
UC San Diego
Technical Reports

Title
The Measurement Manifesto

Permalink
https://escholarship.org/uc/item/49j8x88n

Authors
Varghese, George
Estan, Cristian

Publication Date
2003-06-04
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49j8x88n
https://escholarship.org
http://www.cdlib.org/


1

The Measurement Manifesto
George Varghese, Cristi Estan

Abstract—Useful measurement data is badly needed to help monitor and

control large networks. Current approaches to solving measurement prob-

lems often assume minimal support from routers and protocols (e.g., to-

mography) or place the entire burden on the router to support heavyweight

mechanisms (e.g., NetFlow, per-prefix counters). The thesis of this paper is

that systems approaches to such problems can yield more efficient interme-

diate solutions by considering the ultimate use of the data, understanding

implementation costs, and by distributing aspects of the solution among

routers, protocols, and tools.

We briefly show how these principles are indirectly applied in existing

proposals for new measurement primitives. We then show how these prin-

ciples can be used to derive new systems solutions to two separate problems:

measuring route stability (by modifying route computation) and measuring

traffic matrices (by implementing per-class counters that can yield traffic

matrices with much smaller memory requirements than per-prefix coun-

ters). Beyond specific techniques, we hope the principles in this position

paper can provide a focus for discussion among researchers, router ven-

dors, protocol designers, and network operators (the stakeholders in the

measurement enterprise) to yield effective solutions to measurement prob-

lems.

I. INTRODUCTION

Not everything that is counted counts, and not everything that

counts can be counted. —- Albert Einstein.

This paper deals with the problem of producing effective mea-

surements to help run large networks more effectively. We focus

on novel approaches to passive measurement [8]. Passive mea-

surement helps determine the causes of network performance

problems as opposed to active measurement [14], which pro-

vides glimpses into the effects of network problems on users.

Once causes — such as links that are unstable or have exces-

sive traffic – are identified, network operators can take action

by a variety of means. Thus measurement is crucial not just to

characterize the network but to better engineer its behavior.

There are several control mechanisms that network operators

currently have at their disposal. For example, operators can

tweak OSPF link weights and BGP policy to spread load, can

set up circuit-switched paths to avoid hot spots, and can sim-

ply buy new equipment. This paper focuses only on network

changes that address the measurement problem — i.e., changes

that make a network more observable. However, we recognize

making a network more controllable, for instance by adding

more tuning knobs, is an equally important problem we do not

address.

Unlike the telephone network, where observability and con-

trollability was built into the design, the very simplicity of the

successful Internet service model has made it difficult to ob-

serve [5]. In particular, there appears to be a great semantic dis-

tance between what users (e.g., ISPs) want to know, and what

the network provides. In this tussle [4] between user needs

and the data generated by the network, users respond by dis-

torting [4] existing network features to obtain desired data.

For example, Traceroute uses the TTL field in an admittedly

clever but distorted way, and the Path MTU discovery mech-

anism is similar. Tools like Sting [14] use TCP in even more

baroque fashion to yield end-to-end measures. Even tools that

make more conventional use of network features to populate

traffic matrices (e.g, [8], [18]) bridge the semantic gap by cor-

relating vast amounts of spatially separated data and possibly

inconsistent configuration information. All this is clever, but is

it engineering?1 Could we cut the Gordian knot of measurement

complexity by providing features directly in the network?

The problem is complicated by the attitudes of the various

stakeholders [4] in the measurement enterprise. Router vendors

traditionally avoid adding measurement features on the grounds

that it will impact forwarding performance. ISPs appear re-

signed to the status quo and the use of indirect means. Protocol

designers, while bemoaning the difficulty of deploying new pro-

tocol features, would rather design new protocols. Finally, many

network researchers privately regard passive measurement2 as a

boring exercise that could be solved by slapping down a few

counters in the right places.

And yet there are signs that change is possible. Cisco Ex-

press Forwarding [3] offers per-prefix counters, a massive step

up in utility (and, unfortunately, implementation complexity)

from SNMP counters. ISPs are putting pressure on router ven-

dors to add features. Juniper’s DCU solution [15] uses routing

protocol assistance to reduce administrative complexity in a net-

work where routes change constantly. Finally, researchers are

beginning to make imaginative proposals for new network mea-

surement primitives [5], [6], [7].

Despite these winds of change, other than the Juniper DCU

solution [15], we claim that no earlier solution represents a con-

certed effort to put all the options (i.e., new router implementa-

tion features, protocol changes, new tools) together to orches-

trate effective systems solutions to user needs. Systems solu-

tions are those that exploit the fact that a system consists of a

number of components, all of which can be modified to help

users.

Our central thesis is that sytems solutions can be used to

bridge the semantic gap inherent in network data today with

reasonable implementation cost. Further, such solutions are de-

ployable with some achievable cooperation among the stake-

holders. Failure to address the semantic gap will only cause the

situation to grow steadily worse with a continued proliferation

of ad hoc tools and a lack of coherent data that has hidden costs

in terms of reduced productivity.

To provide an analogy of a systems measurement solution that

helps users, consider the problem of a shopper wishing to cat-

egorize her monthly expenses into food, clothing, dining, etc.

Assuming all her shopping is done on her credit card, she can

tediously work through her monthly statement. On the other

1Recall the comment by hardened battle veterans on the heroic Charge of the
Light Brigade: “It is beautiful, but is it war?”
2Active measurement is another matter; finding clever ways to manipulate

an unsuspecting network to yield its secrets [12], [14] continues to fascinate
researchers



2

hand, if credit card companies had codes for standard spending

categories and merchants (or users) could enter the code when

a credit card is swiped at a shop counter, then software could

be modified to print a summary of spending by category in each

statement.3 This is a systems solution because it requires inter-

action between components such as users, merchants, and credit

card companies.

The rest of this paper is organized as follows. Section II de-

scribes three principles that we propose using for guidance in

the search for orchestrated solutions to measurement problems.

Section III reviews existing primitives and proposals in the light

of these principles. Section IV describes a preliminary skirmish,

in which the principles are used to suggest a new solution to

measuring route stability. Section V describes a more detailed

attack on the problem of measuring traffic matrices via a solu-

tion that generalizes existing approaches ranging from tomog-

raphy to per-prefix counters. Section VI summarizes the final

messages of this paper.

II. THREE SYSTEMS PRINCIPLES

The RISC revolution [13] in architecture can be partly at-

tributed to the following observations. First, architects learned

from circuit designers that decoding complex instructions re-

quired large clock cycles. Second, architects found that many

complex instructions were not used in user benchmarks. Third,

architects learned to simulate complex instructions in software,

and to move some aspects (e.g., pipeline scheduling) tradition-

ally done in hardware to the compiler. These lessons can be

abstracted into three straightforward principles:

Principle P1, Understand real implementation costs: Un-

derstand costs and hence the space of feasible implementations.4

Principle P2, Understand real user needs: Determine those

aspects of current solutions that do not match with user needs,

and can thus be potentially simplified. Modify measurement

primitives to reduce the semantic gap between user needs and

network data.

Principle P3, Leverage other aspects of the system: Rec-

ognize that a system consists of multiple components that can

cooperate to form effective solutions.

While these principles appear trite, we will attempt to show

that they have some teeth in the measurement context by ex-

amining existing proposals using the principles as a yardstick

in Section III, and then using the principles to suggest new so-

lutions to two specific problems in Section IV and Section V.

Our descent from a 30,000 feet view of the measurement world

down to ground level in Section IV and Section V will be some-

what rapid, and may disconcert the reader. Unfortunately, since

measurement is ultimately about measuring specific things, it

is difficult to appreciate the challenges or the principles without

considering specific measurement challenges. We will step back

for a broader view once again in Section VI.

3The American Express and Discover cards do this today by having merchants
enter categories (e.g., gas, grocery) but user specified codes may be more flexi-
ble.
4While the fact that RISC stripped away features to make hardware simpler

may have been technologically right twenty years ago, it is equally a mistake
to underestimate the potential of modern hardware. Thus, increasingly complex
instructions have been creeping back into even classic RISC machines like the
MIPS.

III. EXISTING AND PROPOSED SCHEMES

We review standard measurement primitives in Section III-A,

consider new research proposals in Section III-B, and consider

an imaginative (at least to our minds) and orchestrated solution

for accounting from Juniper Networks in Section III-C.

A. SNMP and Netflow

The following measurement primitives are standard. While

useful, building tools based on them is akin to writing programs

in assembly language: low-level, tedious, and error-prone.

SNMP Counters: There are a vast number of SNMP coun-

ters that routers implement, but for measuring the traffic mix on

a link the most relevant are packet and byte counters. SNMP

counters are easy to implement (P1), and are useful (P2) for

managers to determine congested links and for tomography [10].

Unfortunately, in terms of P1, SNMP does not go far enough;

today’s hardware can easily support more discriminating coun-

ters. SNMP [15] also does not support the need for operators to

efficiently obtain large amounts of data (P2) because it has high

header overhead and effectively uses a window size of 1. Also,

data is often lost because of the use of UDP [18].

NetFlow: NetFlow [11] allows managers to log flow records

keyed on TCP/IP header fields of all packets on a link. Because

of the need to write these headers to slow DRAM, earlier imple-

mentations could slow down routers considerably. NetFlow’s

implementation problems are partly addressed by Sampled Net-

Flow[1] and aggregated NetFlow. Both solutions represent an

interplay between principles P1 and P2 by recognizing first that

users can get good statistics about traffic mixes from samples,

and second that users often only want the sum of traffic for a

given 5-tuple. Many implementations of Sampled NetFlow are

still problematic, and the vast amounts of data generated can

swamp managers and tools. Despite this, network operators gen-

erally like NetFlow for its role in diagnosis. Thus while other

solutions can meet user needs more directly, NetFlow still seems

indispensable.

The approach of [8] correlates NetFlow data at various routers

to knowledge of routes. This is not only prone to errors and

incomplete data but also does not work with routers than do not

support sampled NetFlow well. We can infer this by the fact

that AT&T production network uses the tomogravity approach

in [18] and not the correlating demand approach in [8], except

as a check.

B. Research Proposals

The following research proposals in the last three years have

attempted to raise the level of abstraction of network data:

Trajectory Sampling: [5] proposes using a common hash

function to synchronize sampling of a given packet across all

routers, and a second common hash function as a digest of the

invariant packet content. The idea interplays P1 (easy to im-

plement at high speeds) and P2 (meets operator need to trace

packet routes to determine anomalous behavior such as packet

looping).

Directly Finding Heavy-hitters: [7] attempts to finesse the

need for NetFlow collection at a router by providing an al-

gorithm to directly compute (at high speeds) the flows over a



3

threshold. It leverages the fact (P2) that many existing tools that

display NetFlow data (e.g., FlowScan) display only the heavy-

hitters, and that knowing the heavy-hitters often suffices for traf-

fic engineering.

Minimizing the export of NetFlow data: [6] also leverages

off the fact that users only need heavy-hitters. They propose a

sampling technique that can sieve the amount of NetFlow data

sent to a manager while preserving any estimates of high flows,

for any definition of a flow.

However, trajectory sampling still requires great complexity

in a tool to gather and correlate labels from all routers. On the

other hand, [7] and [6] only provide local views of heavy-hitters

on one link, and do not provide the network-wide view that ISPs

need.

C. Juniper’s Destination Class Accounting

Juniper Network’s Destination Class Accounting solution

(DCU) is the only existing measurement solution we know of

which effectively combines all three principles. The problem

being addressed is that of an ISP wishing to collect traffic statis-

tics on traffic sent by a customer in order to charge the customer

differently depending on the type of traffic and the destination

of the traffic. We will use Figure 1 — that depicts a small ISP Z

— for the next three examples.

ISP Y

R3

20,000 prefixes

R1

R2

ISP X

10,000 prefixes

R5

R4

Customer A

Customer B

Customer C

I1

I2

E2

E3

E1

I3

I4

E4

E5

ISP Z boundary

I5 I6

Fig. 1. Example of an ISP with customer and peer links to other ISPsX and Y

In the figure, assume that ISP Z wishes to bill Customer A

at one rate for all traffic that exits via ISP X , and at a differ-

ent rate for all traffic that exits via ISP Y . One way to do this

would be for router R1 to keep a separate counter for each pre-

fix that represents traffic sent to that prefix. In the figure, R1

would have to keep at least 30,000 prefix counters. Not only

does this make implementation more complex (Section V-A has

a detailed discussion) but it is also unaligned with the user’s

need which will eventually aggregate the 30,000 prefixes into

2 tariff classes. Further, if routes change rapidly the prefixes

advertised by each ISP may change rapidly, requiring constant

update of this mapping by the tool.

Instead, the Juniper DCU solution [15] has two components:

1, Class counters: Each forwarding table entry has a 16 bit

class ID. Each bit in the class ID represents one of 16 classes.

Thus if a packet matches prefix P with associated class ID C,

if C has bits set in bits 3, 6, and 9, the counters corresponding

to all 3 set bits are incremented. Thus there are only 16 classes

supported but a single packet can cause multiple class counters

to be incremented. The solution aligns with Principle P1 be-

cause 16 counters per link is not much harder than one counter,

and incrementing in parallel is easily feasible if the 16 counters

are maintained on-chip in a forwarding ASIC. The solution also

aligns with Principle P2 because it cheaply supports the use of

up to 16 destination-sensitive5 counters.

2, Routing Support: To attack the problem of changing pre-

fix routes (which would result in the tool having to constantly

map each prefix into a different class), the DCU solution enlists

the help of the routing protocol (P3). The idea is that all prefixes

advertised by ISP X are given a color (which can be controlled

using a simple route policy filter), and prefixes advertised by

ISP Y are given a different color. Thus when a router scuh as

R1 gets a route advertisement for prefix P with color , it auto-

matically assigns prefix P to class . This small change in the

routing protocol (P2) greatly reduces the work of the tool.

Juniper also has other schemes [15] including counters based

on packet classifiers, and counters based on MPLS tunnels.

These are slightly more flexible than DCU accounting because

they can take into account the source address of a packet in de-

termining its class. But these other schemes do not have the

administrative scalability of DCU accounting because they lack

routing support.

IV. MEASURING ROUTE STABILITY

Having left behind existing solutions, we now turn to our first

new example of using the principles. We address the specific

problem of measuring route stability. For example, in Figure 1

imagine that the route from Customer A to Customer B usually

uses the direct path through links I1 and I3. However, if link I3

is flaky, assume that the link weights are such that the backup

path through I1, I5, I4 and I6 (Figure 2) will be used instead.

If link I3 keeps coming up and down, traffic to Customer B

(say an important web site) may be affected because of routing

instability.

R3

R1

R2

R5

R4

Customer A

Customer B

ISP X Unstable link

Customer C

ISP Y

to Customer B 
report instability 

I1

I3

I4

I6I5

Fig. 2. Using the Dijkstra Tree to compute Route Stability Information in the
ISP of Figure 1

This phenomenon could be measured indirectly by observing

link failures via say SNMP counts and then correlating with the

known physical topology, the link weights, and the protocol to

determine that say the route to Customer B will be affected by

5It can also be made sensitive to the type of service by also using the DiffServ
byte to determine the class.



4

the flaky link. However, there is a simpler and more direct way

to measure route instability with help from the routing protocol

or its implementation.

The idea is illustrated in the case of OSPF (by far the most

common IGP used by ISPs) by the Dijkstra tree rooted at router

R1 in Figure 2 for the same network as Figure 1. When new

link state packets arrive at R1 from R2 announcing the failed

link, the tree moves around to include link I5, I4, and I6. Nor-

mally, R1 is blissfully unaware of the route instability because

R1’s own next hop for CustomerB stays the same when the link

bounces. However, a trivial, incrementally deployable, change

to Dijsktra’s algorithm can notice that a node in the tree (e.g.,

R4) has changed parents (from R2 to R5). All children of a

node whose parent has changed are marked as having changed,

by passing an “instability flag” down the tree.

The route processor can now maintain summary route stabil-

ity statistics — such as the number of changes in the last day —

on a per-prefix basis. If this is considered too expensive, a man-

agement station attached to router can compute this information

if it receives all link state packets. Similar ideas can be applied

to path vector protocols like BGP by passing an instability at-

tribute with a route.

One way for a management station to receive all link state

packets, is to trick an adjacent router into believing it is a router.

In that case, no changes are needed to the OSPF computation

at regular routers. However, the route stability measurements

could be more useful if routers include summary link statistics

(e.g., traffic utilization, link errors, etc.) in link state packets.

Instead of using these statistics for dynamic routing, which has

been considered difficult to do without endangering network sta-

bility, the management station could this information to poten-

tially correlate routing problems to causes.

The final claim is that with some changes in the routing proto-

col, a simple tool can be built that can keep detailed statistics of

route instabilities and even correlate them with link parameters.

The solution is based on the need for a network-wide view of

route changes with some explanatory power (P2), the fact that

keeping track of route changes will not slow down route compu-

tation by much (P1), and the the possibility of modifying rout-

ing to add more explanatory link attributes (P3). This solution

has advantages over a tool that polls each router because net-

work changes can result in inconsistency when pasting together

a number of unsynchronized local views. 6.

V. MEASURING THE TRAFFIC MATRIX

If even half the attention to ‘rocket science traffic modeling’

were devoted to how to estimate a reasonable ingress-egress

traffic matrix, network engineers, particularly of large clouds,

would find their job substantially easier

— Dennis Ferguson, Juniper Founder, 1996 ISMA

For our second problem, consider a network (e.g, Z in

Figure 1) such as those used by ISPs like Sprint and AT&T. The

network can be modeled as a graph with links connecting router

nodes. Some of the links from a router in ISP Z go to routers

6While even LSP databases can be inconsistent across routers during periods
of instability, LSPs propagate much faster than typical poll intervals for a tool

belonging to other ISPs (E2, E3) or customers (E1, E4, E5).

Let us call such links external links. Although we have lumped

them together in Figure 1, external links directed towards the

ISP router are called input links, external links directed away

from an ISP router are called output links.

The traffic matrix of a network enumerates amount of traffic

that was sent (in some arbitrary period, say a day) between ev-

ery pair of input and output links of the network. For example,

the traffic matrix could tell managers of ISP Z in Figure 1 that

60 Mbits of traffic entered during the day from Customer A of

which 20 Mbits exited on the peering link E2 to ISP X , and 40

Mbps left on link E5 to Customer B.

Network operators find traffic matrices (over various time

scales ranging from hours to months) indispensable. They

can be used to make more optimal routing decisions (working

around suboptimal routing by changing OSPF weights or setting

up MPLS tunnels), for knowing when to set up circuit switched

paths (avoiding hot spots), for network diagnosis (understand-

ing causes of congestion), and for provisioning (knowing which

links to upgrade on a longer time scale of months).

Unfortunately, existing legacy routers only provide a single

aggregate counter (the SNMP link byte counter) of all traffic

traversing a link, which aggregates traffic sent between all pairs

of input and output links that traverse the link. Inferring the

traffic matrix from such data is problematic because there are

O(V

2

) possible traffic pairs in the matrix (where V is the num-

ber of external links) and many sparse networks may only have

sayO(V ) links (and henceO(V ) counters). Even after knowing

how traffic is routed, one has O(V ) equations for O(V 2

) vari-

ables, which makes deterministic inference (of all traffic pairs)

impossible. This dilemma has led to two very different solution

approaches.

Approach 1, Internet Tomography: This approach (see

[10], [18] for good reviews of past work) recognizes the im-

possibility of deterministic inference from SNMP counters cited

above, and instead attempts statistical inference with some prob-

ability of error. At the heart of the inference technique is some

model of the underlying traffic distribution (e.g., Gaussian, grav-

ity model) and some statistical (e.g., maximum likelihood) or

optimization technique (e.g., quadratic programming [18]7).

Early approaches based on Gaussian distributions did very

poorly [10], but a new approach based on gravity models does

much better, at least on the AT&T backbone. The great advan-

tage of tomography is that it works without retrofitting existing

routers, and is also clearly cheap to implement in routers. A

possible disadvantage of this method is the potential errors in

the method, (off by as large as 20% in [18]), its sensitivity to

routing errors (a single link failure can throw an estimate off by

50%), and its sensitivity to topology.

Approach 2, Per-prefix counters: Designers of modern

routers have considered other systems solutions to the traffic

matrix problem based on changes to router implementations and

(sometimes) changes to routing protocols (see DCU scheme de-

scribed earlier). For example, one solution that is being de-

signed into some routers built at Cisco [3] and some startups

7Some authors limit the term tomography to the use of statistical models; thus
the authors of [18] refer to their work as “tomogravity”. But this is perhaps
splitting hairs.



5

is to use per-prefix counters. Recall that prefixes are used to

aggregate route entries for many millions of Internet addresses

into say 100,000 to 150,000 prefixes at the present time.

A router has a forwarding engine for each input line card

which contains a copy of the forwarding prefix table. Supposing

each prefix P has an associated counter which is incremented

(by the number of bytes) for each packet entering the line card

that matches P . Then by pooling together the per-prefix coun-

ters kept at the routers corresponding to each input link, a tool

can reconstruct the traffic matrix. To do so, the tool must asso-

ciate prefix routes with the corresponding output links using its

knowledge of routes computed by a protocol such as OSPF. In

Figure 1, ifR1 keeps per-prefix counters on traffic entering from

link E1, it can sum the 10,000 counters corresponding to pre-

fixes advertised by ISP X to find the traffic between Customer

A and ISP X .

One advantage of this scheme is that it provides perfect traffic

matrices. A second advantage is that it can be used for differen-

tial traffic charging based on destination address as in the DCU

proposal. The two disadvantages are the implementation com-

plexity of maintaining per-prefix counters (and the lack thereof

in legacy routers), and the large amount of data that needs to be

collected and synthesized from each router to form traffic matri-

ces.

Instead, we propose a scheme that dials between these two

earlier approaches using per-class counters that aggregate multi-

ple prefix counters into per class counters. Our scheme is related

to but different from the DCU proposal [15].

To lay a foundation for our scheme, Section V-A first intro-

duces a model for the implementation complexity (P1) of a large

number of counters. Section V-B uses the principles to derive

the general scheme, and Section V-C describes five interesting

special cases, three of which yield new schemes. Section V-D

proposes using a small counter space and yet eliminating tomog-

raphy completely using sampling on the class counter space.

A. Implementation Complexity for Maintaining Counters

Routers being designed today have to work for 5-10 years.

Factoring into account growth in the prefix table, such a router

needs to support at least 500,000 and perhaps 1 million prefixes.

To avoid frequent wrap around, byte counters are generally 64

bits. To keep up with wire speeds at say 10 to 40 Gbps, counters

must be in fast (1- 5nsec cycle time) SRAM. 64 Mbits of fast

SRAM is expensive, and has other costs in terms of board (or

chip) area and power.

Besides the need for large SRAM, there is the complexity of

doing a read-modify-write cycle to this memory from the for-

warding chip to read, increment, and write back the counter.

Shah et al. [16] show how to reduce the width of the SRAM

by storing only the low order bits of each counter in SRAM but

storing all 64 bits in a cheaper DRAM backing store. However,

the implementation is still complex and requires sorting.

On the other hand, implementing a single counter (or a small

number, say 1000, of counters) is trivial. The counters can be

stored on-chip and can easily be implemented in parallel with

some other parts of the forwarding function to carry almost no

time penalty. Juniper’s DCU hardware support is an existence

proof with 16 counters.

A hidden cost when implementing a small number of coun-

ters is the cost of mapping a packet to a counter. One simple

way to do this, which we advocate, is to add to each next hop

table entry a class ID. For example with 1000 counters, a 10

bit class ID has to be added to each forwarding entry. For say

a million prefixes, this is 10 Mbits, no small part of the over-

all SRAM used. However, many next-hop entries are large (20

bytes in some implementations to store multiple adjacencies for

load balancing), and some Juniper routers already add a 16-bit

class ID. Better still is to finesse the need for a class ID by map-

ping to a class based on information (e.g., output port, see local

matrix proposal in Section V-C) already present in the forward-

ing entry.

B. General Solution using Class Counters

We apply the principles of Section II to the traffic matrix

problem.

P1, Understand costs: Section V-A shows that 100-1000

counters are almost as simple as 1 counter except for the po-

tential storage per prefix for class mapping, and even that can be

eliminated if the mapping is a trivial function of existing next-

hop information.

P2, Understand real needs: The major applications of prefix

counters seem to be in accounting (Section III-C) and populat-

ing traffic matrices. In both cases, the solution seems unaligned

with real needs. For example, prefix counters seem to be overkill

for the traffic matrix problem because there may be millions of

prefixes (120,000 today) but an ISP may have far fewer external

links.

The RocketFuel [17] data seem to indicate that the large ISPs

had between 6000 and 12,000 external links in 2002. Similarly,

an accounting application may have only have hundreds of dif-

ferent providers and much fewer tariff structures (Juniper, ob-

serving that cell phones offer at most 8 tariffs, allows 16). Thus

the final tool (for traffic matrix calculation or accounting) would

aggregate thousands of prefixes into equivalence classes any-

way. Why not have the router do this in the first place, reducing

complexity for both the router and the management tool?

P3, Leverage other system components: Mapping from

prefixes to equivalence class is not just a issue because of the

forwarding implementation, but also because of the problem of

refreshing these mappings when prefixes change. If a prefix ad-

vertised by ISP X begins to be advertised by ISP Y in Figure 1,

who should tell each router of the new mapping? Rather than

have the tool or managers do this, it is far more “administra-

tively scalable” [15] to enlist help from the routing protocol as

in the DCU proposal.

At this point, the proposed solution is obvious and has two

aspects:

1. Use Class Counters: Each prefix is mapped to a small

class ID of 8-14 bits (256 to 16,384 classes) using the forward-

ing table. When an input packet is matched to a prefix P , the

forwarding entry for P maps the packet to a class counter that

is incremented. For up to 10,000 counters, the class counters

can easily be stored in on-chip SRAM on the forwarding ASIC,

allowing the increment to internally occur in parallel with other

functions.



6

2. Enlist Routing Support: For accounting, the DCU pro-

posal (Section III-C) already suggests that routers use policy fil-

ters to color routes by tariff classes, and pass the colors using

the routing protocol. These colors can then be used to automati-

cally set class IDs at each router. For the traffic matrix, a similar

idea can be used to colorize routes based on the matrix equiva-

lence class (e.g., all prefixes arising from same external link or

network in one class).

Some of the differences between Junipers DCU proposal [15]

and ours are:

� Scalability: Our scheme is more scalable because N classes

require at most log
2

N class ID bits per prefix, and at most one

increment. Incrementing multiple counters per packet, as in the

DCU proposal, requires an N bit class ID, and a more complex

implementation that may not scale to large N . Thus it would be

feasible for us to scale to 10,000 classes, but this appears to be

harder for the DCU proposal.

� ii) Different Application: Given 10,000 external links, the

traffic matrix application motivates the need for a larger num-

ber of classes.

� iii) Different routing support: We suggest coloring routes

based on the type of traffic matrix (see Section V-C), not the

tariff class.

Subtleties: This is not a complete proposal; there are tricky

issues (e.g., OSPF load balancing) that need to be addressed,

and can be. Two issues worth noting are as follows. First, some

applications may wish to select traffic (or accounting) classes

based on QoS. This can be easily done using the DiffServ bits

(in addition to the class ID) to select a class. Second, many

papers [8] point out that the real traffic matrix is a point-to-

multipoint demand because traffic from say Customer 1 may

have multiple egress points to the same Provider. This is eas-

ily handled by aggregating all these egress points into the same

class.

Notice that our proposal scales better than the DCU proposal

by allowing only one counter to be incremented per packet. But

the accounting department of an ISP may want accounting data,

and the operations department may want traffic matrix data. A

small generalization would allow a prefix to be mapped to a su-

perclass ID which can then be parsed to yield a small number

of class IDs. For example, a 16 bit superclass ID could be par-

titioned into an 8 bit class ID for accounting, and an 8 bit class

ID for traffic matrix calculation. A received packet increments

both. Note that we have separated the degree of parallelism from

the number of counters; these two are confounded in the DCU

proposal.

Finally, class counters can be specified abstractly without ref-

erence to traffic matrices and accounting, by only requiring that

edge routers have the ability to map prefixes to superclasses, and

that routers increment a counter, per class, for every class in a

superclass. Generalizing this way can be considered “modular-

izing along a tussle boundary” [4] as in the DiffServ model.

C. Five Special Cases of Class Matrices

The mechanism above provides the traffic counts from each

input link to each destination class. By aggregating input links

(at either the router or the tool) also into classes, this method

yields the class to class traffic matrix. Let N be the number

of classes. We now consider five special cases (Figure 3 shows

three cases in a different order from the text below) of class ma-

trices. The first two are well known.

1, One class: If N = 1, we have a single SNMP counter,

which requires tomography to find the traffic matrix.

2, Prefixes: If N is the number of prefixes we get per-prefix

counters — see bottom of Figure 3. Note that the class mecha-

nism is a strict generalization of the two earlier solutions (SNMP

and per-prefix counters) which represent two extremes. The next

three are more interesting.

3, External Links: We have already referred to this idea,

shown in the middle of Figure 3. This provides the traffic to and

from external links. Links could be aggregated by provider to

handle point-to-multipoint data. RocketFuel data [17] indicates

that an N = 12; 000 sufficed in 2002 for the largest ISP, but this

number is probably growing, especially with ISPs consolidation

and mergers.

4, PoPs: A PoP is a physical location where an ISP houses

a collection of routers. Many ISPs find the PoP-to-PoP traffic

matrix to be very valuable [2] and aggregate the router-to-router

matrix to find this. This can be done directly by classes by set-

ting each PoP into a separate class. For example, in Figure 1,

R4 and R5 may be part of the same PoP, and thus E4 and E5

would be mapped to the same class. RocketFuel data [17] indi-

cates a great reduction in the number of PoPs, with N = 150

sufficing for the largest ISP.

5, Router Ports: To dial down the number of classes still

further, consider making every output port in a router a class (top

of Figure 1). This provides the local traffic matrix at a router

— i.e., the traffic between every input port and output port on

each router. For example, in Figure 1, there would be a separate

counter at R1 for the traffic from links E1 to I1, and another

for traffic from E1 to I2. Two implementation advantages that

accrue are: first, from packets to classes is now trivial and there

is no need for a class ID in each forwarding entry (output port

is effectively the class ID); second, many routers have a small

number of ports from 16 to at most 256 (Juniper T-series) and

the reduced class count implies a smaller number of counters.

The conjunction of local matrices at all routers does not pro-

vide the global traffic matrix. For example, in Figure 1, suppose

the local matrix at router R1 says that 20% of output traffic on

link E1 comes Customer A, and that 80% come from another

input port (say CustomerD, not shown). Suppose the local traf-

fic matrix at R2 says says that 20% of the output traffic on Port

22 on link I3 comes from input link I1. There is still no way

to tell whether the 20% of the traffic on I3 comes entirely from

Customer A or none of it comes from Customer A (or anything

in between).

However, local matrices provide more equations that help

constrain tomography schemes even more, and thus seems likely

to produce more accurate solutions. Although one may expect

a factor of P 2 gain in the number of equations where P is the

number of ports (e.g., this is a factor of 256 for a 16 port router),

the equations are not independent. In practice, some early ex-

periments [9] show a factor of 2 increase in the number of equa-

tions.

Despite only a two-fold gain in the number of equations, for

inference on the AT&T network, the accuracy improvement of



7

R1

Customer A

I1

I2

E1

R1

Customer A

E1

ISP X

E2

ISP Y

E3

Customer B

E4

Customer C

E5

R1

Customer A

E1

Customer B

Customer C

20,000 prefixes

10,000 prefixes

2) EXTERNAL VIEW (traffic matrix)

3) PREFIX VIEW (overkill for matrices)

1) LOCAL VIEW (local matrix)

Fig. 3. Using the class counter to produce various views that range from the
standard per-prefix view of traffic (bottom) to a local traffic matrix (top).

knowing the local matrix everywhere is roughly the same as

knowing the top 15 complete rows (e.g. by turning on NetFlow

at 15 busiest backbone routers). With no noise, simulations

show that the best-known tomographic inference scheme [18]

has an error of 11%; the error reduces to 3% using the extra

information in local matrices. With a noise level of 5% in the

SNMP link data, simulations show a relative error of 14% with-

out local matrices, and only 5% with local matrices.

For a noise level of 10%, the relative error is 18% without lo-

cal matrices and 7% with local matrices. This is perhaps surpris-

ing because the final error is less than the amount of input noise

assumed! While this was on the AT&T network, local matrices

should help tomography even more on a sparse network; if the

topology is a star, note that the local matrix gives the complete

traffic matrix! Overall, local matrices increase the accuracy of

the best known tomography schemes ([10], [18]) by a factor of

2:5 to 4.

It is worth asking whether local matrices (which can be con-

sidered to be the one-hop local view) can be pushed further to

instead compute and use the two-hop (or k-hop) local matrices.

It appears at present that the marginal gain in terms of indepen-

dent equations generated by k > 1 hop matrices is small, and

thus the knee of the tradeoff curve seems to be at k = 1.

D. Sampling Classes as an Alternative to Tomography

We have seen that current data [17] indicates that an imple-

mentation must use around 12,000 classes for the external link

matrix, 150 for the POP matrix, and even as small as 32 for the

local matrix. In Section V-A, we claimed that 100-1000 coun-

ters was easy to implement. Assuming that on-chip SRAM sizes

can scale faster [13] than the growth rate of external links, we

believe that even handling the external link matrix is feasible

using our proposal, now and in the future.

However, some implementations may wish to have a smaller

number of classes (say 32) in order to use on-chip SRAM for

other purposes. An interesting question worth answering is

whether one can infer larger matrices (e.g., external link ma-

trix) using a number of classes that is strictly smaller than the

number of rows of the desired matrix.

One approach, as in the local matrices idea above, is to com-

pute some exact numbers and use them to constrain statistical

inference in tomography. But a completely different approach

is to realize that the final output of tomography is a set of sta-

tistical traffic pair estimates based on deterministic inputs. Why

not consider turning this proposition on its head and calculate

deterministic traffic-pair estimates based on statistical inputs?

In other words, even if we have only 32 class counters and we

wish to watch say 12,000 external links in the AT&T network,

why not sample (in time) the links being watched? Thus in

any subinterval, 32 randomly selected output links are watched

faithfully by the class counter. At the next subinterval, another

32 randomly selected output links are watched.

Assume a traffic estimate is required for K subintervals (e.g.,

for estimating the hourly traffic matrix, one may wish to use

3600 one second subintervals). Suppose traffic from Customer

A to ISP Y was watched for k out of theK possible subintervals.

Then a simple estimate for the traffic of Customer A to ISP Y

can be found by scaling the sum of the traffic over the watched

intervals by the factor K=k.

The random sampling can be implemented by the route pro-

cessor by picking a class counter to replace, reading the value,

and updating the affected prefixes. This is fairly time consuming

and thus implementation constraints will require subintervals of

at least seconds to avoid burdening route processors. While

there is the usual tradeoff between the sampling rate and accu-

racy, the analysis for such class sampling seems different from

that of standard sampling (e.g., [5]). This is because the samples

are batched with a random interval between batches and not be-

tween individual samples.

Such batch sampling could cause problems with bursty dis-

tributions. For example, suppose a flow class sends traffic dur-

ing the busiest hour and nothing else for the other hours. If the

subintervals are in units of hours, then there is a strong chance

that the sampling will miss this flow’s traffic. However, this is

not true if the subintervals are in units of seconds. Thus as with

tomography there is some dependence on the input traffic model.

However, the dependence is quite different and can (hopefully)

be abstracted in terms of some simple summary property of the

distribution such as the maximum (with high probability) burst

length. One conjecture is that class sampling should do well

if the sampling subinterval is much smaller than the maximum

burst length, but this needs to be studied.



8

Further, the accuracy of class sampling can be improved us-

ing the sample-and-hold technique of [7]. This comes at the cost

of only finding the large elements in the traffic matrix, but this

appears to suffice [8] for the traffic matrix and accounting appli-

cations. The results in [7] indicate that the use of sample-and-

hold can make N counters have the accuracy of using roughly

N

2 counters and ordinary sampling. This should provide good

accuracy for even small values of N . In general, comparing the

accuracy and robustness (especially to assumptions about traf-

fic distributions) of class sampling versus tomography seems an

interesting open problem.

VI. CONCLUSIONS

We first state our specific conclusions based on the specific

new techniques we examined in this paper.

First, route stability can be measured precisely and even pos-

sibly explained by watching routing traffic, changing route com-

putation slightly, and passing attributes that may explain link be-

havior. While dynamic link attributes such as congestion level

have been eschewed by routing architects because their use in

route calculation could lead to instability, such attributes may

help tools correlate link status and the performance of routes.

Second, traffic matrices can be calculated more directly us-

ing class counters and routing support. Even using an easily

feasible number of class counters, local traffic matrices can be

used to improve the accuracy of tomogravity schemes [18], PoP

matrices can possibly be directly calculated, and link to link ma-

trices can be estimated by class sampling techniques. Per-prefix

counters [3] are overkill at least for present applications, and

will be hard to scale to million prefix tables. It is possible to

abstract the class counter mechanism into superclasses that can

be partitioned into classes, without specifying in the advance all

the applications for which they can be used. Such abstractions

preserve IP’s hourglass model, as opposed to burdening IP with

application semantics.

But the main message of this paper is broader than the two

specific examples we used to illustrate the ideas. The general

conclusions are as follows. First, we believe that there is a large

semantic gap between data provided easily by the network and

the needs of users like ISPs. This leads to either the need to trick

the network into providing data (e.g., [14]), or to collect, cor-

relate, and synthesize vast amounts of spatially separated data

(e.g., [8]). Second, we believe this semantic gap can be bridged

at reasonable implementation cost by a systems approach.

The systems approach is codified in this paper using three

principles. Any such list is necessarily incomplete, but they

can perhaps serve as a first cut. The principles essentially seek

to close the loop between user needs and implementation con-

straints, while surveying the range of possible changes that can

be done to intervening components such as routing protocols.

Fourth, we believe that besides the two examples we used in

this paper (route stability and traffic matrix calculation), there

are many other network-wide metrics whose calculation can be

reconsidered using these principles. Other examples include

link bandwidth, end-to-end error rates, and routing update de-

lays. These three examples were taken from papers on these

topics (all of which assumed the network to be a black box) in

the 2001 Internet Measurement conference. A more careful sur-

vey could probably find a larger number of such problems.

Fifth, we believe that it is possible for the stakeholders to

work together. We believe network researchers can be con-

vinced that the field of measurement is not merely a boring study

of counters, but can furnish rich and beautiful problems. We be-

lieve that ISPs are already discovering a business case for bet-

ter data collection that can lead to running their networks more

profitably. Finally, we believe that router vendors can make

changes when pressed.

Amplifying the last point, it may be argued that protocol

changes, as advocated by Principle P3, are hard to accomplish.

However, this flies against the number of protocol changes made

in the last few years (for MPLS traffic engineering, supporting

VPNs, etc.). In general, it appears that as long as there is a strong

business case for the two dominant router companies, protocol

and implementation changes can and do happen.

To establish such a business case it would clearly help for

ISPs to form a user consortium to specify measurement require-

ments. After all, router vendors already take the NEBS stan-

dards for reliability in telecommunications equipment very seri-

ously. Thus we end, somewhat tongue-in-cheek and with apolo-

gies to Karl Marx, with a final slogan:

ISPs of the world unite — you have nothing to lose but the chains

that imprison the data you need!

REFERENCES

[1] Sampled netflow. URL = http://www.cisco.com/univercd/cc/td/doc/product/
software/ios120/120newft/ 120limit/120s/120s11/12s sanf.htm.

[2] S. Bhattacharya et al. Pop-level and Access-link traffic dynamics in a Tier-
1 pop. In SIGCOMM Internet Measurement Workshop, November 2001.

[3] Cisco express forwarding commands.
http://www.cisco.com/univercd/cc/td/doc/product/software/
ios120/12supdoc/12cmdsum/12csswit/cscef.htm.

[4] D. Clark et al. Tussle in cyberspace: Defining tomorrow’s internet. In
Proceedings SIGCOMM 2002, September 2002.

[5] N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic
observation. In Proceedings ACM SIGCOMM, August 2000.

[6] N. Duffield, C. Lund, and M. Thorup. Charging from sampled network
usage. In SIGCOMM Internet Measurement Workshop, November 2001.

[7] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proceedings SIGCOMM 2002, September 2002.

[8] A. Feldmann et al. Deriving traffic demands for Operational IP networks:
Methodology and experience. In SIGCOMM 2000.

[9] left blank for anonymity Local matrix results. January 2003.
[10] A. Medina et al. Traffic matrix estimation: Existing techniques and new

directions. In Proceedings SIGCOMM 2002, September 2002.
[11] Cisco netflow. http://www.cisco.com /warp /public /732 /Tech /netflow.
[12] J. Padhye and S. Floyd. On inferring TCP behavior. In Proceedings ACM

SIGCOMM, August 2001.
[13] D. Patterson and J. Hennessy. Computer Organization and Design, page

619. Morgan Kaufmann, second edition, 1998.
[14] S. Savage. Sting: A TCP-based network measurment tool. In USENIX

Symposium on Intenet Technologies and Systems, 1999.
[15] C. Semeria and J. Gredler. Juniper networks solutions for network ac-

counting. In Juniper White Paper, 200010-001, 2001.
[16] D. Shah et al. Maintaining statistics counters in router line cards. In IEEE

Micro, Jan 2002.
[17] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies using

RocketFuel. In Proceedings SIGCOMM 2002, September 2002.
[18] Y. Zhang et al. Fast accurate computation of large-scale IP matrices from

link loads. In ACM SIGMETRICS 2003, to appear, May 2003.




