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Abstract
Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that
they do not provide full facial detail is desirable. A program was developed that uses models of
nonbrain structures for removing potentially identifying facial features. When a novel image is
presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron
33:341–355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69–S84). A brain mask is constructed
by forming the union of all voxels with nonzero probability of being brain and then morphologically
dilated. All voxels outside the mask with a nonzero probability of being a facial feature are set to 0.
The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences
and four different diagnoses (depressed, Alzheimer’s, and elderly and young control groups). Visual
inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing
on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med
Imaging 17:87–97), defaced, and then skull-stripped using either a hybrid watershed algorithm
(Ségonne et al. [2004]: Neuroimage 22:1060–1075, in FreeSurfer) or Brain Surface Extractor (Sandor
and Leahy [1997]: IEEE Trans Med Imaging 16:41–54; Shattuck et al. [2001]: Neuroimage 13:856–
876); defacing did not appreciably influence the outcome of skull-stripping. Results suggested that
the automatic defacing algorithm is robust, efficiently removes nonbrain tissue, and does not unduly
influence the outcome of the processing methods utilized; in some cases, skull-stripping was
improved. Analyses support this algorithm as a viable method to allow data sharing with minimal
data alteration within large-scale multisite projects.
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INTRODUCTION
To share human data in compliance with federal, state, and local regulations, including the
recently enacted Health Insurance Portability and Accountability Act of 1996 (HIPAA,
http://www.hhs.gov/ocr/hipaa/), it is crucial to have in place robust practices and procedures
that protect the welfare of the individuals who participate in the research. These practices must
include measures that ensure the privacy of the individual. For data to qualify as sharable under
the “safe harbor” regulations, one of the HIPAA-defined identifiers that must be removed is
“full face photographic images and any comparable images.” With the increasing resolution
of morphometric MR scans, it has become possible to reconstruct detailed images showing
facial anatomy (Fig. 1a). Thus, in order to share unaltered MRI images, both sites are required
to provide a waiver of consent. This becomes problematic in multisite projects, particularly,
those with the goal of making data available to a larger research community.

The face recognition literature has suggested that internal facial features (i.e., eyes, nose, and
mouth) are particularly relevant when recognizing a familiar individual [Bruce et al., 1999;
Burton et al., 1999]. Therefore, automated techniques to obscure or remove an individual’s
facial features from structural MR images have become an important part of the data sharing
process for large-scale, multisite projects such as the Biomedical Informatics Research
Network (BIRN). In addition to reducing the ability to visually identify a subject, a method
must be robust, removing only nonbrain tissue while leaving brain tissue intact (Fig. 1b and
Fig. 2). It should be insensitive to pulse parameters, thereby working for a variety of 3D T1-
weighted sequences. Finally, the outcome of such deidentification must not change the data in
such a way as to have debilitating effects on later data processing and analysis.

Although numerous automated skull-stripping algorithms are available that might be
considered for deidentification purposes, their performance may be influenced by a variety of
factors, such as MR signal inhomogeneities, gradient performance, and extent of
neurodegeneration in the subjects studied [Smith, 2002]. A detailed study of how such variables
may influence the automated performance of four common skull-stripping techniques (Brain
Surface Extractor (BSE), Brain Extraction Tool (BET), 3dIntracranial, and a Hybrid Watershed
(HWA)) has shown that it is difficult to achieve satisfactory results for all datasets, especially,
across different subject populations [Fennema-Notestine et al., 2006]. Even with some level
of manual intervention, it is difficult to create “one-size fits all” parameters such that automated
skull-stripping deidentifies the subject without loss of brain tissue; manual tuning for a
particular scanner and/or pulse sequence may not produce consistent results across datasets
collected under that protocol [Fennema-Notestine et al., 2006; Smith, 2002]. These manually
optimized parameters may also be dependent upon area of interest, such that regions not
currently under study (e.g., the superior parietal regions) may be sacrificed for better results
within the regions to be studied (such as the anterior temporal lobe). This is highly significant
for large multisite projects in which not every individual who might legitimately have access
to images can be identified when consent is obtained. An example of this circumstance might
occur when meeting government mandates to make research imaging-data public to the
scientific community.

A more recent approach has suggested combining multiple automated skull-stripping methods
within a single meta-algorithm to optimize results [Rex et al., 2004]. While this method showed
improved results over individual algorithms, for optimal results it does require training for data
sets with novel contrast or signal-to-noise characteristics. Further, should new algorithms be
added, determination of the best overall algorithmic combination becomes intractable. Another
concern is that many of these methods may remove certain elements, such as extracranial
cerebrospinal fluid (CSF), which hold some importance in some fields of research. With recent
advances in combining MRI with EEG/MEG, cranial features are important for identifying
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electrode placement with respect to a structural MRI. These features would be removed when
a skull-stripping algorithm is applied. Skull-stripping methodology, then, may not be
sufficiently reliable for large-scale, automated deidentification purposes.

In the current study, we introduce an automated “defacing” algorithm that removes only
identifiable facial features from MR volumes, and we present the results of an investigation of
the performance of this defacing algorithm on image sets that differed by age and diagnosis.
First, image volumes were examined qualitatively for preservation of brain tissue after
defacing. Second, to help quantify the outcome, we compared skull-stripped volumes, using
Hybrid Watershed [Ségonne et al., 2004, in FreeSurfer] or Brain Surface Extractor [Sandor
and Leahy, 1997; Shattuck et al., 2001], with both defaced and non-defaced datasets. These
skull-stripping algorithms were selected based upon their performance in a previous analysis
[Fennema-Notestine et al., 2006] as being fairly robust across diagnoses. After visually
inspecting whole brain volumes, we focused upon six slices in regions typically problematic
in differentiating brain from nonbrain for more detailed quantitative analysis. These slices were
compared to two manually-created gold standards to determine (1) similarity of results across
methods; (2) sensitivity to classification of tissue as brain; and (3) ability to specify tissue as
nonbrain. We hypothesized that defacing would successfully remove nonbrain tissue and not
appreciably modify the performance of the skull-stripping algorithms employed.

MATERIALS AND METHODS
MR Image Sets

Data collected using a common structural gradient-echo (SPGR) T1-weighted pulse sequence
were examined. The datasets were collected on a GE 1.5T magnet located at the VA San Diego
Healthcare System MRI Facility that was subject to regular hardware and software upgrades
over time. Two large datasets were used for the purposes of qualitative visual inspection: 278
Legacy datasets were collected over 4 years in the mid to late 1990s (June 1994 to July 1998)
using the following parameters: TR = 24 ms; TE = 5 ms; NEX = 2; flip angle = 45°; FOV =
24 cm; 1.2-mm contiguous sagittal sections. Sixty-four Contemporary datasets were collected
over an 11-month period May 2002 to April 2003 using the following settings: TR = 20 ms;
TE = 6 ms; NEX = 1; flip angle = 30°; FOV = 25 cm; 1.5-mm contiguous sagittal sections. A
subset of these Contemporary data was employed in the qualitative skull-stripping assessment
described in more detail later. The University of California, San Diego, institutional review
board approved all procedures, and written informed consent for image acquisition was
obtained from all subjects.

Disagnostic Groups
Four populations were used throughout the analysis, consisting of depressed (DEP),
Alzheimer’s (AD), young control (YNC), and elderly control (ENC) groups. AD severity was
measured with the Mini-Mental State Examination [Folstein et al., 1975]. Of the datasets used
for qualitative visual inspection, the 278 Legacy datasets included 50 ENC, 92 AD, 96 YNC,
and 40 DEP participants, and the 64 Contemporary datasets included 36 ENC, 4 AD, 5 YNC
(3 subjects had 2 longitudinal sessions), and 8 DEP (all subjects had 2 longitudinal sessions)
participants. From these, 16 Contemporary datasets (4 ENC, 4 AD, 4 YNC, 4 DEP) were
selected for further quantitative statistical analysis. The YNC and DEP groups were similar on
age and education, as were the ENC and AD groups (Table I) for this reduced dataset.
Legacy datasets were not used in the statistical analysis due to their increased need for manual
intervention during the skull-stripping process.
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Defacing Algorithm
An algorithm was developed that uses models of non-brain structures for removing facial
features that may potentially allow the identification of a subject/patient from their MR scan.
An atlas of face membership was created by manually labeling the facial features of 10 subjects.
These facial features comprised the entire front of the head. To remove facial features from
novel images, an optimal linear transform using both brain and nonbrain was computed for the
input volume [Fischl et al., 2002]. Next, a brain mask was constructed by forming the union
of all voxels whose prior probability of being any brain tissue was nonzero. This mask was
then morphologically dilated n times (n = 7) to yield a binary volume, the nonzero values of
which indicate the presence of brain tissue within nx millimeters. Here, x is the size of a voxel
in millimeters, and the volumes were interpolated to ensure isotropic voxel dimensions. The
number of dilations functions as a buffer and is related to the accuracy of the linear transform.
It is essentially the distance from the brain in which one can be confident the linear transform
can localize. The deidentification procedure involved finding all voxels that were outside the
mask, but had a nonzero probability of being a facial feature, and setting them to zero. Voxels
within x and 2x of the detected brain mask were removed if the Mahalanobis distance, using
mean and covariances estimated from a manually labeled training set, to any brain tissue was
low; that is, if the voxel intensity did not appear similar to brain tissue intensity. This was
particularly useful for removing fatty tissue from the orbital areas, for example. As the face
atlas was created from T1-weighted images, it therefore should be used only with T1-weighted
datasets. The defacing algorithm took ~25 min per dataset to run on a Dell Precision Xeon 3.20
GHz with 2 GB RAM.

Automated Skull-Stripping Methods
To quantitatively assess whether the defacing algorithm removed brain tissue and/or influenced
the performance of commonly used software, two different skull-stripping methods were
applied to (1) 16 normalized, nondefaced datasets, and (2) the same 16 normalized datasets
after defacing. The two skull-stripping methods employed included Brain Surface Extractor
[Sandor and Leahy, 1997; Shattuck et al., 2001], a tool shown to have high specificity in finding
the cortical surface, and a Hybrid Watershed algorithm [Ségonne et al., 2004], a relatively more
sensitive tool that often results in a conservative strip that rarely removes any brain tissue
[Fennema-Notestine et al., 2006]. For image normalization, nonparametric nonuniform
intensity normalization [N3; Sled et al., 1998] was used; this locally adaptive bias correction
algorithm was chosen for its applicability to raw, unstripped datasets and its performance
relative to other methods [Arnold et al., 2001]. The two skull-stripping algorithms are briefly
described as follows:

1. Hybrid Watershed Algorithm (v. 1.21). HWA [Fischl et al., 2002; Ségonne et al.,
2004; in FreeSurfer, http://surfer.nmr.mgh.harvard.edu] is a hybrid of a watershed
algorithm [Hahn and Peitgen, 2000]; it assumes white matter connectivity to
determine a local optimum of the intensity gradient, and a deformable surface model
[Dale et al., 1999], which is used to apply corrections when the connectivity
assumption does not hold. Optionally, a statistical atlas can be used to verify and
potentially correct the surface estimate. In the present study, the atlas-based option
was not finalized for v. 1.21; therefore, for automated processing, the default
parameters without the atlas option were utilized. On average, HWA required less
than 8 min of processing time per dataset.

2. Brain Surface Extractor (v. 3.3). BSE [Sandor and Leahy, 1997; Shattuck et al.,
2001; in BrainSuite, http://brainsuite.usc.edu/] uses anisotropic diffusion, edge
detection, and morphologic erosion to segment the brain. Briefly, the algorithm first
detects the boundary between brain and skull that is then filtered with anisotropic
diffusion to smooth small image gradients while retaining larger ones that correspond
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to strong edges in the image. Because noise in the image may lead to a result that does
not separate the brain from the rest of the head, morphologic processing techniques
are used to identify and refine the brain surface. The parameters employed were a
sigma of 0.8 for the edge detection, with five iterations of the anisotropic filter at a
diffusion constant of 5.0. BSE required about 15 s of processing time per dataset.

Manual Skull-Stripping
For more refined analyses, two anatomists manually stripped six sagittal slices from each of
the 16 raw contemporary MR datasets to provide a criterion against which to judge the
automated outcomes of skull stripping with/without prior defacing (Fig. 3). Note that whole
brain volumes from which these slices were taken were visually inspected as described later.
Both anatomists (CPC and SM) were experienced in neuroimaging, with training in both
neuroscience and neuroanatomy. With the guidance of a trained neuroanatomist (CFN), the
anatomists completed four sample datasets, not included in the present study, to formalize a
set of criteria for skull-stripping. If the anatomists were unable to definitively classify tissue
as brain or nonbrain, they were instructed to conservatively include the tissue. Six sagittal slices
(three per hemisphere) that passed through regions that are difficult for both manual and
automated skull-stripping methods were selected. These included slices passing through the
anterior medial temporal, anterior inferior frontal, posterior cerebellar regions, and posterior
occipital regions. These slices were chosen due to their difficulty in separating brain from
nonbrain tissues on T1-weighted images. On average, it took 1 h for each anatomist to manually
strip the six slices (about 10 min per slice) in a given dataset. The Jaccard similarity coefficient
between these two neuroanatomists was 0.938 across all datasets; more detailed analyses of
the anatomists’ performance has been described elsewhere [Fennema-Notestine et al., 2006]
and will therefore not be included in this report.

Data Processing
The 16 contemporary datasets selected for statistical analysis were processed in four ways: (1)
the original images were normalized with N3, followed by skull-stripping with HWA or (2)
BSE; (3) the original images were defaced, followed by image normalization with N3, and
finally skull-stripping with HWA or (4) BSE. Therefore, for each initial dataset, there were
four processed datasets for subsequent analysis.

Analytical Methods
All datasets were subjected to qualitative review. Defaced images were visually inspected to
determine whether the defacing mask encroached upon brain tissue. Visualization was
conducted using AFNI [Cox, 1996; http://afni.nimh.nih.gov/afni/] to examine each subject’s
structural image across all three planes by overlaying the mask onto the original anatomical
image. After visual inspection to determine if there was a loss of brain tissue, the image was
rendered into a three-dimensional image and further inspected to determine if facial features
were adequately removed (Fig. 4).

Analyses were conducted by using all sagittal slices in which each subject’s representative
slice contained brain tissue (total slices per dataset = 86). Within this analysis, which we will
hereafter term the Whole Brain analysis, comparisons were made between skull-stripped and
defaced + skull-stripped images, using either BSE or HWA as the skull-stripping method. This
technique was selected due to performance differences between the two automated methods.
As previously stated, HWA tends to be highly sensitive to brain tissue and produces
conservative skull-stripped images, whereas BSE is very specific and comes closer to the brain
surface, although in some cases brain tissue may be removed [Fennema-Notestine et al.,
2006]. Because the Whole Brain analysis relied solely upon automated methods, a second
analysis was employed: Six sagittal slices, known to be problematic in skull-stripping, were
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selected from the HWA-stripped and the defaced + HWA-stripped datasets and compared
statistically with manually stripped images by two trained anatomists (i.e., gold standard) to
determine similarity across methods as well as ability to correctly classify voxels as brain or
nonbrain. HWA was selected due to its ability to generally conserve brain tissue across a
number of patient populations [Fennema-Notestine et al., 2006]. Given that the six slices
chosen were known to be difficult ones for determining brain vs. nonbrain, we felt it was
prudent to use a conservative skull-stripping algorithm; this was consistent with the instructions
to the trained anatomists, who were told to retain tissue if it were difficult to classify.

The four statistical methods chosen for both Whole Brain and Six Slice analyses were as
follows:

1. Set-Difference. This technique examined the difference in the number of voxels left
behind by skull-stripping only to the number of voxels that were removed by defacing
only. The original image volume was skull-stripped, and the resulting mask was
applied to the defaced image volume. The number of nonzero voxels was tabulated
to determine how many voxels the defacing algorithm removed that the skull-stripping
algorithm left behind in a stripped, nondefaced volume. This difference can occur if
the defacing algorithm is overly sensitive to nonbrain tissue, or if it removes brain
tissue from the original image.

2. Jaccard Similarity Index. The Jaccard measures the degree of correspondence, or
overlap, for each image slice. It is formulated as

where A, the criterion, and B are the images being compared [Jaccard, 1912]. For
Whole Brain, the skull-stripped only datasets were the criterion, and the defaced +
skull-stripped datasets were compared with them. Datasets stripped with HWA were
treated separately from those stripped with BSE. In the Six Slice experiment, we used
the manually stripped datasets as criterion, comparing the HWA and defaced + HWA
datasets with them. A score of 1.0 indicates complete overlap or agreement, whereas
a score of 0.0 indicates no overlap.

3. Hausdorff Distance Comparison. The Hausdorff examines the degree of mismatch
between the contours of two image sets [Huttenlocher et al., 1993]. Given two finite
point sets, A = {a1,… , am} and B = {b1,…, bn}, where A and B are sets of points
along the contour of a skull-stripped brain slice, the Hausdorff distance is defined as

The directed Hausdorff distance from A to B is defined as

4. Expectation-Maximization Algorithm. This algorithm calculates the maximum
likelihood estimate of the underlying agreements among all methods [Warfield et al.,
2002]. There are two main outcomes of this method:

a. Sensitivity: This metric determines the relative frequency of correct brain
classification by one method relative to all methods.

b. Specificity: This determines the relative frequency of correct nonbrain
classification by one method relative to other methods.

The a priori probabilities for all voxels for each slice of each subject tested were set
to 0.5; this indicates there was no initial knowledge about ground truth. Initial
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estimates for sensitivity and specificity were set to 0.9. The termination criterion for
convergence set the root mean square error to <0.005.

The goal of using a variety of statistical outcomes was to demonstrate that the findings were
robust, converged across methods, and were sufficiently generalizable. While it was expected
that there would be some correlation amongst the different methods, inherently these metrics
measure different aspects of the data.

Descriptive statistics (mean and standard error) were calculated for all analyses, both across
and within each diagnostic group. This provided us with an initial impression of performance
for all datasets, as well as whether a particular diagnosis produced unusual results with respect
to other patient populations. These were followed by a series of mixed design analyses at the
conventional α of 0.05 for statistical significance. Between-subjects effects were examined for
diagnosis. Where appropriate, univariate within-subject repeated measures analysis of variance
were examined for Slice (either the 86 slices that contain brain tissue within each subject or
for Slices 1–6 as seen in Fig. 3), to potentially identify region-specific trends in defacing, and
method (BSE for Whole Brain analysis only; HWA for both Six Slice and Whole Brain analyses;
Gold Standard for Six Slice analysis only). All analyses used the Huynh-Feldt correction since
sphericity could not be assumed. For all repeated measures reaching significance, partial η-
squared (η2) values were reported as an estimate of effect size. Because we did not wish to
make assumptions regarding the Six Slice analysis distribution, a rank order analysis was
employed.

RESULTS
Qualitative Review

To date, 342 T1-weighted datasets have been defaced and visually inspected; none of these
defaced datasets have had brain tissue removed. Three-dimensional renderings of the defaced
images indicated that identifying facial features (eyes, nose, mouth, chin) were removed from,
on average, the nasion downward (Fig. 4).

For the 16 contemporary datasets used for subsequent quantitative analysis, visual inspection
showed that defacing prior to automated skull-stripping with HWA tended to remove eyes and
leave only a small amount of nonbrain tissue in the ventral anterior temporal lobes, whereas
HWA without prior defacing tended to leave behind eyes in several datasets. For one dataset
(DEP), visual inspection revealed that the image failed automated skull-stripping; HWA left
behind a large amount of nonbrain tissue, including the face, on the ventral portion of the brain.
It should be noted that when the image was defaced prior to skull-stripping, the nonbrain tissue
present with skull-stripping only was removed. Thus, in this case, defacing significantly
improved the subsequent performance of skull-stripping. However, due to the poor
performance of automated HWA on this dataset, it was excluded from the statistical analyses
so as not to skew the outcomes. In general, however, defacing the image prior to automated
skull stripping with HWA did visually appear to improve the quality of skull-stripping (with
respect to the removal of unwanted nonbrain tissue) in most datasets.

Visual inspection of automated skull-stripping with BSE (without prior defacing) tended to be
more specific, but in some cases nonbrain tissue was left around the parietal region, and, in
one case, some brain tissue was removed in the orbitofrontal cortex. Three left excessive
amounts of nonbrain tissue. When the image was defaced prior to skull-stripping with BSE,
some cases left extra tissue around the parietal region, and three left too much non-brain tissue,
typically retaining the skull (but not CSF) and tissues surrounding the spinal cord. In general,
BSE (with or without prior defacing) removed a significant portion of brain tissue, although
some voxels removed were close to the brain surface and were visually difficult to classify as
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brain or nonbrain. In two subjects (1 YNC, 1 AD), there was a tremendous disparity in the
quality of the skull-stripping with vs. without prior defacing. The YNC outcome was poor with
defacing followed by skull-stripping, but acceptable when only skull-stripped; defacing +
skull-stripping retained most of the nonbrain tissue. Conversely, the AD outcome was
improved when the image was defaced and skull-stripped; the nonbrain tissue left behind with
skull-stripping only were removed when the data were both defaced and skull-stripped. These
datasets were subsequently excluded from the statistical analyses.

Whole Brain Statistical Comparison
Here, the set difference comparison indicated that 2.612% (SD 2.433) of the voxels retained
by skull stripping with HWA were removed by defacing. Visual examination indicated that
the retained voxels were nonbrain tissue. These regions tended to be in the vicinity of the eyes.
HWA uses intensity information during the normalization process, hence the removal of the
eyes through defacing, which are quite bright on T1-weighted images, likely led to an
improvement in intensity differentiation of brain from nonbrain. The more lateral slices tended
to look the same with or without prior defacing.

The subsequent analyses using the Jaccard Similarity, Hausdorff Distance, and E-M methods
were conducted by comparing the automated (HWA or BSE) stripped datasets with and without
prior defacing. The mean descriptives for the Hausdorff Distance and Jaccard Similarity were
not appreciably different (Table II). We found a significant main effect of slice for HWA for
the Jaccard Similarity coefficient (F(3.651, 40.158) = 4.886, P = 0.003, partial η2 = 0.308); all
other analyses failed to reach significance. These slice effects were due to the combination of
HWA with defacing performing slightly less conservatively than HWA alone. As previously
noted, defacing prior to HWA tended to have no appreciable effect on the lateral slices. The
slices around the eyes tended to be more conservatively stripped with HWA alone, such that
more nonbrain tissue remained. None of the main effects or interactions reached significance
for the Hausdorff Distance analyses.

The descriptive statistics for EM Sensitivity and Specificity for both HWA and BSE was at or
near ceiling (Table III), indicating that for either case, defacing did not appreciably interfere
with the abilities of HWA or BSE to differentiate brain from nonbrain tissue. Therefore, a
repeated measures analysis was not pursued.

Six Slice Statistical Comparison
Using the set difference comparison, 2.538% (SD, 2.572) of the voxels retained by skull-
stripping (with HWA) were removed by defacing. Visual examination showed these retained
voxels were nonbrain tissue, and that defacing prior to skull-stripping tended to remove more
nonbrain voxels in the ventral frontal areas than skull-stripping alone. Additionally, defacing
prior to skull-stripping resulted in more nonbrain tissue removal in areas such as along the
cerebellum ventrally and in superior frontal areas.

Descriptive analyses of the Jaccard Similarity and Hausdorff Distance methods (Table IV)
suggest the results were similar both across methods (HWA with and without prior defacing)
and across anatomists. However, defacing tended to improve performance, particularly in
patient populations (Fig. 5). We compared the outcome of HWA with and without prior
defacing with the gold standards (Anatomist 1 and Anatomist 2). A rank order analysis was
used to determine if there were significant differences between methods (1) across all slices,
and (2) on a slice by slice basis (Table V). For the Jaccard Similarity method, the across slices
analysis revealed significance by anatomist (Anatomist 1: P = 0.001; Anatomist 2: P = 0.009),
but only Slice 5 for Anatomist 2 (P = 0.04) was significant within slice. The Hausdorff Distance
method likewise revealed across slice significance (Anatomist 1: P = 0.007; Anatomist 2: P =
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0.02), but no within slice analysis reached significance (although it did approach significance
for Slice 2 for both anatomists).

The descriptive analyses for EM sensitivity and specificity were at or near ceiling for the two
methods (Table VI). Thus, defacing did not appreciably influence HWA in its ability to
correctly classify tissue as brain or nonbrain. Due to the inherent difficulty in differentiating
results with essentially no standard error, rank order analyses were not pursued.

DISCUSSION
During recent years, there has been an increase in the number of large-scale projects that entail
sharing of data across sites. NIH has initiated a data sharing policy, which requires researchers
with NIH-funded grants above a certain monetary threshold to make their final research data
available to other investigators. These data include human subject data acquired for basic or
clinical research. With the recent enactment of HIPAA, researchers in the neuroimaging field
have the added complication of removing identifying facial features from morphometric scans,
in order to make the images unlike a facial photograph, without the removal or distortion of
brain tissue. Most university institutional review boards require HIPAA compliance; therefore,
in order to share data it must be deidentified as described by the Privacy Rule. These rules
include the omission of “full facial photographic images and any comparable images,” unless
informed consent is obtained from the subject to share facial images. One solution has been to
apply skull-stripping to the data, as is suggested by the fMRI Data Center, a neuroimaging data
repository at Dartmouth College (http://www.fmridc.org). However, our experience has shown
that automated skull-stripping algorithms are far from perfect and might remove brain tissue
due to a variety of issues, including the subject population and scanner performance during
data acquisition [Fennema-Notestine et al., 2006; Smith, 2002]. Human intervention is often
required to minimize brain tissue loss, a time consuming process that is untenable when
working with large datasets. Additionally, the variation in the performance of different
automated skull-stripping algorithms further brings into question whether potentially vital
information may be retained with one algorithm but removed by another. Therefore, as part of
the BIRN initiative, we explored a possible solution to automate the deidentification of
morphometric T1-weighted images that would not remove brain tissue or extracranial CSF.
The defacing algorithm has been approved by the Institutional Review Boards within the BIRN
consortium as sufficient for deidentification of anatomical MRI images, thus allowing for the
sharing of neuroimaging data across research sites associated with the project. Our algorithm
protects against casual identification of subjects. While skull-stripping takes the anonymization
one step further than defacing, it may not be useful under all conditions. The loss of cranial
features interferes with research combining MRI and EEG/MEG, and the technique may
remove certain tissues and fluids, such as extracranial CSF, that are of interest for some fields
of research.

The defacing algorithm employed herein has been conclusively shown to remove identifying
facial features without disturbing brain tissue, and provides a reliable method that can be
applied automatically with little human intervention required to review the outcome. The
algorithm is very robust; our visual inspection of 342 datasets (some of them of poor quality)
failed to find datasets in which brain tissue was removed. While the processing time is greater
than that of the more widely used skull-stripping algorithms [25 min, compared with 15 s to 8
min as reported by Fennema-Notestine et al., 2006], our experience has been that it often takes
far longer to skull-strip images due to manual tuning of the parameters. The algorithm can
handle a variety of data formats (DICOM, AFNI, ANALYZE, etc.), and optional parameters
allow users to, for example, adjust the defacing radius (i.e., distance from the brain that is
stripped), as well as the intensity values of the removed voxels.
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While our primary goal was to determine that the defacing algorithm did not remove brain
tissue, it is worthwhile noting that defacing did not have a detrimental effect on subsequent
data processing. Overall, defacing prior to automated skull-stripping did not interfere with the
chosen skull-stripping techniques. In some cases, defacing prior to skull stripping improved
the quality of automated skull-stripping, such that more nonbrain tissue was removed. In one
case, defacing prior to skull-stripping achieved poor results; this is not a limitation of defacing
per se, but does clearly suggest one be mindful of the skull-stripping methodologies applied
following defacing. Defacing likely influenced BSE’s edge-detection algorithm; selecting a
different set of parameters may have improved the outcome. Because the purpose of this
experiment was to determine if defacing removed brain tissue by using automated skull-
stripping as a metric for analysis, manual intervention to improve results was not pursued.

It should also be made clear that the two skull-stripping algorithms used, HWA and BSE, use
different methodologies to remove skull and nonbrain tissue, and hence have different
outcomes whether or not defacing was applied before automated skull-stripping. These
differences would influence the whole-brain analyses; HWA showed a main effect of slice
when comparing automated skull stripping with and without prior defacing. Because HWA
tends to be conservative to the point of leaving nonbrain tissue, including CSF, behind, whereas
defacing operates primarily on the slices in which prominent facial features are present (e.g.,
eyes vs. cheek), the effect of slice is no doubt related to the voxels that defacing removed which
HWA might retain. This was supported by the set-difference comparison. The voxels retained
by skull-stripping with HWA that were removed by defacing were generally located in the
regions surrounding the eye. These differences may be reduced had we chosen to manually
select parameters that would give the best skull-stripping performance; however, our goal was
not to review the merits of skull-stripping algorithms, nor examine their capabilities with and
without human intervention.

One limitation of the proposed algorithm is that it can only be applied to T1-weighted datasets
since the face atlas was constructed with T1-weighted images. However, if a T1-weighted
image is acquired in addition to other image types (e.g., proton density or T2-weighted images),
the mask generated during the defacing process of the T1-weighted image may be used to
deface these other co-registered image types as well. Our preliminary exploration with defacing
non-T1-weighted data has shown that a minimal amount of effort on the part of the researcher
is required, and that visual inspection of these non-T1-weighted images indicated that brain
tissue was untouched. An improvement to this algorithm would be the creation of T2-weighted
and proton density atlases to enable it to function on differently weighted acquisitions.

Overall, we determined that the defacing algorithm does an effective job of removing facial
features without sacrificing brain tissue. The results of defacing do not interfere with
subsequent data processing, and in fact in some cases appears to make subsequent skull
stripping more robust. The algorithm is fully automated and can be scripted to process large
quantities of data, making it easy to deidentify data for subsequent sharing in multisite projects.
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Figure 1.
An example of a 3-D reconstruction of a T1-weighted dataset (a) before and (b) after
application of the defacing algorithm. The defacing algorithm removed identifying facial
features while preserving brain tissue for future analyses.
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Figure 2.
A sagittal slice from a defaced dataset illustrating how nonbrain voxels in the face region are
set to a fill value of zero.
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Figure 3.
Standard location of the manually stripped slices as demonstrated on a coronal image. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Bischoff-Grethe et al. Page 14

Hum Brain Mapp. Author manuscript; available in PMC 2008 June 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Examples of successful application of the defacing algorithm. Top row: elderly control subject
(left) and Alzheimer’s patient (right); bottom row: young normal control subject (left) and
unipolar depressed patient (right).
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Figure 5.
Mean (standard error bars) for (a) Jaccard Similarity Coefficient (JSC) and (b) Hausdorff
Distance for Diagnosis by Method relative to the manually stripped slices for Anatomist 1
(Six Slice analysis). DEF: defaced; HWA: Hybrid Watershed. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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TABLE I
Diagnostic group information for datasets used in the statistical analyses

Diagnostic group Age Gender MMSE

Young control 33.0 ± 15.1 (21–54) 2F/2M N/A
Elderly control 74.5 ± 1.7 (72–76) 2F/2M N/A
Unipolar depressed 40.8 ± 10.8 (21–54) 3F/1M N/A
Alzheimer’s disease 75.5 ± 1.7 (72–78) 1F/3M 23.2 ± 2.5 (22–27)

Values given are mean ± SD, and values inside parentheses indicate ranges. N/A: not available.
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TABLE II
Mean and standard error for the Jaccard Similarity and Hausdorff Distance analyses (Whole Brain analysis)

Method HWA vs. DEF + HWA BSE vs. DEF + BSE

Jaccard similarity 0.965 (0.001) 0.967 (0.002)
Hausdorff distance 3.204 (0.075) 2.76 (0.245)

The skull-stripped only datasets were employed as criterion, with HWA as criterion for the DEF + HWA comparison, and BSE for the DEF + BSE
comparison, respectively. BSE: Brain surface extractor; DEF: defaced; HWA: hybrid watershed.
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TABLE III
Mean and standard error for the expectation–maximization algorithm for the sensitivity and specificity analyses (Whole Brain
analysis)

Method HWA DEF + HWA BSE DEF + BSE

EM sensitivity 0.895 (0.008) 0.879 (0.008) 0.859 (0.009) 0.842 (0.009)
EM specificity 1.000 (0.000) 1.000 (0.000) 0.999 (0.000) 1.000 (0.000)

BSE: Brain surface extractor; DEF: defaced; HWA: hybrid watershed.
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TABLE IV
Mean and standard error for the Jaccard similarity and Hausdorff distance analyses (Six Slice analysis)

Method Anatomist HWA DEF + HWA

Jaccard similarity Anatomist 1 0.861 (0.010) 0.876 (0.010)
Anatomist 2 0.871 (0.010) 0.887 (0.010)

Hausdorff distance Anatomist 1 11.453 (0.128) 10.138 (0.113)
Anatomist 2 11.383 (0.127) 9.952 (0.111)

DEF: defaced; HWA: hybrid watershed.
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TABLE VI
Mean and standard error of the sensitivity and specificity from the expectation–maximization (EM) analysis for each method (Six
Slice analysis)

Method Anatomist 1 Anatomist 2 HWA DEF + HWA

EM sensitivity 0.883 (0.010) 0.893 (0.010) 0.999 (0.011) 0.998 (0.011)
EM specificity 1.000 (0.011) 1.000 (0.011) 0.992 (0.011) 0.998 (0.011)

DEF: defaced; HWA: hybrid watershed.
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