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Abstract 

 

 

Machine Learning and Corporate Fraud Detection 

 

by 

 

Stephen Walker 

 

Doctor of Philosophy in Business Administration 

 

University of California, Berkeley 

 

Professor Panos Patatoukas, Chair 

 

  

The purpose of this dissertation was to study why corporate fraud detection 

models are often met with skepticism by industry practitioners despite a vast literature 

supporting their use. This dissertation examined the parsimonious standards in the 

academic literature for corporate fraud detection and included the latest studies that 

introduced ideas from Benford’s Law and machine learning algorithms.  The study of 

corporate fraud detection models is important because academic literature is relied upon 

by industry practitioners and government regulators including the Securities and 

Exchange Commission.  This paper starts with a critique that was recently published in 

Econ Journal Watch.  This critique examined the results of a paper recently published in 

the Journal of Accounting Research applying machine learning to the detection of 

accounting fraud. Afterwards, I applied the most popular ensemble boosting algorithm in 

machine learning known as XGBoost to a comprehensive sample of financial ratios and 

variables.  In addition to this model, I ran a horserace with the other models from the 

extant literature.  Results showed that the F-Score (Dechow, et al. 2011) stood up quite 

well against the machine learning models.  Interestingly, a univariate screen on sales 

growth performed about as well as more complicated methodologies at the top of the 

probability distribution.  Finally, I provided a discussion based on a Bayesian analysis 

that illustrated why practitioners find fraud detection difficult. 
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1. Introduction 
 

The purpose of this dissertation was to understand what works in corporate fraud detection.  This 

subject is highly relevant to industry regulators and practitioners and has generated a large 

volume of research published in the top academic journals.  The primary motivation for this 

study was driven by the anecdotal evidence whispered amongst industry practitioners that 

corporate fraud detection models found in the academic journals fall short of expectations, even 

though this literature reported significant results.  I wrote this paper to understand what the key 

differences were between academics and practitioners, and to contribute to the literature bridging 

the gap between the two groups.  

The corporate fraud literature is vast and covers decades of work in the social sciences 

including accounting, finance, and law. The extant literature has contributed to understanding 

how fraud is operationalized inside corporations, and through which observables it might be 

detected. The last wave of corporate fraud scandals occurred twenty years ago, particularly made 

famous by the collapses of Enron and Worldcom.  These accounting scandals were widely 

publicized, and the executives earned well-deserved jail terms. These scandals motivated the 

Congress to prevent future fraud through the passage of new legislation including Sarbanes-

Oxley which required improvements in controls and internal processes for large companies in 

addition to requiring a new level of personal accountability for the senior corporate officers who 

would become criminally liable for what was presented in financial statements.  

Earlier corporate fraud detection models relied upon econometrics including, for 

example, the logistic and probit regressions.  The logistic regression, or the logit, was developed 

in the 1940s and can be used to model binary dependent variables (e.g., whether a company is 

fraud or not a fraud).  Recent additions to the corporate fraud detection literature applied 

machine learning algorithms and reported significantly better outcomes over the econometric 

models.  These papers followed a call from Hal Varian nearly seven years ago who implored 

economists to search for applications for machine learning, which provided for superior 

capabilities including the ability to handle large variable sets and the ability to model complex 

nonlinear relationships (Varian 2014).  Varian is chief economist at Google and was the 

founding dean of the School of Information at the University of California at Berkeley. While 
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artificial intelligence and machine learning are often seen as relatively new phenomena, there 

have been numerous artificial intelligence cycles over the last 60 years.  For example, the 

Sunday edition of the New York Times on July 13th, 1958 featured a small story about an 

artificial intelligence experiment (“Electronic ‘Brain’ Teaches Itself” 1958).  In this article, a 

Navy computer named “Perceptron” was described, which at the time cost $100,000, or about $1 

million today. The article reported that this device learned the difference between a right and left 

orientation following 40 training datapoints.  The perceptron was shown to be 97 percent 

accurate and Navy officers noted that they “hesitated to call it a machine because it is so much 

like a ‘human being without life’”.  Machine learning and artificial intelligence have experienced 

numerous cycles and advancements since the perceptron. In the 1960s, economist Herbert Simon 

said that “machines will be capable, within twenty years of doing any work a man can do,” 

(Simon 1965).  Since then, machine learning advanced to rules-based expert systems, to decision 

trees and support vector machines, to neural networks and ensemble methods that combine 

multiple trees for prediction.  This dissertation applied the latest popular boosting algorithm 

known as XGBoost, which is short for extreme gradient boosting (Chen and Guestrin 2016).   In 

the last decade, machine learning and artificial intelligence have found success with perception 

tasks including reverse image search and facial recognition to medical diagnosis using scans 

(Narayanan 2020).  In recent years, Accounting researchers have answered Varian’s call and 

have published papers applying machine learning, including to the task of corporate fraud 

detection.  

Either through the application of older econometric models, or through modern machine 

learning algorithms, the summary statistic generated from the modeling exercise represents a 

probability, or a risk score for fraud. These scores can be ranked, and from this list the relevant 

gatekeepers can go to work.  For example, these risk scores could provide early warning to 

auditors to scrutinize their higher-risk clients, and potentially increase their audit efforts. Other 

gatekeepers include short-seller activists who could use this information in their search process 

to short potential frauds. Government regulators and law enforcement professionals could apply 

them in their investigative work.  Given the plethora of models available to researchers, one goal 

of this dissertation was to benchmark them to provide guidance to practitioners as to which 

models work best today.  

While machine learning models can potentially improve prediction results, they often 

come at a cost to interpretability. Increasingly, researchers are questioning the social 

consequences from black box models. An associate professor of computer science at Princeton 

entitled a presentation “How to recognize AI snake oil” arguing that “much of what’s being sold 

as AI today is snake oil—it does not and cannot work.”(Narayanan 2020). He argued that the 

commercialization of these tools has overly promoted their benefits and that they overshadow the 

real progress made in AI which included tasks such as reverse image search, facial recognition, 

medical diagnosis, speech to text, and deep fakes, which are “perception” tasks.  Other tasks that 

were not described as perfect but are improving included automated tasks such as detection of 

copyrighted material and spam detection.  However, the author noted that predicting social 

outcomes was “fundamentally dubious” which included tasks such as predicting criminal 

recidivism, job performance, policing, terrorist risk, and at-risk children.  In addition to ethical 

concerns for these prediction models, he wrote that they were amplified by inaccuracy noting 
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that the problem most significant was the “lack of explainability.”  The following quotation from 

that presentation provided a clear illustration to his point. 

 

“Imagine a system in which every time you get pulled over, the police enters your data 

into a computer.  Most times you get to go free, but at some point, the black box system tells you 

you’re no longer allowed to drive.”  

 

Currently, governments typically employ a points-based system where there are clear 

penalties for traffic infractions and the sum of these penalties would lead to license suspension.  

A black-box system could make a better prediction of your future driving capability, but at the 

cost of explaining the why behind it.  In the last chapter of this dissertation, I will explore a 

points-based system for detecting fraud and results were interestingly comparable to more 

complex statistical methods.  Relative to machine learning, the econometric models provide for 

easy interpretation of marginal effects from the observables.  In machine learning, “importances” 

for the variables are available, but these do not provide much insight into the why.  Ultimately, 

exploring causal relationships is best left to a well-designed casual study (Zhao & Hastie 2019).  

Increasingly, the computer sciences are moving towards causal tools of the economists rather 

than vice versa.  

This dissertation is organized as follows.  Chapter 2 provides a thorough review of the 

literature covering accounting fraud in addition to useful background on the topic.  Chapter 3 

presents my recently published paper in Econ Journal Watch that critiques a machine learning 

paper published in the Journal of Accounting Research.   This paper was originally a chapter in 

this dissertation, but I was able to get it published prior to the completion of this document.  

Chapter 4 reviews the research design and describes a critical design feature for applying 

machine learning techniques.  Unlike prior models, the time dimension becomes crucial, and 

researchers should proceed with caution when constructing these models to prevent out-of-

sample biases. Chapter 5 applies the XGBoost algorithm to a “kitchen sink” of financial 

variables and ratios and compares results to the top models in the literature.  Chapter 6 dives 

deeper into which metrics matter.  One metric matters the most from the perspective of the fraud 

investigator, which is positive predictive value, or precision.  A Bayesian analysis shows why the 

best models still underperform expectations in practice. Chapter 7 explores additional items that 

did not fit well in the other chapters including variable importance.  Chapter 8 concludes with 

final thoughts.  
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2. Background 
 

The literature on corporate fraud is multidisciplinary and this paper primarily focused on the 

detection models within the accounting literature. For a more detailed review of the literature 

from the fields of accounting, finance, and law, please see Amiram, et al. (2018). This study 

focused on the most severe form of financial reporting misconduct that culminated into an action 

by the Securities and Exchange Commission (SEC), specifically the Accounting & Auditing 

Enforcement Release (AAER).  The first multivariate model applying financial statement ratios 

to detecting AAERs was the M-Score (Beneish 1999), which is commercially available in 

AuditAnalytics.  AuditAnalytics is a data and analytics provider to the Accounting industry. The 

M-Score is also included in the curriculum for the Chartered Financial Analyst (CFA), an 

important designation for Wall Street professionals.  The F-Score (Dechow, et al. 2011) followed 

the M-Score, which was estimated with a larger and more comprehensive set of AAER cases.  

Both models were benchmarked in this dissertation.   

In addition to AAERs, there are other potential dependent variables for financial 

misreporting, many of which would not lead to an SEC action.  For example, these outcome 

variables include shareholder lawsuits and financial restatements.  Shareholder lawsuits may 

occur for many reasons in addition to corporate fraud. Kim & Skinner (2012) studied shareholder 

lawsuits and created the first multivariate prediction model based on Stanford’s shareholder 

lawsuit database.  The other potential dependent variable, financial restatements, covers a wide 

range of financial reporting mistakes not necessarily related to fraud.  The available database for 

financial restatements is AuditAnalytics’ non-reliance financial restatement database.  Larcker & 

Zakolyukina (2012) studied restatements and found that the F-Score and the M-Score performed 

poorly when applied to restatements relative to AAERs. Unreported results are consistent with 

this finding that shareholder lawsuits and financial restatements made poor dependent variables 

for detecting fraud, which is why the AAER was applied in this dissertation.  

Returning to the financial-ratios based models, Beneish estimated the M-Score using a 

probit regression that was based on a limited matched sample of problematic financial statements 

that included Accounting and Auditing Enforcement Releases (AAERs).  Dechow, et al. (2011) 

studied a much larger and comprehensive database of AAERs starting in the early 1980s and 

produced a detection model based on a logistic regression analysis of seven key variables that 
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can be easily derived from financial reports.  The authors currently support this database for 

research and graciously gave me access to use it in this dissertation.  The AAER database can be 

obtained from the USC Marshall School of Business (Dechow, et al. 2011).  Regarding the 

advanced machine learning tools, early literature included Perols (2011), which compared the 

performance of various machine learning and statistical models and Cecchini, et al. (2010), 

which applied a support vector machine to a custom financial kernel mapping of financial 

statement variables.  However, these studies involved matched samples.  Inferences from 

matched samples (e.g., 50:50) can be significantly different when applied to real world 

prevalence (e.g., 1:200).  In fact, Beaver previously observed this issue in the context of 

bankruptcy (Beaver 1966).  A potential downside to studying rare events with machine learning 

is that machines may have difficulty in training.  Perols, et al. (2017) explored random 

undersampling procedures for the training data and showed that they improved model 

effectiveness.  In fact, it is standard procedure in machine learning to perform either a random 

over-sampling or under-sampling to balance the training data. Note that out-of-sample test sets 

are unchanged so that inferences would remain valid.   Bao, et al. (2020) applied a boosting 

model with random undersampling called RUSBoost using sample data with realistic rare 

prevalence rates. One innovation of their paper was that they did not apply financial ratios, 

unlike the M-Score or the F-Score, and instead relied upon raw financial statement variables.  

The benefit from this approach was to provide a simpler and more direct way to generate risk 

scores based on what was available from the financial reports without requiring additional 

transformations. The tradeoff was interpretability since machine learning explored nonlinear 

paths to generate predictions.  In their publication, they reported a 70 percent improvement over 

F-Score, which was a large margin.  Since the Journal of Accounting Research required the 

publication of the code supporting their published paper, I took a closer look that led to writing a 

critique that was recently featured in Econ Journal Watch. This critique was included in this 

dissertation in the next chapter. Outside of traditional machine learning, Amiram, et al. (2015) 

introduced Benford’s law which is based on the distribution of the first digits.  While Benford’s 

law has been in the toolkit for fraud investigators outside of corporate fraud detection, the 

authors were the first to bring it to the detection of AAERs, and their summary measure was 

included in the benchmarking analysis in Chapter 5. An additional discussion on Benford’s law 

is included in Chapter 7.  

In addition to prediction modeling, another area of research focused on how fraud is 

discovered.  Dyck, Morse and Zingales (2010) explained that most fraud was typically 

uncovered by other means including investigative journalism or the results of criminal 

investigations writing that fraud detection “takes a village.” This village involved outside parties 

including employees, media, and industry regulators.  They described different views for 

detecting fraud. For example, “The legal view claims fraud detection belongs to the auditors and 

securities regulators” (Coffee 1986 and Dyck, et al. 2010).  The finance view (Fama 1990 & 

Dyck, et al 2010) said that debt and equity holders would do the heavy lifting including their 

analyst and auditor agents.  In contrast to these points of view, Dyck, Morse, and Zingales 

ultimately found that employees, other industry regulators, and the media were largely 

responsible for detecting fraud while auditors and the SEC only accounted for ten percent and 

seven percent of detection, respectively.   
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Another recent publication applied textual analysis to “assess whether the thematic 

content of financial statement disclosures is incrementally informative in predicting intentional 

misreporting” (Brown, et al. 2020).   Like Bao, et al. (2020), the authors noted an improvement 

at the top one percent of the probability distribution, though these results did not stand out 

relative to the results reported by the Bao, at al. paper.  Both papers were featured in the same 

March 2020 journal issue.  In fact, Bao and coauthors argued, “one interesting question future 

researchers may explore is whether the usefulness of textual data continues to hold if the 

information from the readily available raw financial data is more efficiently extracted using 

advanced data mining techniques.” They further noted that “our results raise the bar for this line 

of text-mining research because we show that the commonly used Dechow, et al. ratio-based 

logistic regression model significantly understates that value of financial data in fraud 

prediction” (Bao et al. 2020).   

 A quick take from practitioners reveals something interesting about the usefulness of 

these models which the accounting literature should be aware.  For example, short seller Carson 

Block of Muddy Waters Research stated publicly in a recent interview that “my issue with 

running screens is…you get a lot of false positives.”  (Block 2020).  I also spoke with Dr. Schilit, 

author of the book Financial Shenanigans, which provided the first popular field study of SEC 

enforcement actions.  He advised me that “you’ve got to get your hands dirty,” and understand 

the “why?” When asked directly whether he applied advanced statistical models to fraud 

detection, his answer was simple: “No” (Schilit 2020).  
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3. Critique of Recent Paper in Detecting 

Accounting Fraud 
 

 

The following critique was published in Econ Journal Watch on March 31st, 2021 (Walker 

2021)1.  This critique covered an article in the Journal of Accounting Research (Bao, et al. 2020).  

This critique was originally included in this chapter but was submitted and approved for 

publication prior to the filing of this dissertation.  Proper permissions were obtained both from 

this author, in addition from the editor of the journal Professor Daniel Klein.  

 The authors of the critiqued article (Bao, et al. 2020) replied to this critique in the same 

journal issue (Bao, et al. 2021).   Their reply is not included here but is available online at no 

cost to the reader2.  I included my rebuttal following this article.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 https://econjwatch.org/1231 
2 https://econjwatch.org/1232 
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3.1 Critique 
 

This critique treats an article in Journal of Accounting Research entitled “Detecting 

Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach” by 

authors Yang Bao, Bin Ke, Bin Li, Y. Julia Yu, and Jie Zhang (Bao et al. 2020). In addition to 

the published paper, the authors provide their Matlab code with an associated dataset in a CSV 

file3. This paper applies their code and dataset to replicate the results and study the key 

assumption driving those results.  

 Within the fields of accounting and finance, corporate fraud detection models have been 

the subject of a significant volume of work. The literature follows a long line of prediction and 

detection models found in the literature on capital markets. Parties with interest in these models 

include the investing public and regulatory bodies such as the Securities and Exchange 

Commission. Previous corporate frauds including Enron and Worldcom left significant damage 

in their wake, affecting not only their employees and investors but also the public’s trust and 

faith in capital-market institutions. The great hope is that an early warning system can alert the 

Securities and Exchange Commission and investors to potential fraud and act before the fraud 

grows too large. 

The previous standard in the accounting literature for detecting accounting fraud is 

known as the F-Score, which is based on a seven-variable logistic regression model published by 

Patricia Dechow and collaborators (2011). For modeling purposes, the best proxy for accounting 

fraud is the SEC-issued Accounting and Auditing Enforcement Release (AAER), an enforcement 

action that describes the fraud and typically orders a restatement of previously issued financial 

reports (e.g., 10-Ks). The observable covariates to these fraud models are financial statement 

ratios that might include changes in sales, accounts receivables, and inventories, in addition to 

indicator variables for capital-markets activity including share or debt issuances. These ratios are 

based on a long line of theoretical and empirical work. A novel innovation of the Bao et al. 

(2020) paper is that they do not use financial ratios, but rather apply raw financial variables taken 

directly from the financial statements.  

The authors provide a dataset that includes a total of 146,045 firm-year observations from 

1991–2014. The data comes from the CompuStat database. AAER data is sourced from the USC 

Marshall School of Business (previously the Haas School of Business). Unique AAER cases 

total 413 (each of which may last multiple years), and the sample’s total fraud-case firm-years is 

964 firm-years. Taking the 964 AAER-affected firmyears and dividing by the total of 146,045 

firm-years gives an approximation for the unconditional probability of finding fraud for any firm 

in any given year as 0.7 percent. Fraud is a rare event, and comparing detection rates against this 

unconditional expectation is important within accounting research.  

Replicating the paper is relatively simple. The software Matlab is required. The Matlab 

code file is called “run_RUSBoost28.” The dataset is a CSV file called “uscecchini28.csv.” The 

column headers are shown in Figure 1.  

 

 
3 https://github.com/JarFraud/FraudDetection 
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Figure 1: CSV file (the dataset) 

 
Position Column Description 

1 fyear Fiscal Year 

2 gkvey Compustat  firm identifier 

3 sich 4-digit Standard Industrial Classification Code (SIC) 

4 insbnk An indicator variable for financial institutions between SIC 6000-6999 

5 understatement An indicator variable if the misstate indicator involved an understatement  

6 option Not used 

7 p_aaer Identifier for AAER 

8 new_p_aaer New Identifier for AAER 

9 misstate Indicator variable for misstatement  

10 act Current Assets - Total 

11 ap Accounts Payable - Trade 

12 at Assets - Total 

13 ceq Common/Ordinary Equity - Total 

14 che Cash and Short-Term Investments 

15 cogs Cost of Goods Sold 

16 csho Common Shares Outstanding 

17 dlc Debt in Current Liabilities 

18 dltis Long-Term Debt Issuance 

19 dltt Long-Term Debt Total 

20 dp Depreciation and Amortization 

21 ib Income Before Extraordinary Items 

22 invt Inventories - Total 

23 ivao Investment and Advances Other 

24 ivst Short-Term Investments - Total 

25 lct Current Liabilities – Total 

26 lt Liabilities – Total 

27 ni Net Income (Loss) 

28 ppegt Property, Plant and Equipment - Total (Gross) 

29 pstk Preferred/Preference Stock (Capital) - Total 

30 re Retained Earnings 

31 rect Receivables Total 

32 sale Sales/Turnover (Net) 

33 sstk Sale of Common and Preferred Stock 

34 txp Income Taxes Payable 

35 txt Income Taxes - Total 

36 xint Interest and Related Expense - Total 

37 prcc_f Price Close - Annual - Fiscal 
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The dependent variable is an indicator variable equaling 1 if the AAER covered the firm-

year in the data, and zero otherwise which is in the dataset’s column 9, labeled misstate. The 

independent variables are 28 raw financial statement variables reported by the company in their 

annual report and shown in columns 10–37, which include items such as total assets and ending 

price per share for the period. In the Matlab code, the dataset will be divided into a training and 

test set. For example, the first looped-trained model was based on data covered by the period 

from 1991 through 2001. The model was then applied out of sample, e.g., to the year 2003, and 

that application generated a probabilistic score for each firm in that year. The top 1 percent of the 

probability scores were taken from this selection and if there is a firm in this subset with an 

actual AAER for that year, it is counted as a correctly identified positive hit. The fraction of 

correct hits is the positive predictive value. The model was run iteratively for each year in the 

study’s test period, 2003 through 2008. 

Machine learning requires measuring results using a hold-out test sample because 

machine learning can overfit training datasets and produce results that are too good to be true. 

An iterative approach is preferable because it shows results as it steps through time, which is 

what would be experienced in the real world, and thus adds validity to the model. A two-year (or 

longer) gap between the training sample and test sample is required because AAERs are not 

immediately known when financial reports are issued. In fact, many years can pass between the 

financial report and the AAER issuance. A modeler must ask (in the spirit of Senator Howard 

Baker): What can the model know, and when can the model know it? 

One issue related to that question involves serial frauds. Some serial frauds may traverse 

both training and test periods since they cover more than the gap period. To address this issue, 

the readme file that accompanies the data and code4 notes: 

 

“The variable new_p_aaer is used for identifying serial frauds as described in Section 3.3 

(see the code in “RUSBoost28.m” for more details).” 

 

Section 3.3 from their paper is reported in its entirety below, with boldface added to emphasize 

the action described.  

 

3.3 SERIAL FRAUD (Bao, et al. 2020) 

Accounting fraud may span multiple consecutive reporting periods, creating a situation of 

so-called “serial fraud.” In our sample, the mean, median, and 90th percentile of the 

duration of the disclosed accounting fraud cases is two years, two years, and four years, 

respectively, suggesting that it is common for a case of fraud to span multiple 

consecutive reporting periods. Such serial fraud may overstate the performance of the 

ensemble learning method if instances of fraudulent reporting span both the training and 

test periods. This is because ensemble learning is more flexible and powerful than the 

logistic regression model, and may therefore be better able to fit a fraudulent firm than a 

fraudulent firm-year. Hence, enhanced performance of the ensemble learning method 

may result from the fact that both the training and test samples contain the same 

 
4 https://github.com/JarFraud/FraudDetection/blob/master/README.md 
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fraudulent firm; the ensemble learning model may not perform as well when the sample 

contains different firms. To deal with this concern, we break up those cases of serial 

fraud that span both the training and test periods. Because we have a small number 

of fraudulent firm-years relative to the number of nonfraudulent firm-years in any 

test year, we recode all the fraudulent years in the training period to zero for those 

cases of serial fraud that span both the training and test periods. Although this 

approach helps us avoid the problems associated with serial fraud, it may also introduce 

measurement errors into the training data. (Bao et al. 2020, 211–212, my emphases) 

 

In summary, serial fraud concerns AAER cases that span multiple reporting periods. However, 

the section does not directly address why the column new_p_aaer was created. Returning to the 

Matlab code for an explanation, Figure 2 shows the code for the model.  

 

Figure 2: The Matlab Code  
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Line 10 starts the loop that runs the model iteratively stepping through each year of the 

test period from 2003–2008. Line 21 creates a list of unique values of AAER identifiers where 

the misstate column is not equal to zero (equal to 1) for the test set. Line 24 performs the action 

described in Section 3.3 and sets the y_train indicator values to zero where there is a match in 

the AAER identifiers in the training sample to the previously created list from the test sample.  

The intention of Section 3.3 appears to be correctly coded in Matlab. However, what is 

the new_p_aaer field?  In Figure 1, the 7th position contains another field called p_aaer. The 

p_aaer field is the AAER number that matches the SEC issued number, which can be searched 

on the SEC website.5 When comparing these two columns, it appears that new_p_aaer takes the 

original AAER number and adds a ‘1’ or ‘2.’ In fact, all but 17 AAER cases take the original 

AAER number and add a ‘1.’  

I sent an email to the authors of the paper copying their editor and asked specifically 

about this issue. Professor Ke Bin sent the following response on behalf of the author group to all 

recipients of the original email (boldface added):  

 

As we discussed in Section 3.3 of our paper, “we recode all the fraudulent years in the 

training period to zero for those cases of serial fraud that span both the training and test 

periods.” Our serial frauds have two requirements: (1) have the same AAER id, and 

(2) are consecutive in our sample. “1” and “2” are suffix to distinguish serial frauds 

with the same AAER id but not consecutive in our sample. 

 

 I understand the first part of the requirement. However, I do not understand the second 

part to the requirement—which was not described in the paper or in the online supporting 

documents. The serial fraud issue is a problem with the span of the fraud itself, not whether it is 

consecutive in their sample. 

The reason that some cases are not consecutive in the sample was provided by the next 

explanation, given by Professor Ke when I asked why there were a few missing firm-year 

observations in the sample. 

 

We require all observations to contain non-missing values for the 28 raw accounting 

variables, consistent with prior studies cited in our paper. Those observation [related to the 

17 AAERS] are dropped because one of the 28 raw variables are missing in WRDS 

COMPUSTAT database. For example, firm-years of AAER No. 2472, 2504, 2591, and 

2894 are missing DLTIS (Long-term debt issuance) and firm-years of AAER No. 2754 and 

3217 are missing XINT (Interest and related expense, total). 

 

To show what Professor Ke is speaking to, Figure 3 shows the AAERs at issue. There are only 

17 AAERs where new_p_aaer changes values because of the “not consecutive in our sample” 

issue out of a total of 413 unique AAERs in their sample. Additionally, a large fraction of correct 

cases identified by the model are related to these 17 AAERs. The number of firm-years correctly 

 
5 https://www.sec.gov/divisions/enforce/friactions.htm 
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identified by the AAERs from 2003–2008 total 10 firm-years and are shown in the bolded boxes. 

The total correct cases identified by their model are 16 firm-years. So, 63 percent of the correct 

cases are associated with this issue.  

 

Figure 3: Seventeen AAER cases with two different new AAER identifiers 

 
 

 Professor Ke’s explanation is not consistent with how other variables are handled in the 

dataset. The statement suggests a rule that an observation is dropped if it has a missing 

CompuStat variable. According to the “SAS coding.pdf” file6, the authors recoded txp, ivao, ivst, 

and pstk to 0 if they were missing. If done for these four variables, why are variables dltis and 

xint inconsistently handled?   

However, the real issue is not these missing observations per se. Rather, it is the 

additional requirement that a consecutive sample be required for serial fraud identification. 

Section 3.3 of their paper describes the bias in machine learning related to serial fraud occurring 

when “both the training and test samples contain the same fraudulent firm” (Bao et al. 2020, 

211–212). To illustrate, take for example AAER No. 2504. This AAER affected Delphi 

Corporation for the years 2000–2004 and was issued by the SEC in 2006. Summarizing Delphi 

in context of the Matlab code, 

 

• If an AAER identifier from the test set matches the same identifier from the 

training set, the Matlab model recodes AAER’s misstate = 1 in the training set to 

0. 

• As shown in Figure 3, the AAER identifier for Delphi changes to 25041 in the 

training set and to 25042 in the test set.  

• Because Delphi 25042 is not in the training set, the Matlab code will not recode 

Delphi 25041’s misstate = 1 to 0.  

 

Because the Matlab code treats Delphi AAER No. 2504 as two different AAERs 25041 and 

25042, the same fraudulent firm is contained in both the training and test samples. Therefore, the 

 
6 https://github.com/JarFraud/FraudDetection/blob/master/SAS%20coding.pdf 

Out-of-Sample

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

857 8571 8572

1542 15421 15421 15422

1839 18391 18391 18391 18392

2472 24721 24721 24721 24721 24722 24722 24722

2504 25041 25041 25042 25042

2591 25911 25911 25912 25912

2754 27541 27541 27541 27542 27542 27542 27542 27542 27542 27542 27542

2894 28941 28942 28942

2937 29371 29372 29372 29372

2949 29491 29492 29492

2957 29571 29571 29571 29572

3022 30221 30222

3045 30451 30451 30451 30452

3156 31561 31562

3217 32171 32171 32172 32172 32172 32172 32172 32172

3909 39091 39092 39092 39092 39092 39092 39092

3996 39961 39962 39962
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Bao et al. (2020) results are still susceptible to the problem they addressed in Section 3.3. In fact, 

if Delphi’s AAER had not been changed, their machine learning model would not have identified 

the fraud for the year 2003 or 2004 contributing significantly to the published results.   

 

 I investigated how the authors’ AAER identifier change affected the results. I return the 

AAER identifiers to their original values by replacing the column new_p_aaer with data from 

the p_aaer column in the CSV file. This avoids making any code changes within Matlab. 

Running their original code on this modified dataset excludes from training the additional firm-

years associated exactly with these 17 unique AAER cases, but changes nothing else.  

 

Figure 4: Three model scenarios 

 

Panel A. Correct cases predicted to be positive 

 (1) (2) (3) 

 Published Re-run Recoded 

Year Model Model Model 

2003 8 7 4 

2004 4 4 3 

2005 2 2 1 

2006 1 1 0 

2007 1 1 1 

2008 0 0 0 

    
Total 16 15 9 

 

 

Panel B. Positive predictive values (correct cases / # predicted positive) 

 

 (1) (2) (3) 

 Published Re-run Recoded 

Year Model Model Model 

2003 13.3 percent 11.7 percent 6.7 percent 

2004 6.7 percent 6.7 percent 5.0 percent 

2005 3.4 percent 3.4 percent 1.7 percent 

2006 1.7 percent 1.7 percent 0.0 percent 

2007 1.7 percent 1.7 percent 1.7 percent 

2008 0.0 percent 0.0 percent 0.0 percent 

    
Total 4.5 percent 4.2 percent 2.5 percent 

 

 The updated results are reported in Figure 4. The first column reports the results by year 

from the Github supporting documents. Correct cases total 16 for the 2003–2008 out-of-sample 

test, corresponding to a 4.5 percent positive predictive value, matching the reported values 

published. Positive predictive value, also known as precision, is calculated as the proportion of 
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correct AAER firm-years out of the cases predicted to experience an AAER. The second column 

reports the results I obtain when running their original code on their original dataset, showing 15 

correct cases corresponding to a 4.2 percent positive predictive value (I’m not sure why it is 15 

rather than 16 as in the published paper). The third column reports the results I obtain when 

running their original code on the dataset with the AAER identifiers replaced by their original 

values, showing only 9 correct cases corresponding to a 2.5 percent positive predictive value. 

This value is critical because their published model compared the machine learning result with 

the result from a parsimonious logit model based on prior literature, which their paper reports to 

be 2.63 percent for positive predictive value. The updated result shows that the prior model in the 

literature outperforms this machine learning approach.  

 The crucial issue in the present critique is to address whether it is appropriate to give new 

identifiers to the AAER because there is a break in the series resulting from missing data. Since 

the serial fraud issue concerns the span of the AAER itself and not the sample data, there does 

not appear to be a logical purpose for the recoding done by the authors. Giving a new AAER 

identifier to these 17 unique cases out of a total of 413 disproportionately improved their 

reported results. Without the change, results do not improve upon the prior literature.  
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3.2 Walker Rejoinder to Bao, et al. 2021  
 

In their reply published in the same edition of Econ Journal Watch (Bao, et al. 2021), the 

authors chose not to respond to the central issue raised in the critique, which was: What was the 

justification for relabeling AAER identifier values?  The authors responded to an initial email 

inquiry writing that these relabelings were necessary because of a previously undisclosed 

requirement that a consecutive sample was needed.  This explanation made no sense, which was 

the motivating factor in writing the critique, and the authors provided no further justification in 

their reply.  AAER identifier values were used to identify the AAERs.   A recoding would imply 

that there were two different AAERs issued, which did not occur.  I showed that recoding 

identifiers overstated reported results—so much so, that the logit-based regression from prior 

literature outperformed their machine learning model.  

To illustrate once again, take, as an example, a fraud case that covered fiscal years 2000 

through 2002.  When making predictions for the year 2002 (the test sample), the authors argued 

in their original paper that that the fraud indicator variable in the year 2000 should be recoded to 

zero because of this serial-fraud issue.  In essence, they did not want the model to learn from its 

own case.  However, an additional requirement was added within the code that was not explained 

in the paper:  Do this procedure only if all observations for 2000-2002 are contained in the 

sample.  Note that training ends in 2000 for the prediction year 2002 because of a two-year gap 

requirement, which is a separate issue from this discussion.  So, the observation for year 2001 is 

irrelevant here. In cases where all observations are available, the AAER indicator variable would 

be recoded to zero for year 2000, which is consistent with the description written in their original 

paper.  Consider the alternative scenario, which introduces the controversy.   If the observation 

for the irrelevant year 2001 was dropped because of a missing values problem, then the authors 

would relabel the fraud identifier for any fraud year that occurred thereafter.  So, for this 

example, the fraud identifier for 2002 would be labeled differently from the fraud identifier for 

the year 2000.  Since the two identifiers no longer match (for the same AAER), the fraud 

indicator variable would not be recoded to zero and would therefore be included in training, 

which contradicts Section 3.3 of their original paper.  Without this relabeling, the model 

performed no better than a logit-based regression that existed previously in the literature. 

 Rather than give a rational explanation to relabeling identifiers, the authors chose to write 

extensively on other topics, and concluded with one that was irrelevant to the critique.  Their 

reply started by addressing the missing values problem.  In their original email responding to my 

initial questions, the authors stated that observations with missing values were dropped.  

However, some observations with missing values were not dropped, and instead were filled with 

zeros.  When I asked why this was the case in the critique, the reply explained that the treatment 

was consistent with prior literature and that they applied this logic consistently.  So, CompuStat 
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variables txp, ivao, ivst, and pstk were recoded to zero because it followed “common practice in 

the prior accounting literature.”  Observations that had missing values for other variables, 

including debt issuance, were dropped from the sample.  While one would think that these cases 

could also be reasonably recoded to zero, the authors chose not to do so and provided no further 

explanation.  However, I encourage the reader to move beyond this concern because it is not the 

real issue.  Rather, it is why would AAER identifiers need relabeling at all? 

 The next section of their reply was entitled “Walker’s approach to dealing with serial 

fraud.”  I do not know why the authors chose to attribute my name to their own written 

methodology as described in Section 3.3 of their original paper.  They started with the argument 

that I did not recalibrate the number of trees in the RUSBoost parameters.  To provide some 

background on this issue, machine learning algorithms contain several parameters which could 

be changed so that a better fit can be obtained for the training sample.  However, it is unknown a 

priori how this would affect the out-of-sample test.  Specifically, the authors wrote that I did not 

properly tune the number of trees parameter to optimize performance, and, when they did so, 

their performance improved from what I reported in my critique.  First, upon inspection of their 

results in the reply shown as their Table 1, taking their “improved” parameters at face value, 

results were virtually identical to the results I showed in my critique making it obvious that 

tuning does not matter.  For example, for the main sample period of 2003-2008, I reported 9 hits 

in the critique while they reported 10 hits in the reply.  So, there was one additional hit from this 

“tuning.”  Furthermore, this result is far from the purported improvement where they reported 16 

hits in the original publication. Second, the authors do not state how their parameter tuning was 

implemented, nor do they provide the code for this process either with their published paper or 

with this reply.  This is typically a requirement since parameter tuning must be done only on the 

training sample, and if it was done to maximize out-of-sample performance, then the procedure 

would be invalid.  Generally, tuning does not alter machine learning performance significantly.  

In fact, recent literature in the computer sciences reported that leaving models at their default 

parameter values was non-inferior to optimization (Weerts, Mueller, and Vanshoren 2020).   

The second issue raised in this section was that I only published Table 3 from their 

original paper for the years 2003-2008, while ignoring the results from the following Table 5, 

which included three alternative test samples.  The implication was that I cherry-picked results.  

The reason I chose Table 3 was that it was their main result.  In their original paper, they stated 

“we use the years 2003-2008 as our primary test sample” (Bao, et al. 2020).  Table 5 was 

included for robustness in a section entitled “Supplemental Analyses.” Regardless, equivalent 

comparisons for the alternate period 2003-2005 could be easily calculated since I provided cross-

sectional results by year in the analysis, whereas they only report the overall average.  

Incremental results beyond 2008 reported by them were essentially the same between the logit-

based model and the RUSBoost model.  The authors concluded this section by writing that the 

RUSBoost “always outperforms.”  This statement contradicted their own reported table because 

they show the value for NDCG@k for the logit-based model outperformed the value for their 
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RUSBoost model (0.0273 vs. 0.0237).  We know that this was their preferred metric because, in 

the original paper, the authors wrote that relative to the AUC (Area-under-the-curve), the 

“NDCG@k is more useful to regulators and other monitors.”   In the reply, the authors also 

concluded that results did not alter inferences.   How could this be true?  This new table showed 

results far from the purported 70 percent improvement shown in their original publication.  

The last section was entitled “What is the optimal approach for dealing with serial 

fraud?”   They concluded this section by saying, “Walker’s approach of relying solely on 

p_AAER ID to define serial fraud could be inappropriate.”  Again, why is this my approach?  

What other way is there to identify the AAER except with the AAER identifier?  Their Figure 1 

was entitled “a serial fraud example with a key fraud revelation event during the training period.”  

While timing of fraud revelation might make an interesting discussion, it was never addressed in 

my critique.  In fact, what they label as “Walker’s approach” is precisely their approach applied 

in the paper to all observations without a missing intervening variable.  

In summary, the authors provided no justification for relabeling identifiers with their 

reply.  In my critique, I made a clear case that their code was not consistent with how their paper 

described the implementation of the solution to the serial fraud problem as described in Section 

3.3 of their publication.  Without a reasonable explanation, results do not hold up to scrutiny and 

I can only conclude that their RUSBoost model does not outperform the logit-based model for 

the detection of corporate fraud.  While the authors wrote otherwise, their data supported this 

conclusion, which showed that the logit-based model from prior literature outperformed their 

RUSBoost model for the main sample period 2003-2008 in terms of their preferred metric 

NCDG@k.  
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4. Research Design: What Can the 

Model Know, and When Can the Model 

Know It? 
 

This chapter provides detail into the research design for implementing a reproduceable and 

believable machine learning process.  Replicability is a significant problem in the economic 

sciences and out-of-sample testing is considered a gold standard to reporting results.  

Econometric models historically were estimated and reported using in-sample results.  Until 

recently, dataset and computational power limitations largely prevented the use of out-of-sample 

data.  With big data, out-of-sample testing becomes increasingly possible.  With machine 

learning, it is necessary.  Because machine learning maps closer to the nonlinearities in the data, 

overfitting the in-sample dataset is a significant concern, which could lead to poor out-of-sample 

(real-world) performance.  To avoid this problem, it is a standard procedure to measure and 

report test statistics with out-of-sample data. With time-series data, this means out-of-time.  

Up until the most recent studies, testing out-of-sample meant that the researcher kept a 

hold-out sample separate from the estimation process.  This was typically done through a random 

selection of the sample splitting it into two or three groups.  Under the two-group method, the 

first group was assigned to the in-sample training group used for model estimation.  This is 

known as the training set.  The second group was the hold-out sample used to measure results, 

called the test set.  A third group can be added to improve robustness by inserting a validation 

group in between the training and test sets, which is the typical design for deep learning 

problems since estimation of deep learning models requires iteration over the validation sample. 

Optimally, the test sample will be analyzed once in the entire research process.  In practice, this 

might occur a few times, though with each iteration, a feedback loop can be intentionally or 

unintentionally created that would lead to overstated results.  In addition to the splitting of the 
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data, cross validation is a technique that reduces the dependence of the estimates on the random 

selection of the training and test groups.  In cross validation, the results from multiple models 

using different subsamples are averaged.  The following example describes a leave-on-out cross 

validation procedure.  However, this method pools the time dimension, which implies covariate 

stability across time, which is often not the case with real-world data.  Therefore, results could 

still be over-stated even with this cross-validation procedure.  

 

Figure 5: Illustrations of Validation and Cross-validation 

 

Panel A: Examples of Sample Splitting 

 

 

Panel B: Example of Five-fold Cross Validation using leave-one-out 

 

 

 

Since our data includes a time dimension, a recursive out-of-sample process was 

implemented.  This method improves the believability of the out-of-sample results because it 

measures how the model would have performed had it been implemented at the time.  Roger 

Stein of Moody’s Investor Service described this as the “walk-forward” approach that his firm 

employed (Stein 2007).  Recent studies including Bao, et al. (2020) implemented this walk-

forward approach.  However, prior studies avoided it perhaps because it was computational 

Training Set ~ 70% Test Set -~30%(1)

(2) Test Set -~20%Validation Set ~30%Training Set ~ 50%

Training Set Test Set Training Set

Training Set Test Set

Test Set Training Set

Training Set Test Set Training Set
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expensive.  Results from recent models applying machine learning are therefore not comparable 

to earlier studies.  In this dissertation, there are five models that were re-estimated recursively 

(the other four are static models, and do not require re-estimation).  For a 20-year rolling period, 

this translates to 100 uniquely trained models.  A decade ago, this might have been intractable. 

Today, this estimation can be done on a personal laptop with a graphics processing unit.   An 

example figure showing this approach is shown below. 

 

Figure 6: Recursive Design or the “Walk-forward” 

 

 

 

 

In this design, we are attempting to make a prediction for a single year.  Take the year 

2004, for example.  At some point in early 2005 we would have access to the financial detail for 

firms in 2004 and would like to make a prediction as to those that might stand out for further 

inspection.  My AAER database would only be up to date with known AAERs through some 

fiscal year in the past because it takes time for these to come to light.  While, in 2021, I already 

know about those cases that occurred in 2003, I could not have known about them then. In fact, 

as I stand in 2021, I have reasonable confidence that I know about most cases through 2017.   

The AAER database applied in this paper unfortunately does not include dates of issuance.  

However, I hand collected a sample post 1999 from the SEC website and found that both the 

mean and median time between the fiscal year and year of issuance was four years.  Arguably, a 

news story might break that would occur before the AAER issuance.  Karpoff, et al. (2017) 

reported that the average number of years between the fiscal year and the year of first revelation 

was closer to three years.  In this study, I chose four years because it was the more conservative 

of the two and I cannot know before-hand if a news story would result in an AAER, which is the 

dependent variable studied.  This intervening period is known as the “gap” assumption.  

This gap is a critical assumption and involves the question—What can the model know 

and when can the model know it?   Since Bao, et al. (2021) brought up the issue in their reply to 

my critique, which I had not originally examined in the critique,  I can address it here.  In their 

original paper, they chose a two-year gap window. So, the prediction for year 2004 would have 

known about all AAER cases through the year 2002, which was a strong assumption.  I took 

Test Year Model <1998 1999 2000 2001 2002 2003 2004

2002

2003

2004

TestData Not UsedTrain

Train Data Not Used Test

Train Data Not Used Test
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their data and code and changed one parameter within the code, which was the gap-year 

assumption.   In Table 1 in Columns 2 and 3, I change this figure to 3 years and 4 years, 

respectively.  Observe how performance dramatically drops by the third column to half what it 

was in the published paper.  By this point, the logit-based model would have outperformed.  

After returning the 17 relabeled AAERs to their original values, the logit-based model certainly 

outperformed.   

Of course, this gap assumption is not foolproof.  Arguably, since the mean number of 

years between the fiscal year involved and the year of AAER issuance was four years, up to half 

of the AAERs would potentially enter the training set potentially biasing results.  To guard 

against machine learning finding its own cases for frauds that span multiple years, the same 

methodology described by Bao, et al. (2020) was implemented where the indicator variable for 

fraud was recoded to zero wherever there was a match in the test sample.  
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Table 1: Changing Gap Year Assumptions from Bao, et al. (2020) 

 

Panel A: Top 1 percent: AAERs Captured  

 (1) (2) (3) (4) 

 Published Same Data Same Data 

Return 17 

AAERs to 

Original 

Nos. 

Year Model: 2yr Gap: 3yr Gap: 4Yr Gap: 4Yr 

2003 8 3 2 1 

2004 4 6 4 2 

2005 2 2 2 1 

2006 1 1 0 0 

2007 1 1 0 0 

2008 0 0 0 0 

     

Total 16 13 8 4 

 

 

 

 

 

Panel B: Top 1 percent: Positive Predicted Values (AAERs captured / number in top 1 percent) 

 

 (1) (2) (3) (4) 

 Published Same Data Same Data 

Return 17 

AAERs to 

Original 

Nos. 

Year Model: 2yr Gap: 3yr Gap: 4Yr Gap: 4Yr 

2003 13.3% 5.0% 3.3% 1.7% 

2004 6.7% 10.0% 6.7% 3.3% 

2005 3.4% 3.4% 3.4% 1.7% 

2006 1.7% 1.7% 0.0% 0.0% 

2007 1.7% 1.7% 0.0% 0.0% 

2008 0.0% 0.0% 0.0% 0.0% 

     

Total 4.5% 3.7% 2.3% 1.1% 
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5. Model Horserace: A Comprehensive 

Benchmark 
 

The purpose of this chapter is to provide a comprehensive benchmark for the best models in the 

literature in the detection of AAERs.  This benchmarking will apply the walk-forward 

methodology as described in the previous chapter.  The benefit of this approach is that it gives 

visibility into the year-to-year performance of the model whereas previous literature has 

averaged these out-of-sample years into one statistic.  Second, this benchmarking runs for 20 

years from fiscal years 1993 through 2012, which is the longest out-of-sample test period in the 

literature.  This maps into how practitioners of these models would experience them in the real 

world.  Year-to-year model results matter particularly as the performance of investigators and 

investors are measured on an annual basis.  Statistical significance of the models were made 

using a Wilcoxon rank sum test.  

 

 

5.1 Description of Models 
 

An overview of the models benchmarked include the following.  

 

(1) Financial Ratios (XGBoost) 

 

This model applies the XGBoost algorithm applying an exhaustive set of financial variables 

and ratios as compiled by Perols, et al. (2017). The definitions of these variables are provided 

in Appendix A. 
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(2) Raw Vars (XGBoost) 

 

This model uses the XGBoost algorithm and applies 28 raw financial variables sourced 

directly from the financial statements as originally proposed by Bao, et al. (2020), but with a 

new gap assumption of four years to be comparable with the first model.  The definitions of 

these variables are provided in Appendix B. 

  

 

(3) Raw Vars (RUSBoost) 

 

This model is sourced directly from the code provided by the authors of Bao, et al. (2020).  

The new extensive variable set is applied to the model, but with a new gap assumption of 

four years to be comparable to the XGBoost model.  

 

(4) 4-Year Sales Growth (Screen) 

 

As suggested by Dr. Schilit, this screen is a simple four-year geometric growth rate on sales. 

 

(5) F-Score 

 

This score is based on the Dechow, et al. (2011) and applies the logit coefficients estimated 

in the original paper.  Unlike the previous models, this model is not re-estimated through 

time.  

 

(6) M-Score 

 

This score is based on Beneish (1999) and applies the original estimated coefficients to the 

custom variables described in the paper.  Similar to the F-Score, this model is not re-

estimated through time.  

 

(7) FSD Score  

 

The Financial Statement Divergence Score (FSD Score) was created by Amiram, et al. 

(2015). The FSD Score is based on Benford’s law, which examines the distribution of first 

digits of financial variables.  Benford’s law has been applied in other domains of fraud 

research, which has found an association between fraud and the deviation from empirical 
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distributions relative to the theoretical distributions. The actual FSD Scores applied were 

downloaded from coauthor Professor Bozanic’s website.  

 

 

 

(8) 7 Vars (Logit) 

 

This logistic regression is the same logistic regression from Dechow, et al. (2011) that 

generates the F-Score.  However, in this scenario, the model is re-estimated iteratively across 

the twenty-year sample period with the four-year gap requirement.  

 

(9) 7 Vars + FSD (Logit) 

 

This logistic regression is the same logistic regression from the previous model adding the 

FSD Score as an additional variable.  

 

When I attempted to examine prior literature and compare how the models performed 

relative to each other, I found the exercise difficult due to a variety of issues.  Samples and 

prevalence were different with each study.  These differences affected comparability.  Reported 

statistics varied depending on the classification threshold.  Since models only output some 

measure of fraud probability, the classification threshold is a choice left to the researcher.  Some 

models included the threshold agnostic “area-under-the-curve” measure, but others did not.  

Recent papers emphasized accuracy at the top of the probability distribution, where researchers 

care most about the highest fraud-risk cases.  Accuracy at the top is an idea that comes from the 

information retrieval literature.  For example, a user of Google cares most about the accuracy in 

the first page of results and is much less concerned about the accuracy across the other pages. 

The next chapter dives into these metrics in more detail because it is a much larger issue and 

critical to properly measuring fraud detection.  I followed the most recent literature and 

measured accuracy at the top of the probability distribution.  I applied a threshold examining the 

top 1 percent and the top 10 percent and uses positive predictive value, which is also known as 

precision, as the preferred metric.  Positive predictive value is the proportion of true positives out 

of the number of predicted positives in the sample.  Bao, et al. (2020) chose the top 1 percent 

level since it roughly matched the unconditional expectation.  However, I choose both the top 1 

percent and the top 10 percent to illustrate key issues with examining solely the top 1 percent.   

Machine learning models have parameters that include choice of loss or objective 

function, the number of leaves and trees that can be created, and so on.  Many out of the box 

implementations of these machines come with defaults based either on keeping computational 

intensity low, or on other best practices recommended by the literature.  Unreported tests show 
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very little sensitivity from varying these parameters, and much of the success in machine 

learning is driven by the improvements in data rather than through the tuning of model 

parameters.  Furthermore, recent computer science literature suggested that leaving these 

parameters at their default values was not inferior to optimizing them (Weerts, et al. 2020). For 

the XGBoost parameters, the tree method selected was ‘gpu_hist’, which activated the onboard 

NVIDIA graphics processing unit significantly improving training time (i.e., this option makes 

estimation blazingly fast relative to a CPU, and it is one of the reasons for its popularity and 

success). The objective function was set to optimize ‘rank:ndcg” since this measure maximizes 

accuracy at the top of the probability distribution.  I will discuss what NDCG is in the next 

chapter.  Unreported tests using the logistic objective function did not change inferences.   The 

max_bin setting was 1000, and the random seed was set to 42 to allow for replicability of results. 

As discussed in the previous chapter, the gap assumption, or the time between the final training 

sample and the test year predicted is four years.  For the RUSBoost MATLAB model form Bao, 

et al., the parameters were unchanged, other than to change the gap assumption to four years for 

consistency across all models. 

 

5.2 Sample Selection 
 

The sample selection process is shown in Table 2.  Financial data was sourced from the 

CompuStat database for the years 1979-2012, which provided sufficient data for models to start 

the out-of-sample 20-year period in 1993. This design drops financials and penny stocks, or 

where stock prices are missing.  Stocks are required to trade on major exchanges or over the 

counter, and must have non-missing or positive sales, total assets, income, and cash & equivalent 

balances.  The proxy for corporate fraud is the Accounting and Auditing Enforcement Release 

(AAER) issued by the SEC sourced from the AAER database that can be obtained from the USC 

Marshall School of Business (Dechow, et al. 2011).  For this sample, there were a total of 

112,113 observations and 939 AAERs for a prevalence across the entire sample of 0.84 percent. 

Figure 7 shows a chart for the AAER prevalence by year.  AAERs are rare events, and 

the dotted line represents the unconditional expectation of the sample, or 0.84 percent.  However, 

there are large year-to-year differences in AAER prevalence, notably in the early 2000s.  

Towards the end of the sample period, the prevalence declined significantly from its previous 

peak.  
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Table 2: Sample Selection  

 

 

Steps  Firm-years 

Compustat 1979-2012  352,092  

Drop GICS Codes 40 (Financials) and 60 (REITs) or 

missing  (84,766) 

Drop penny stocks (Stock price <$5), or missing stock 

price  (142,222) 

Require stocks listed on NYSE, AMEX, NASDAQ, OTC (9,228) 

Drop missing or negative/zero Sales, Total Assets; 

and, missing income or cash & equivalent balances  (1,823) 

Keep years 1980 - 2012  (1,940) 

Total Sample Observations  112,113  

 

Total SEC Auditing and Accounting Enforcement 

Releases (AAER)  939  

 

AAER Prevalence  0.84% 

 

 

Figure 7: AAER Prevalence by Year 
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While there is an open question whether the drop in cases in the later years were driven 

by enforcement choices, this drop could also have been driven by improvements in accounting 

systems implemented through Sarbanes-Oxley compliance. However, Judge Rakoff opined in 

2014 that the government had failed to prosecute senior executives in connection with the 

financial crisis of the late 2000s (Rakoff 2014).  He wrote that this decision may have been 

driven by diversion of resources related to the Madoff scandal amongst other reasons including 

the government’s role in the financial scandal.   While the overall rates have declined, regulators 

still pursue accounting fraud cases.  One recent example involves the case of MiMedx Group, a 

Biotech company based in Marietta, Georgia. The SEC charged the company and the executives 

with Accounting Fraud and the Department of Justice unsealed indictments against former CEO 

Parker Petit.  In November 2020, a jury found Mr. Petit guilty of securities fraud and, in 

February 2021, Judge Rakoff sentenced Mr. Petit to one year in federal prison.  In the virtual 

sentencing hearing, Judge Rakoff opined “Mr. Petit did indeed intentionally, knowingly and 

willingly commit securities fraud. This is much less than I would have given, but for his health, 

age and good deeds.” (Kanell & Quinn 2021).   

Note that this fraud was uncovered by short-sellers and not through financial modeling 

applied by the SEC.  While not the topic of this dissertation, Twitter is becoming increasingly 

valuable as a tool to share ideas amongst the short-selling community.  A must-see Twitter video 

showing the confrontation between the short-seller Marc Cohodes and Parker Petit at a 2018 JP 

Morgan conference was posted by Edwin Dorsey (Dorsey 2020).  Dorsey achieved fame for 

exposing Care.com’s shoddy business practices that led to the resignation of their leadership 

team (Grind, et al. 2020).   

 

 

 

5.3 Empirical Results 
 

The following tables report the empirical results of this horserace.  Aggregations included 

the first 10 years of the sample spanning 1993-2002, the second 10 years spanning 2003-2012, a 

subset spanning 2003-2008 to match the out-of-sample period from Bao, et al. for comparison 

purposes, and a full 1993-2012 summary.  The results from the top 1 percent are presented in 

Table 3. 

Analyzing this table, the XGBoost model applying the comprehensive set of financial 

ratios outperformed the models applying raw financial variables alone.  Recall that the authors of 

Bao, et al. argued that machine learning can learn from raw variables alone with no need for 

further calculations or ratio transformation. This analysis refutes this argument.  The application 

of financial ratios is consistent with how a human researcher with an organic brain would 

analyze financial statements through calculating margins and growth rates and making 

comparisons.   

For the second out-of-sample period 2003-2012, the XGBoost beats all other models in 

the sample. Though, for the 20-year period, the re-estimated F-score called the 7-Vars (Logit) 

model in Column 9 beat all models implying that the logistic model is at least as good, or 
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perhaps even better than machine learning.  The shaded grey boxes reveal the best model by 

year, and it lights up like a Christmas tree with no model beating any other model consistently.  

In the first 10 years, the F-Score (Column 6) and the re-estimated F-Score (Column 9) perform 

the best.  One argument could be made that the F-Score performed well because the original 

paper was estimated using a similar dataset with a similar time frame.  It is possible that there 

was some overfitting of results though they also held up relative to the other models in the 

second ten-year period.  

One problem with examining the top one percent is just how few cases get discovered. 

Table 4 reports the raw number of true positive hits for each model revealing that few make it to 

the list.  For those models that worked, only one or two cases were captured. Since there are 

roughly 38 firms at the top 1 percent each year, finding only 1 case out of these 37 would make 

the search futile.  Even if the search is done, marginal results would be obtained.  

The motivation for examining the top 1 percent is to reduce the number of false positives 

in the sample, which comes at the expense of missing much of the known cases in the sample.  

Increasing the proportion classified positive will increase the false positives but will increase the 

number the number of discovered cases as well. Therefore, for comparison purposes, I expanded 

this set to examine the top 10 percent of known cases, as shown in Table 5.  Positive predictive 

values declined, but the models showed consistent results year-to-year, unlike the top 1 percent.  

Again, the XGBoost model performed best overall, but results do not appear much better than 

the simpler logistic-based models using far fewer variables.  The F-Score performed about as 

well as the most advanced machine learning algorithms.  Perhaps more surprising is how well a 

simple univariate screen on sales growth performed relative to the advanced statistical models.  

For the 20-year period, the four-year geometric growth rate on sales roughly matched the F-

Score and the XGBoost models.   Table 6 shows the number of hits for each model and as 

expected, there were substantially more hits.  However, this came at a cost: the number of firms 

increased 10x from the previous amount to roughly 380 firms per year on average.  

Overall, machine learning with XGBoost added a marginal benefit, but did not 

significantly improve upon the F-Score.  If running a simple screen, a screen on sales works 

about as well any other methodology.  From there, knowledge about industry and other firm-

specific knowledge could be added by the researcher to make investigations worthwhile.  

However, launching investigations from this high-risk list alone would likely be cost prohibitive 

given the resources it takes to perform a well-researched analysis.  

If a logit (or probit) based model is applied, the F-Score superceded the M-Score, which 

made sense given that it was estimated using a larger sample of AAERs.  This is an important 

finding because the M-Score continues to be part of the CFA curriculum in addition to being 

commercially available through AuditAnaltyics.   

Regarding Benford’s Law, the evidence for the FSD Score showed that it does not add 

much value in the detection of AAERs either as a stand-alone or in combination with the seven 

F-Score variables. This is a somewhat surprising finding given that the original paper said that 

the FSD Score “predicts material misstatements as identified by SEC Accounting and Auditing 
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Enforcement Releases” (Amiram, et al. 2015).  Their paper received much fanfare in the popular 

press and led to the 2017 Deloitte Foundation Wildman Medal Award presented at the American 

Accounting Association’s annual conference.  AuditAnalytics also makes the Benford’s Law 

Analysis commercially.  The results call into question the commercial viability of both Benford’s 

Law and the M-Score as measures to detect fraud.   
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Table 3: Positive Predictive Values for the Top 1 percent (highest risk) 
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Table 4: Total Number of AAERs Captured for the Top 1 percent (highest risk) 
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Table 5: Positive Predictive Values for the Top 10 percent (high-risk) 
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Table 6: Total Number of AAERs Captured for the Top 10 percent (high-risk) 
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 On the topic of statistical significance between the models, Table 7 reports a Wilcoxon 

matched-pair signed-rank test with two-sided z-stats and p-values for each model comparison at 

both the top 1 percent and the top 10 percent levels.  As expected, most models were statistically 

significant relative to a random draw out of the hat.  However, the FSD Score as a stand-alone 

(Benford’s Law) was not statistically significant at the p=0.10 level for any of the observations.  

The M-Score was only significant for the first 10-year period for the top 10 percent.   
 

Table 7: Wilcoxon Matched-Pair Signed-Rank Tests (Two-sided) For Models 

Compared to the Unconditional Expectation 

 

 

 

 

 

 

Top 1%  Top 10%  

1993-2002 Z Pr |z| PPV Z Pr |z| PPV

vs. Unconditional Expectation

(1) Financial Ratios (XGBoost) 1.89 0.06 4.0% 2.80 0.01 3.2%

(2) Raw Variables (XGBoost) 2.40 0.02 4.0% 2.60 0.01 2.4%

(3) Raw Variables (Matlab RUSBoost) 2.29 0.02 3.8% 2.80 0.01 3.1%

(4) 4-year Sales Growth (Screen) 2.19 0.03 2.9% 2.70 0.01 3.1%

(5) F-Score (Dechow) 2.70 0.01 5.0% 2.80 0.01 3.1%

(6) M-Score (Beneish) 1.38 0.17 3.1% 2.60 0.01 2.1%

(7) FSD Score (Benford Law) 1.48 0.14 1.8% 0.76 0.44 1.4%

(8) Logistic - 7 Variables 2.55 0.01 5.3% 2.55 0.01 3.1%

(9) Logistic - 7 Variables + FSD Score 2.55 0.01 4.8% 2.55 0.01 2.9%

2003-2012

vs. Unconditional Expectation

(1) Financial Ratios (XGBoost) 2.70 0.01 2.8% 2.19 0.03 1.6%

(2) Raw Variables (XGBoost) (0.97) 0.33 0.9% 1.33 0.18 1.2%

(3) Raw Variables (Matlab RUSBoost) (2.80) 0.01 0.0% 2.09 0.04 1.6%

(4) 4-year Sales Growth (Screen) (1.89) 0.06 0.3% 1.58 0.11 1.3%

(5) F-Score (Dechow) 1.78 0.07 1.7% 2.29 0.02 1.4%

(6) M-Score (Beneish) 0.56 0.58 1.4% 0.25 0.80 1.0%

(7) FSD Score (Benford Law) (0.05) 0.96 1.0% 1.38 0.17 1.0%

(8) Logistic - 7 Variables 1.27 0.20 1.7% 2.19 0.03 1.4%

(9) Logistic - 7 Variables + FSD Score 1.78 0.07 2.1% 2.09 0.04 1.5%

Note: Positive Z favors the in-row variable; negative values favor the bolded variable.
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Table 8 reports the Wilcoxon matched-pair signed-rank tests when compared to the F-

Score, which is the current standard in the literature.  A positive Z value means that it favors the 

in-row model, while a negative Z value favors the F-Score.  For the top 1 percent, no model 

beats the F-Score at the 5 percent level and models are generally insignificant either way relative 

to the F-Score.  At the top 10 percent level, inferences are similar.  Year-to-year differences in 

model performance vary too much for any one model to beat out the other.   

 

Table 8: Wilcoxon Matched-Pair Signed-Rank Tests (Two-sided) For Models 

Compared to the F-Score 

 

  

 

 

Another way to think about how models improve classification is to consider the next 

figure.  Figure 8 shows the mapping of positive predictive values for three models considered in 

this analysis including the XGBoost model, the F-Score, and the sales growth screen.   The 

dotted line represents the unconditional prevalence for the out-of-sample period between 1993-

2012, which is 1.1 percent. The goal of a classification algorithm is to tilt this line downward for 

the least likely cases (the lowest deciles) and upward for the highest risk cases.  Note that for the 

Top 1%  Top 10%  

1993-2002 Z Pr |z| PPV Z Pr |z| PPV

vs. F-Score (Dechow)

(1) Financial Ratios (XGBoost) (0.67) 0.50 4.0% 1.48 0.14 3.2%

(2) Raw Variables (XGBoost) (0.90) 0.37 4.0% 0.36 0.72 2.4%

(3) Raw Variables (Matlab RUSBoost) (0.16) 0.87 3.8% (1.63) 0.10 3.1%

(4) 4-year Sales Growth (Screen) (1.13) 0.26 2.9% (0.51) 0.61 3.1%

(6) M-Score (Beneish) (1.01) 0.31 3.1% (0.15) 0.88 2.1%

(7) FSD Score (Benford Law) (2.09) 0.04 1.8% (2.80) 0.01 1.4%

(8) Logistic - 7 Variables 0.61 0.54 5.3% (2.80) 0.01 3.1%

(9) Logistic - 7 Variables + FSD Score 0.31 0.76 4.8% (0.36) 0.72 2.9%

2003-2012

vs. F-Score (Dechow)

(1) Financial Ratios (XGBoost) 1.75 0.08 2.8% 0.82 0.41 1.6%

(2) Raw Variables (XGBoost) (1.54) 0.12 0.9% 1.03 0.30 1.2%

(3) Raw Variables (Matlab RUSBoost) (2.39) 0.02 0.0% (0.87) 0.39 1.6%

(4) 4-year Sales Growth (Screen) (2.21) 0.03 0.3% 0.41 0.68 1.3%

(6) M-Score (Beneish) (0.70) 0.48 1.4% (0.92) 0.36 1.0%

(7) FSD Score (Benford Law) (0.48) 0.63 1.0% (1.63) 0.10 1.0%

(8) Logistic - 7 Variables 0.78 0.44 1.7% (1.38) 0.17 1.4%

(9) Logistic - 7 Variables + FSD Score 1.03 0.30 2.1% (1.33) 0.18 1.5%

Note: Positive Z favors the in-row variable; negative values favor the bolded variable.
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20-year period, both the Financial Ratios (XGBoost) model and the F-Score model performed 

similarly with a slight improvement at the top decile.  The 4-Yr Sales Growth performs worse on 

the low end, but if measuring only the top matters, then it performs similarly to the other models.   

 

Figure 8: Positive Predictive Values by Decile  

 

 
 

 

 

However, when analyzing performance within the top decile, the relationships were no 

longer monotonic (Figure 9).  It is not clear that we should be examining only the 100th 

percentile from this graph.   For example, the F-Score does better if one were to examine only 

the 99th percentile.   The 4-yr Sales growth peaks at the 96th percentile.  
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Figure 9: Positive Predictive Values within the top 10 percent 

 

 

 
 

  

 

Another picture showing the difficulty of finding fraud, particularly at the top 1 percent is 

shown in Figure 10.  This picture reports the location of the AAER firms for the year 2003 in a 

20 x 19 matrix representing the top 10 percent of the probability distribution, or the top 375 

observations.  The grey section represents the top 1 percent or the first 38 of the observations.  

The rank order of the probabilities starts with the highest value in the upper left and are ranked in 

descending order working down the rows in the first column and continuing across columns one 

through nineteen.  The actual AAERs are shown in black.  First, this image illustrates the 

sparsity of hits in the sample that is predicted to be positive.  Even in 2003, which is an above 

average year for AAER issuance, the Financial Variables (XGBoost) model captured only 15 

cases leaving 360 false positives in the sample at the top 10 percent.  Even at the top 1 percent 

only two cases would have been discoverable out of 38 companies classified positive.   

 

 

 

 

 



 

 

40 

 

 

 

Figure 10: Location of AAERs in the Top Decile for Year 2003 

Note that the order starts in the Col 1, Row 1 and goes down, then right 
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Another analysis shows how little overlap in the probability space there is between the 

models. Figure 11 shows a Venn Diagram analysis for the firms in the top 1 percent.  Very few 

firms were identified by all three models.  Only 6 firm-years over 20-years overlapped for 

predicted positives.  For models that overlapped twice, there was more shared space between the 

advanced methods with 67 cases sharing the same space versus any two-way combination with 

sales growth.  This made sense because the advanced statistical methods were utilizing more 

information relative to the univariate screen on sales growth.  

 

Figure 11: Total Positive Firm-Year Classifications in the top 1 percent 

 

 

 
 

Figure 12 shows shared space for the known AAERs in the top 1 percent. Zero AAERs 

over 20 years were captured by all models in the top one percent.  While these models attempted 

to detect AAERs, even the advanced statistical methods were picking up on different 

characteristics.  

 

Figure 12: Total AAERs in the top 1 percent 
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Next, we want to repeat this analysis, but at the top 10 percent level.  Figure 13 shows the 

Venn diagram for these firms.  Even at this wider range, there was still little agreement amongst 

all three models, though the F-Score shared the most space for predicting positives with the 

XGBoost model.   

 

Figure 13: Total Positive Firm-Year Classifications in the top 10 percent 

 

 
 

 

 

Figure 14 reports the shared space of the hits, or the AAERs in the top 10 percent.  

Similarly, the AAERs captured by the models shared little overlap.  Only 20 AAERs over the 20-

year period were predicted positive by these three models.  

 

Figure 14: Total AAERs in the top 10 percent 
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The summary table for the Venn diagrams are reported in Table 9 and in Table 10. Interestingly, 

this analysis provides an opportunity to describe how ensemble learning works, in general. 

Because differing models share different probability spaces, combining their predictions could 

potentially reduce false positives thereby improving positive predictive values. However, as this 

table shows, positive predictive values were not promising for any of the combinations.  The 

highest value was 9.1 percent for a combination from the top 1 percent of the models, but that 

measured 1 hit out of 11 cases predicted positive over the entire 20-year sample.  Waiting 20 

years to find one case is not practical. Combining all three models at the top 10 percent levels 

generated a 4.0 percent positive predictive value with 0.7 percent of the original sample 

remaining, which was roughly in line with the 3.5 percent positive predictive value for the 

financial ratios XGBoost model at the top one percent.  Overall, an ad-hoc combination of 

models did not contribute significantly to the detection task.   

 

Table 9: Venn Diagram Analysis Summary for the top 1 percent 

 

 

 

 

 

  

# of 

Firm-

years 

% of 

Total AAERs PPV 

Financial Ratios (XGBoost) Only 773  1.0% 27  3.5% 

F-Score Only 773  1.0% 27  3.5% 

4-Yr Sales Growth Only 797  1.0% 14  1.8% 

     
Either of the three 2,228  2.9% 60  2.7% 

     
Include only (not the others)     
Financial Ratios (XGBoost) 689  0.9% 21  3.0% 

F-Score  675  0.9% 20  3.0% 

4-Yr Sales Growth 755  1.0% 11  1.5% 

     
Include two (not the other)     
Financial Ratios (XGBoost) + F-Score 67  0.1% 5  7.5% 

Financial Ratios (XGBoost) + 4-Yr Sales 

Growth 11  0.0% 1  9.1% 

F-Score + 4-Yr Sales Growth 25  0.0% 2  8.0% 

     
All Three 6  0.0% 0  0.0% 
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Table 10: Venn Diagram Analysis Summary for the top 10 percent 

 

 

 

In addition to sales growth, I tested the other variables applied in this paper from Appendix 

A as stand-alone univariate screens.  Results for the top 15 variables are reported in Table 11. Prior 

to 1993, the sales growth screen was in the middle of the pack, but it was in the top position from 

1993-2002 and remained at the top from 2003-2012.  Overall, for the entire sample period, sales 

growth proved to be the best univariate screen amongst the variables tested in this paper.  The 

empirical results supported Dr. Schilit’s experienced-based research.  

 

 

 

 

 

 

 

 

 

 

 

  

# of 

Firm-

years 

% of 

Total AAERs PPV 

Financial Ratios (XGBoost) Only 7,632  10.0% 190  2.5% 

F-Score Only 7,632  10.0% 180  2.4% 

4-Yr Sales Growth Only 7,632  10.0% 175  2.3% 

     
Either of the three 18,611  24.4% 394  2.1% 

     
Include only (not the others)     
Financial Ratios (XGBoost) 4,625  6.1% 87  1.9% 

F-Score  4,784  6.3% 79  1.7% 

4-Yr Sales Growth 5,414  7.1% 97  1.8% 

     
Include two (not the other)     
Financial Ratios (XGBoost) + F-Score 1,570  2.1% 53  3.4% 

Financial Ratios (XGBoost) + 4-Yr Sales 

Growth 940  1.2% 30  3.2% 

F-Score + 4-Yr Sales Growth 781  1.0% 28  3.6% 

     
All Three 497  0.7% 20  4.0% 
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Table 11: Top decile positive predictive values for the univariate screens 

 

   

Variable <1993 

1993-

2002 

2003-

2012 

1980-

2012 

Inventory to sales 1.0% 1.6% 0.6% 1.1% 

Accounts receivable to sales  0.9% 1.9% 0.9% 1.2% 

Abnormal % change in expenses 0.9% 2.5% 1.0% 1.5% 

% Change in expenses 0.8% 2.4% 1.0% 1.4% 

Fixed assets to total assets  0.8% 2.1% 1.0% 1.3% 

Abnormal % change in assets  0.8% 2.4% 0.9% 1.4% 

Debt-to-equity  0.8% 1.8% 0.6% 1.1% 

Four-year geometric sales growth 

rate  0.8% 3.2% 1.1% 1.7% 

% Change in assets  0.8% 2.5% 0.9% 1.4% 

Change in inventory 0.8% 2.1% 0.9% 1.3% 

Level of finance raised 0.8% 1.8% 0.8% 1.1% 

Percentage change in cash sales  0.8% 2.7% 1.0% 1.5% 

WC accruals  0.8% 2.3% 0.9% 1.3% 

% Change in liabilities  0.8% 2.2% 0.8% 1.2% 

Total debt to total assets  0.8% 1.5% 0.9% 1.1% 

     

AAER Prevalence 0.3% 1.3% 0.7% 0.8% 
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6. Measuring Machine Learning 

Performance 
 

 

This chapter, in my view, is the most important in this dissertation because it concerns how to 

properly evaluate model performance.  There is a plethora of statistics to measure classification 

performance and this chapter explains why positive predictive value matters the most from the 

perspective of the fraud analyst.  Prior literature most emphasized the AUC (area under the 

curve), which is described as the de-facto standard (Fawcett 2006) for measuring machine 

learning performance.  Other literature cited test statistics such as specificity, sensitivity, and 

classification accuracy, which I will define shortly. All classification models, directly or 

indirectly, generate probability estimates for the predicted outcome.  Unlike the logistic 

regression, machine learning generally does not produce probabilities that are directly 

interpretable, but these values can be transformed by applying a logistic regression to them. One 

benefit of directly examining the top of the probability distribution is that it avoids the problem 

of this ‘model calibration’ needed to obtain a directly comparable probability statistic.   

The classification models do not inform at which point along the probability distribution 

that the values should be cut to make positive and negative predictions.  In the original paper for 

the F-Score, the F-Score was normalized by the sample prevalence so that 1.0 equaled the 

unconditional expectation.  Test statistics reported were measured at this point. Differing cutoff 

choices make comparison across published papers difficult. One advantage of the AUC is that it 

is agnostic to a cutoff choice since it measures across all possible cutoffs.  However, does an 

analyst really care about how well the model performed at the low end of the probability 

distribution, or for the least risky cases?  Alternatively, the researcher could determine an 

optimal cutoff by weighting the costs of the test errors (false positives and false negatives).  

Beneish took this approach with the expected cost of misclassification (Beneish 1999).  In real-

time analytics, such as preventing fraud in e-commerce transactions, decisions on whether to 

classify a transaction as fraudulent are weighted accordingly (e.g., shipping a product and not 
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getting paid for it versus losing a valid sale because the system declined the transaction).  

However, fraud investigation is not like e-commerce.  From the point of view of the fraud 

investigator, incremental investigations are costly since existing resources are tied up in other 

investigations.  Therefore, only the highest risk cases are worth examining. 

To start this discussion, let us review the classification matrix as shown in Figure 15, 

which maps the sample into four buckets following a classification exercise.   

 

 

 

Figure 15: Example of a Classification Matrix 

 

 

 

From this classification matrix, the following statistics can be calculated: 

 

• Classification accuracy ((TP+TN)/Total Sample) 

• Sensitivity (TP/Total AAERs); Also known as the true positive rate 

• Specificity (TN/Total Non-AAERs); Also known as the true negative rate 

• Type I Error (FP/Total Non-AAERs); Also known as the false positive rate (1-specificity) 

• Type II Error (FN/Total AAERs); Also known as the false negative rate (1-sensitivity) 

• Positive Predictive Value (TP/Total Predicted Positive); Also known as “precision” 

 

In the fraud detection literature, the F-Score paper reported classification accuracy, 

sensitivity, Type I and Type II errors.  Bao, et al. (2020) reported AUC, NDCG@k, sensitivity, 

and precision. Brown, Crowley, and Elliott (2020) emphasized AUC, but also reported 

NDCG@k and sensitivity. AUC and NDCG@k are not statistics that can be directly measured 

from the classification matrix. These measures will be described momentarily. Classification 

accuracy takes the correct classifications (true positives and true negatives) and divides by the 

number in the sample.  However, classification accuracy is only potentially meaningful for 

balanced classification tasks that have an equal number of positive and negative cases.  For 

severely imbalanced classification involving rare events, classification accuracy is a rough 

approximation for specificity, which measures the true negatives. To see why, consider the 

following decomposition.  Classification accuracy represents the number of true positives and 

true negatives divided by the total number in the sample.  

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁
 

Prediction Based on Threshold (e.g. top 1% )

YES: AAER NO: AAER Total 

Actual AAER True Positive (TP) False Negative (FN) Total AAERs

Non-AAER False Positive (FP) True Negative (TN) Total Non-AAERs

Total Total Predicted Positive Total Predicted Negative Total Sample (N)
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Separating the terms gives the following expression. 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑁
+

𝑇𝑁

𝑁
 

 

The first term for true positives in classification accuracy can be decomposed into prevalence 

multiplied by sensitivity.   

 
𝑇𝑃

𝑁
= 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑥 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

   

To see why, consider the following.  TP+FN will cancel out leaving this term. 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
𝑇𝑃 + 𝐹𝑁

𝑁
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 
𝑇𝑃

𝑁
=

𝑇𝑃 + 𝐹𝑁

𝑁
x 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 

The second term for true negatives can be decomposed into specificity multiplied by one minus 

prevalence.   

 
𝑇𝑁

𝑁
= 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑥 (1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) 

 

To see why, consider the following. Similarly, TN+FP cancel out leaving this term. 

 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

1 −  𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
𝑇𝑁 + 𝐹𝑃

𝑁
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𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 x 

𝑇𝑁 + 𝐹𝑃

𝑁
  

 

 

 

We can know re-write classification accuracy in terms of prevalence, sensitivity, and specificity.  

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
= [𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦] + [(1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦] 

 

 

Classification accuracy is calculated by weighting sensitivity and specificity according to 

prevalence.  In a balanced sample, it is the simple average of the two.  Given that fraud detection 

involves rare events, classification accuracy will become heavily weighted by the true negatives, 

rather than the true positives.  For samples with extremely low prevalence rates, classification 

accuracy essentially measures specificity.   

Furthermore, an uninformative rule for rare events could be applied to maximize 

classification accuracy.  For rare events, the strategy would be to classify all cases in the 

negative.  In this case sensitivity would be zero as no events would be captured, but specificity 

would be 100 percent as all negatives would be classified correctly. Therefore, for a rare event 

occurring 0.5 percent of the time, classification accuracy would equal 99.5 percent. 

Occasionally, specificity is reported by its complement, which is the false positive rate (Type I 

error) and is measured by one minus specificity. Likewise, sensitivity can be reported by its 

complement, which is the false negative rate (Type II error), or one minus sensitivity.   

In his seminal work on bankruptcy risk (Beaver 1966), Beaver wrote a section entitled 

“Likelihood Ratios.” He noted that likelihood ratios are “essentially a Bayesian approach” and 

that the “posterior probability is the probability of failure after the ratio analysis.” To understand 

what the posterior probability is in this context, it is worth re-examining the eponymous 

Bayesian formula.  

 

𝑃(𝐴|𝐵) =
𝑃(𝐴) x 𝑃(𝐵|𝐴)

𝑃(𝐵)
 

  

This formula states that the prior probability P(A) can be transformed into a posterior 

probability P(A|B) through knowing P(B) and P(B|A).  In the context of the AAER sample, we 

can think about the unconditional probability of an AAER as the prior P(A) while the probability 

of a positive classification can be written as the P(B).  Thus, we can rewrite this equation 

accordingly.  

 

 

𝑃(𝐴𝐴𝐸𝑅|𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑃(𝐴𝐴𝐸𝑅) x 𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |𝐴𝐴𝐸𝑅)

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
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This equation says that the probability of an AAER given a positive classification is equal 

to the unconditional probability of an AAER (prevalence) multiplied by the probability of a 

positive classification given that it is a true AAER (sensitivity).  The numerator represents the 

true positive proportion.  The denominator can be decomposed into the true and false positives.   

 

 

𝑃(𝐴𝐴𝐸𝑅|𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑃(𝐴𝐴𝐸𝑅) x 𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |𝐴𝐴𝐸𝑅)

𝑃(𝐴𝐴𝐸𝑅) x 𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝐴𝐴𝐸𝑅) + 𝑃(𝑁𝑜 𝐴𝐴𝐸𝑅) x 𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑁𝑜 𝐴𝐴𝐸𝑅)
 

 

  

The true positive term repeats from the numerator.  The false positive term is the proportion of 

negatives that are misclassified in the positive. 

Finally, we can rewrite these terms to values that are typically reported with classification 

modeling including sensitivity and specificity. The posterior probability is called positive 

predictive value (PPV), which is a function of three parameters.   

 

 

𝑃𝑃𝑉 =
𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)
 

 

 

Before continuing with the positive predictive value analysis, I want to describe to 

additional measures including NDCG@k and AUC.  NDCG@k is a recent addition to the fraud 

detection literature and comes from the information retrieval literature for measuring “accuracy 

at the top” (Boyd, et al 2012).  It is worth illustrating how this metric works by example. 

Formally, the function is defined in the following terms. 

 

𝐷𝐶𝐺@𝑘 =  ∑
2𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)

𝑘

𝑖=1

 

 

𝑁𝐷𝐶𝐺@𝑘 =  
𝐷𝐶𝐺@𝑘

𝐼𝑑𝑒𝑎𝑙 𝐷𝐶𝐺@𝑘
 

 

𝑟𝑒𝑙𝑖 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 𝑖𝑛 𝑟𝑎𝑛𝑘𝑖 

 

While relevance offers a way to weight webpages, for fraud detection this value 

simplifies to the binary indicator for fraud in the dependent variable. Therefore, the numerator 

2𝑟𝑒𝑙𝑖 − 1 simplifies to zero or one matching the AAER value.   

Figure 16 shows a toy example for NDCG@k where there are 10 observations and 3 

positive cases.  Column 1 ranks the probability outcome in rank order from 1 to 10.  Column 2 

identifies the AAERs, which are shown to be in the second, fourth and fifth rank.  DCG@k sums 

the discounted cumulative gain values applying the discount factor of  1/log2(i + 1) as shown in 
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the formula above. To normalize this value, an ideal ranking must be computed.  To do so, the 

cumulative gain column is sorted in descending order.  The final column discounts this ranking 

applying the same factor as before.  With the DCG@k and the Ideal DCG@k values, the 

normalized value NDCG@k can be calculated. In this example, the value is 0.68.  A perfect 

classifier would have the value of 1.0.  However, real NDCG@k values for fraud detection are 

reported much lower in recent literature as the ideal rank column fills up with AAERs from the 

entire sample. For more theoretical background on NDCG@k, see Wang, et al. (2013).   

 

Figure 16: Normalized Discounted Cumulative Gain Example (NDCG@k) 

 

 
 

 

 Since our use of NDCG@k involves binary relevance, the incremental informativeness of 

this metric over positive predictive value is lower relative to cases where relevance weighting 

matters. Returning to the previous figure, Column 2 shows Cumulative Gain, which sums the 

total number of true positives above the cutoff threshold k.   This value divided by the total 

observations in the subgroup is 30 percent.  This figure is the same as positive predictive value.  

NDCG@k simply adds a discount factor to the rank position.  Given the loss of interpretability 

with the use of this measure and the fact that Figure 10 showed how scattered these rare events 

were, the incremental informativeness of NDCG@k is not much greater than positive predictive 

value.    

Regarding the AUC, this measure maps the area under the curve with sensitivity on the y-

axis and the false positive rate (1-specificity) on the x-axis for all cutoff points.  The upside is 

that it provides a summary statistic that does not depend on a cutoff point.  The downside is 

interpretability, and it is particularly problematic with rare event problems (Saito and 

Ranki

Cumulative 

Gain

Discount 

Factor
1

Discount 

Cumulative 

Gain 

(DCG@k) Ideal Ranking Ideal DCG@k

(1) (2) (3) (2) x (3) (4) (3)*(4)

1 0 1.00 0.00 1 1.00

2 1 0.63 0.63 1 0.63

3 0 0.50 0.00 1 0.50

4 1 0.43 0.43 0 0.00

5 1 0.39 0.39 0 0.00

6 0 0.36 0.00 0 0.00

7 0 0.33 0.00 0 0.00

8 0 0.32 0.00 0 0.00

9 0 0.30 0.00 0 0.00

10 0 0.29 0.00 0 0.00

Total 3 1.45 3 2.13

1. Discount Factor is 1/log2(ranki+1)

NDCG@k 0.68
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Rehmsmeier 2015).  For example, the AUC for the F-Score tested in this paper is shown in 

Figure 17. 

 

Figure 17: F-Score Area Under the Curve 

 

 

 
 

 

The AUC measures the entire area below the curve on the chart.  If the curve went up in a 

straight line to where sensitivity is one and the false positive rate is zero, the AUC value would 

equal 1.0 which would imply a perfect classifier.  This makes sense because all AAERs would be 

detected at 100 percent specificity with zero false positives. The minimum AUC possible is 0.5, 

which is represented by the diagonal. Where sensitivity equals the false positive rate, the 

classifier contributes no information and is not different from a random guess in the sample.  To 

see why, let us substitute the false positive rate with sensitivity from the positive predictive value 

formula since the two would now equal.  Since sensitivity is now multiplied to every term, it 

cancels out leaving only prevalence in the numerator and denominator.  The denominator 

reduces to one leaving behind prevalence only, which is the unconditional expectation.   

 
𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 +  (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ (𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚)
 

 

 
𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 +  (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
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𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

1
 

 

The reason why the AUC cannot be below the diagonal is that the decision rule where the 

classifier does worse than the unconditional expectation could be flipped.  This is like how Wall 

Street veterans poke fun at terrible analysts because those that are consistently wrong give 

opportunities to trade opposite their recommendations. In summary, sensitivity must be greater 

than the false positive rate for a classifier to improve the odds of detection.   

The missing third dimension to the AUC is positive predictive value, which can be 

calculated by considering prevalence.  For rare events, this enters the positive predictive value 

equation in a nonlinear way.  In his seminal work on firm failure, Beaver made an interesting 

observation. He observed that the posterior odds for firm failure would be affected “by the 

probability of failure for this sample (i.e., 0.50), which is vastly different from the probability for 

all firms in the economy (i.e., less than 0.01)” (Beaver 1966).  This is a critical point to this 

analysis. Interestingly, Altman, following Beaver, published the famous Z-Score paper (Altman 

1968) that applied a balanced (50:50) sample of bankrupt and non-bankrupt firms reporting a 95 

percent classification accuracy and made no mention of odds ratios or positive predictive values.  

As shown earlier, classification accuracy is not the same as the posterior odds, particularly for 

imbalanced real-world situations. Beaver concluded his study by saying that developing a 

multivariate model was not encouraging because “the best single ratio appears to predict about as 

well as the multi-ratio models”.  Interestingly, the previous chapter found that a univariate screen 

on sales growth performed about as well at the top decile of risk relative to advanced statistical 

methodologies. While “significant” improvements can be made in various test statistics, when it 

comes to rare events, the needle does not move that much in terms of posterior odds.  

To illustrate this point, Figure 18 shows how positive predictive value changes along 

sensitivity and false positive rates for a balanced (50:50) sample.  
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Figure 18: Positive Predictive Values for a Balanced Sample 

 

 
 Observe that the diagonal is the same from the AUC two-dimensional chart.  In this 

example, the rotation of this graph shows specificity instead of the false positive rate (1-

specificity), but they represent the same concept.  Positive predictive value is steeper at the 

higher values for specificity.  In some sense, this graph shows why false positive rates matter so 

much in fraud detection.  The odds of detecting fraud are maximized in the region where false 

positives are also the lowest.   Figure 19 reduces the prevalence to a value reflecting a rare 

sample.  In this case, the figure is 0.5 percent, which is like the real-world prevalence of AAERs.  

 

 

 

 

 

 

 

 

 



 

 

55 

 

 

 

Figure 19: Positive Predictive Values for a Rare Sample 

 
 

This graph is nearly unreadable at this scale.  What is clear, however, is that positive 

predictive values only begin to rise at extreme values of specificity.  To analyze this graph better, 

I impose real-world constraints on both sensitivity and specificity limiting the low end for 

sensitivity to 5 percent. The aggressiveness of this value will become clear shortly.  To provide 

some detail on this value, for the twenty-year sample, there are 825 AAERs, or about 40 per year 

on average. If sensitivity is 5 percent, then there would be 2 AAERs per year discovered.  

Specificity was chosen to be at most 95 percent because it is an aggressive assumption given the 

sensitivity constraint.  

Given these constraints, Figure 20 illustrates that the maximum positive predictive value 

obtainable is 8.7 percent, a point where the model captures 95 percent of known cases and 

experiences a low false positive rate of 5 percent.   
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Figure 20: Positive Predictive Values for a Rare Sample with Constraints  

 

 
 

In addition to this graph, we can trace the AUC curve to find where positive predictive 

value is maximized.  Figure 21 shows this projection and the positive predictive value was 

maximized at the specificity constraint.  The problem is that very few of the AAERs will be 

captured as sensitivities are low at this point.   
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Figure 21: Mapping the F-Score AUC to the Graph 

 

 

 
 

 

 

 

Finally, the aggressiveness of these assumptions becomes clear in Figure 22.  In fact, 

these two constraints at 95 percent would imply an AUC close to 0.95 while current models in 

the published literature are in the 0.70 range. 
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Figure 22: Hypothetical AUC with Constraints  

 

 

  

 

 

 In summary, since fraud detection involves a rare event, it is mathematically difficult to 

move posterior probabilities beyond the single digits for this research question.  The top models 

applying financial statement variables are far away from this optimistic scenario.  Fraud 

detection is difficult because the event is rare and classification models remain far too noisy to 

automate the fraud detection task.  
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7. Additional Analyses  
 

 

This chapter includes additional analyses that did not fit neatly within the other chapters but are 

worth discussing with regards to the topic of accounting fraud. While fraud detection was the 

focus of this dissertation where the goal was to maximize the odds of detecting fraud, other 

topics of interest include variable importance, which provides a rank order to the variables 

applied in machine learning algorithms.  While the goal of examining variable importance might 

be to identify which variables most affect the outcome of the prediction exercise, these measures 

of importance do not provide much insight into their causal nature. The standard econometric 

toolkit is best suited to answer these types of questions.    

 In addition to variable importance, I also performed a returns test for select models to 

examine whether a trading strategy would be profitable.  Unfortunately, results were not 

promising.  Earlier years showed positive strategies, but with increasing efficiency in the capital 

markets, these profits have been competed away.  Earlier in this dissertation, I introduced 

Professor Narayanan and his “How to Recognize AI Snake Oil” presentation where he suggested 

that A.I. does not perform substantially better than a manual scoring rule when used for 

predicting social outcomes (Narayanan 2020).  Since this is an empirical question, I created a 

manual score with the seven F-Score variables to see how well they performed relative to the 

more advanced statistical techniques and results were interesting.  The last analysis in this 

chapter takes a closer look at Benford’s law from Amiram, et al. (2015).   

For variable importance, a technique known as permutation importance was applied.  

Permutation importance analyzes variable importance by taking the column vector for each 

variable after training each model and randomizing it so that it becomes noise.  Then the out-of-

sample test was reapplied to measure the change to positive predictive value at the top decile in 

the probability distribution.  These values were scaled by in-year prevalence. The maximum, 

minimum, and averages are reported for the 20-year period.  What can be immediately observed 

in Figure 23 is the volatility in importance of the variables, with some that cross over the zero 

line implying that they worsen model performance in some years.  
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Figure 23: Variable Importance for the Machine Learning Models 
 

The y-axis measures change in positive predictive value for the top 10 percent of fraud risk scaled by in-year 

prevalence for the XGBoost model.   
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More advanced techniques such as partial dependence plots are available, but Hastie 

recently wrote that these plots “should not replace a randomized controlled experiment or a 

carefully designed observational study to establish casual relationships.” (Zhao & Hastie 2019).  

With the large set of variables, not much can be ascertained as they also suffer from the same 

issues in econometric models including collinearity and multicollinearity.  Pearl spoke to the 

causal revolution coming to machine learning as prediction tasks are increasingly asking cause 

and effect type questions (Pearl and Mackenzie 2018).  In contrast to Varian’s call to for 

econometricians to add machine learning to their toolkit, Pearl is calling on computer scientists 

to add causal inference to theirs.   

Regarding trading strategies, the evidence showed that they may have worked in the past, 

but these opportunities have largely been traded away (Table 12).  Twelve month holding 

periods started after the fourth month following the end of the fiscal year.  Returns were sourced 

from CRSP inclusive of dividends.  Delisting returns were included, but proceeds were held as 

cash through the twelve-month window.  Group-adjusted returns represent the difference 

between the raw returns and a matched portfolio return based on quintiles of size, market-to-

book, and price-to-earnings ratios.   

 

Table 12: 12 Month Holding Period Returns 
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 For the manual scoring analysis inspired by Narayanan’s presentation, I first produced 

histogram plots of the distribution of the six continuous variables from the F-Score for cases that 

experienced AAERs and for the remaining sample. These histograms are shown in Figure 24.  I 

created the following rules based on drawing a line based on a simple visual inspection. The last 

variable in the F-Score remains the same because it is an indicator variable for security issuance 

where those that issue securities are more likely to experience an AAER relative to those that do 

not.   

 

• Indicator 1: If RSST Accruals (v19) were greater than 0.05, then 1, otherwise 0. 

• Indicator 2: If change in receivables (v8) is greater than 0.02, then 1, otherwise 0. 

• Indicator 3: If change in inventories (v6) is greater than 0.03, then 1, otherwise 0. 

• Indicator 4: If soft assets (v20) is greater than 0.55, then 1, otherwise 0. 

• Indicator 5: If change in cash sales (v18) is greater than 0.3, then 1, otherwise 0. 

• Indicator 6: If change in cash sales (v8) is less than 0.05, then 1, otherwise 0 

• Indicator 7: Same as issuance (i2) 
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Figure 24: Histograms for F-Score Variables 

 

RSST Accruals (v19) Change in Receivables (v8) 

RSST Accruals (v19) Change in Receivables (v8) 

Change in Inventory (v6) Soft Assets (v20) 
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The results of this scoring method are shown in Figure 25. In this score, the zero had the 

lowest risk and 7 had the highest risk for fraud.  For a cutoff score of 5 or higher, the positive 

predictive value was 2.11 percent, which included about 12 percent of the total sample from 

1993-2002.  For 2003-2012, the positive predictive value was 1.29 percent for roughly 7 percent 

of the sample.  While the samples were not directly comparable to the top 10 percent levels given 

the lack of granularity with this manual score, these results were remarkably comparable to the 

statistical models reported in Table 5. 

 

Figure 25: Manual Score Method 

 

1993-2002 Sample 

     
Simple 

Score 
Total Obs. % of Total AAERs PPV 

7 4  0.0% 0  0.00% 

6 594  1.4% 21  3.54% 

5 4,418  10.6% 85  1.92% 

4 9,149  22.0% 145  1.58% 

3 13,621  32.7% 168  1.23% 

2 9,934  23.9% 89  0.90% 

1 3,571  8.6% 28  0.78% 

0 350  0.8% 2  0.57% 
     

Total 41,641  100.0% 538  1.29% 

Score >=5 5,016  12.0% 106  2.11% 

PPV of Score>=5 / Prevalence  1.6x 

     

2003-2012 Sample 

     
Simple 

Score 
Total Obs. % of Total AAERs PPV 

7 0  0.0% 0  0.00% 

6 207  0.6% 3  1.45% 

5 2,192  6.3% 28  1.28% 

4 6,656  19.2% 93  1.40% 

3 12,380  35.8% 97  0.78% 

2 9,616  27.8% 51  0.53% 

1 3,249  9.4% 15  0.46% 

0 288  0.8% 0  0.00% 
     

Total 34,588  100.0% 287  0.83% 

Score >=5 2,399  6.9% 31  1.29% 

PPV of Score>=5 / Prevalence  1.6x 
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Finally, while Amiram, et al. said that their model applying Benford’s law predicted 

AAERs, they did not quantify this result, nor did they report classification statistics typical in 

classification literature. The only analysis provided was the output from a logistic regression.  

One slight modification was that Amiram, et al. applied a slightly different model specification 

where they encoded the dependent variable only for the initial year of the AAER.  Model 1 in 

Table 10 (of their original paper) reported the logistic regression estimated for their sample of 

AAERs with the FSD Score controlling for other measures of accrual quality and fraud risk 

including the F-Score.  The coefficient reported in model 1 for the FSD Score was the largest 

coefficient of any of the other variables at -40.691 with three stars showing its significance.  

However, did it really move the needle in terms of probabilities?  The results from the horse race 

proved poor overall. However, a careful reading of the original paper could have determined the 

back-of-the-envelope effect, which I describe below.  

This calculation is only an approximation because the data was not provided in exact 

detail in the paper, but it gives a directional magnitude for the effect of a deviation in Benford’s 

law. The descriptive statistics are based on the full sample of 43,332 observations for 2001-2011, 

and their logistic regression applied only 27,805 observations.  The results of this analysis are 

shown in Table 13. While FSD_Score was shown at the top of the logistic regression in the paper 

with the largest coefficient relative to the other variables, the evaluations in log odds reveals that 

the absolute probability change was quite small, or around 0.08 percent for an interquartile 

change in the FSD_Score.  Note also that an increase in divergence reduced the likelihood of an 

AAER, which is different from what the authors originally thought the relationship should be.  

They attributed this finding to companies running out of space to manipulate their earnings. 

Regardless, the magnitude of the deviation in Benford’s law to the detection of fraud is quite 

small, and in the previous horserace, shown to be of little significance to the results.  
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Table 13: Evaluation of Log Odds from the FSD Score Logistic Regression 

(Amiram, et al. 2020) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 1 

Coefficients from 

Amiram, et al. 

Q1 Value for 

FSD_Score; 

else, at means.

Q3 Value for 

FSD_Score; 

else, at means.

Calculate 

Log 

Odds

Calculate 

Log 

Odds

(1) (2) (3) (1) x (2) (1) x (3)

FSD_Score -40.691 0.023 0.035 -0.952 -1.428

ABS_JONES_RESID -1.078 0.184 0.184 -0.198 -0.198

STD_DD_RESID 0.011 0.123 0.123 0.001 0.001

MANIPULATOR 0.122 0.143 0.143 0.017 0.017

F_SCORE 1.980 0.401 0.401 0.793 0.793

ABS_WCACC -1.233 0.054 0.054 -0.067 -0.067

ABS_RSST 0.401 0.138 0.138 0.055 0.055

CH_CS 0.004 0.146 0.146 0.001 0.001

CH_ROA 1.339 -0.002 -0.002 -0.003 -0.003

SOFT_ASSETS -0.121 0.545 0.545 -0.066 -0.066

ISSUE -0.341 0.915 0.915 -0.312 -0.312

MTB 0.166 1.360 1.360 0.226 0.226

AT 0.000 3228.380 3228.380 0.000 0.000

Constant -5.686 -5.686 -5.686

Sum of Log Odds -6.189 -6.666

Odds Ratio - exp(log odds) 0.002 0.001

Probability (odds ratio / 1+odds ratio) 0.205% 0.127%

Change in Probability 0.077%
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8. Conclusion 
 

Throughout these chapters, I hope to have conveyed to the reader the stark difficulty of 

detecting fraud through statistical means alone.  A vast literature contributed significantly to 

understanding how financial misconduct occurs and through which channels these might be 

observable to outsiders.  Despite this work, the evidence in this study showed how difficult 

detection remains.  Machine learning did not appear to provide a black box solution to this task.  

The horse race presented in Chapter 5 provided evidence that raw variables do not perform better 

than financial ratios.  AuditAnalytics makes both the M-Score (Beneish) and Benford’s law 

analysis commercially available and the results from this analysis suggested that the F-Score 

would be of better use to their clients. At the top decile of risk, a univariate screen on sales 

growth performed about as well as the F-Score and machine learning models.  When the kitchen 

sink of financial variables was thrown into the XGBoost model, results improved, but slightly in 

absolute terms.  Given the complexity of implementing a machine learning approach, the logit-

based measures may be easier to implement overall.  Chapter 6 analyzed classification metrics in 

detail and showed why positive predictive value matters the most from the perspective of the 

fraud investigator. The analysis showed that the third dimension of an AUC is positive predictive 

value which is driven in a nonlinear way based on the prevalence of the underlying sample.  This 

value is maximized where false positive rates are the lowest, which is at the top of the probability 

distribution.   

This is why the false positive rate matters so much.  However, it comes at the cost of the 

sensitivity. Therefore, few actual cases will be captured at the top of the probability distribution.  

Even when maximizing posterior probabilities at the top of the probability distribution, results 

remained quite low. Finally, Chapter 7 included a few oddities that did not quite fit in the flow of 

the other chapters. Variable importance from machine learning offers almost no real information 

to understanding the why behind it.  As Hastie acknowledged, this is the work of well-designed 

causal studies.  One key insight is just how noisy variables proved to be including the 

counterintuitive observation that some variables hurt the detection task depending on the year.  

Of course, this is not knowable in advance and variables were included because they improved 

the model on average.  A returns analysis showed that advanced models would have 
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outperformed during a time when few had access to advanced models.  However, by the 2000s, 

published academic research and increased use of machine learning models competed away these 

opportunities.  Today, there is little benefit from trading based on the output of these models 

analyzed in this paper.  The overall message of this dissertation follows Professor Schilit’s 

advice, who wrote the book on financial fraud.  Get your hands dirty and understand the why.  

Shoe-leather, and not machine learning, is still required for this work.      
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Appendix A: Feature List for Financial Ratios (XGBoost model) 

 

Variables are labeled sequentially and start with “v” for continuous variables and “i” for binary.  

 

 

Variable Variable Name Definition 

v1 

Abnormal change 

in order backlog  (OB - OBt-1)/OBt-1 - (SALE - SALEt-1)/SALEt-1 

i2 Actual issuance  if SSTK > 0 or DLTIS > 0 then 1, else 0 

v3 Book-to-market  CEQ/(CSHO* PRCC_F) 

   

v5 

Change in free 

cash flows 

 (IB - RSST Accruals)/Average total assets - (IBt-1 - RSST Accrualst-

1)/Average total assetst-1 

v6 

Change in 

inventory  (INVT - INVTt-1)/Average total assets 

v7 

Change in 

operating lease 

activity 

 ((MRC1/1.1 + MRC2/1.1^2 + MRC3/1.1^3 + MRC4/1.1^4 + MRC5/1.1^5) 

-(MRC1t-1/1.1 + MRC2t-1/1.1^2 + MRC3t-1/1.1^3 + MRC4t-1/1.1^4 

+MRC5t-1/1.1^5))/Average total assets t-1 

v8 

Change in 

receivables  (RECT - RECTt-1)/Average total assets 

v9 

Change in return 

on assets  IB/Average total assets - IBt-1/Average total assetst-1 

v10 

Deferred tax 

expense  TXDI/ATt-1 

i11 

Demand for 

financing (ex ante)  

if (OANCF - (CAPXt-3 + CAPXt-2 + CAPXt-1)/3)/ACT < -0.5, then 1, else 

0 

v12 Earnings to price  IB/(CSHO * PRCC_F) 

i13 

Existence of 

operating leases 

 if MRC1 > 0, or MRC2 > 0, or MRC3 > 0, or MRC4 > 0, or MRC5 > 0,then 

1, else 0 

   

v15 

Level of finance 

raised  FINCF/Average total assets 

v16 Leverage  DLTT/AT 

v17 

Percentage change 

in cash margin 

 ((1 - (COGS + (INVT - INVTt-1))/(SALE - (RECT - RECTt-1))) - (1-(COGSt-

1 + (INVTt-1 - INVTt-2))/(SALEt-1 - (RECTt-1 - RECTt-2))))/(1- (COGSt-1 + 

(INVTt-1 - INVTt-2))/(SALEt-1 - (RECTt-1 - RECTt-2))) 

v18 

Percentage change 

in cash sales  

((SALE - (RECT - RECTt-1)) - (SALEt-1 - (RECTt-1 - RECTt-2)))/(SALEt-1 - 

(RECTt-1 - RECTt-2)) 

v19 RSST accruals  RSST Accruals= (DWC + DNCO + DFIN)/Average total assets, where: 

  WC = (ACT - CHE) - (LCT- DLC) 

  NCO = (AT - ACT - IVAO) - (LT - LCT - DLTT) 
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  FIN = (IVST + IVAO) - (DLTT + DLC + PSTK) 

v20 Soft assets  (AT - PPENT - CHE)/Average total assets 

v21 

Unexpected 

employee 

productivity 

 (SALE/EMP - SALEt-1/EMPt-1)/(SALEt-1/EMPt-1) - 

INDUSTRY((SALE/EMP - SALEt-1/EMPt-1)/(SALEt-1/EMPt-1)) 

v22 WC accruals  

(((ACT - ACTt-1) - (CHE - CHEt-1)) - ((LCT - LCTt-1) - (DLC - DLCt-1) - 

(TXP - TXPt-1)) - DP)/Average total assets 

v23 

Accounts 

receivable to sales  RECT/SALE 

v24 

Accounts 

receivable to total 

assets  RECT/AT 

v25 

Allowance for 

doubtful accounts  RECD 

v26 

Allowance for 

doubtful accounts 

to accounts 

receivable  RECD/RECT 

v27 

Allowance for 

doubtful accounts 

to net sales  RECD/SALE 

v28 Altman Z-score 

 3.3 * (IB + XINT + TXT)/AT + 0.999 * SALE/AT + 0.6 * CSHO – 

1.0*PRCC_F/LT  + 1.2 *WCAP/AT + 1.4 * RE/AT 

v29 Big Four auditor  if 0 < AU < 9, then 1, else 0 

v30 

Current minus 

prior year 

inventory to sales  INVT/SALE - INVTt-1/SALEt-1 

v31 

Days in 

receivables index  (RECT/SALE)/(RECTt-1/SALEt-1) 

v32 Debt-to-equity  LT/CEQ 

v33 

Declining cash 

sales dummy  if SALE - (RECT - RECTt-1) , SALEt-1 - (RECTt-1 - RECTt-2) then 1, else 0 

v34 

Fixed assets to 

total assets  PPEGT/AT 

v35 

Four-year 

geometric sales 

growth rate  (SALE/SALEt-4) ^ (1/4) - 1 

v36 Gross margin  (SALE - COGS)/SALE 

v37 

Holding period 

return   (PRCC_F - PRCC_Ft-1)/PRCC_Ft-1 

v38 

Industry ROE 

minus firm ROE  NI of industry/CEQ of industry - NI/CEQ 

v39 Inventory to sales INVT/SALE 

v40 Net sales  SALE 
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i41 

Positive accruals 

dummy  if (IB - OANCF) > 0 and (IBt-1 - OANCFt-1) > 0, then 1, else 0 

v42 

Prior-year ROA to 

total assets current 

year  (NIt-1/ATt-1)/AT 

v43 

Property, plant, 

and equipment to 

total assets  PPENT/AT 

v44 Sales to total assets  SALE/AT 

v45 

The number of 

auditor turnovers 

 if AU ,> AUt-1, then 1, else 0 + if AUt-1 ,> AUt-2, then 1, else 0 + if AUt-2,> 

AUt-3 then 1, ELSE 0 

v46 

Times interest 

earned  (IB + XINT + TXT)/XINT 

v47 

Total accruals to 

total assets  (IB - OANCF)/AT 

v48 

Total debt to total 

assets  LT/AT 

v49 

Total discretionary 

accrual  RSST Accrualst-1 + RSST Accrualst-2 + RSST Accrualst-3 

v50 

Value of issued 

securities to 

market value  

if CSHI > 0, then CSHI - PRCC_F/(CSHO - PRCC_F) else if (CSHO - 

CSHOt -1) > 0, then ((CSHO - CSHOt-1)  PRCC_F)/(CSHO - PRCC_F), else 

0 

i51 

Whether accounts 

receivable > 1>1 

of last year’s  if RECT/RECTt-1 > 1.1, then 1, else 0 

v52 

Whether firm was 

listed on AMEX  if EXCHG = 5, 15, 16, 17, 18, then 1, else 0 

v53 

Whether gross 

margin percent > 

1>1 of last year’s 

 if ((SALE - COGS)/SALE)/((SALEt-1 - COGSt-1)/SALEt-1) > 1>1, then 1, 

else 0 

v54 Whether LIFO  if INVVAL = 2, then 1, else 0 

v55 

Whether new 

securities were 

issued  if (CSHO - CSHOt-1) > 0 or CSHI > 0, then 1, else 0 

v56 

Whether SIC code 

between 2999 and 

4000  if 2999 < SIC < 4000, then 1, else 0 

v57 Sales  SALE 

v58 Change in sales SALE - SALEt-1 

v59 % Change in sales (SALE - SALEt-1)/SALEt-1 

v60 

Abnormal % 

change in sales (SALE - SALEt-1)/SALEt-1 - INDUSTRY(SALE - SALEt-1)/SALEt-1 

v61 Sales to assets  SALE/AT 

v62 

Change in sales to 

assets  SALE/AT - SALEt-1/ATt-1 
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v63 

% Change in sales 

to assets  (SALE/AT - SALEt-1/ATt-1)/(SALEt-1/ATt-1) 

v64 

Abnormal % 

change in sales to 

assets 

(SALE/AT - SALEt-1/ATt-1)/(SALEt-1/ATt-1) - INDUSTRY(SALE/AT -

SALEt-1/ATt-1)/(SALEt-1/ATt-1) 

v65 Sales to employees  SALE/EMP 

v66 

Change in sales to 

employees  SALE/EMP - SALEt-1/EMPt-1 

v67 

% Change in sales 

to employees  (SALE/EMP - SALEt-1/EMPt-1)/(SALEt-1/EMPt-1) 

v68 

Sales to operating 

expenses  SALE/XOPR 

v69 

Change in sales to 

operating expenses  SALE/XOPR - SALEt-1/XOPRt-1 

v70 

% Change in sales 

to operating 

expenses  (SALE/XOPR - SALEt-1/XOPRt-1)/(SALEt-1/XOPRt-1) 

v71 

Abnormal % 

change in sales to 

operating expenses  

(SALE/XOPR - SALEt-1/XOPRt-1)/(SALEt-1/XOPRt-1) -

INDUSTRY(SALE/XOPR - SALEt-1/XOPRt-1)/(SALEt-1/XOPRt-1) 

v72 Return on assets  NI/AT 

v73 

Change in return 

on assets  NI/AT - NIt-1/ATt-1 

v74 

% Change in return 

on assets (NI/AT - NIt-1/ATt-1)/(NIt-1/ATt-1) 

v75 

Abnormal % 

change in return on 

assets  

(NI/AT - NIt-1/ATt-1)/(NIt-1/ATt-1) - INDUSTRY(NI/AT - NIt-1/ATt-1)/(NIt-

1/ATt-1) 

v76 Return on equity  NI/CEQ 

v77 

Change in return 

on equity  NI/CEQ - NIt-1/CEQt-1 

v78 

% Change in return 

on equity  (NI/CEQ - NIt-1/CEQt-1)/(NIt-1/CEQt-1) 

v79 

Abnormal % 

change in return on 

equity 

 (NI/CEQ - NIt-1/CEQt-1)/(NIt-1/CEQt-1) - INDUSTRY(NI/CEQ - NIt-1/CEQt-

1)/(NIt-1/CEQt-1) 

v80 Return on sales  NI/SALE 

v81 

Change in return 

on sales  NI/SALE - NIt-1/SALEt-1 

v82 

% Change in return 

on sales  (NI/SALE - NIt-1/SALEt-1)/(NIt-1/SALEt-1) 

v83 

Abnormal % 

change in return on 

sales 

 (NI/SALE - NIt-1/SALEt-1)/(NIt-1/SALEt-1) - INDUSTRY(NI/SALE - NIt-1/ 

SALEt-1)/(NIt-1/SALEt-1) 
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v84 

Accounts payable 

to inventory  AP/INVT 

v85 

Change in 

accounts payable 

to inventory  AP/INVT - APt-1/INVTt-1 

v86 

% Change in 

accounts payable 

to inventory  (AP/INVT - APt-1/INVTt-1)/(APt-1/INVTt-1) 

v87 

Abnormal % 

change in accounts 

payable to 

inventory  

(AP/INVT - APt-1/INVTt-1)/(APt-1/INVTt-1) -  INDUSTRY(AP/INVT - APt-

1/ INVTt-1)/(APt-1/INVTt-1) 

v88 Liabilities  LT 

v89 

Change in 

liabilities  LT - LTt-1 

v90 

% Change in 

liabilities  (LT - LTt-1)/LTt-1 

v91 

Abnormal % 

change in 

liabilities  (LT - LTt-1)/LTt-1 - INDUSTRY(LT - LTt-1)/LTt-1 

v92 

Liabilities to 

interest expenses  LT/XINT 

v93 

Change in 

liabilities to 

interest expenses  LT/XINT - LTt-1/XINTt-1 

v94 

% Change in 

liabilities to 

interest expenses  (LT/XINT - LTt-1/XINTt-1)/(LTt-1/XINTt-1) 

v95 

Abnormal % 

change in 

liabilities to 

interest expenses 

 (LT/XINT - LTt-1/XINTt-1)/(LTt-1/XINTt-1) - INDUSTRY(LT/XINT -LTt-

1/XINTt-1)/(LTt-1/XINTt-1) 

v96 Assets  AT 

v97 Change in assets  AT - ATt-1 

v98 % Change in assets  (AT - ATt-1)/ATt-1 

v99 

Abnormal % 

change in assets  (AT - ATt-1)/ATt-1 - INDUSTRY(AT - ATt-1)/ATt-1 

v100 Assets to liabilities  AT/LT 

v101 

Change in assets to 

liabilities  AT/LT - ATt-1/LTt-1 

v102 

% Change in assets 

to liabilities  (AT/LT - ATt-1/LTt-1)/(ATt-1/LTt-1) 

v103 

Abnormal % 

change in assets to 

liabilities 

 (AT/LT - ATt-1/LTt-1)/(ATt-1/LTt-1) - INDUSTRY(AT/LT - ATt-1/LTt-1)/(ATt-

1/LTt-1) 
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v104 Expenses  XOPR 

v105 

Change in 

expenses  XOPR - XOPRt-1 

v106 

% Change in 

expenses (XOPR - XOPRt-1)/XOPRt-1 

v107 

Abnormal % 

change in expenses (XOPR - XOPRt-1)/XOPRt-1 - INDUSTRY(XOPR - XOPRt-1)/XOPRt-1 

v108 Cash Liquidity CHE / AT 
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Appendix B: Raw Variable List (Bao, et al. 2020) 

 

Compustat Code Compustat Description 

ACT Current Assets - Total 

AP Accounts Payable - Trade 

AT Total Assets 

CEQ Common / Ordinary Equity - Total 

CHE Cash and Short-term equivalents 

COGS Cost of Goods Sold 

CSHO Common Shares Outstanding 

DLC Debt in Current Liabilities 

DLTIS Long-term Debt Issuance 

DLTT Long-term Debt Total 

DP  Depreciation and Amortization 

IB Income before extraordinary items 

INVT Inventories - Total 

IVAO Investment and Advances - Other 

IVST  Short-Term Investments - Total 

LCT Current Liabilities - Total 

LT Liabilities - Total 

NI Net Income (Loss) 

PPEGT Property, Plant & Equipment - Total 

(Gross) 

PSTK Preferred / Preference Stock (Capital) - 

Total 

RE Retained Earnings 

RECT Receivables - Total 

SALE Sales / Turnover (Net) 

SSTK Sale of Common and Preferred Stock 

TXP Income Taxes Payable 

TXT Income Taxes - Total 

XINT Interest and Related Expense - Total 

PRCC_F Price Close - Annual - Fiscal 

 

 

 

 

 

 

 

 




