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ARTICLE OPEN

Imaging atomic-scale chemistry from fused multi-modal
electron microscopy
Jonathan Schwartz1, Zichao Wendy Di2, Yi Jiang 3, Alyssa J. Fielitz 4, Don-Hyung Ha5,6, Sanjaya D. Perera5, Ismail El Baggari7,8,
Richard D. Robinson5, Jeffrey A. Fessler 9, Colin Ophus 10, Steve Rozeveld4 and Robert Hovden 1,11✉

Efforts to map atomic-scale chemistry at low doses with minimal noise using electron microscopes are fundamentally limited by
inelastic interactions. Here, fused multi-modal electron microscopy offers high signal-to-noise ratio (SNR) recovery of material
chemistry at nano- and atomic-resolution by coupling correlated information encoded within both elastic scattering (high-angle
annular dark-field (HAADF)) and inelastic spectroscopic signals (electron energy loss (EELS) or energy-dispersive x-ray (EDX)). By
linking these simultaneously acquired signals, or modalities, the chemical distribution within nanomaterials can be imaged at
significantly lower doses with existing detector hardware. In many cases, the dose requirements can be reduced by over one order
of magnitude. This high SNR recovery of chemistry is tested against simulated and experimental atomic resolution data of
heterogeneous nanomaterials.

npj Computational Materials            (2022) 8:16 ; https://doi.org/10.1038/s41524-021-00692-5

INTRODUCTION
Modern scanning transmission electron microscopes (STEM) can
focus sub-angstrom electron beams on and between atoms to
quantify structure and chemistry in real space from elastic and
inelastic scattering processes. The chemical composition of
specimens is revealed by spectroscopic techniques produced
from inelastic interactions in the form of energy-dispersive X-rays
(EDX)1,2 or electron energy loss (EELS)3,4. Unfortunately, high-
resolution chemical imaging requires high doses (e.g., >106 e/Å2)
that often exceed the specimen limits—resulting in chemical
maps that are noisy or missing entirely5,6. Substantial effort and
cost to improve detector hardware have brought the field closer
to the measurement limits set by inelastic processes7,8. Direct
interpretation of atomic structure at higher-SNR is provided by
elastically scattered electrons collected in a high-angle annular
dark-field detector (HAADF); however, this signal under-describes
the chemistry9. Reaching the lowest doses at the highest SNR
ultimately requires fusing both elastic and inelastic scattering
modalities.
Currently, detector signals—such as HAADF and EDX/EELS—are

analyzed separately for insight into structural, chemical, or
electronic properties10. Correlative imaging disregards shared
information between structure and chemistry and misses oppor-
tunities to recover useful information. Data fusion, popularized in
satellite imaging, goes further than correlation by linking the
separate signals to reconstruct new information and improve
measurement accuracy11–13. Successful data fusion designs an
analytical model that faithfully represents the relationship
between modalities, and yields a meaningful combination without
imposing any artificial connections14.
Here we introduce fused multi-modal electron microscopy, a

technique offering high SNR recovery of nanomaterial chemistry

by linking correlated information encoded within both HAADF
and EDX/EELS. We recover chemical maps by reformulating the
inverse problem as a nonlinear optimization that seeks solutions
that accurately match the actual chemical distribution in a
material. Our approach substantially improves SNRs for chemical
maps, often around 300–500%, and can reduce doses over one
order of magnitude while remaining consistent with original
measurements. We demonstrate EDX/EELS datasets at sub-
nanometer and atomic resolution. Moreover, fused multi-modal
electron microscopy recovers a specimen’s relative concentration,
allowing researchers to measure local stoichiometry with less than
15% error without any knowledge of the inelastic cross-sections.
Convergence and uncertainty estimates are identified along with
simulations that provide a ground-truth assessment of when and
how this approach can fail.

RESULTS
Principles of multi-modal electron microscopy
Fused multi-modal electron microscopy recovers chemical maps
by solving an optimization problem seeking a solution that
strongly correlates with (1) the HAADF modality containing high
SNR, (2) the chemically sensitive spectroscopic modality (EELS
and/or EDX), and (3) encourages sparsity in the gradient domain
producing solutions with reduced spatial variation. The overall
optimization function is as follows:

argmin
x i ≥ 0
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where λ are regularization parameters, bH is the measured HAADF,
bi and xi are the measured and reconstructed chemical maps for
element i, ε herein prevents log(0) issues but can also account for
background, log is applied element-wise to its arguments,
superscript T denotes vector transpose, and 1 denotes the vector
of nxny ones, where nx × ny is the image size.
The three terms in Eq. (1) define our multi-modal approach to

surpass traditional dose limits for chemical imaging. First, we
assume a forward model where the simultaneous HAADF is a
linear combination of elemental distributions (xγi where γ∈ [1.4,
2]). The incoherent linear imaging approximation for elastic
scattering scales with atomic number as Zγ

i where γ is typically
around 1.715–17. This γ is bounded between 2 for Rutherford
scattering from bare nuclear potentials to 4/3 as described by
Lenz–Wentzel expressions for electrons experiencing a screened
Coulombic potential18,19. Second, we ensure the recovered signals
maintain a high degree of data fidelity with the initial measure-
ments by using maximum negative log-likelihood for spectro-
scopic measurements dominated by low-count Poisson
statistics20,21. In a higher count regime, this term can be
substituted with a simple least-squares error. Lastly, we utilize
channel-wise total variation (TV) regularization to enforce a sparse
gradient magnitude, which reduces noise by promoting image
smoothness while preserving sharp features22. This sparsity
constraint, popularized by the field of compressed sensing (CS),
is powerful yet minimal prior to recovering structured data23,24.
When implementing, each of these three terms can and should be
weighted by appropriately selected coefficients that balance their
contributions. All three terms are necessary for accurate recovery
(Supplementary Fig. 1).

High-SNR recovery of nanomaterial chemistry
Figure 1 demonstrates high-SNR recovery for EDX signals of
commercial cobalt sulfide (CoS) nano-catalysts for oxygen-
reduction applications—a unique class with the highest activity
among non-precious metals25. Figure 1a illustrates the model that
links the two modalities (EDX and HAADF) simultaneously
collected in the electron microscope. The low detection rate for
characteristic X-rays is due to minimal emission (e.g., over 50% for

Z > 32 and below 2% for Z < 11) and collection yield (<9%)26. For
high-resolution EDX, the low count rate yields a sparse chemical
image dominated by shot noise (Fig. 1b). However, noise in the
fused multi-modal chemical map is virtually eliminated (Fig. 1d)
and recovers chemical structure without a loss of resolution—
including the nanoparticle core and oxide shell interface. The
chemical maps produced by fused multi-modal EM quantitatively
agree with the expected stoichiometry—the specimen core
contains a relative concentration of 39 ± 1.6%, 42 ± 2.5%, and
13 ± 2.4% and exterior shell composition of 26 ± 2.8%, 11 ± 2.0%,
54 ± 1.3% for Co, S, O, respectively. The dose for this dataset was
~105 eÅ−2 and a 0.7 sr EDX detector was used; however, these
quantitative estimates remained consistent when the dose was
reduced to ~104 eÅ−2.
Fused multi-modal electron microscopy accurately recovers

chemical structure down to atomic length scales—demonstrated
here for EELS spectroscopic signals. EELS-derived chemical maps
for Co3−xMnxO4 (x= 1.49) high-performing super-capacitor nano-
particles are substantially improved by fused multi-modal electron
microscopy in Fig. 2. This composite Co–Mn oxide was designed
to achieve a synergy between cobalt oxide’s high specific
capacitance and manganese oxide’s long life cycle27,28. While
the Co3−xMnxO4 nanoparticle appears chemically homogeneous
in the HAADF projection image along the [100] direction (Fig. 2c),
core–shell distinctions are hinted at in the raw EELS maps (Fig. 2b).
Specifically, these nanoparticles contain an Mn-rich center with a
Co shell and homogeneous distribution of O. However the raw
EELS maps are excessively degraded by noise, preventing analysis
beyond the rough assessment of specimen morphology. The
multi-modal reconstructions (Fig. 2d) confirm the crystalline Co-
rich shell and map the Co/Mn interface in greater detail (Fig. 2e). In
the presence of cobalt and manganese, the HAADF image lacks
noticeable contrast from oxygen; the resulting oxygen map lacks
detail and benefits mostly from regularization.
Figure 3 exhibits fused multi-modal electron microscopy at an

atomic resolution on copper–sulfur heterostructured nanocrystals
with zinc sulfide caps with potential applications in photovoltaic
devices or battery electrodes29. The copper sulfide properties are
sensitive to the Cu–S stoichiometry and crystal structure at the
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Fig. 1 Nanoscale multi-modal chemical recovery of CoS catalysts using EDX+HAADF. a Schematic highlighting the linked HAADF and EDX
modalities collected in the microscope for every probe position. The algorithm links and correlates information between the two signals
through an optimization process that produces chemical maps with higher SNRs. b The raw EDX chemical maps for the Co, S, and O elemental
distributions. c The simultaneous HAADF micrograph of the CoS nanoparticle. d The multi-modal reconstructions for the elemental
distributions. e EDX RGB overlay of the Co, S, and O maps. Scale bar, 30 nm.
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interface between ZnS and Cu0.64S0.36. Figure 3 shows high-
resolution HAADF and EELS characterization of a heterostructure
Cu0.64S0.36–ZnS interface. Fused multi-modal electron microscopy
maps out the atomically sharp Cu0.64S0.36–ZnS interface and
reveals step edges between the two layers. The labeled points on
the RGB chemical overlay (Fig. 3d) show the chemical ratios
produced by multi-modal EM for the Cu0.64S0.36 and ZnS regions—
values which are consistent with the reported growth conditions.
Figure 3e shows the algorithm convergence for each of the three
terms in the optimization function (Eq. (1))—smooth and
asymptotic decay is an indicator of reliable reconstruction. Refer
to Supplementary Fig. 2 for an additional demonstration at the
atomic scale on an ordered manganite system.
Fused multi-modal imaging of Fe and Pt distributions from

inelastic multislice simulations (Fig. 4) provide ground truth
solutions to validate recovery at atomic resolution under multiple
scattering conditions of an on-axis ~8 nm nanoparticle. Here, we
applied Poisson noise (Fig. 4b) containing electron doses of ~109

eÅ−2, to produce chemical maps with noise levels resembling
experimental atomic-resolution EELS datasets (SNR≃ 5). We
estimated SNR improvements by measuring peak-SNR for the
noisy and recovered chemical maps30. Qualitatively, the recovered
chemical distributions (Fig. 4c) match the original images. Figure
4d illustrates the agreement of the line profiles as the atom
column positions and relative peak intensities between the
ground truth and multi-modal reconstruction are almost identical.
Simulating EELS chemical maps is computationally demanding

as every inelastic scattering event requires propagation of an
additional wavefunction31,32—scaling faster than the cube of the
number of beams, OðN3logNÞ. Inelastic transition potentials of
interest (in this case the L2,3 Fe and M4,5 Pt edges) were calculated
from density function theory (see the “Methods” section). Long
computation times (nearly 4000 core-hours) result from a large
number of outgoing scattering channels corresponding to the
many possible excitations in a sample. For this reason, there is
little precedence for inelastic image simulations. We relaxed the
runtime by utilizing the PRISM STEM-EELS approximation, achiev-
ing over a ten-fold speedup (see the “Methods” section)33. Future
work may explore the effects of smaller ADF collection angles with
increased coherence lengths and crystallographic contrast15,34, or

thicker specimens where electron channeling becomes more
concerning35,36.

Quantifying chemical concentration
Fused multi-modal electron microscopy can produce stoichiome-
trically meaningful chemical maps without specific knowledge of
inelastic cross-sections. Here, the ratio of pixel values in the
reconstructed maps quantifies elemental concentration. We
demonstrate quantifiable chemistry on experimental metal oxide
thin films with known stoichiometry: NiO37 and ZrO2. A histogram
of intensities from the recovered chemical maps is fitted with
Gaussian distributions to determine the average concentration.
The recovered pixel values highlighted in Fig. 5 followed a single
Gaussian distribution where the Zr and Ni concentrations are
centered at about 35 ± 5.8% and 50 ± 2.9%. In both cases, the
average Ni and Zr relative concentrations are approximately
equivalent to the expected ratio from the crystal stoichiometry:
33% and 50%. The CoS nanoparticle in Fig. 1 follows a bi-modal
distribution for the core and shell phases (Supplementary Fig. 5).
We found measuring stoichiometry is robust across a range of γ
values close to 1.7. In cases where γ is far off (e.g., γ= 1.0), the
quantification is systematically incorrect (Supplementary Fig. 6).
We further validate stoichiometric recovery on a synthetic

gallium oxide crystal (Fig. 5) where two overlapping Ga and O thin
films of equal thickness have a stoichiometery of Ga2O3. The
simulated HAADF signal is proportional to

P
iðx iZiÞγ where xi is

the concentration for element i and Zi is the atomic number. As
shown by the histogram, the simulated results agree strongly with
the prior knowledge and successfully recover the relative Ga
concentration. The Gaussian distribution is centered about 40 ±
0.4% when the ground truth is 40%. The inset shows
convergence plots.
We estimate a stoichiometric error of <15% for most materials

based on the relative concentration’s standard deviation (±7%)
added in quadrature with the variation of solutions (±6%).
Although the algorithm shows stable convergence, the overall
quantitative conclusions are slightly sensitive to the selection of
hyperparameters. We estimate incorrect selection of hyperpara-
meters could result in variation of roughly ±6% from the correct
prediction in stoichiometry even when the algorithm converges
(convergence shown in Supplementary Figs. 8 and 9). This error is
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Fig. 2 Atomic-scale multi-modal chemical recovery of Co3−xMnxO4 supercapacitors using EELS+HAADF. a Schematic highlighting the
linked HAADF and EELS modalities collected in the microscope at every probe position. b Raw EELS maps for the elemental distributions of
Co, Mn-L2,3 and O–K edges. c The simultaneous HAADF micrograph of the Co3−xMnxO4 nanoparticle. d The multi-modal reconstructions for
the elemental distributions. e EELS RGB overlay of the Co, S, and O maps. Scale bar, 2 nm.
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comparable to estimating chemical concentrations directly from
EELS/EDX spectral maps from the ratio of scattering cross-section
against core-loss intensity38. However, traditional approaches
require accurate knowledge of all experimental parameters (e.g.,
beam energy, specimen-thickness, collection angles) and accurate
calculation of the inelastic cross-section typically to provide errors
roughly between 5% and 10%39.

Influence of electron dose
To better understand the accuracy of fused multi-modal electron
microscopy at low doses, we performed a quantitative study of
normalized root-mean-square error (RMSE) concentrations for a

simulated 3D core–shell nanoparticle (CoS core, CoO shell). Figure
6 shows the fused multi-modal reconstruction accuracy across a
wide range of HAADF and chemical SNR. The simulated projection
images were generated by a simple linear incoherent imaging
model of the 3D chemical compositions highlighted in Fig. 6d—
here the probe’s depth of focus is much larger than the object.
Random Poisson noise corresponding to different electron dose
levels was applied to vary the SNR across each pixel.
Overall, the RMSE simulation map (Fig. 6a) shows the core–shell

nanoparticle chemical maps are accurately recovered at low doses
(HAADF SNR≳ 4 and chemical SNR≳ 2); however, they become
less accurate at extremely low doses. The RMSE map for
multimodal reconstruction shows a predictably continuous
degradation in recovery as signals diminish. The degraded and
reconstructed chemical maps for various noise levels are high-
lighted in Fig. 6b. The Co map closely mirrors the Z-contrast
observed in HAADF (not shown) simply because it is the heaviest
element present. Usually, researchers will perform spectroscopic
experiments in the top right corner of Fig. 6a (e.g., HAADF

SS
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c d
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Raw EELS Maps Multi-Modal Recon

Fig. 3 Recovering chemistry in an atomically sharp ZnS-
Cu0.64S0.36 heterointerface interface. a The raw EELS maps for the
Cu, S, and Zn L2,3 edges. b The multi-modal reconstructions for the
elemental compositions. c The simultaneous HAADF micrograph of
the ZnS–Cu0.64S0.34 interface. d Color overlay of the Zn, S, and Zn
maps. The relative concentration for the constituent elements
consists of 48 ± 5.9% for Zn, 59.9 ± 3.2% for Cu and 38 ± 2.6% for S in
the Cu0.64S0.36 layer and 48.9 ± 6% in ZnS. e Convergence plots for
the three individual components in the cost function. Scale bar,
1 nm.
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SNR > 20, chemical SNR > 3), which for this simulation, provides
accurate recovery.
In actual experiments, the ground truth is unknown and RMSE

cannot be calculated to assess fused multi-modal electron
microscopy. However, we can estimate accuracy by calculating
an average standard error of our recovered image from the
Hessian of our model (see the “Methods” section). The standard
error reflects uncertainty at each pixel in a recovered chemical
map by quantifying the neighborhood size for similar solutions
(Supplementary Fig. 10). The average standard error across all
pixels in a fused multi-modal image provides a single value metric
of the reconstruction accuracy (see the “Methods” section). Figure
6c shows that RMSE and average standard error correlate,
especially at higher doses (SNR > 10).

DISCUSSION
While this paper highlights the advantages of multi-modal
electron microscopy, the technique is not a black-box solution.
Step sizes for convergence and weights on the terms in the cost
function (Eq. (1)) must be reasonably selected. This manuscript
illustrates approaches to assess the validity of concentration
measurements using confidence estimation demonstrated across
several simulated and experimental material classes. Standard
spectroscopic pre-processing methods become ever more critical
in combination with multi-modal fusion. Improper background
subtraction of EELS spectra or overlapping characteristic X-ray
peaks that normally cause inaccurate stoichiometric quantification
also reduce the accuracy of fused multi-modal imaging.
Fused multi-modal electron microscopy offers little advantage

in recovering chemical maps for elements with insignificant
contrast in the HAADF modality. This property is limiting for
analyzing specimens with low-Z elements in the presence of
heavy elements (e.g., oxygen and lutetium). Future efforts could
resolve this challenge by incorporating an additional complemen-
tary elastic imaging mode where light elements are visible, such as
an annular bright-field (ABF)40. However, in some instances, fused
multi-modal electron microscopy may recover useful information
for under-determined chemical signals. For example, in a

Bi0.35Sr0.18Ca0.47MnO3 (BSCMO) system41, only the Ca, Mn, and O
EELS maps were obtained, yet multimodality remarkably improves
the SNR of measured maps despite missing two elements
(Supplementary Fig. 2).
Although fused multi-modal chemical mapping appears quite

robust at nanometer or sub-nanometer resolution, we found
atomic-resolution reconstructions can be challenged by spurious
atom artifacts which require attention. However, this is easily
remedied by down-sampling to frequencies below the first Bragg
peaks and analyzing a lower resolution chemical map. Alterna-
tively, recovery with minimal spurious atom artifacts is achieved
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when lower resolution reconstructions are used as an initial guess
(Supplementary Fig. 11).
In summary, we present a model-driven data fusion algorithm

that substantially improves the quality of electron microscopy
spectroscopic maps at nanometer to atomic resolutions by using
both elastic and inelastic signals. From these signals or modalities,
each atom’s chemical identity and coordination provides essential
information about the performance of nanomaterials across a wide
range of applications from clean energy, batteries, and optoelec-
tronics, among many others. In both synthetic and experimental
datasets, multi-modal electron microscopy shows quantitatively
accurate chemical maps with values that reflect stoichiometry. This
approach not only improves SNR but opens a pathway for low-
dose chemical imaging of radiation-sensitive materials. Although
demonstrated herein for common STEM detectors (HAADF, EDX,
and EELS), this approach can be extended to many other
modalities—including pixel array detectors, annular bright field,
ptychography, low-loss EELS, etc. One can imagine a future where
all scattered and emitted signals in an electron microscope are
collected and fused for maximally efficiently atomic characteriza-
tion of matter.

METHODS
Electron microscopy
Simultaneously acquired EELS and HAADF datasets were collected on a
fifth-order aberration-corrected Nion UltraSTEM microscope operated at
100 keV with a probe semi-angle of roughly 30mrad and collection semi-
angle of 80–240 and 0–60mrad for HAADF and EELS, respectively. Both
specimens were imaged at 30 pA, for a dwell time of 10ms (Fig. 3) and
15ms (Fig. 2) receiving a total dose of 3.25 × 104 and 7.39 × 104 e/Å2. The
EELS signals were obtained by integration over the core loss edges, all of
which were done after background subtraction. The background EELS
spectra were modeled using a linear combination of power laws
implemented using the open-source Cornell Spectrum Imager software6.
Simultaneously acquired EDX and HAADF datasets were collected on a

Thermo Fisher Scientific Titan Themis G2 at 200 keV with a probe semi-
angle of roughly 25mrad, HAADF collection semi-angle of 73–200mrad,
and 0.7 sr EDX solid angle. The CoS specimen was imaged at 100 pA and
40 μs dwell time for 50 frames receiving a total dose of ~2 × 105 e/Å2. The
initial chemical distributions were generated from EDX maps using
commercial Velox software that produced initial net count estimates
(however atomic percent estimates are also suitable).

Fused multi-modal recovery
Here, fused multi-modal electron microscopy is framed as an inverse
problem expressed in the following form: x̂ ¼ argmin

x�0
Ψ1ðxÞ þ λ1Ψ2ðxÞ

þλ2TVðxÞ, where x̂ is the final reconstruction, and the three terms are
described in the main manuscript (Eq. (1)). When implementing an
algorithm to solve this problem, we concatenate the multi-element
spectral variables (xi, bi) as a single vector: x; b 2 Rnxnyni , where ni
denotes the total number of reconstructed elements.
The optimization problem is solved by a combination of gradient

descent with total variation regularization. We solve this cost function by
descending along with the negative gradient directions for the first two
terms and subsequently evaluate the isotropic TV proximal operator to
denoise the chemical maps42. The gradients of the first two terms are:

∇xΨ1ðxÞ ¼ �γ diag xγ�1
� �

AT bH � Axγð Þ (2)

∇xΨ2ðxÞ ¼ 1� b� ðx þ εÞ; (3)

where⊘ denotes point-wise division. Here, the first term in the cost
function, relating the elastic and inelastic modalities, has been equivalently
re-written as Ψ1 ¼ 1

2 bH � Axγk k22, where A 2 Rnxny ´ nxnyni expresses the
summation of all elements as matrix–vector multiplication. Evaluation for
the TV proximal operator is in itself another iterative algorithm. In addition,
we impose a non-negativity constraint since negative concentrations are
unrealistic. We initialize the first iterate with the measured data (x0i ¼ bi),
an ideal starting point as it is a local minima for Ψ2.
The inverse of the Lipschitz constant (1/L) is an upper bound of the step

size that can theoretically guarantee convergence. From Lipschitz

continuity, we estimated the step size for the model term’s gradient
(∇Ψ1) as 1/L∇Ψ1 � 1= kAk1kAk1

� � ¼ 1=ni . The gradient of the Poisson
negative log-likelihood (Ψ2) is not Lipschitz continuous, so its descent
parameter cannot be pre-computed43. We heuristically determined the
regularization parameters starting with values with a similar order of
magnitude to 1=L∇Ψ1 , then iteratively reduce until the cost function
exhibits stable convergence. The regularization parameters were manually
selected, however, future work may allow automated optimization by the
L-curve method or cross-validation44.

Estimating standard error of recovered chemical maps
Using estimation theory, we can approximate the uncertainty in a
recovered chemical image for unbiased estimators with the model’s (Eq.
(1)) Hessian expressed as: HðxÞ ¼ ∇2

xΨ1ðxÞ þ ∇2
xΨ2ðxÞ, where

∇2
xΨ1ðxÞ ¼ diag γðγ � 1Þdiag xγ�2ð ÞAT bH � Axγð Þ� �

þ γ2 diag xγ�2ð ÞATAdiag ðxγ�1Þ (4)

∇2
xΨ2ðxÞ ¼ diag b� ðx þ εÞ2

� �
(5)

Calculation of standard error follows the Cramer–Rao inequality, which
provides a lower bound given by: Varðx̂jÞ � ½H�1ðx̂Þ�jj

� �
45, where Varðx̂Þ

are variance maps for the recovered chemical distributions (x̂) and
subscript jj denotes indices along with the diagonal elements. We
determined this lower bound from an empirical derivation of the Fisher
Information Matrix. From the variance, we thus extract standard error
maps: Standard Error ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðx̂Þp
as demonstrated in Supplementary Fig.

10. The average standard error denotes the mean value of all pixels in
Standard Error. Note, the TV regularizer reduces noise and may introduce
bias due to smoothing, so the standard error measurements could
potentially be lower; our Fisher information derivation provides an upper
bound on uncertainty.

Inelastic scattering simulations for atomic imaging
The inelastic scattering simulations for the FePt nanoparticle structure (Fig. 4)
were performed using the abTEM simulation code46, using the algorithm
described in ref. 33. In this algorithm, the initial STEM probe is propagated and
transmitted to some depth into the specimen using the scattering matrix
method described in the PRISM algorithm47. Next, the inelastic transition
potentials of interest (in this case the L2,3 Fe and M4,5 Pt edges) were calculated
and applied using the methods given in refs. 48,49, using the GPAW density
functional theory code50. Finally, a second scattering matrix is used to
propagate the inelastically scattered electrons through the sample and to the
plane of the EELS entrance aperture. The elastic signal channels were
calculated with the conventional PRISM method using the same parameters.
The atomic structure used in the simulations was a portion of the FePt

nanoparticle structure determined from atomic electron tomography51.
After cropping out 1/4 of nanoparticle coordinates, the boundaries were
padded by 5Å total vacuum. The STEM probe’s convergence semiangle
was set to 20mrad and the voltage to 200 kV. The multislice steps used
slice thicknesses of 2Å, the wavefunction sampling size was 0.15Å, and
the projected potentials were computed using the infinite Kirkland
parameterization52. The EELS detector had a semiangle of 30mrad, and
the STEM probe positions were Nyquist sampled at a step size of 0.31Å.
After completion, we convolved the simulated images with a 0.2Å
Gaussian to account for source size. These simulation parameters required
~4 days of calculation time using the CPU mode of abTEM on a
workstation with a 40 core Xeon processor clocked at 2.0 GHz.
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