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Abstract There is much interest in the use of mesenchymal
stem cells/marrow stromal cells (MSC) to treat neurode-
generative disorders, in particular those that are fatal and
difficult to treat, such as Huntington’s disease. MSC present
a promising tool for cell therapy and are currently being
tested in FDA-approved phase I–III clinical trials for many
disorders. In preclinical studies of neurodegenerative dis-
orders, MSC have demonstrated efficacy, when used as
delivery vehicles for neural growth factors. A number of
investigators have examined the potential benefits of innate
MSC-secreted trophic support and augmented growth
factors to support injured neurons. These include over-
expression of brain-derived neurotrophic factor and glial-
derived neurotrophic factor, using genetically engineered
MSC as a vehicle to deliver the cytokines directly into the
microenvironment. Proposed regenerative approaches to

neurological diseases using MSC include cell therapies in
which cells are delivered via intracerebral or intrathecal
injection. Upon transplantation, MSC in the brain promote
endogenous neuronal growth, encourage synaptic connec-
tion from damaged neurons, decrease apoptosis, reduce
levels of free radicals, and regulate inflammation. These
abilities are primarily modulated through paracrine actions.
Clinical trials for MSC injection into the central nervous
system to treat amyotrophic lateral sclerosis, traumatic
brain injury, and stroke are currently ongoing. The current
data in support of applying MSC-based cellular therapies to
the treatment of Huntington’s disease is discussed.
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HGF Hepatocyte growth factor
hESC Human embryonic stem cells
HSCT Hematopoietic stem cell transplantation
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IGF-1 Insulin-like growth factor-I
MSC Mesenchymal stem cells
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siRNA Small interfering ribonucleic acid
SOP Standard operating procedure
SVZ Subventricular zone
TBI Traumatic brain Injury
QA Quinolinic acid
QA/QC Quality assurance/quality control
VEGF Vascular endothelial growth factor

Introduction

Human mesenchymal stem cells are known to secrete a
variety of cytokines and growth factors that have both
paracrine and autocrine activities for damaged tissues,
including the brain (reviewed in [1]). The mechanism of
action of adult MSC obtained from bone marrow or adipose
tissue is based on the innate functions of these stem cells:
the injected cells home to the injured area, in particular to
hypoxic, apoptotic, or inflamed areas, and release trophic
factors that hasten endogenous repair. These secreted
bioactive products can suppress local inflammation,
enhance angiogenesis, reduce levels of free radicals,
inhibit fibrosis and apoptosis, and stimulate recruitment,
retention, proliferation, and differentiation of tissue-residing
stem cells (reviewed in [2]). These paracrine effects are
distinct from the classical model of direct differentiation of
stem cells into the tissue to be regenerated.

MSC are ideally suited for cellular therapy due to their
ease of isolation, manipulation, and safety. They can be
expanded from normal qualified human donors in large
quantities and can be infused without tissue matching, since
they shield themselves from the immune system [3]. The
ability to be transplanted without tissue matching has
allowed large multicenter trials to be conducted with direct
comparison of the same batches of MSC across hundreds of
patients, without adverse events or rejection reactions [4,
5]. Due to the promise of MSC in cellular therapies, a
variety of studies have focused initially not only on their
characterization but also on their utility in treatment of
several diseases in animal models. MSC contributed
significantly to the recovery of tissues in models of
myocardial infarction [6], stroke [7, 8], meniscus injury
[9], and limb ischemia [10]. However, the number of
engrafted MSC was consistently low in the damaged tissue,
suggesting that their efficacy relies upon actions other than
direct differentiation. Kinnaird et al. [11] demonstrated that
MSC-conditioned media stimulated endothelial cell prolifer-
ation and migration in vitro, and the injection of MSC-
conditioned media into mice that had undergone hind limb
ischemia was sufficient to mediate regeneration of the blood
flow in the injured limb. Similar results have been shown with
a cardiac infarction model [12], and the secretion of multiple
angiogenic cytokines from MSC has been demonstrated.

Hepatocyte growth factor (HGF), fibroblast growth factor-2
(FGF-2), insulin-like growth factor-1 (IGF-1), and vascular
endothelial growth factor (VEGF) have all been detected in
MSC-conditioned medium. The increasing body of evidence
points toward the theory that a complex set of trophic factors
secreted by MSC significantly contributes to injury repair in
vivo, through stimulating angiogenesis, reducing oxidative
stress, and decreasing apoptosis.

MSC have been found to produce improvements in
disease models even though a limited number of the cells
could be demonstrated to be stably engrafted. A mystery
that remains in the MSC field is that, while MSC persist
long-term in the tissues of non-injured or chronically
damaged mice, in cases of acute injury or inflammation,
MSC respond to the injury robustly, but only transiently
and do not become an enduring part of the repaired tissue
or vasculature to any significant degree. We have studied
this disparity in immune deficient mice that cannot reject
the human cells, so the disappearance of MSC is indepen-
dent of an immune rejection. One month post-infusion
MSC are often virtually undetectable at the area of acute
tissue damage [13–15]. The same phenomenon has been
observed in large animal models. In contrast, when
labeled MSC, cultured in the same way, are infused
intravenously into immune deficient mice that have low-
level systemic damage from irradiation, a chronic disease,
or no damage at all, the cells migrate through all tissues
and persist in a relatively evenly dispersed and long-
lasting manner [16, 17]. We have recovered human MSC
from numerous organs of the mice at time points from 1 to
18 months post-transplantation in those cases [16–20],
whereas in the acute injury setting, they are only transiently
recovered.

In our previous studies, hypoxic preconditioning was
found to enhance MSC efficacy in a severely hypoxic tissue
ischemia model, perhaps by priming MSC to respond to the
low oxygen environment [14]. We are currently using the
hypoxic preconditioning method to prepare MSC for
injection into the striatum in murine models of HD. Further
studies must be done to better understand the duration of
the residence of infused MSC in tissues, including the
brain, and the mechanisms that recruit and retain them in
chronic vs. acute tissue damage environments. This
knowledge will allow the most effective use of MSC-
based cellular therapies.

MSC in Neural Repair—Overview

There is currently much interest in the use of MSC to treat
neurodegenerative diseases. In particular degenerative dis-
eases like Huntington’s disease that are fatal and difficult to
treat, MSC may prove therapeutic by providing neuro-
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trophic factors to encourage repair and potentially new
growth of neurons from endogenous neural progenitor cells.
Proposed regenerative approaches include delivery via intra-
cerebral or intrathecal injection or even infusion via an intra-
nasal route [21]. Therapies will capitalize upon the innate
trophic support from MSC or on additional augmented
growth factor support. Genetically engineered MSC can
serve as the vehicle to deliver brain-derived neuro-
trophic factor (BDNF) or glial-derived neurotrophic
factor (GDNF) into the brain to support injured neurons,
as reviewed in this report.

Upon transplantation, MSC in the brain promote
endogenous neuronal growth, decrease apoptosis, and regu-
late inflammation through the use of secreted factors.
Rossignol et al. [22] demonstrated that after xenotransplanta-
tion of human MSC into rat brain, there were higher levels of
messenger RNAs (mRNAs) for the anti-inflammatory
molecules IL-6 and TGF-β1 than for the pro-inflammatory
cytokines IL-8 and IL-12. MSC can mediate modification of
the damaged tissue microenvironment to enhance endoge-
nous neural regeneration and protection. MSC transplanted
at sites of nerve injury have been shown to promote
functional recovery by producing trophic factors that induce
survival and regeneration of host neurons [23]. Transplanta-
tion of human bone marrow stem cells into the brains of
immunodeficient mice markedly increased the proliferation
of endogenous neural stem cells [24]. In an experimental
allergic encephalomyelitis model of multiple sclerosis,
rodents that received an intraventricular infusion of MSC
were found to have almost twice the number of axons as
control animals [25]. Busch et al. [26] demonstrated that
human multipotent adult progenitor cells, a precursor of
MSC, prevented axonal dieback and significantly enhanced
neurite growth into the lesion core after a spinal cord injury.
Although candidate molecules are under investigation,
further detailed studies are needed to carefully define the
factors responsible for the MSC-mediated induction of
proliferation and enhancement of axonal extension and
synaptic connection in resident neural stem cells, in order
to best capitalize upon this type of therapy for the repair of
neurodegenerative diseases.

Several groups have shown that intraparenchymal
delivery of human MSC is safe and can delay loss of
motor neurons in rodents. Vercelli et al. [27] transplanted
human MSC directly into the lumbar spinal cords of SOD1
ALS mice. The MSC migrated throughout the spinal cord
and delayed loss of motor neurons, prolonging motor
performance. Another study compared the efficacy of
transplanting olfactory ensheathing cells (OEC) and rat
MSC intrathecally through the fourth ventricle in the spinal
cord. The OEC distributed widely, but significant
changes in clinical outcomes were observed only with
addition of MSC transplantation when female ALS mice

showed statistically longer lifespans than males and
control mice [28].

Numerous clinical trials have demonstrated the low risk
of systemic infusion of allogeneic MSC into patients with
various diseases. Biosafety monitoring of MSC infusion has
been performed throughout these trials, with no serious
adverse events reported. For direct infusion of MSC into
the brain or spinal cord, the biosafety aspects should be
monitored extremely carefully. Possible risks include the
development of cytogenetic abnormalities in cultured cells
or ectopic differentiation to other tissue lineages. The
development of cytogenetic abnormalities when MSC were
cultured past the crisis point has been reported in rodent
MSC [29]. In our lab, we have found that, in general,
rodent MSC cultures are frequently contaminated with
hematopoietic elements and do not well reflect human MSC
biology. There has been only one report of a karyotypic
abnormality happening in human MSC that were cultured
in conditions that would never be allowed in a good
manufacturing practice (GMP) or good laboratory practice
(GLP) setting [30]. It was later found that the tumor arose
due to cross-contamination of MSC cultures with fibrosar-
coma and glioma cells [31]. When human MSC are
cultured under GLP/GMP conditions, with appropriate
release criteria, adverse events have not been observed
throughout the field, both in vivo and in numerous human
clinical trials [1, 2, 32–38]. We have published a decade-
long biosafety study on the clinical biosafety profile of
genetically engineered MSC [18].

A potential risk for infusion of MSC into the spinal cord
or brain is that they have potent revascularization capacity
and will home to the hypoxic region around a tumor bed
[39, 40]. This tropism for the tumor or wound bed could
result in enhanced revascularization and survival of a
growing tumor. Therefore, in proposed cellular therapy
trials, an important exclusion criterion is the lack of prior
brain tumors or other cancers in the past 5 years. Magnetic
resonance imaging (MRI) or other functional imaging
modalities should be done prior to treatment in HD trials
to establish the baseline striatal volume [41, 42] and would
be also used to rule out existing brain tumors.

Several groups have reported that MSC can be induced
to express neural markers in vitro, in particular after co-
cultivation with human or murine neurons or conditioned
medium. However, although mature neurons with functional
activity can be generated in culture from neural stem cells
(NSC) [43, 44], it has not been shown conclusively that
mature neurons with signaling capacity can be generated
from MSC [45]. While attractive in theory, MSC do not
appear to be a viable alternative to NSC as a neural
tissue replacement strategy. It has been reported that
undifferentiated MSC often express a number of
proteins used as markers of neural differentiation [46].
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Additionally, MSC can assimilate proteins and pieces of
membrane from other cells, requiring more definitive
proof of “trans-differentiation” of MSC to neurons,
particularly in co-cultures and in vivo where MSC have
extensive contact with neural tissue. Recent studies have
shown that RNA species and proteins can be passed from
mammalian donor cell to target cell, through gap junc-
tions, exosomes, virtosomes, or tunneling nanotubules
[47–49]. RNA interference (RNAi) molecules were found
to be secreted in microvesicles, which later fused with
other cell [50–53]. Ratajczak et al. [54] described
horizontal transfer of mRNA from cell to cell through
embryonic stem cell-derived microvesicles. Virtosomes
were recently described to be complexes of RNA–
lipoprotein, which can readily enter other cells where they
can modify the biology of the recipient cells [47].
Tunneling nanotubes have also been described for trans-
ferring RNA species and organelles between cells [48].
Our group is currently exploring an MSC-based platform
for producing and delivering RNAi moieties targeted to
the huntingtin mRNA as a potential therapeutic avenue for
treating HD [55]. We chose to explore human MSC, which
we and others have previously shown to be excellent in
vivo delivery vehicles for enzymes and proteins, as the
cell type to produce and convey RNAi [2, 17]. Transfer of
organelles as large as mitochondria from MSC to damaged
cells has also been described [56]. Therefore, reports of
MSC trans-differentiating to neural phenotypes, particu-
larly after co-cultivation with neurons, must be cautiously
interpreted. However, the ability of MSC to migrate to
areas of damage in the brain and to secrete neurorestor-
ative factors is significant and could be harnessed to treat
neurodegenerative disease.

Expression of Neuroregulatory Factors by MSC

Understanding the innate capacity of MSC to influence
neural cell growth, survival, and neurite extension is
currently a very important field of study. Detailed determi-
nation of which factors MSC express, under which
conditions, is key. Crigler et al. [23] demonstrated that
specific subpopulations of human MSC expressed BDNF
and beta-NGF, but not neurotrophins NT-3 or NT-4. The
authors used a co-culture assay to show that BDNF
expression levels correlated with the ability of MSC
subclones to induce survival and neurite outgrowth in the
SH-SY5Y neuroblastoma cell line. The effects were only
partially inhibited by a neutralizing anti-BDNF antibody,
indicating that other factors secreted by the MSC also had
neuroregulatory effects. The authors identified production
of other neurite-inducing factors, axon guidance, and neural
cell adhesion molecules, which contributed to the capacity

of the MSC to induce neuronal cell survival and nerve
regeneration. Wilkins et al. [57] have also demonstrated
that MSC secrete BDNF and that addition of anti-BDNF
neutralizing antibodies attenuated their neuroprotective
effects. These studies help to at least partially determine
the mechanisms of MSC-mediated neural survival and
also validate the important role of BDNF in neuronal
protection.

In addition to neurotrophic factors, the extracellular
matrix (ECM) molecules produced by MSC have also been
shown to support neural cell attachment, growth, and
axonal extension [58]. Neurons on ECM derived from
MSC formed more complex neurite networks than those
cultured on poly-D-lysine [58]. Croft et al. [59] showed that
soluble factors produced by MSC promoted the survival of
neurons in culture and promoted axonal growth in neuronal
progeny. The authors proposed mechanisms to manipulate
MSC in vitro prior to transplantation that could potentially
further enhance the endogenous neurogenic response to
injury. Different extracellular matrix scaffolds have also
been examined to enhance survival of stem cells after
implantation to damaged areas of the brain, and some ECM
molecules can synergize with the neurorestorative effects of
MSC [60]. However, a highly important consideration is to
not use matrix proteins such as fibronectin that could
enhance fibroblastic differentiation from MSC, which could
risk scarring and microglial activation. Therefore, such
scaffolds for implantation must be carefully tested in animal
models of HD before consideration for future clinical
application.

MSC provide a very promising platform from which to
produce factors for neural regulation. Viral vectors under
inducible promoters can be used to customize MSC for the
treatment of specific diseases, as described in more detail
below. Overexpression of BDNF is a particularly promising
modification for HD. A traditional gene therapy approach,
where the neurons would be directly infected in vivo by
live lentiviral or AAV vectors carrying BDNF would suffer
from a number of safety concerns. Integrating virus can
pool at the injection site, superinfecting neighboring cells
and limiting distribution beyond a small area. Viral
integrations can be controlled ex vivo with MSC and
limited to one to two viral integrants per MSC genome, as
suggested by the FDA for stem cell gene therapy trials.
Using MSC as the delivery vehicle, a “suicide gene” such
as thymidine kinase can also be used to eliminate a graft if
anything went wrong. This would not be possible with
vector-mediated delivery since the “suicide approach”
would destroy the neuron into which the gene had
integrated. The natural reparative characteristics of MSC
can act synergistically with the growth factors that they
produce. MSC could potentially migrate to injured cells to
deliver BDNF locally.
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For any planned delivery method, it will be important to
provide a precise and quantitative evaluation of BDNF
protein level in the human CNS, perhaps by conducting a
spinal tap after the therapy. Methods for precise quantitation
of BDNF have been described by Zuccato et al. [61, 62].
BDNF is a complex protein that could have unwanted side
effects if expressed at very high levels. It will also be
important to regulate BDNF levels using an inducible
promoter system, since transgenic mouse models have
shown that high levels of BDNF overexpression in the brain
can interfere with normal brain function by causing learning
impairments and increased excitability [63].

Discussion of potential therapeutic approaches in the
context of MSC-based treatments and growth factor
delivery for HD is presented in this review.

Huntington’s Disease

HD is an incurable inherited genetic disorder where the
condition of the patients inexorably worsens and their
prognosis is eventual death, following decline in control of
emotion, movement, and cognition. The pathology of HD is
caused by a variable sized polyglutamine expansion of the
protein product of the huntingtin (HTT) gene. Multiple
disease mechanisms have been described for HD neuro-
degeneration and are currently under investigation in the
search for therapeutics. HD is a challenging disease to treat.
Not only do the affected, dying neurons need to be rescued
or replaced, but the levels of the toxic mutant protein must
also be diminished to prevent further neural damage and to
halt progression of the movement disorders and physical
and mental decline associated with HD.

The best hope for halting HD progression is to reduce or
eliminate the mutant Htt protein in the affected cells [64,
65]. Small interfering RNAs (siRNA) have been shown to
be effective at reducing Htt levels and ameliorating disease
symptoms in animal models [66, 67]. Exciting new data
shows that the mutant HTT mRNA can be specifically
silenced by targeting conserved single nucleotide poly-
morphisms in the mutant allele, while sparing the transcript
produced by the normal allele [68–70]. The challenge for
this technology is to deliver the siRNA into the human
brain in a sustained, safe, and effective manner. Our group
is currently funded by the California Institute for Regenerative
Medicine to develop an siRNA delivery system using human
MSC as the “production factories” in the brain. Safety and
efficacy studies are ongoing [55].

Many studies have demonstrated the safety and efficacy
of MSC injection into the brain and central nervous system.
Lescaudron and colleagues [71] transplanted autologous
bone marrow stem cells into the damaged striatum of the rat
HD model and found that the transplant significantly

reduced working memory deficits. The transplanted MSC
remained undifferentiated, but exerted trophic effects on the
injured tissue. Bantubungi et al. [72] found that the lesioned
environment of the striatum favored the proliferation and
intralesional distribution of MSC. Several groups have
shown that striatal atrophy in models of HD is accompanied
by the subsequent enlargement of lateral ventricles [73, 74].
The reduction in volume of the lateral ventricle can thus be
a good indicator of repair in HD correction studies. Amin et
al. [73] demonstrated that after MSC implantation into the
striata of rats with a unilateral damage model of HD, striatal
atrophies were significantly reduced. Consequently, the
volume of the lateral ventricle returned to a significantly
smaller size, approaching the normal contralateral
ventricle. Their results demonstrated the potential for
MSC in the treatment of microanatomical defects in the
motor disorders of HD.

Groups who have evaluated the impact of intrastriatal
transplantation of MSC in rodent models of HD are
summarized in Table 1 [73, 75–82]. Some groups had
hoped to observe MSC becoming neurons after transplan-
tation. However, as discussed above, although some
neuronal markers can be observed on transplanted MSCs
due to their propensity for “sharing” membrane and
cytoplasmic markers and natural expression of a number
of traditionally neural markers like nestin [46], bona fide
transdifferentiation into functional neurons has not been
convincingly demonstrated. In contrast to “transdifferentia-
tion” to neural cells, through the ability of MSC to secrete
neurotrophic factors, reduce inflammation, reduce apoptosis,
enhance axonal extension, and reduce reactive oxygen
species, significant positive effects were seen in alleviating
HD progression in the studies listed.

Data suggest that MSC implantation into the striatum
can potentially delay the unrelenting loss of medium spiny
neurons in HD. An important factor to consider is that the
MSC implanted at adjacent sites have the capacity to
migrate into the most damaged areas in response to stress or
death of medium spiny neurons, which are lost in HD.
MSC are known to migrate robustly in the brain, in
response to injury. Delcroix et al. [83] demonstrated that
iron nanoparticle-labeled MSC migrated from an implanta-
tion site in the subventricular zone microenvironment
toward the olfactory bulb through the rostral migratory
stream only when a mechanical lesion of the olfactory bulb
was performed. They confirmed the known potential of
MSC to migrate toward areas of damage, even over a great
distance in the brain. The migratory capacity of MSC was
further examined by transplantation of the cells a distance
from a quinolinic acid (QA)-induced striatal lesion, a rat
model for Huntington’s disease [82, 84]. Migration was
monitored using MRI scans followed by histology. The
engrafted MSC were shown to have migrated a great
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distance along the internal capsule toward the QA-induced
lesion in the striatum. They were shown to have regen-
erated the damaged striatal dopaminergic nerve terminal
network in this animal model for HD [82, 84].

A human cellular therapy trial has already demonstrated
progress in the treatment of HD by intracerebral implanta-
tion. Bachoud-Levi and colleagues [85, 86] transplanted
human fetal neurons into the brains of five patients with
HD. Three out of five patients with HD produced motor
and cognitive improvements 2 years after the fetal neural
graft. The authors obtained convincing evidence that these
human fetal striatal grafts were capable of reconnection and
activation of the frontal lobes. Clinical improvement
plateaued after 2 years and then faded off variably 4–
6 years after the implantation [85, 86]. These and other
studies demonstrate that fetal striatal neurons can be safely
implanted into the brain without adverse events. The group
is currently conducting phase II clinical trials.

Since fetal striatal tissue could be a limiting factor, an
alternative might be derivation of striatal neurons from
human embryonic stem cells. However, a major challenge
yet to be robustly achieved from embryonic stem cell-
derived neurons is to coerce the new neurons make bona
fide synaptic connections, as the Bachoud-Levi group had
seen from the fetal neurons. Co-transplantation of fetal or
embryonic stem cell-derived neural grafts with MSC to

enhance neuritogenesis and to guide axonal pathfinding
through areas of damage could be considered [26].

A confounding factor for the treatment of HD by cellular
therapy is the continued presence of the mutant HTT
mRNA and protein in neighboring cells causing chronic
damage, even if new, healthy neurons are implanted. Efforts
to specifically knock down the expression of this mutant
HTT mRNA and protein prior to or simultaneously with the
MSC-based therapies must be considered [68–70].

Neural Growth Factor Delivery by MSC

An interesting development candidate that we and others
are characterizing is allogeneic human MSC engineered to
secrete BDNF (Fig. 1). This candidate therapy could
provide a potential strategy to enhance striatal neuron
survival and regeneration in HD. BDNF levels are very low
in mice and humans with HD. In rodent models, BDNF has
been shown to ameliorate symptoms and to extend survival,
making BDNF therapy a leading candidate for use in
treating HD. Striatal neurons depend on BDNF for function
and survival [87, 88]. In the later stages of HD, available
BDNF levels plummet since the mutant protein prevents
production at the mRNA level [61]. This reduction in
BDNF affects the onset and severity of the disease in HD

Table 1 Mesenchymal stem-cell-based treatment of HD in preclinical rodent models

References Animal model Transplanted cells Histology Lesion volume Functional outcome

Amin et al., [73] Rat, QA Rat BM-MSCs Reduced striatal atrophy Improved striatal volume ND

Lee et al.,
[79]

Rat, QA Human adipose MSCs Reduced striatal atrophy Decreased lesion volume Reduced Apo-M induced
rotationsReduced apoptosis

Lin et al.,
[80]

Mice, QA Human BM-MSCs Increased cell proliferation
in striatum

Decreased lesion volume Improved rotarod performance

Extended survival time

Lin et al., [80] R6/2-J2 mice Human BM-MSCs Improved cell differentiation ND Improved survival

Jiang et al, [78] Rat, QA Human BM-MSCs Reduced striatal atrophy Decreased lesion volume Reduced motor dysfunction

Lee et al., [79] R6/2 mouse Human adipose MSCs Reduced HTT aggregates Improved striatal volume Improved rotarod

Attenuated loss of striatal neuron Reduced clasping

Improved survival

Rossignol et al.,
[81]

Rat, 3NP Rat BM-MSCs ND Prevented 3NP-mediated
ventricle enlargement

Improved rotarod

Improved paw placement

Sadan et al.,
[82]

Rat, QA Rat BM-MSCs Improved MSC migration
to lesion

Decreased lesion volume Regenerated striatal network

Reduced Apo-M induced
rotations

Im et al., [77] YAC 128 mice Human adipose MSCs Reduced striatal atrophy Improved striatal volume Improved rotarod
performance/motor function

Edalatmanesh et al.,
[76]

Rat, QA Rat BM-MSCs ND ND Reduced Apo-M induced
rotations

Improved beam walk

Improved hang wire time

Dey et al., [93] YAC 128 mice BM-MSCs engineered
to produce BDNF

Reduced striatal atrophy Improved striatal volume Improved rotarod performance

Reduced hindlimb clasping
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mice. Up-regulation of BDNF in the brains of transgenic
rodent models of HD has shown amelioration of the disease
phenotype [89]. Adenoviral astrocyte-specific expression of
BDNF in the striata of mice transgenic for HD was shown
to delay the onset of the motor phenotype [90]. Due to
its pro-survival effects in striatal neuropathology, BDNF is
a leading candidate for neuroprotective therapies in HD
[62, 91, 92].

In transgenic mouse models of HD, there is a significant
reduction in the aberrant behavioral phenotype following
administration of MSC/BDNF [93]. The Dunbar laborato-
ry has shown that MSC, especially those engineered to
over-express BDNF, have significant ameliorative effects
on disease progression in a transgenic mouse model of
HD [93]. These studies have demonstrated that MSC
engineered to produce BDNF and implanted into the
striata significantly increased time to fall in rotorod
testing, demonstrating an increase in coordination and
reduction in movement disorders in treated mice during
the 13 months of the study. The MSC/BDNF therapeutic
also significantly reduced limb clasping, a hallmark
behavioral defect in HD mice, over the same time period
[93].

A major impediment for the clinical use of neurotrophic
factors is their inability to cross the blood–brain barrier in
therapeutic amounts. In the quest to begin translating
promising studies such as those published by Dey et al.
[93] to the clinic, we have shown biosafety of intracranial
administration of MSC in long-term rodent and non-human
primate models. Our group uses human MSC as safe and
long-lived delivery factories for cytokines and growth

factors [2, 17, 94]. We are currently evaluating the safety
and efficacy of MSC engineered to secrete BDNF in
peripheral tissues and in the brain to enhance neuro-
restorative capacity in HD (Fig. 1).

The use of MSC to deliver factors, both through their
own innate responses and through engineering, has benefits
beyond direct protein administration. Transplanted MSC
can provide sustained and long-term delivery of factors at
supraphysiological levels, as we and others have shown
over the past two decades [17, 19, 20, 95–98]. Using
immune-deficient mouse models, we have recovered
human MSC from numerous organs at timepoints from 1
to 18 months post-transplantation, with continued
expression of the gene product [16, 17, 19, 94, 95, 97,
99]. We also performed a decade-long biosafety study to
demonstrate that genetically engineered human MSC are
safe, with no adverse events ever having been observed in
vivo [18]. Efforts from our group and others are currently
evaluating the effects of BDNF expression from human
MSC implanted into the striata of HD mice. Taken
together, the data discussed in the current review provide
support for the potential for MSC to deliver augmented
neurotrophic support.

Clinical Trials of MSC for Neural Repair

The ability of MSC to secrete factors to decrease motor
neuron death when implanted into the CNS of ALS patients
was assessed in a human clinical trial [100, 101]. Ten
patients with ALS who had severe functional impairment of
their legs were enrolled in the MSC clinical trial with no
adverse events. Autologous MSC were isolated from the
patient’s own bone marrow and expanded using good
manufacturing practice conditions. Expanded MSC were
suspended in autologous cerebrospinal fluid (CSF) and
transplanted into the recipient’s spinal cord at a high
thoracic level. No immediate or delayed transplant-
related toxicities were observed. Patients were regularly
monitored before and after transplantation using clinical,
psychological, neuroradiological, and neurophysiological
evaluations. Three months after cell implantation, a
trend toward slowing of the decline in muscular strength
was observed in the legs of four of the first seven
patients treated. No significant acute or late side effects
were evidenced, and four of the patients showed
significant slowing of disease progression [101]. These
studies demonstrated that MSC infusion into the cerebro-
spinal fluid can be tolerated without adverse events in
patients with ALS [101]. A phase II clinical trial using
MSC is underway in Europe, and the FDA has recently
approved a phase I trial of MSC delivery to the CNS for
ALS in the United States.

Fig. 1 MSC/BDNF in the brain of an immune deficient mouse.
Human mesenchymal stem cells engineered to secrete brain-derived
neurotrophic factor (BDNF) and a reporter gene (enhanced green
fluorescent protein, or eGFP) were transplanted into the brain of
immune-deficient mice using stereotactic injection. Tissues were
harvested for assessment of human cell engraftment and biosafety at
different timepoints. Shown is engraftment at 6 days post-injection
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A pilot trial using either intravenous- or intrathecal-
injected MSC has been conducted by Karussis and
colleagues in 12 patients diagnosed with untreatable
neurodegenerative diseases—ALS or multiple sclerosis
[102]. Their intent was to demonstrate the safety of the
delivery methods and treatment with autologous MSC.
They initiated the pilot trial after in vitro and pre-clinical
investigations had demonstrated immunomodulatory effects
of MSC with suppression of self-reactive T lymphocytes. In
addition, animal studies in mice with chronic progressive
experimental autoimmune encephalomyelitis had mitigation
of their clinical course accompanied by histopathological
evidence of neuroregeneration following IC and IV
injection of MSC [103]. Their study was extended to
include 10 ALS and 10 MS patients showing proof of
concept that both delivery methods were feasible and safe.
They are currently conducting a larger phase I/II trial
delivering autologous MSC as treatment in patients with
severe refractory MS [104]. Additional case reports and a
small pilot study including 10 patients with multiple
sclerosis treated with autologous MSC have been con-
ducted with intriguing results (Bonab et al. [105–107]).
Currently, there are at least four clinical trials being
conducted at centers in UK, Israel, Spain and the USA

evaluating the safety and efficacy of bone-marrow-derived
MSC in treatment of MS.

Direct injection of MSC into the injured region of the brain
during surgery following traumatic brain injury (TBI) has also
been performed without adverse events. Seven TBI patients
each received up to 109 expanded MSC during the cranial
repair operation [108]. Patients were followed for 6 months
and demonstrated significant improvements in neurologic
function. Placebo-controlled trials for MSC injection into the
CNS for TBI and stroke, as well as spinal cord injury and
neurodegenerative disorders, are currently ongoing in
countries outside of the USA (clinicaltrials.gov). No adverse
events have been reported from these studies. As one
example, Venkataramana et al. [109] recently reported safety
data from an open label phase I clinical trial where autologous
bone-marrow-derived MSC were transplanted into the striata
of patients with advanced PD. No adverse events occurred
and possible clinical improvement was observed.

Clinical trials of an MSC-like multipotent cellular
product, Multistem [110, 111], has been approved by the
FDA to treat stroke in the USA, by the company Athersys.
Celgene is approved for a multicenter phase II clinical trial
to use placental-derived MSC for treating stroke, and
San-Bio is conducting a phase I trial of gene-modified

Fig. 2 Schema of proposed human MSC therapy for neurodegenerative
disease. Bone marrow is harvested from a normal, qualified donor. MSC
are expanded and transducedwith viral vectors in the goodmanufacturing
practice facility using qualified reagents and well-established standard
operating procedures. The transduced cells are expanded, tested
extensively, and banked. Following FDA clearance of the phase 1 clinical
trial, the qualified cells will be implanted near the affected portion of the
brain in symptomatic HD patients. MSC will be thawed, tested, and

infused underMRI guidance by an experiencedNeurorestorative Therapy
Team. Patients will then be followed by experienced clinicians in the
movement disorders clinic for evaluation of potential neurorestorative
effects: slowing of disease progression as measured by total functional
capacity score and delay in volumetric MRI changes known to occur in
HD. Potential clinical improvement in severity of movement disorders
and cognitive impairment as measured by the Unified HD Rating Scale
(UHDRS) and a battery of cognitive tests will be monitored
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MSC for stroke. Osiris therapeutics has conducted
multiple clinical trials using allogeneic MSC administered
through systemic infusion. No stem-cell-related events have
occurred and their studies provide extensive safety and
provisional efficacy data for allogeneic bone-marrow-
derived MSC administration to patients through FDA-
approved clinical trials [4, 5, 33].

Patient safety and the potential benefit to risk ratio are
always the foremost considerations by the Food and Drug
Administration. This review has covered the potential benefits
of MSC-based therapies for the treatment of neurodegenera-
tive diseases, and Huntington’s disease in particular. We and
many others have documented the biosafety of MSC
therapies, which are now in phase III trials for some
indications, and further safety and efficacy data are being
collected by numerous groups. The need for safe and effective
cellular therapies to treat HD is great. Current therapies only
target symptoms, and there are no drugs or other treatments
that effectively delay the relentless loss of striatal volume in
affected patients. Extending MSC-based therapies to neuro-
degenerative diseases, in particular those for which there are
currently no effective treatments, such as HD (Fig. 2), could
have a high potential benefit to risk ratio.
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