/m2, Ecod = 10000Pa, kb = .05. We set Poisson

ratio ν = 0.3 for all objects and kn = 108 for weak constraints. The average runtime is

101.2s/frame.

5.9.3 XPBD with Varying Stiffness

In this example, we demonstrate that XPBD-QS fails to resolve quasistatic problems with

varied stiffness. In Figure 5.17, we show the initial setup for the simulation. The simulation is

quasistatic. Both block meshes have R0 = 10kg/m3 and Young’s modulus E = 1000Pa. The

first block mesh has its top boundary constrained. The second block is weakly constrained to

the first block. The springs have stiffness kn = kτ = 108. There is gravity in the scene with

acceleration −9.8m/s2 in the y−direction. As we show in Figure 5.17, PBNG converges to

a plausible state. XPBD-QS and XPBD-QS (Flipped) fail to converge. Depending on the

order of the constraints, it either leaves a gap between the two blocks or a very stretched top

layer of the bottom block. This example also serves as a simplified version of the connective

bindings on the muscles, which are used in Figure 5.2. The residual plot is shown on the

right of Figure 5.17.

5.9.4 Quasistatic PBD/XPBD and External Forcing

In this example, we show how PBD eliminates the effects of external forcing as the number

of iterations increases. We clamp the left side of a simple bar mesh. We run a quasistatic

simulation with gravity (acceleration −9.8m/s2 in the y−direction). The bar has R0 =

10kg/m3 and Young’s modulus E = 1000Pa. As shown in Figure 5.18, PBD converges to

a rigid bar configuration. PBNG converges to a plausible solution. XPBD-QS appears to

resolve the issues with PBD and quasistatics. However, XPBD-QS with 10 iterations per
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pseudo-time step appears more converged than XPBD-QS with 1 iteration per pseudo-time

step.

5.9.5 Multiresolution Test: Cloth Stretching

We demonstrate how our multi-layer (MPBNG) approach resolves excessive stretching with

PBNG when the iteration count is low. A rectangular shape cloth with 8K vertices is

suspended from two corners under gravity. The cloth has density R0 = 10kg/m2, Young’s

modulus E = 1000Pa, kb = 0. We run both PBNG and MPBNG with a budget of 1.8s/frame

of computation each. We take dt = 0.005s and use 30 frames per second. PBNG is run

with 44 iterations per timestep and MPBNG is run with 13 iterations per timestep with

rpad = 0.05. As shown in Figure 5.19, PBNG appears to be much stretchier than the

converged simulation, while MPBNG is less stretched and almost indistinguishable from the

well-converged ideal solution (despite MPBNG having the same computational run time as

PBNG).

5.9.6 Multiresolution Test: Clothing on Mannequin

We demonstrate the ability of MPBNG to reduce excessive stretching with a dress example.

The dress has 24K vertices, density R0 = 10kg/m2, Young’s modulus E = 1000Pa and

kb = 0.01. The simulation is run with ∆t = .012s and a fixed budget of 840ms/frame.

PBNG has 84 iterations per frame with this budget and MPBNG has 24 iterations. We

create a mesh hierachy of four layers, where the layers have .5K, 1.5K, 6K and 24K particles

respectively (see Figure 5.5). As shown in Figure 5.20, PBNG is stretchier than MPBNG

given the same computational budget. We further demonstrate MPBNG’s capabilities when

the mannequin runs (see Figure 5.1). We take dt = 0.003s and use 20 iterations per time

step with rpad = 2.
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5.9.7 XPBD

We run a simple dynamics example to show that XPBD cannot reduce the backward Euler

system residual in practice, as discussed in Chen et al. [CHC23]. We take a simple block with

the left side clamped. It falls under gravity and oscillates. The simulation scene is shown

on the top of Figure 5.3. The block has 4.1K particles and 17K elements. This simple but

representative example demonstrates superior convergence behavior of PBNG over XPBD.

5.10 Discussion and Limitations

We show that a node-based Gauss-Seidel approach for the nonlinear equations of quasistatic

and backward Euler time stepping has remarkably stable behavior. We show that it is

capable of reducing the nonlinear system residuals in practice, in contrast to PBD/XPBD.

Furthermore, we show that our node-based Gauss-Seidel approach resolves fundamental

issues with PBD/XPBD for quasistatic problems, particularly for applications that require

efficient and reliable creation of training data. However, our approach is mostly tailored to

isotropic hyperelasticity. In future work, generalizing to the case of transverse and general

anisotropy is of interest.
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Figure 5.7: Comparisons with Different Computational Budget. A block is

stretched/compressed while being twisted. With a sufficiently large computational bud-

get, Newton’s method is stable, but it becomes unstable when the computational budget

is small. PBD and XPBD-QS do not significantly reduce the residual in the given compu-

tational time, resulting in noisy artifacts on the mesh. PBNG maintains relatively small

residuals and generates visually plausible results of the deformable block even if the budget

is limited.
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Figure 5.8: Different Mesh Resolution. PBNG produces consistent results when the mesh

is spatially refined. The highest resolution mesh in this comparison has over 2M vertices and

only requires 40 iterations to produce visually plausible results.

Figure 5.9: Different Constitutive Models. PBNG works with various constitutive mod-

els. We showcase the corotated, Neo-Hookean, and stable Neo-Hoookean models through a

block twisting and stretching example.
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Figure 5.10: Linear Gauss-Seidel vs. PBNG. PBNG achieves superior residual reduction

and visual quality compared to Newton’s method with linear Gauss-Seidel.

Figure 5.11: Hessian Comparison. The top three bars are simulated using Newton’s

method with different linear solvers (QR, BICGSTAB and linear Gauss-Seidel respectively).

The bottom bar is simulated using PBNG. The top bar uses the exact Hessian and becomes

unstable. The bottom bar uses our Hessian projection and stays stable.
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Figure 5.12: Acceleration Techniques. The convergence rate of PBNG may slow down

as the iteration count increases. Chebyshev semi-iterative method and SOR effectively ac-

celerate the Newton residual reduction.
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Frame 9 Frame 25

Figure 5.13: Two Blocks Colliding. Two blocks collide with each other with one face

clamped. Red particles indicate that dynamic weak constraints have been built to resolve

the collision of corresponding mesh vertices.
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Frame 387 Frame 650

Frame 387 Frame 650

Figure 5.14: Objects Dropping. A variety of objects drop under gravity. Our method is

able to robustly handle collisions between deformable objects through weak constraints.
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Frame 387 Frame 650

Frame 387 Frame 650

Figure 5.15: PBNG Muscle Simulation. The top row shows simulation results while

the bottom row visualizes the vertex constraint status. Red indicates a vertex involved in

contact, weak constraints are dynamically built to resolve the collisions. Blue represents the

vertex positions of connective tissue bindings.
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Figure 5.16: Armadillos Dropping. We demonstrate that PBNG can handle a large-scale

simulation involving many collision-driven deformations and with clothing and solids coupled

together.
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Figure 5.17: Two Blocks Hanging. Two identical blocks are bound together through weak

constraints. Green line segments in iteration 0 indicate weak constraint springs. PBNG is

able to reduce the residual by a few orders of magnitude and converges quickly. XPBD-QS

methods demonstrate iteration-order-dependent behavior. Residuals oscillate and produce

visually incorrect results.
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Figure 5.18: Bar under Gravity. A quasistatic simulation of a bar bending under gravity

using different methods. The effect of external forcing vanishes in the PBD example as the

number of iterations increases. More local iterations of XPBD-QS produces better results.

PBNG converges to visually plausible results within fewer iterations than XPBD-QS.

Figure 5.19: Draping Cloth. A piece of rectangular cloth with two corners clamped swings

under gravity. With a fixed computational time of 1.8s/frame, MPBNG is much more similar

to the converged look of the cloth than PBNG which appears too stretchy.
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Figure 5.20: Draping Dress. With a fixed computational time of 840ms/frame, MPBNG

cloth appears much less stretchy than PBNG alone.
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CHAPTER 6

A Neural Network Model for Efficient

Musculoskeletal-Driven Skin Deformation

6.1 Overview

We define our approach in four layers: (i) the bones in the kinematic rig, (ii) the muscles

and tendons that attach to the bones, (iii) a thin connective tissue membrane that wraps

the muscles (fascia) and (iv) the fat layer between the outer skin and the inner fascia. The

fat layer is the most important visually since its outer surface represents the visible skin. We

define the skinning kinematics of the fat layer as

ϕs(X;Θ, a) = LBS(X+PNNs(X;Θ) +ANNs(X; a);Θ)

where X ∈ R3 is a point in the A-pose (see Figure 6.2 (b3)) of the skin/fat layer, Θ ∈ RNJ×9

defines the rotation matrices representing joint states of the rig (where NJ is the number of

joints), a ∈ RNM is a vector of muscle activation values (where NM is the number of mus-

cles). Here LBS(Y;Θ) =
∑NB−1

i=0 wLBS
i (Y) (Ri(Θ)Y + ti(Θ)) is the standard LBS operator

(where NB is the number of bones in the skeleton) and (Ri(Θ), ti(Θ)) are the rotation and

translation of the ith bone and wLBS
i (Y) is the LBS weight of skin/fat point Y. PNNs

and ANNs are neural networks trained to allow tissue deformation to match data generated

from FEM simulation over a range of representative joint states Θ and activation states a.

We note that the effect of the passive neural network PNNs on the kinematics is similar to

those in [BOD18, JHG22]; however, our key novelty is in the addition of the active network

ANNs. We define the kinematics of the muscle layer ϕm(Xm;Θ, a) similarly in terms of
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Figure 6.1: Overview. (a) Muscle activations are estimated (left and right) from a biceps

curl motion using fiber streamlines embedded in muscles and then drive deformation in

an ANN to improve realism. (b) Our approach naturally allows for variation in body fat

percentage. (c) The effect of increased weight in the biceps curl is naturally added with our

approach. (d) Note the difference in muscle deformation due to added weight.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2)

(c3) (c4)

Figure 6.2: Simulation Setup. (a1): Connective tissue membrane (in yellow). (a2):

Fascia with constrained vertices in red and simulated membrane in grey. (a3): Muscle weak

constraint visualization: fascia constraints (in blue) and contact constraints (in red). (b1)-

(b3): Reference A-pose for undeformed state definition for muscles, fascia and skin/fat.

(c1)-(c4): Streamline forces applied to the bones with respect to elbow joint (left) and

shoulder joint (right). Forces are applied on muscle origins and insertions (in yellow).
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passive and active neural networks PNNm and ANNm respectively. Xm is the location of

the musculotendon vertex in the A-pose (see Figure 6.2 (b1)).

We provide the details for the creation of passive simulation data of the muscles, tendons,

fascia and fat in Section 6.2 as well as the training process and neural network architecture in

Section 6.3. Once the muscle kinematics have been defined via trained PNNm and ANNm,

we use PNNm to define muscle fiber lines of action needed to solve for the activation state

as a function of the joint state and external forcing f ext (from gravity and any added weight

(see Figure 6.2 (c1-c4)). Specifically, activations are chosen in a manner that gives rise to

muscle forces capable of balancing torques induced by f ext at a given skeletal joint state Θ.

In this case we write a = a(Θ, f ext) and the skin/fat kinematics take on the form

ϕs(X;Θ, f ext) = LBS(X+PNNs(X;Θ) +ANNs(X; a(Θ, f ext));Θ).

We detail the activation solution process in Section 6.4.

6.2 Training data: soft tissue simulation

We decouple soft tissue simulation layer-by-layer outwards from the bones. This decoupling

accelerates the solution process and allows for more control over the manner in which fat

and skin interact with underlying muscles. First, the equilibrium state x̂m(Θ, a) ∈ R3NMv of

vertices in the musculotendon tetrahedron meshes (where NMv is the number of musculoten-

don vertices) are solved for given Dirichlet boundary conditions defined over muscle origin

and insertion vertices that move rigidly with the bone transforms as determined by the joint

state Θ. Then, we solve for the fascia layer where vertices sufficiently close to muscle are

Dirichlet constrained based on their barycentric locations in the closest triangle in the mus-

cle mesh boundary. Fascia vertices not sufficiently close are put under tension and collide

against static muscles and bones to produce a smooth inner boundary of the skin layer. We

denote the fascia equilibrium as x̂f (x̂m(Θ, a)) to emphasize its dependence on the muscle
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equilibrium state. Lastly, we simulate the fat/skin layer with its inner boundary fixed to

the fascia equilibrium. We simplify this by defining the topology of the outer skin to match

that of the fascia layer. We refer to this equilibrium state as x̂s(x̂f (x̂m(Θ, a))). We train

the muscle (PNNm) and fat/skin (PNNs) passive neural networks on Θ using equilibrium

states x̂m(Θ,0) and x̂s(x̂f (x̂m(Θ,0))) where the a = 0 muscle activation state indicates

completely passive deformation. We provide more detail about the solution process for each

layer equilibrium in the subsections that follow.

6.2.1 Musculotendon Equilibrium

Each muscle (together with the tendon) is represented as a volumetric tetrahedron mesh. The

equilibrium state x̂m(Θ, a) is determined by minimizing the hyperelastic potential energy

PEm(xm,xc;Θ, a) =
∑
t

Ψ(Ft(x
m; a,Dt))Vt +

∑
t̂

µ̂|Fcod
t̂ (xm)|2FAt̂ (6.1)

+
∑
j

1

2
rj(x

m,xc)TKj(x
m,xc)rj(x

m,xc)

subject to Dirichlet constraints

xm
i (Θ) = Rij(Θ)Xm

i + tij(Θ), i ∈ ΩD.

Here ΩD refers to the collection of musculotendon indices associated with vertices that are

inside bones in the A-pose of the character and Rij(Θ)Xm
i + tij(Θ) is the transformation of

the constrained vertices xm
i (Θ) under bone transform ij based on joint state Θ. Ψ is the hy-

perelastic potential energy density (see Section 6.2.1.1). We also couple in extra connective

tissue with vertices we denote as xc ∈ R3Nc (see Section 6.2.1.3). We model collision and

contact between muscle/muscle, muscle/bone and muscle/connective tissue with the con-

straint direction rj ∈ R3 and the stiffness matrix Kj ∈ R3×3 (see Section 6.2.1.2). Note that

the minimization of Equation (6.1) is done simultaneously over both musculotendon xm and

connective tissue vertices xc. Furthermore, index t refers to tetrahedra in the musculotendon

meshes, Vt is the volume of the tetrahedron and Ft ∈ R3×3 is the deformation gradient in the
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tetrahedron. t̂ refers to triangles in connective tissue meshes, At̂ is the area of the triangle

and Fcod
t̂
∈ R3×2 is the deformation gradient in the triangle (see Section 4.1.3). We refer

the reader to [TSI05] for more detail about the general approach for solving this nonlinear

minimization problem as well as [SB12] for FEM discretization of hyperelastic solids.

6.2.1.1 Musculotendon Fiber Fields

Although muscles are anisotropic and deform under activation state a, we use the isotropic

fixed corotated potential from [SHS12]

Ψ(F) = µ|F−R(F)|2F +
λ

2
(det(F)− 1)2 (6.2)

where F = R(F)SS(F) is the polar decomposition of F in terms of rotation R(F) and sym-

metric SS(F). Similar to Li et al. [LSN13], we modify the rest state of muscle tetrahedra in a

procedural way to introduce active anisotropic deformation in muscle fiber direction Dt ∈ R3

(see Figure 6.4). This is advantageous since convergence properties of the nonlinear solver are

generally better for isotropic models. Our active anisotropic modification to the deformation

gradient in the tetrahedron t is defined as Ft(x
m; a,Dt) = Ft(x

m)Ut(Dt)Σ(ai(t))Ut(Dt)
T

where Ft(x
m) is the standard deformation gradient in the tetrahedron based on deformation

from the A-pose (see Figure 6.2 (b1)), ai(t) is the activation of the muscle i associated with

tetrahedron t and Σ(ai(t)) is diagonal with Σ11(ai(t)) =
1+ai(t)

1+γai(t)
,Σ22(ai(t)) = Σ33(ai(t)) =(

1+γai(t)

1+ai(t)

)α
. Ut(Dt) = [Dt,D

1
t ,D

2
t ] is a rotation matrix with columns D1

t ,D
2
t orthogonal

to the fiber direction Dt. γ controls the level of fiber compression and α controls the level

of volume preservation during active contraction. We found that γ = 0.4 and α = 1 gave

desirable active contractile behavior and visual bulging in practice. In Figure 6.3, we show

effects of different choices of α and γ on fully contracting biceps.

Tendon attaches to bones in the skeleton at origin (proximal) and insertion (distal) lo-

cations as shown in Figure 6.4. We manually select origin and insertion vertices in the
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 6.3: Fiber Compression and Volume Preservation Parameters. Row (a-

c): Volume preservation parameter α = 0.5, 1, 1.2. Column (1-3): Fiber compression

parameter γ = 0.3, 0.4, 0.6.

musculotendon meshes as in [TSB05]. These are used to define fixed vertex boundary con-

ditions when minimizing Equation (6.1). However, we also use origin/insertion points to

define fiber directions in each tetrahedron in each musculotendon mesh as in [IHB15]. We
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Figure 6.4: Muscle Fibers and Streamlines. Muscle fiber directionsDt are shown in blue.

Origin points are shown in red and insertion points are shown in yellow. A few representative

streamlines are shown as solid blue curves.

discretize the Laplace equation in their model with FEM and piecewise linear interpolation

over the musculotendon tetrahedron mesh [Hug00]. Fiber directions are then defined as the

gradient of this potential evaluated in each tetrahedron. For inverse dynamics and activa-

tion calculations, we need to know the paths of fibers from origin to insertion to estimate

length-based force capacity at a given joint and activation state. We use the fiber direction

field defined by the per-tetrahedra Ut to define a flow field and create fiber streamlines that

pass from origin to insertion. We randomly sample one fiber streamline starting point inside

each origin tetrahedron and create 2624 streamlines on 46 muscles (see Figure 6.2 (c3-c4)).

We illustrate this process in Figure 6.4 and note that fiber direction and streamline creation

is a pre-computation done once in the A-pose (and then deformed barycentrically in the

musculotendon tetrahedron mesh).
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6.2.1.2 Contact Model

We adopt the model of McAdams et al. [MZS11] for the weak constraints used in Equa-

tion (6.1) to model the effects of contact between muscles and connective tissue like fascia.

Fascia constraints between points (xm
ji
) on the boundary of the musculotendon meshes and

their barycentric location (with barycentric weights wm
ji
) in the nearest triangle (in a sepa-

rate muscle) are defined to model fascia like connective tissues and allow us to ignore the

effect of the fascia and fat/skin in our layer-by-layer decoupled strategy. Contact constraints

are defined analogously, but are dynamically turned on at off at each time step. A contact

constraint is only defined if a point is determined to have penetrated a different muscle (de-

termined from a dot product with the surface normal at the closest boundary point). This is

a rather simplistic contact model, but we found that it strikes the right balance of accuracy

and efficiency. In either case, the contact or fascia constraints are of the form

rj(x
m) = xm

j0
− wm

j1
xm
j1
− wm

j2
xm
j2
− wm

j3
xm
j3

where {wm
j1
, wm

j2
, wm

j3
} are the barycentric coordinates of the closest triangle {xm

j1
,xm

j2
,xm

j3
} to

xm
j0

in the boundary of the musculotendon mesh. We visualize the two cases in a practical

example in Figure 6.2 (a3).

As in McAdams et al. [MZS11] we model the weak interactions in an anisotropic man-

ner. This is done through the stiffness term Kj in Equation (6.1). The anistropy is

defined in terms of contact (kn) and sliding/friction (kτ0 , kτ1) stiffnesses respectively as

Kj = knnjn
T
j + kτ0τ j0τ

T
j0
+ kτ1τ j1τ

T
j1

where nj is the triangle normal/contact direction

and nT
j τ ji = 0, i = 0, 1. For isotropic constraints (kc = kn = kτ0 = kτ1), we use the scalar

kc in place of Kj since it is diagonal in this case. In our examples, the anisotropic model

is used for contact constraints and the isotropic model is used for fascia constraints. We

provide parameters used to generate our simulation examples in Section 6.5.3.
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6.2.1.3 Connective Tissue Membrane

Although our bone, muscle, fascia, and fat/skin layer-by-layer decoupling strategy works

well most of the time, we found that near the scapula extra care was needed. In this region,

the scapula motion caused excessive distance between the latismus dorsi and the trapezius

muscles. This is due to inaccuracy in the scapula joint motion as well as a lack of data for

some of the muscles under the scapula. We found that explicitly coupling in a connective

membrane between these two muscles was a simple fix for the issue. We added a scapula

membrane triangle mesh with additional vertices xc coupled to the original muscle vertices

xm through the energy in Equation (6.1). The membrane is put under tension using the

quadratic potential
∑

t̂ µ̂|Fcod
t̂

(xc)|2FAt̂. This potential gives rise to a linear term in the

energy gradient and a constant, positive definite term in the Hessian. Here Fcod
t̂

(xc) ∈ R3×2

is the surface deformation gradient defined as

Fcod
t̂ =

[
vc
t̂1

vc
t̂2

] |Vc
t̂1
| 0

Vc
t̂1

|Vc
t̂1
| ·V

c
t̂2
|
Vc

t̂1

|Vc
t̂1
| ×Vc

t̂2
|


−1

where vc
t̂i
= xc

t̂i
− xc

t̂0
∈ R3,Vc

t̂i
= Xc

t̂i
− Xc

t̂0
∈ R3 are in the deformed state and A-pose

respectively. The potential has a global minimum when all mesh triangles are collapsed

to a single point. However, we balance this by adding constraints between points on the

boundary of the connective membrane to their closest triangles in the boundary of the

muscle tetrahedron meshes as

rj(x
m,xc) = xc

j0
− wm

j1
xm
j1
− wm

j2
xm
j2
− wm

j3
xm
j3

where {wm
j1
, wm

j2
, wm

j3
} are the barycentric coordinates of the closest triangle {xm

j1
,xm

j2
,xm

j3
} to

xc
j0
. We illustrate this connective tissue in yellow in Figure 6.2 (a1).
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6.2.2 Fascia Layer

Given the equilibrium configuration of the musculotendon geometry x̂m(Θ) for a given joint

state Θ, we solve for the fascia layer x̂f (x̂m(Θ)). The fascia represents connective tissues

that tightly wrap around the muscles. We model this as a triangle mesh and constrain its

vertices barycentrically to their closest points in the boundary triangles of the musculotendon

tetrahedron meshes if they are within a threshold distance in the A-pose. This accounts for

90% of vertices in the fascia mesh (see Figure 6.2 (a2)); we simulate the remaining 10% by

putting the membrane under tension with the same model as the connective tissue membrane

in Section 6.2.1.3. We also collide these against the boundary of the musculotendon meshes.

This serves as the inner layer of the fat/skin mesh.

6.2.3 Fat and Skin Layer

In the last layer of our approach, we solve for the equilibrium configuration x̂s(x̂f (x̂m(Θ)))

of a fat/skin tetrahedron mesh. We model the layer of fat between the fascia and outer skin

as a volumetric elastic solid with a tetrahedron mesh. We create this mesh so that the inner

and outer triangle mesh boundaries have the same topology. That is, the outer skin and the

inner fascia have the same triangle mesh topology. We solve for the equilibrium of this layer

by minimizing the potential

PEm(xs;xf (xm(Θ))) =
∑
t

Ψ(Ft(x
s))Vt

with respect to non-fascia vertices of the fat layer mesh. Here Ft(x
s) refers to the defor-

mation gradient in the tth fat mesh tetrahedron. Furthermore, Ψ is the again the isotropic

potential from Equation (6.2). The inner fascia vertices are fixed based on the joint state

through xf (xm(Θ)). We use the A-pose geometry of this tetrahedron mesh to define the

undeformed configuration for deformation gradient computations. We note that the thin

volumetric fat mesh with matching inner and outer topology allows us to easily adjust body

fat percentage by scaling the outer skin vertices towards their inner fascia counterparts as
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shown in Figure 6.8.

6.3 Neural Network

Our passive (PNN(Θ;X) ∈ R3) and active (ANN(a;X) ∈ R3) neural network models

learn per-vertex displacements which are added to A-pose coordinates X. We adopt the

network structure from Jin et al. [JZG20] and utilize a PCA final layer so that the network

output is simply tens of PCA coefficients. The vertex displacements then can be recovered

with a precomputed PCA basis. This approach has been proven capable [JZG20, BOD18]

of capturing major deformation modes and preserving spatial smoothness. The full network

structure is illustrated in Figure 6.5. Our PNN input consists of NJ = 23 joint local rotation

matrices and the ANN input consists of NM = 46 muscle activations. The PNN dataset

includes around 6000 frames of passive simulation data for the muscles, fascia and skin

layer over various ranges of motions as shown in Figure 6.6. We apply inverse linear blend

skinning to obtain vertex displacements on the A-pose and we use a loss function equal to

the L2 distance on mesh vertices. The musculotendon neural network PNNm is trained

on volumetric tetrahedron meshes and infers fiber streamline positions barycentrically. The

fat/skin network PNNs is trained on the boundary triangle mesh of the fat/skin tetrahedron

mesh simulation data. The active network counterparts ANNm and ANNs are also defined

over the A-pose. We generate 920 frames of active simulation data of the muscles, fascia and

skin. For each of the NM = 46 muscles, we sequentially sample 20 activations one muscle at

a time with values ranging from 0 to 3. Scaling of muscle physiological cross sectional area by

factors of 2-3 is commonly adopted in biomechanics applications to account for uncertainties

[HUS15]. While activation values are typically constrained between 0 and 1, we allowed

activations up to 3 as a similar mechanism. The final PCA layer for the PNN networks uses

20 components and the ANN networks use 92 components. We choose to split each dataset

into an 80% training dataset and a 20% evaluation dataset. We trained each network with
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… … … … …

Input Layer
QNN: size 207
ANN: size 46

FC Layer 2
Batch Norm, ReLU

Size: 1500

FC Layer 1
Batch Norm, ReLU

Size: 2000

PCA Layer
QNN: size 20
ANN: size 92

Vertex Displacement
Skin: size 868332

Muscle: size 534966

Figure 6.5: Architecture for PNN and ANN. We use two fully connected (FC) hidden

layers with batch normalization and ReLU activation function.

1000 epochs and stochastic gradient descent. The training and evaluation loss as well as

training time are provided in Table 6.1.

6.4 Inverse Activation

We solve for the muscle activations a ∈ RNM given the rig joint state Θ ∈ RNJ×9 using

the quasistatic assumption that muscles produce forces that when transmitted to the bones

perfectly cancel out the effects of gravity and other external forces and maintain the static

pose of the skeleton associated with the joint state Θ. Muscles span multiple joints in

redundant ways that make this perfect balance of forces and torques achievable with non-

unique activations. Furthermore, we model the force transmission from multiple muscle fibers

per muscle. We denote the vector of all these activations as â ∈ RNF (NF = 2624 in our

examples). We adopt standard practices from biomechanics and choose a unique activation

state â(Θ) by assuming that the minimal amount of activation is used to maintain the pose

[DLH90]. Note that NF > NM as discussed in Section 6.2.1.1 and to define the per-muscle
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activation state a ∈ RNM we use the average of all of the fibers that a given muscle contains.

For clarity (and brevity) of exposition, we define q ∈ RNC from Θ as the torque-relevant

joint rotation angles. NC < NJ is the number of joint angles that can articulate in response

to muscle and gravitational forces. Each joint has at most 3 degrees of freedom and pin

joints such as elbows only have 1. In our example NC = (3 ∗ 3 + 1) ∗ 2 = 20 as we consider

articulations of the sternoclavicular (clavicle), shoulder, scapula and elbow joint on both

sides of the upper body.

6.4.1 Torque Equilibrium Derivation

Here we derive the torque equilibrium equations associated with joint articulations. Intu-

itively, in order to maintain quasistatic poses, the total torque contribution from all forces

applied to all points that are articulated by the joint rotation should be zero. We denote

the spatial domain of each bone as Ωb ⊂ R3 and each individual bone mesh consists of

locations x ∈ Ωb sampled in the bone domains. We denote the spatial domain consisting

of all the bones in the skeleton as union Ω = ∪bΩb. For any x ∈ Ωb, a top-down joint

rotation hierarchy {j0, . . . , ji, . . . , jb} originating from a root bone Ω0 (the sternum/rib cage

in our examples) defining the articulation kinematics on bone Ωb is known. The articulated

position ϕb(x;q) ∈ R3 of x ∈ Ωb is composed of a combination of joint transforms Lji(·; qji)
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defined on each joint rotation ji as

ϕb(x;q) = Lj0(Lj1(Lj2(. . .); qj1); qj0)

Lji(x; qji) = Rji(qji)(x− xji) + xji

Rj(qj) = Uj


1 0 0

0 cos(qj) − sin(qj)

0 sin(qj) cos(qj)

UjT

Uj =


uj
0, v

j
0, w

j
0

uj
1, v

j
1, w

j
1

uj
2, v

j
2, w

j
2

 ∈ R3×3.

Here Rj is a rotation matrix of local joint rotation qj radians around the associated pivot

xj. Uj is an orthogonal matrix representing the rotation axis uj ∈ R3. Note that the vec-

tor q ∈ RNC is made up of the components qj. The Jacobian of the skeletal kinematics

Jb(x;q) ∈ R3×NC with respect to the joint state q is defined as Jb(x;q) = ∂ϕb

∂q
(x;q) =

Rj0(qj0) . . .R
ji−1(qji−1

)Rji ′(qji)(L
ji+1 −xji). See the supplemental material in Chapter 8 for

more detail.

The principle of virtual work reveals the joint torques required to maintain the pose q

in the presence of external forcing

δW =

∫
Ω

f(x) · δϕb(x;q)dx =

∫
Ω

f(x) · (Jb(x;q)δq)dx

= δqT

∫
Ω

JbT (x;q)f(x)dx = 0.

Here δq is an arbitrary perturbation in the joint state. Intuitively, this states that the

residual of the external and muscle forcing f(x) = ρ(x)g + fm(x) can only be non-zero in

components orthogonal to the articulation. This yields the torque constraints∫
Ω

d−1∑
α=0

J b
αj(x;q)fα(x)dx =

∫
Ω̂j

((x− xj)× f(x)) · ujdx = 0 (6.3)
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where J b
αj and fα are the components of the Jacobian and force respectively. Also, Ω̂j ⊂ Ω

is defined to be all bodies affected by articulation of joint j. See the supplemental material

in Chapter 8 for more detail.

6.4.2 Active Muscle Force Model

Each fiber streamline in each muscle originates on a bone and inserts on another bone (see

Figure 6.2 (c1-c4)). We model these curves as lines of action under tension that transmit

force to the bones they attach to based on their degree of active contraction, in addition to

passive tension arising from extension. We use a standard force/activation model [DLH90].

The force transmitted to origin/insertion by a fiber streamline j is defined as

f j(lj; âj) = σmax
j (fp(lj) + âjfa(lj))nj (6.4)

where lj is the normalized fiber streamline length, i.e., the ratio of the current fiber streamline

length to its length in the A-pose, σmax
j is the peak isometric streamline tension and nj is

tangent to the streamline curve at the origin/insertion. Note that the muscle deformation

map created from the PNNm correction to LBS defines the normalized streamline length

lj of each fiber streamline as it deforms under the current joint state q. Also, note that we

adopt the same peak isometric muscle tension from Seth et al. [SHU18] for corresponding

muscles but divided by the number of fiber streamlines used in each of the respective muscles.

Both passive and active components of the fiber tension have dependence on the normalized

streamline length as

fp(l) =


el−1 − 1 if l > 1,

0 otherwise,

fa(l) =


l(2− l) if 0 ≤ l ≤ 2,

0 otherwise.

Note that we widen the active force-length curve beyond the biomechanics standards [DLH90]

to account for extreme fiber compression and stretch observed in practical character anima-

tion. Compared with a typical Hill-type muscle model, we introduce simplifications that
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minimally affect results for slower motions, such as the ones in our study. For example,

our model does not include a force-velocity relationship, the tendon is inextensible, and the

force-length curves are relatively simple compared to other parameterizations [HUS15].

6.4.3 Optimization Problem

In order to find a unique activation state â ∈ RNF we adopt the standard biomechanical

regularizer [DLH90] and minimize the squared L2 norm of the activation vector subject

to the constraint that muscle forces maintain the static pose (Equation (6.3)). The inverse

activation problem can be formulated as minimizing the quadratic total energy spent subject

to linear torque equilibrium equations. Specifically,

â = argmin
a

1

2
aTσmaxa+

1

2
(a− âlb)

TMp(a− âlb)(a− âlb)

subject to( ∑
streamline ji

x̃SL
ji
× f ji(aji) +

( ∑
xjk

∈Ω̂j

mjk x̃jk

)
× g
)
· uj = 0

where the Heaviside penalty function Mp
jj(x) =


1e10 if xj < 0

0 otherwise

is a diagonal matrix that

enforces activations to be above the specified activation lower bound âlb. We take âlb = 0 to

enforce the activations to be non-negative. x̃SL
ji

= xSL
ji
−xj is the local position of endpoints

xSL
ji

on streamlines associated with joint state j. x̃jk = xjk − xj is the local position of

vertices in Ω̂j. To include the effect of the weight of soft tissues in the torque calculations,

we assign the vertices of each muscle/tendon to a unique bone. These vertices are included

in the xjk used in each Ω̂j. Since the fiber force f j(lj; âj) is linear in the activation âj from

Equation (6.4), we can represent the Equation (6.3) constraints as Wâ + b = 0 where

W ∈ RNC×NF . We solve this minimization iteratively (3-5 iterations in practice) to allow

the barrier potential to preserve non-negative activations. At each iteration, we obtain the
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following KKT system

(σmax +Mp,k−1)âk +WT λ̂
k
= Mp,k−1âlb

Wâk + b = 0.

Here σmax ∈ RNF×NF is a diagonal matrix whose entries are equal to the peak isomet-

ric stresses of each fiber. Intuitively, this adds extra cost to the activation of stronger

fibers, which would increase energy consumption which humans tend to reduce [SOW15].

The Heaviside penalty against negative activation is expressed through the diagonal matrix

Mp,k−1 ∈ RNF×NF whose entries are set to 1e10 if the corresponding activation is negative in

the previous iteration (k− 1). Using Dk−1 = σmax+Mp,k−1, the update for the kth iteration

is

λ̂
k
= (W(Dk−1)−1WT )−1(W(Dk−1)

−1
Mp,k−1âlb + b)

âk = −Dk−1−1
(Mp,k−1âlb −WT λ̂

k
).

(6.5)

Note Dk−1 is positive diagonal and W(Dk−1)−1WT is symmetric positive definite. Further-

more, W(Dk−1)−1WT is of the modest size NC × NC . That is, the size depends on the

number of articulation degrees of freedom not on the number of fiber streamlines. We use a

direct QR decomposition to solve Equation (6.5) since the size is negligible.

6.5 Results

We demonstrate the efficacy of our approach with a number of character animation exam-

ples. We note that the anatomy geometries (surface meshes of muscles, bones and skin) were

created from MRI scans. These examples emphasize the added realism that activation pro-

vides compared to standard LBS. Furthermore, we demonstrate the accuracy of our muscle

activation estimations with a comparison to experimental data.
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Figure 6.6: PNN Fitting and Generalization. Top Row: Muscle and fat/skin PNNs fit

training data effectively. Simulation (left) is compared to the PNNs (right). Bottom Row:

Muscle and fat/skin PNNs generalize effectively to unseen testing data. Simulation (left) is

compared to PNNs (right).

6.5.1 Network Deformation Demonstrations

We first show the per-vertex mean squared error (MSE) loss of the PNN and ANN on

the training data and evaluation data in Table 6.1. We demonstrate that our muscle and

fat/skin PNNs are able to fit the training data and generalize effectively to unseen testing

data in Figure 6.6. In the top row, we show that our networks are able to accurately match

simulations in the training set. The bottom row shows that our network still matches on

poses not in the training set. We further demonstrate this significance by comparing our

combined PNN and ANN deformations with standard LBS on a biceps curl animation in

Figure 6.7. Note that this motion is not in the training data set. Our model shows more

realistic muscle contraction in the biceps, trapezius and deltoid muscles. We also show our

ability to control body fat percentage by scaling the outer skin surface vertices towards their

counterparts on the inner fascia boundary of the fat/skin mesh in Figure 6.8. Our inverse

activation model naturally captures the effects of increasing the amount of weight lifted by

the animated character. We demonstrate this effect by increasing the dumbbell weights

held in the hands during the biceps curl motion in Figure 6.9. As expected, increased
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Ours LBS Ours LBS

Figure 6.7: Active neural network deformation. In each image, the left body illustrates

the benefit of our ANN and PNN enhancement of LBS by comparing it to standard LBS in

the right body counterpart.

muscle contraction and bulging (e.g. in the biceps and deltoids) are computed to account

for the increased weights. Finally, we visualize the fiber streamline activations arising from

our inverse activation calculations during a few motions in Figure 6.10. We note that the

activations are asymmetric due to asymmetric anatomical geometries from MRI scans and

asymmetric fiber streamlines generated with randomized starting points. Symmetry can be

achieved on mirrored geometries and streamlines and symmetric animations.

6.5.2 Comparison with Electromyography Data

To assess the accuracy of our estimations of muscle activation, we compare our estimations

with electromyography (EMG) data from a state-of-the-art biomechanics shoulder study

[SDM19]. EMG data are direct measurements of the electrical activity of muscles and serve

as the best available ground truth for muscle activation patterns. Seth et al. collected

the EMG data for shoulder flexion and abduction tasks, and normalized values using a

maximum voluntary contraction task. They then used the OpenSim tool called Computed

Muscle Control (CMC) to estimate muscle activations given an input motion [SHU18] and

compared their estimated activations to the EMG data to validate their model. For the

shoulder abduction and flexion tasks shown in Figure 6.11, our model captures many of

the characteristics of the observed EMG patterns, such as the ramp in superior trapezius
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Table 6.1: Training and Evaluation Loss. We show that the trained PNN and ANN are

able to generalize to the evaluation data. The networks were trained using an AMD Ryzen

PRO 3995WX CPU (128 threads).

Network Training Loss Evaluation Loss Training Time

PNNs 1.017e−2 9.821e−3 8 hours

ANNs 2.034e−4 1.013e−4 8.5 hours

PNNm 6.241e−3 6.484e−3 4.5 hours

ANNm 6.668e−5 5.821e−5 7.5 hours

activity for both movements, late-phase activity of the posterior deltoid in the flexion task,

and late-phase activity of the bicep in the abduction task. The comparisons to EMG data

are similar, and in some cases, improved when comparing to the estimations using CMC

with a typical biomechanical model with fewer, piece-wise linear musclulotendon actuators

[SDM19] (e.g. our estimations better capture biceps muscle activity in the latter half of the

tasks).

6.5.3 Simulation Parameters and Runtime

We use relatively few physical parameters in our simulations. We set our Lamé parameters

µ, µ̂ and λ from Young’s moduli of 1e5 Pa for muscles and fat, 5e5 Pa for tendons and 1e2

Pa for membrane as well as Poisson’s ratio of 0.3 in all cases. We found that a Poisson

ratio closer to 0.5 preserves volume better but burdens the solver when creating training

data, and 0.3 allows for satisfactory visual volume preservation in our examples. We use a

fascia constraint stiffness equal to 2e6 times the weighted average of the mass of vertices in
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Table 6.2: Runtime Comparison. We compare the runtime of our approach against

simulation. Times are averaged over the testing EMG animation. Examples were run using

an AMD Ryzen PRO 3995WX CPU (128 threads).

Task # Vertices Runtime (ms/frame)

PNNm +ANNm 182K 36

PNNs +ANNs 289K 52

Inverse Activation 2624 curves 180

Simulation, Muscle+Fascia+Skin 182K+145K+145K 283K+25K+39K

each constraint. Similarly, contact constraint stiffness is set to 1e8 times the same weighted

average and zero for the tangential directions. We compare the runtime for PNN and ANN

enhancement of LBS as well as the inverse activation solve in Table 6.2. Our method is more

than one thousand times faster than the simulation and can be run in real time if slightly

fewer curves and mesh vertices are used.

6.6 Conclusions and Discussion

While promising, there are still many aspects of our approach that can be improved. We

note that our adoption of the A-pose as the reference/undeformed configuration is clearly

inaccurate. A better estimate of soft tissue reference states is an interesting direction for

future work. In the simulation stage, we allowed the fascia to slide against muscles and bones.

Allowing the fat to slide against the fascia will further improve realism. Also, while our rig

is designed in a somewhat biomechanically accurate way (e.g. rigidity of bones is preserved),

the joints we use could be made more accurate, particularly near the scapula. Lastly, while

our comparison with EMG results were promising, some aspects could be improved. For

example, in the flexion task, the two deltoid muscles we analyzed ramped up to a burst
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of activity late in the task but with the posterior deltoid taking up more of the load than

observed in the EMG data. However, overall our work advances the state-of-the-art for the

animation of human characters with realistic soft tissue deformation and modest run-times,

and with additional validation, could have broad applications in biomechanics research.
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Figure 6.8: Variation in Body Fat Percentage. Left: unmodified outer skin surface,

middle: halfway between skin and fascia, right: 0% body fat/fascia.
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Figure 6.9: Effect of Increased Weights on Muscles and Skin. Heavy dumbbell (gray)

v.s. light dumbbell (green).
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Figure 6.10: Streamline Activations on Various Poses. Left to right: streamline

activations, muscle activations with active network muscle contraction and skin with active

network deformation. Top: shoulder shrug at time t = 0.4s. Middle: biceps curl at time

t = 0.53s. Bottom: motion capture at time t = 48.1s.
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Figure 6.11: Activation Comparison. We compare our computed muscle activations

with the state-of-the-art approach in Seth et al. [SHU18]. Ground-truth, experimentally

observed EMG Data is provided. Our comparisons to EMG data are similar and in some

cases improved over Seth et al. [SHU18]. Green: Ours. Red: Seth et al. [SHU18]. Gray:

EMG data. (a): Shoulder flexion, (b): Shoulder abduction.
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CHAPTER 7

Supplementary Material for Position-Based Nonlinear

Gauss Seidel

7.1 Linear Elasticity

7.1.1 Potential

Ψle(F) = µϵ(F) : ϵ(F) +
λ

2
tr(ϵ(F))2 (7.1)

ϵ(F) =
1

2

(
F+ FT

)
− I (7.2)

7.1.2 First-Piola-Kirchhoff Stress

Ple(F) =
∂Ψle

∂F
(F) = 2µϵ(F) + λtr(ϵ(F))I (7.3)

7.1.3 Hessian

∂2Ψle

∂F2
(F) = 2µ

∂ϵ

∂F
(F) + λI⊗ I. (7.4)

The entries in ∂ϵ
∂F

(F) are given by
∂ϵαβ

∂Fγδ
= 1

2
(δαγδβδ + δβγδαδ). When viewed as a matrix, the

Hessian has entries
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∂2Ψle

∂Fστ∂Fδϵ
(I) 00 11 22 01 10 12 21 02 20

00 2µ+ λ λ λ

11 λ 2µ+ λ λ

22 λ λ 2µ+ λ

01 µ µ

10 µ µ

12 µ µ

21 µ µ

02 µ µ

20 µ µ

7.1.4 General Isotropic Elasticity Modified Hessian

We use the modified Hessian

C̃(F) = µ
∂2I0
∂F2

+ λ
∂Id−1

∂F
⊗ ∂Id−1

∂F
. (7.5)

where I0(F) = F : F and Id−1(F) = det(F). ∂2I0
∂F2 is the twice the identity. Furthermore,

when F = I, we get C̃(I) has entries

C̃αβγδ(I) 00 11 22 01 10 12 21 02 20

00 2µ+ λ λ λ

11 λ 2µ+ λ λ

22 λ λ 2µ+ λ

01 2µ 0

10 0 2µ

12 2µ 0

21 0 2µ

02 2µ 0

20 0 2µ
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While this is not exactly equal to the Hessian of the potential for linear elasticity, the bottom

three 2× 2 blocks have the same eigenvalues as in the linear elasticity Hessian, where the 2µ

mode is repeated and the null mode for the linear elasticity Hessian associated with linear

rotations are removed. We keep this simplification since it maintains the meaning of the

Lamé coefficients and since we found it to work as a modified Hessian in practice.

7.2 Neo-Hookean

7.2.1 Neo-Hookean Potential

Ψ(F) =
µ

2
F : F+

λ̂

2
(det(F)− 1− µ

λ̂
)2 (7.6)

7.2.2 First-Piola-Kirchhoff Stress

P(F) = µF+ λ̂(det(F)− 1− µ

λ̂
)JF−T (7.7)

7.2.3 Hessian

∂2Ψ

∂F
(F) = µI+ λ̂JF−T ⊗ JF−T + λ̂(det(F)− 1− µ

λ̂
)
∂2J

∂F2
(F) (7.8)
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7.2.3.1 Determinant Hessian

The determinant can be written in terms of the permutation tensor ϵ̃αβγ as

J = det(F) = ϵ̃αβγF0αF1βF1γ (7.9)

∂J

∂Fδϵ

(F) = JF−1
ϵδ (7.10)

= ϵ̃ϵβγδ0δF1βF2γ + ϵ̃αϵγδ1δF0αF2γ + ϵ̃αβϵδ2δF0αF1β (7.11)

∂2J

∂Fστ∂Fδϵ

(F) = ϵ̃ϵτγδ0δδ1σF2γ + ϵ̃τϵγδ0σδ1δF2γ + ϵ̃τβϵδ0σδ2δF1β+ (7.12)

ϵ̃ϵβτδ0δδ2σF1β + ϵ̃αϵτδ1δδ2σF0α + ϵ̃ατϵδ1σδ2δF0α. (7.13)

The determinant Hessian evaluated at F = I is

∂2J
∂Fστ∂Fδϵ

(I) 00 11 22 01 10 12 21 02 20

00 1 1

11 1 1

22 1 1

01 -1

10 -1

12 -1

21 -1

02 -1

20 -1
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7.2.4 Lamé Coefficients

∂2Ψnh

∂Fστ∂Fδϵ
(I) 00 11 22 01 10 12 21 02 20

00 µ+ λ̂ −µ+ λ̂ −µ+ λ̂

11 −µ+ λ̂ µ+ λ̂ −µ+ λ̂

22 −µ+ λ̂ −µ+ λ̂ µ+ λ̂

01 µ µ

10 µ µ

12 µ µ

21 µ µ

02 µ µ

20 µ µ

This is only consistent with linear elasticity if we have −µ+ λ̂ = λ, note that then µ+ λ̂ =

2µ+ λ.
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CHAPTER 8

Supplementary Material for Inverse Activation

8.1 Torque Equilibrium

We denote the spatial domain of each bone as Ωb ⊂ R3 and each individual bone mesh consists

of locations x ∈ Ωb sampled in the bone domains. We denote the spatial domain consisting

of all the bones in the skeleton as union Ω = ∪bΩb. For any x ∈ Ωb, a top-down joint

rotation hierarchy {j0, . . . , ji, . . . , jb} originating from a root bone Ω0 (the sternum/rib cage

in our examples) defining the articulation kinematics on bone Ωb is known. The articulated

position ϕb(x;q) ∈ R3 of x ∈ Ωb is composed of a combination of joint transforms Lji(·; qji)

defined on each joint rotation ji as

ϕb(x;q) = Lj0(Lj1(Lj2(. . .); qj1); qj0)

Lji(x; qji) = Rji(qji)(x− xji) + xji

Rj(qj) = Uj


1 0 0

0 cos(qj) − sin(qj)

0 sin(qj) cos(qj)

UjT

Uj =


uj
0, v

j
0, w

j
0

uj
1, v

j
1, w

j
1

uj
2, v

j
2, w

j
2

 ∈ R3×3.
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Here Rj is a rotation matrix of local joint rotation qj radians around the associated pivot

xj. Uj is an orthogonal matrix representing the rotation axis uj ∈ R3. Note that the vec-

tor q ∈ RNC is made up of the components qj. The Jacobian of the skeletal kinematics

Jb(x;q) ∈ R3×NC with respect to the joint state q is defined as Jb(x;q) = ∂ϕb

∂q
(x;q).

The principle of virtual work reveals the joint torques required to maintain the pose q

in the presence of external forcing

δW =

∫
Ω

f(x) · δϕb(x;q)dx =

∫
Ω

f(x) · (Jb(x;q)δq)dx

= δqT

∫
Ω

JbT (x;q)f(x)dx = 0.

Here δq is an arbitrary perturbation in the joint state. Intuitively, this states that the

residual of the external and muscle forcing f(x) = ρ(x)g + fm(x) can only be non-zero in

components orthogonal to the articulation. This yields the torque constraints∫
Ω

d−1∑
α=0

J b
αj(x;q)fα(x)dx = 0 (8.1)

where J b
αj and fα are the components of the Jacobian and force respectively. Also, Ω̂j ⊂ Ω

is defined to be all bodies affected by articulation of joint j.

After applying the chain rule in the Jacobian derivative, Jb
:,ji , the jthi column of the Ja-

cobian, becomes:

Jb
:,ji(x;q) =

∂ϕb

∂qji
(x;q) =

∂Lj0

∂qj0

∂qj0
∂qji

+
∂Lj0

∂Lj1

∂Lj1

∂qji

= δji,j0R
j0 ′(qj0)(L

j1 − xj0) +Rj0(qj0)
∂Lj1

∂qji

= Rj0(qj0) . . .R
ji−1(qji−1

)Rji ′(qji)(L
ji+1 − xji)
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The key simplification is to consider the current state as the rest state x = ϕb(x;0) = Lj0 =

. . . = Lji , and Rji(0) = I is the identity matrix.

∂ϕb

∂qji
(x;0) = Uji


0 0 0

0 0 −1

0 1 0

UjiT (x− xji)

∂ϕb
α

∂qji
(x;0) = −

d−1∑
j,k,l=0

U ji
αjϵ0jkU

ji
lk(xl − xji

l )

=
d−1∑
l=0

(wji
α v

ji
l − vjiαw

ji
l )(xl − xji

l ) = −
d−1∑
p,l=0

ϵpαlu
ji
p (xl − xji

l )

where ϵ is the Levi-Civita symbol. Note we use the property uji = vji × wji from the or-

thogonal matrix. Define Ω̂j ⊂ Ω to be all bodies articulated by joint state qj. Equation (8.1)

becomes: ∫
Ω

d−1∑
α=0

J b
αj(x;q)fα(x)dx =

∫
Ω̂j

−
d−1∑

α,p,l=0

ϵpαlu
j
p(xl − xji

l )fα(x)dx

=

∫
Ω̂j

d−1∑
α,p,l=0

ϵplα(xl − xji
l )fα(x)u

j
pdx

=

∫
Ω̂j

((x− xj)× f(x)) · ujdx = 0

(8.2)

For further simplification of ball-and-socket joints, we can take Uj = I and Equation (8.2)

is simply ∫
Ω̂j

(x− xj)× f(x)dx = 0

Knowing the set of muscles, we only find equilibrium on the joint articulations that can

be controlled by the muscles. The remaining articulations, e.g. root and end joints, are

implicitly in equilibrium.
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