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Abstract

The quiet hum of interpersonal coordination that runs through-
out social communication and interaction shows how individu-
als can subtly influence one another’s behaviors, thoughts, and
emotions over time. While the majority of research on co-
ordination studies face-to-face interaction, recent advances in
crowdsourcing afford the opportunity to conduct large-scale,
real-time social interaction experiments. We take advantage
of these tools to explore interpersonal coordination in a “min-
imally interactive context,” distilling the richness of natural
communication into a tightly controlled setting to explore how
people become coupled in their perceptual and memory sys-
tems while performing a task together. Consistent with previ-
ous work on postural sway and gaze, we found that individuals
become coupled to one another’s cognitive processes without
needing to be co-located or fully interactive with their partner;
interestingly, although participants had no information about
their partner and no means of direct communication, we also
found hints that social forces can shape minimally interactive
contexts, similar to effects observed in face-to-face interaction.

Keywords: interpersonal coordination; human communica-
tion; online experiments; social interaction

Introduction
Research on the phenomenon of interpersonal coordination

focuses on the subtle ways in which our interactions with oth-
ers directly affect our own behaviors, feelings, and thoughts.
Interest in coordination (also known as interactive alignment,
interpersonal synchrony, mimicry, and more; see Paxton,
Dale, & Richardson, 2016) has surged over the last several
decades as a framework for understanding how contact with
others shapes our cognition and behavior, with much of it fo-
cusing on how we become more similar over time in task-
oriented or friendly contexts.

A growing perspective in this area has taken inspiration
from dynamical systems theory, conceptualizing interaction
as a complex adaptive system from which coordination arises
as an emergent phenomenon according to contextual pres-
sures (Riley, Richardson, Shockley, & Ramenzoni, 2011).
A fundamental principle of this dynamical systems perspec-
tive holds that coordination should not be static across con-
texts nor over time. Exploring new contexts and contex-
tual demands—like interpersonal conflict (Paxton & Dale,
2013), friendly competition (Tschacher, Rees, & Ramseyer,

2014), or specialized task demands (Fusaroli et al., 2012)—
change coordination dynamics has become a central part of
this perspective, laying out under what conditions coordina-
tion disappears, increases, or demonstrates complementary
rather than synchronous in-phase patterns.

There is similar interest in comparing how coordination
changes across different behavioral or cognitive systems. Un-
der the dynamical systems perspective, the unique pressures
of a context, the resulting coordination dynamics, and the im-
pact of those dynamics on the interaction may differ over
time and across settings. For example, some of the earliest
work in this subset of coordination research has found that—
during task-related interaction—individuals tend to become
more similar over time across a variety of metrics (Louwerse,
Dale, Bard, & Jeuniaux, 2012) but that specific kinds of co-
ordination can differentially help or hurt outcomes (Fusaroli
et al., 2012).

Broadly, during tasks that are neutral (Shockley, Santana,
& Fowler, 2003), cooperative (Louwerse et al., 2012), or
competitive (but not conflict-driven; e.g., competitive games,
Tschacher et al., 2014), individuals’ behavior and cognition
become more similar over time. A range of behavioral sig-
nals, both high-level (e.g., gesture; Louwerse et al., 2012)
and low-level (e.g., postural sway; Shockley et al., 2003), be-
come synchronized during interaction. This synchronization
occurs even when the interacting individuals are unable to see
one another (Shockley et al., 2003) or are separated in time
(Richardson & Dale, 2005).

The systematic testing of coordination across a variety
of interaction contexts is vital to charting its dynamical
landscape. This methodical exploration of different factors
will eventually enable us to identify control parameters and
key factors of initial conditions that shape how coordina-
tion emerges and how it impacts interaction outcomes. Do-
ing so, however, requires an expanded view of experimen-
tal paradigms: Even as we continue to embrace more com-
plex naturalistic interactions (e.g., Paxton & Dale, 2013;
Tschacher et al., 2014), to fully map the interaction space we
must also develop experimental methods for analyzing “mini-
mally interactive contexts” (Hale, Pan, & Hamilton, 2015)—
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that is, situations in which our interactions with others are
limited in behavioral channel, scope, or time.

Online experiment platforms and crowdsourcing can be
powerful tools for creating both fully interactive and mini-
mally interactive paradigms. By connecting people digitally,
researchers can fully control the experimental experience—
deciding how much social information partners will have
about one another, establishing which communication chan-
nels can be used, and potentially crafting interactive stud-
ies for groups beyond the dyad. Crowdsourcing platforms
such as Amazon Mechanical Turk (http://www.mturk.
com) have been extensively used as a means to collect data
on individuals (Buhrmester, Kwang, & Gosling, 2011). How-
ever, by developing real-time interactive paradigms for these
platforms, researchers interested in social behavior can study
experimentally situated social processes beyond the lab with-
out compromising the richness and complexity of true inter-
active contexts.

Does Coordination Emerge in Extraordinarily
Minimally Interactive Contexts?

Here, we build on previous findings that people become co-
ordinated across behavioral channels even when they have
very little access to each other. Previous work has tended
to preserve elements of more typical human interaction—like
speech and language—to examine how restricting interaction
can influence coordination in other behavioral channels (e.g.,
gaze coordination or postural sway entrainment; Richardson
& Dale, 2005; Shockley et al., 2003). However, understand-
ing the emergence and role of coordination requires us to con-
tinue to manipulate social settings, carving out the limits of
coordination to identify the processes and constraints that cre-
ate it.

To do so, we focus on task performance within a mini-
mally interactive context through a real-time cooperative on-
line experiment—a nominal game that asks players to cor-
rectly perceive and remember the length of a line while un-
der cognitive load. Specifically, the current study focuses on
understanding how interacting individuals become entrained
in perception and memory over time, becoming a “line esti-
mation system” (cf. Dale, Richardson, & Kirkham, 2011).
This allows us to continue mapping the course of coordina-
tion across cognitive and behavioral systems: Building on a
robust tradition on transactional memory and collective cog-
nitive systems (e.g., Tollefsen, Dale, & Paxton, 2013), we
explicitly test whether low-level perception and memory pro-
cesses become more similar through contact with others.

We approach the current study with three main research
questions. First, we ask whether people become more cou-
pled in their perceptual and memory systems over time, de-
spite limited perceptual and social information about their
partner. Next, we investigate whether any observed coordi-
nation effects could simply be an artifact of the joint learning
context. Finally, we look to whether any social factors (such
as rapport and affect, which play vital roles in face-to-face in-

teraction; e.g., Tschacher et al., 2014) might influence these
dynamics, despite the minimal context. We are interested to
explore whether some social influences surface as emergent
effects even though the game does not facilitate any explicit
social behaviors.

Method
All research activities were completed in compliance with
oversight from the Committee for the Protection of Human
Subjects at the University of California, Berkeley.

Participants
Participants (n = 148) were individually recruited from Ama-
zon Mechanical Turk to participate as dyads (n = 74). Partici-
pants were paired in the order they arrived to experiment. All
participants were over 18 years of age and were fluent En-
glish speakers (self-reported); recruitment was restricted to
participants within the U.S. with a 95% approval rate.1

The experiment lasted an average of 11.69 minutes (range:
7.98—21.34 minutes). All participants were paid $1.33 as
base pay for finishing the experiment and earned a bonus of
up to $2 for the entire experiment based on their own mean
accuracy over all trials (mean = $1.80; range: $0.00—$1.95).
Participants were not aware of the value of their earned bonus
until after completing the experiment.

Procedure
Data collection was run on Amazon Mechanical Turk (http:
//mturk.com) using the experiment platform Dallinger
(v3.4.1; http://github.com/dallinger/Dallinger).
Code for the experiment is available on GitHub (http://
github.com/thomasmorgan/joint-estimation-game).

Each participant was individually recruited on Amazon
Mechanical Turk to play a “Line Estimation Memory Game”
(advertisement: “Test your memory skills!”; see Fig. 1 for
experiment flow). Upon completing informed consent, par-
ticipants were told (1) that they would be playing a game in
which they would be required to remember and recreate line
lengths; (2) that they would first complete their training trials
individually and would then play with a partner; and (3) that
they would receive a bonus based on their own accuracy on
the final guess of each test trial. Participants were given no
information about their partner other than being able to see
the guess that their partner made during test trials.

On each trial (i.e., each new stimulus set), participants were
shown 3 red lines, each of a different length, and were asked
to remember their lengths.2 The three lines were left-aligned
within a 500x25px box and were displayed for 2 s, followed
by a blank screen for 0.5 s. Participants were then provided
with an empty 500x25px box and given 1 s to recreate the

1Approval rate is a measure of MTurk worker quality, capturing
how often their work is rejected by a requester. A 95% approval rate
means that only 5% of all of their submitted work has been rejected.

2In a pilot study, participants performed at ceiling when given
only 1 line to remember and recreate. Two more lines were added to
increase the memory load.
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Figure 1: Experiment flow

length of the target line (#1, #2, or #3). Participants made
decisions by positioning their cursor over the box at their es-
timate of the rightmost extremity of the line and clicking.

During training, participants were given feedback in the
form of the true length of the target line (as a grey bar above
their own guess) for 2 s. This was accompanied by a message
telling the participant that they had guessed correctly (i.e.,
within 4px of the true line length; “Your guess was correct!”)
or incorrectly (“Your guess was incorrect”) or that they had
not submitted a guess within the 1-s time limit (“You didn’t
respond in time”).

During testing, participants no longer received feedback
their accuracy. Instead, after both participants had submitted
their first guess, they were shown their guess placed above
their partner’s guess (see Fig. 1) and were asked whether
they wanted to change their own guess. Each participant
could individually change their own guess (again with a 1-s
time limit) while seeing their partner’s previous guess; partic-
ipants were not informed of their partner’s decision (to keep
or change their guess) until after both participants had an-
swered (and, if needed, changed their guess). Each trial ended
when both participants were satisfied with their guess.

Participants were informed that their final accuracy bonus
would only be calculated using their final guess. However,
because they had no means to communicate with their part-
ner about whether each would be accepting or changing their
guesses, each participant could not have known whether their
decision to keep the guess would have been their final guess
for the trial. As a result, our statistical models use all guesses,
not just final guesses (see next section for more detail).

All dyads completed 10 training trials (alone) and 15
test trials (with their partner). All training and test stimuli
were randomly generated for each dyad, but both participants
within the dyad were given the same stimuli. Stimuli were

drawn from a uniform distribution between 1% and 100%
(inclusive) of the total possible line length; this could have,
by chance, resulted in some relatively easier stimulus sets
for some dyads, which should be mitigated by our sample
size. After participating, each participant completed a series
of questionnaires about the game on a series of 1-10 Likert-
style scales, including the perceived difficulty of the task, how
engaged they were in the task, and questions about their own
and their partner’s cooperativeness and trustworthiness.

Measures and Model Specifications

For clarity, we present the measures and model specifica-
tions together. Each measure used in one of our three models
model is defined and written in bold the first time it is pre-
sented in this section.

Model 1 Specifications: Do Partners’ Perception and
Memory Couple in Minimally Interacting Contexts?
Our first model tested our hypothesis that individuals’ ratings
would became more similar over time. To do that, we first cal-
culated each participant’s error for each guess of each trial.
Error was measured as a ratio relative to the total possible er-
ror on a given target stimulus trial. That is, rather than taking
a given guess’s error relative to the total line length, error was
calculated as the maximum possible error. For example, if
the target stimulus was 60 units long, participants could ei-
ther under-estimate the line length by 60 or over-estimate it
by 40. As such, the maximum possible error for that trial
would be 60, and the participant’s error would be calculated
relative to that maximum possible error. We chose to use nor-
malized error—rather than absolute error—as a measure of
performance that natively controlled for the “possible wrong-
ness” associated with any given line.

We then quantified perceptual and memory coordination
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(or how similar participants’ perceptual and memory systems
became over time) as the cross-correlation coefficient of par-
ticipants’ error. Cross-correlation—a common measure of
coordination (Paxton & Dale, 2013)—was calculated using
all guesses across all trials within a window of +/-5 guesses.
Although cross-correlation produces information about lead-
ing and following behavior, we have no a priori expecta-
tions about which of the two participants would emerge as
a leader (given they have no information about their partner
nor any assigned roles). Our first-pass analyses therefore ig-
nore any directionality by incorporating absolute lag, aver-
aging across the correlation value for each absolute lag (i.e.,
leading/following in both participants’ directions).

To provide a baseline measure of training improvement,
we calculated the slope of each participant’s normalized error
over all training trials. To account for individual differences
in self-assessed task difficulty, we used ordinal ratings of dif-
ficulty that each participant gave after the task.

Our first model was a linear mixed-effects model predict-
ing coordination of normalized error with absolute lag and
training improvement as fixed effects, using dyad and diffi-
culty ratings as random effects.

Model 2 Specifications: Can We Identify Signatures of
Learning and Coordinative Processes? During the exper-
iment, both participants are not simply influencing one an-
other (as tested in Model 1)—but are also simultaneously
learning to play the game. To ensure any similarity found by
Model 1 would not be simply an artifact of both participants
improving individually, we tested the relation between partic-
ipants’ (1) adaptation to their partner’s perceptual estimation
and memory and (2) own performance changed over time. If
participants were adapting along both avenues, we could find
evidence of these dual processes through differences in their
rates of adaptation over time.

To do this, we used the normalized error values (described
above) to derive two measures. To answer the latter point,
we used each participant’s normalized error for each guess in
each trial as their true error—in other words, how much the
participant differed from the stimulus. To answer the former,
we calculated the absolute difference between both partici-
pant’s true error to obtain the partner error for each guess

in each trial—or how much the participant’s guess different
from their partner’s.

Because we are interested in understanding this process dy-
namically, we captured participants’ progress over time by
creating a cumulative guess counter, serving as a form of
abstracted time spent engaging with one another and the ex-
periment. While the measure of coordination in Model 1 pre-
sented a time-abstracted measure of coordination across the
entire experiment, this model provides a snapshot of coordi-
nation in real time, measuring the learning and coordinative
processes from guess to guess.

For Model 2, we built a linear mixed-effects model pre-
dicting the cumulative guess counter with each participant’s
true error, partner error, the interaction term between the two,

and training improvement (described above) as fixed effects.
We also included random effects for participant and difficulty.
(We did not include dyad as a random effect in this model be-
cause the variance in the guesses occurred at the participant
level.)

Model 3 Specifications: Do Social Factors Impact Coor-
dination in Minimally Interacting Contexts? To explore
the role that social judgements can play even in minimally
interactive contexts, our final model considered how trust
might impact coordination. For this model, we captured a
third measure of coordination: the participant’s willingness
to change their guess, which was captured by the total num-
ber of guesses that each participant submitted in each trial.

Because participants individually chose whether to keep
their previous guess or submit a new one while being able
to see their partner’s guess, we could expect that participants
who trust their partner more would be more likely to change
their guess—especially if there were large absolute differ-
ences between the partner’s first guesses. Trust was mea-
sured as each participant’s self-reported Likert-style rating
of their trust in their partner (“How much do you feel you
trusted your partner’s opinion during the experiment?”).

Model 3 was a linear-mixed effects model predicting the
total number of guesses in a trial with fixed effects for their
trust in their partner and for the difference in participants’ first
guess on that trial, while controlling for trial number and how
much they improved during their own training. Model 3 also
included participant and difficulty as random effects.

Model Implementation

All models were built as linear mixed-effects models in R (R
Core Team, 2016) with the lme4 package (Bates, Machler,
Bolker, & Walker, 2015), using the maximal random slope
structure for each random intercept to achieve model conver-
gence (Barr, Levy, Scheepers, & Tily, 2013). All main and
interaction terms were centered and standardized prior to en-
try in the model, allowing the model estimates to be inter-
pretable as effect sizes (Keith, 2005). While we do not have
space in the current paper to provide precise model specifica-
tions, we have made our code (http://www.github.com/
a-paxton/perception-memory-coordination) and data
(https://osf.io/8fu7x/) fully and freely available for
others.

Results

Model 1 Results: Coordinated Error over Time

As predicted, we found that dyads were significantly and
strongly coupled in their error ratings (b=-0.43, p<0.0001),
with no effect of training improvement (b=-0.06, p=0.36). In
other words, players were more likely to produce lines with
similar errors at the same time, even across repeated guesses
within a single trial, regardless of how well-adapted they were
to the task during training.
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Model 2 Results: Learning and Coordination

We found that participants’ rates of adaptation to their part-
ner significantly differed from their rates of adaptation to the
game (b=-0.06, p<0.008; see Fig. 2). In other words, this
model revealed signatures of simultaneous learning and coor-
dinative processes during the game: Players became attuned
to the learning task while coordinating with one another’s
cognitive processes.

Aside from the main effect of partner adaptation, no other
predictors reached statistical significance (all ps>0.25).
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Figure 2: Difference over time in coordinative and learning
processes, or the change in guess deviation from truth (in
blue) and from their partner’s guess (in red) over the game.

Model 3 Results: Social Signals in Minimal Contexts

We found that greater trust in their partner predicted a small
but statistically significant increase in the number of itera-
tions of guesses within a trial (b=0.07, p<0.042), although
we found no difference in the number of guesses based solely
on the difference between the partners’ first guesses (b=0.01,
p=0.65). Ratings of partner trust were normally distributed
around a mean of 5.96 (SD: 2.24; range: 1–10). In other
words, although Models 1 and 2 showed participants improv-
ing and becoming more similar across trials, participants were
more willing to concede that their partner’s guess was correct
when the participant trusted their partner—regardless of how
similar or different the two partners’ first guesses were on that
trial.

Interestingly, we found that participants took more guesses
on test trials when they improved more in their training trials
(b=0.05, p<0.028). Assuming that those with the greatest
training improvement were the most poorly performing initial
players, this suggested that poorer-performing players were
more likely to divide the cognitive labor of the task and follow
the lead of their higher-performing partner.

We also saw an effect of trial (b=-0.05, p<0.02), indicat-
ing that people changed their guesses fewer times per trial as
the game progressed. This could be an effect of learning (i.e.,
because both participants improved and became more simi-
lar from trial to trial), experiment fatigue (e.g., if participants
simply wanted to end the game more quickly), or some com-
bination of the two.

Discussion
Inspired by established lines of research on interpersonal co-
ordination, we explored how minimally interactive contexts
can shape the emergence of interpersonal dynamics. Using
an online experiment that provided participants with only one
channel of information about one another—their estimates—
we found evidence of coordination of cognitive systems de-
spite minimal social information and context.

As expected, we found low-level perceptual and memory
coordination between players throughout the game. Congru-
ent with findings about postural sway (Shockley et al., 2003)
and gaze (Richardson & Dale, 2005), the present work sug-
gests that some behavioral and cognitive processes can be-
come coordinated even when separated in time and space,
given some access to the relevant process in another person
and a task-based interactive context to which that process is
essential. Individual learning and performance were unable
to fully account for the players’ similarity to one another.

Finally, like other work on coordination, we found that co-
ordination was shaped by subtle social judgements. Within
coordination research, rapport has long been upheld as one
of the important predictors of coordination (Hove & Risen,
2009). Similarly, we found that players’ decisions to change
their guesses were influenced by their self-reported ratings of
their partner’s trustworthiness.

While a relatively simple paradigm, the present work con-
tributes to the theoretical landscape of interpersonal coordi-
nation research in several ways. First, we continued to ex-
pand investigations of minimally interactive contexts, an un-
derexplored avenue in an area that often relies on fully inter-
active paradigms; the present work extends our understand-
ing of coordination by demonstrating that interacting individ-
uals coordinate even when they have only a single channel
of task-relevant sensory information available to them. Sec-
ond, we explored the degree to which even low-level proper-
ties of memory and perception become entrained, despite this
minimal information—explicitly probing questions of mem-
ory systems posed by transactive memory (Tollefsen et al.,
2013). Finally, we applied questions of social impacts on co-
ordination into lower-level behavioral and perceptual chan-
nels. Taken together, the present study found support for hy-
potheses that are natural but necessary extensions of a host of
related previous work, providing explicit tests for ideas that
are often implicitly accepted by coordination researchers.

Our findings contribute to the ongoing efforts to understand
the form, function, and emergence of coordination. We were
specifically interested in pursuing three important questions

856



around interpersonal coordination of perception and mem-
ory: whether it emerges during minimally interactive con-
texts, whether it can be distinguished from other contempo-
raneous behavioral and cognitive processes, and whether it is
influenced by subtle social judgements. In addition to these
theoretical contributions, we also hope to have provided an
example of the utility of crowdsourcing platforms to investi-
gate core principles of interpersonal coordination and human
interaction at a larger scale without relinquishing experimen-
tal control.

Future Directions
Some of the questions left open by the present study may
provide interesting avenues for future work, both for better
understanding some of the effects identified here and for ex-
tending them into novel territory.

First, we explored trustworthiness as a social construct dur-
ing a task that allowed only minimal participation between
participants. The trustworthiness measure was intentionally
posed broadly, providing a signal of the latent social infor-
mation that participants constructed when only their partner’s
task-related behavior was available to them. While we see
their responses as a signal of very subtle social forces, we
readily recognize that these ratings of trustworthiness may
have been influenced by the individual’s own confidence or
ability—as many social judgements are often influenced by
the assessor’s own characteristics. Future work should ex-
pand on this to explore the interplay between individual and
interpersonal assessments and should delve more deeply into
understanding what might dynamics might be influencing
these minimal social judgements.

Second, given the broad participant pools available through
crowdsourcing, this work could be expanded to examine
other important questions of scale in interpersonal coordi-
nation. The majority of research on interpersonal coordi-
nation has tended to focus on dyadic interaction, as we did
here, but many real-world social settings include more than
two people—settings which comprehensive theories of co-
ordination must also capture. Crowdsourcing and real-time
social experiments enable researchers to control the interac-
tion space much more tightly, enabling the targeted focus on
specific processes across a massive potential participant pop-
ulation.
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