
UC Berkeley
UC Berkeley Previously Published Works

Title
Fusing Loop and GPS Probe Measurements to Estimate Freeway Density

Permalink
https://escholarship.org/uc/item/49m1f0vs

Journal
IEEE Transactions on Intelligent Transportation Systems, 17(12)

ISSN
1524-9050 1558-0016

Authors
Wright, Matthew A.
Horowitz, Roberto

Publication Date
2016-12-01

DOI
10.1109/TITS.2016.2565438
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49m1f0vs
https://escholarship.org
http://www.cdlib.org/


1

Fusing Loop and GPS Probe Measurements to
Estimate Freeway Density

Matthew Wright, Student Member, IEEE, and Roberto Horowitz, Senior Member, IEEE

Abstract—In an age of ever-increasing penetration of GPS-
enabled mobile devices, the potential of real-time “probe” lo-
cation information for estimating the state of transportation
networks is receiving increasing attention. Much work has been
done on using probe data to estimate the current speed of vehicle
traffic (or equivalently, trip travel time). While travel times are
useful to individual drivers, the state variable for a large class
of traffic models and control algorithms is vehicle density. Our
goal is to use probe data to supplement traditional, fixed-location
loop detector data for density estimation. To this end, we derive a
method based on Rao-Blackwellized particle filters, a sequential
Monte Carlo scheme. We present a simulation where we obtain
a 30% reduction in density mean absolute percentage error from
fusing loop and probe data, vs. using loop data alone. We also
present results using real data from a 19-mile freeway section
in Los Angeles, California, where we obtain a 31% reduction.
In addition, our method’s estimate when using only the real-
world probe data, and no loop data, outperformed the estimate
produced when only loop data were used (an 18% reduction).
These results demonstrate that probe data can be used for traffic
density estimation.

Index Terms—Filtering algorithms, Global Positioning System
(GPS), Hidden Markov model, Particle filters, Road transporta-
tion, State estimation

I. INTRODUCTION

MODELING the flow patterns of traffic throughout a road
network is a key area of concern for traffic engineers

and civil planners. When compared to many other objects
studied in a systems context, road networks exhibit high
levels of nonlinear phenomena in congestion shockwaves [1],
have relatively low levels of sensor penetration [2] (typically
fixed sensors that measure vehicle flows), and what sensor
measurements are available may exhibit high degrees of bias
or noise [3]. The sparsity and inaccuracy of detection makes
estimating the spatiotemporal state of traffic flows difficult.

Modeling the evolution of traffic flows over time, on the
other hand, has been possible to achieve with high accuracy
using partial differential equations (PDEs) based on fluid
flows [4], [5]. These macroscopic flow models, particularly
time-space discretizations suitable for computer simulation,
have been widely adopted for capturing and forecasting traffic
patterns on an aggregate scale. A natural application of these
models is in algorithms for estimating the state of unobserved
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areas of the road or debiasing erroneous measurements. State
estimation methods based on physical traffic models have
advantages over those based purely on statistical models.
Physical models allow for estimation of conditions at uninstru-
mented locations, as well as prediction of network behavior
in response to previously-unobserved conditions (for example,
increased demands on a road network in response to a special
event). Extrapolation of this sort with a statistical model
is of course risky. Instead, the physical model is used to
generate a state trajectory that best fits the sensor data, but the
nonlinearity of the traffic PDEs makes this a hard problem to
solve. Since the traffic PDEs are nonlinear, finding a solution
that best matches he observed data across all space and time is
not easy without considerable relaxations [6]. More common
is to treat the problem in a filtering context, where estimates
are propagated forward in time through traffic models and up-
dated with information from measurements. Nonlinear filters
used for traffic state estimation in the literature include the
Extended Kalman Filter [7] and the Sequential Monte Carlo-
based Mixture Kalman [8], Ensemble Kalman [9] and particle
filters [10].

Traditional sensors for filtering on road networks, such as
buried inductive loop detectors or video cameras, have been
fixed in location. Recently, though, there has been great in-
terest towards augmenting these fixed data with data collected
by other parties as part of the current explosion of sensor
availability and data collection [9]. Transportation authorities
have been eager to leverage these new data as both a low-
cost alternative to increasing penetration of detection and to
extend detection to areas for which installation is econom-
ically infeasible [2]. Works such as [9] have successfully
used measurements of individual vehicles’ velocity collected
from passengers’ GPS-enabled mobile devices, or probe data,
for the filtering problem. This supplementation is principally
referred to as data fusion in the transportation literature [2].

The method of [9] is perhaps the most popular data fusion
method, with recent studies examining the marginal gains for
varying data quantities in simulation [11] and deployment at
several real-world sites [12], [2]. These results and others
have shown the availability of probe data makes it useful in
estimating the traffic state across a large freeway corridor, on
the order of tens of miles.

Unfortunately, the state estimation method in [9] is only
intended to estimate the state of traffic’s mean velocity (which
is then easily converted into travel times, a common metric of
road performance), whereas traffic control algorithms tend to
rely on estimates of the density of vehicles [13]. As we will
explain below, estimating density directly from velocity mea-
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surements is difficult. A method for supplementing data from
fixed detection infrastructure with probe data while retaining
the model-based filtering approach has been elusive, but we
show that reconsidering the problem in a probabilistic view
simplifies the mathematics, and further develop an approach
based on Rao-Blackwellization of particle filters as a solution.

The remainder of this article is structured as follows.
Sections II-A and II-B provide a brief review of macroscopic
flow models, describes the specific model used in this work,
and discusses the filtering problem in a general setting. In
Section II-C we discuss the specific case of filtering on
macroscopic flow models from a probabilistic perspective. We
also provide a motivation for ensemble methods for the traffic
filtering problem and give a formulation of a general particle
filtering algorithm for use with any macroscopic flow model.
Section III extends the general model developed in Section
II-C to the specific problem of real-time assimilation of probe
velocity measurements to augment traffic density estimates,
and Section IV provides some numerical experiments demon-
strating the applicability of velocity measurements towards
estimating traffic density. Finally, Section V provides some
closing thoughts and discusses several immediate uninvesti-
gated problems.

II. TRAFFIC FLOW MODELS AND FILTERING

A. Macroscopic flow models

This article uses a macroscopic model of vehicular traffic.
This type of model abstracts traffic flows along a road as a fluid
flow. In other words, while traffic flows are actually made of
many individual vehicles acting independently, the dynamics
of flows along a long, straight road at large scale may be
modeled as evolving due to a one-dimensional continuity
equation of the form [4], [5]

∂ρ(z, t)

∂t
+
∂q(z, t)

∂z
= 0, (1)

where ρ is the density of vehicles at lineal location z at
time t, and q(·) is some flux function. This construction is
called the Lighthill-Whitham-Richards (LWR) model of traffic
flow. Today, simulation methods based on LWR and other
macroscopic descriptions are used to model traffic on freeways
so that public authorities may estimate congestion for the
purposes of traffic control and infrastructure planning [14].

The LWR model of traffic (1) is often said to be stated in
Eulerian coordinates. This designation refers to the Eulerian
characterization of a fluid flow field, in which the state of the
flow field is parameterized by space z and time t. In contrast is
the Lagrangian characterization of a flow field, which tracks
the position of individual fluid elements. In the context of
vehicle traffic, the fluid elements are vehicles, and the flow
field is parameterized in terms of individual vehicle number
and time [15].

Along these lines, traffic data taken from fixed sensors are
often called Eulerian data, and data that describe individual
vehicles (i.e., our probe data) are called Lagrangian data.

A common type of Eulerian sensor is the buried inductive
loop detector, which detects the presence of a vehicle as it
passes. Later in this article, we will use loop data from the
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Fig. 1. Schematic illustration of a Fundamental Diagram. The horizontal axis
ρ is vehicle density (typically veh/m) and the vertical axis q is vehicle flow
(typically veh/s).

California Performance Measurement System (PeMS) [16].
The PeMS dataset contains measurements from single-loop
and double-loop detectors; double-loop detectors measure ve-
hicle flows and speeds directly (from which vehicle densities
are inferred), while the single-loop detectors measure vehicle
flows and estimate speeds and densities using the PeMS “g-
factor” algorithm [17].

In this paper, we use as our traffic model the Cell Transmis-
sion Model (CTM) originally due to Daganzo [18] with some
modifications. The CTM is a finite-volume approximation
of (1) that breaks roads into small discrete segments with
homogeneous density. We refer to these road segments as
links, and the locations where they are joined as nodes. A
key component of the CTM is the fundamental diagram, which
describes the flux function q(·) as a function of a link’s density.
Here, we use a triangular fundamental diagram of the form

q` = min (vf,` · ρ`, w` · (ρj,` − ρ)) , (2)

where ` is an index that denotes a particular link, ρ` is the
density of a link, q` is the flow on link `, vf,` is the freeflow
speed of the link, w is the link’s congestion wave speed, or the
maximum speed at which shockwaves move backward through
the link, and ρj,` is the jam density, or the maximum possible
density of a link, at which no point no more vehicles may be
accommodated (Fig. 1).

The fundamental diagram captures all parameters of a
link’s behavior. In applications to real road networks, these
parameters are fit to data [19]. A key quantity of interest that
can be computed from the fundamental diagram is the average
velocity of the link, which is simply

v (ρ) =
q (ρ)

ρ
=

min (R (ρ) , S (ρ))

ρ
. (3)

In the CTM, the flow between an upstream link ` and a
downstream link `+ 1 is a function of both ` and `+ 1. See
[18] for details on the situation where a link has only one
downstream link, and that downstream link has only the one
upstream link.

More complex situations occur when links have more than
one incoming or outgoing link. In the context of this paper,
which focuses on freeways, the only relevant situations are
merges of an onramp and the freeway and diverges to an of-
framp in the freeway. For onramps and offramps, in this paper
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we use a simple merge model proposed by [20]. In the [20]
onramp merge model, the flows exiting the upstream mainline
link and the onramp link are proportional to proportional to the
links’ demand, which is itself a function of the links’ density.

Driver behavior at offramp diverges is parameterized by
a split ratio coefficient β` ∈ [0, 1], which is the portion of
vehicles in link ` that wish to enter the offramp. The offramps
are assumed to accept all vehicles that wish to enter them
(that is, they are assumed to never be in congestion). For more
information as to the particularities of this offramp mode, we
refer again to [20].

The original CTM of Daganzo has been characterized as a
first-order model, as the dynamic equation of state is a function
of only one variable, ρ`. Various authors have proposed
alternative parameterizations of the sending and receiving
functions, or even higher-order parameterizations of a link’s
state, where the one-step update calculation is a function of
the density and one or more other quantities. We discuss a few
second-order models used for filtering in Section II-C.

We have thus far described a deterministic model for traffic
flow, but in a filtering context a stochastic model is required.
The large number of parameters in the CTM lead to a rich
capability to introduce stochasticity into the model. In par-
ticular, authors have proposed stochastic models that include
uncertainty in the fundamental diagram parameters, upstream
(boundary condition) demands, or driver behavior at diverges.
For the simulations later in this paper, we treat the onramp
and offramp parameters as stochastic. The onramp flows are
contaminated with additive white Gaussian noise (similar to in
e.g. [7]), and the split ratios β are taken as independent-across-
time beta-distributed random variables [21]. Both distributions
were fit to data. Note that the non-correlation across time is
a modeling assumption, and a more realistic model would
consider a nontrivial autocorrelation of these time-varying
random variables.

B. Probabilistic Systems and Filtering

The probability calculations in this paper are presented
in terms of probability density functions (PDFs); measure
theoretic rigor is omitted for accessibility. We adopt a nomen-
clature of probabilistic state-space systems to be consistent
with much of the literature on particle filtering. In particular,
let xt be the (unobserved) state of the system of interest (in
our case, the vector of link densities) at time t and yt be
the observation of the system at the same time. The variables
evolve over time through discrete-time stochastic state and
output equations, denoted Fθ(·) and Gθ(·) respectively:

xt = Fθ (xt−1)

yt = Gθ (xt) ,
(4)

with θ a parameter vector describing the randomness or
process/measurement noise of F and G. Fθ(·) is a shorthand
for the one-step CTM update described above. The notation (4)
is equivalent to

Xt| (Xt−1 = xt−1) ∼ fθ,Xt|Xt−1=xt−1
(xt|xt−1)

Yt| (Xt = xt) ∼ gθ,Yt|Xt=xt (yt|xt) ,
(5)

where Xt (Yt) denotes a random variable and xt (yt) the
value of a particular realization. The functions f(·) and g(·)
are the PDFs induced by Fθ(·) and Gθ(·), respectively. The
initial condition of the system, x0, is assumed fixed or dis-
tributed with some known density pθ,X0

(x0). More precisely,
fθ,Xt|Xt−1=xt−1

(xt|xt−1) is a Markov transition kernel with
a distribution on the random variable Xt|(Xt−1 = xt−1), and
gθ,Yt|Xt=xt(yt|xt) is a typical observation PDF. Of importance
is that (5) establishes that the one-step update and measure-
ment equations may be used as probability densities for the
random variables Xt|(Xt−1 = xt−1) and Yt|(Xt = xt).

For the remainder of this paper, we will use two notational
shorthands. First, we will drop the subscript of the ran-
dom variable in writing PDFs, e.g. fθ,Xt|Xt−1=xt−1

(xt|xt−1)
will be written as fθ(xt|xt−1), and the conditional random
variables will have the value conditioned on omitted, e.g.
Xt|(Xt−1 = xt−1) will be written as Xt|Xt−1.

A framework of this form is often referred to as a Hidden
Markov Model (HMM), after the Markov structure of the
unobserved variable x, or in the specific case where x and
y are real-valued vectors, a state-space model. The central
problem is inference on the unobserved process X using the
information from the observed process Y , i.e. the formula-
tion of conditional PDFs of the form pθ(xt1 |yt2) for some
timesteps t1 and t2. In the present work, we are particularly
interested in the filtering problem, which seeks at time t the
PDF pθ (xt|y1, y2, . . . yt−1, yt), or the PDF of the state at
the current time conditioned on all observations received up
until the current time. As an additional notational shorthand,
let us denote as yT the collection of observations from the
initial time to time t inclusive, i.e. yT = {y1, y2, . . . , yt−1, yt}.
Similarly, let yT−1 = {y1, y2, . . . , yt−2, yt−1}.

The filtering problem is typically solved in recursive one-
step updates. An intuitive explanation of the recursive filtering
scheme in a probabilistic sense begins by noting that due to
the assumed HMM structure, we have:

pθ (xt|x1,...,t−1, yT−1) = fθ (xt|xt−1)

pθ (yt|x1,...,t, yT−1) = gθ (yt|xt) ,
(6)

and assuming that we have calculated p (xt−1|yT−1) at the
previous timestep, we can perform the following calculations:

pθ (xt|yT−1) =

∫
pθ (xt, xt−1|yT−1) dxt−1

=

∫
pθ (xt−1|yT−1) fθ (xt|xt−1) dxt−1

(7)

pθ (xt|yT ) =
pθ (xt|yT−1) gθ (yt|xt)

pθ (yt|yT−1)
. (8)

Derivation of (7) and (8) is straightforward; see e.g. [22]
for more detail. Notice that (7) and (8) are the probabilistic
formulations of the filtering prediction and update steps,
respectively. Computing the integral in (7), in probabilistic
terms, is the act of marginalizing out the variable Xt−1 from
the joint PDF pθ (xt, xt−1|yT−1). This marginalization is often
presented as a “model update” where pθ (xt|yT−1) is found
explicitly through equations derived from a model of the PDF
fθ(·).
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Also notice that the update step in (8) is a statement
of Bayes’ Rule, with pθ (xt|yt) being the posterior PDF,
pθ (xt|yT−1) the prior PDF, and gθ (yt|xt), the observation
function in (5), the likelihood (hence the use of alternate
names for recursive filtering such as Bayesian filtering [22]).
The marginal likelihood pθ (yt|yT−1) plays the role of a
normalizing constant.

C. Past work on filtering on macroscopic flow models

We now consider the problem of traffic state estimation on
using recursive filtering. In this paper, we focus on freeways; a
large and separate body of literature exists on state estimation
for arterial roads.

Most filtering schemes in the literature, as well as the
presented in this paper (which relies on the CTM), use
Eulerian flow models. As mentioned in Section II-A, Eulerian
models come in first- and higher-order varieties. Higher-order
models add additional PDEs to (1) or dynamic equations to the
discretization. Various authors have proposed filtering schemes
based on both first- (see for example the work of Sun et
al., [8] and Work et al. [9]) and second-order models (such
as Wang and Papageorgiou [7] and Mihaylova et al. [10]). In
particular, the second-order models of [7], [10] add a dynamic
equation for the link velocity. While the particular algorithm
proposed in Section III uses a first-order model, we remain
agnostic on the question of deciding between first- or higher-
order models for filtering; the following discussion is intended
to be universal for filtering with Eulerian models of any order.

It will provide clarity to the discussion if we separate out
the different state subsets in the state vector x individually; for
our discussion we will consider the state vector as potentially
composed of the density, xρ, and the velocity, xv of the links.
The vectors of observations of link density and velocity are
similarly denoted yρ and yv , respectively.

Examination of (7) and (8) shows that within the pre-
diction and filtering framework, the only term in which the
observations y appear is the likelihood, gθ(y|x). Naturally,
assimilation of observations, whether density or velocity, re-
quires a model for the likelihood through specification of the
observation equation. In particular, the likelihood gθ(y|x) =
gθ(y

ρ, yv|xρ, xv), which is the joint likelihood of the entire
observation vector y, must be posed by the practitioner, and
its proper form, particularly in representing the relationship
between density and velocity observations, is not obvious.
Previous authors have used various methods that exploit the
structure of their particular prediction framework to reduce
the complexity of the likelihood when dealing with multi-state
assimilation.

The filtering schemes of Wang and Papageorgiou [7] and
Mihaylova et al. [10] use second-order Eulerian models (note
that although the model of Mihaylova et al. used flow and
velocity as the state variables, this representation is essentially
equivalent to a density-velocity representation through (3)).
With a second-order model, the link density and velocity vec-
tors are separately predicted with different explicit functions

of the current state:

xρt = Fθ,ρ(xρt−1, xvt−1)

xvt = Fθ,v(xρt−1, xvt−1).
(9)

Under this construction, the following conditional indepen-
dence assumption has been made explicitly by [7], [10]:

Assumption 1 (Second-order traffic model assumption). The
density and velocity states of the network at time t are condi-
tionally independent given the state at time t−1. Equivalently,
pθ(x

ρ
t , x

v
t |xt−1) = pθ(x

ρ
t |xt−1)pθ(x

v
t |xt−1)

In our view, Assumption 1 is not a good assumption. In
particular, it seems to conflict with a construction of a second-
order model. Without going into too much detail, adding addi-
tional PDEs to (1) implies a belief that vehicle traffic dynamics
are too complex to be modeled with (1) alone, i.e. with local
interactions between the state variables ρ and v. Discretization
for numerical forward integration as in (9) would then lose
these additional interactions, except for simulation timescales
on the order of the inter-state interactions.

The schemes of Wang and Papageorgiou [7] and Mihaylova
et al. [10] make another, assumption that is unstated in both [7]
and [10] but is reasonable: that density measurements yρ are
independent of the velocity state xv (and vice-versa). One may
then factor the likelihood in a straightforward manner:

g(yt|xt) = g(yρt , y
v
t |x

ρ
t , x

v
t ) = p(yρt |x

ρ
t )p(y

v
t |xvt ). (10)

Thus, the ungainly likelihood g(yt|xt) need not be specified,
and instead only individual observation equations for density
and velocity need be specified, the likelihood of the entire
observation vector being their product. By beginning with a
second-order model that contains both xρ and xv among its
states, this likelihood factorization is natural and elementary.

Despite the prevalence of first-order models for macroscopic
simulation, an equivalent operation for first-order models, and
thus a “clean” method for model-based filtering of data from
other data domains, including Lagrangian data, is not obvious.
If, for example, a first-order model had as its only state a link’s
density, then the factorization of (10) is not implementable, as
xv and p(yvt |xvt ) do not exist. As a result, Lagrangian data do
not naturally fit into a first-order Eulerian flow model.

We will highlight two works in filtering Lagrangian data in
an Eulerian flow model. The first, due to Lovisari et al. [23].
Lovisari et al. choose to stay entirely in the density regime.
While we mentioned methods such as the “g-factor” algorithm
[17] to calculate densities solely from single-loop Eulerian
flow data, Lovisari et al. use probe velocity measurements
as substitutes for those from double-loop detectors. If the
probe velocities are accurate, density calculations at single-
loop detectors can be comparable to those at double-loop
detectors. Unfortunately, if single-loop-detector coverage is
sparse, usefulness would drastically decrease.

In another work, Work et al. [9], brought Lagrangian data
into Eulerian coordinates in a novel manner. The “velocity
Cell Transmission Model” (v-CTM) proposed by Work et al.
is a first-order model in which the state vector consists only
of the velocity along links. That is, rather than typical first-
order models that state the sending and receiving functions as
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Fig. 2. Velocity as a function of density with the Daganzo fundamental
diagram (c.f. (3)). The function is constant for ρ < ρc and has a hyperbolic
shape for ρ > ρc. The function is not injective in the region ρ < ρc.

functions of link density, the model of Work et al. posed them
as functions of velocity. Density and velocity measurements
are then fused by transforming density measurements to virtual
measurements of the equivalent velocity specified by (3).
While this approach was successful in fusing measurements
of different domains (and velocity measurements that are
nonfixed), it has its own drawbacks. First, it requires the
selection of a fundamental diagram with a bijective rela-
tionship between density and velocity [9], which proscribes
many popular fundamental diagrams such as the classic model
of Daganzo [18], whose model of traffic having a constant
freeflow velocity is intuitively appealing. In addition, by
converting density measurements to velocity measurements,
some amount of observed information is lost (specifically, note
that (3) will equate to the freeflow velocity for any value of
ρ < ρc) or contaminated (due to possible modeling errors in
the fundamental diagram) (Fig. 2).

As a consequence, while the method of Work et al. allows
estimation of the velocity state trajectory, the density state
is not recoverable in general when using the v-CTM. In this
paper, we avoid this problem by estimating density directly
with our density and velocity measurements.

Thus far we have focused entirely on filtering with Eulerian
flow models, but the (relatively sparse) literature on filtering
with Lagrangian flow models is worth mentioning. Yuan et al.
[24] describe one such algorithm. Their model fuses Eulerian
(loop detector measurements) and Lagrangian (high-precision
individual vehicle traces) to estimate in the Lagrangian coor-
dinates. A state estimator in the Lagrangian coordinates seeks
to reconstruct vehicle ordering and location over time, which
may be difficult with contemporary Lagrangian data sources
such as low-frequency and noisy GPS. However, with higher-
precision Lagrangian data increasing in market penetration,
this may soon be feasible.

D. Ensemble methods for macroscopic flow models

Due to their complex structure, stochastic implementations
of macroscopic traffic models create transition kernels fθ(·)
for which evaluation of the integral in (7) is analytically
difficult or impossible [10]. The distribution of Xt|Xt−1 is
thus not able to be expressed in closed form unless restrictive
assumptions are made. These difficulties trace back to the
fact that macroscopic traffic models are discretizations of the

LWR PDE, leading to a system with states that are tightly
coupled with commonly-occuring nonlinear behavior such as
congestion and shockwaves. These nonlinearities mean that
individual links may variously affect their upstream link,
downstream link, or both during the next model update,
depending on their and their neighbors’ current state. For
macroscopic traffic models of moderate or large numbers of
links, these cascading nonlinearities can cause large multi-
modality in distributions [1], which are difficult to approximate
in a parametric manner. Indeed, in [1], Blandin et al. showed
that a natural approximation of fθ(·), the linearized estimate
as used in the Extended Kalman Filter, produces estimates that
diverge quickly from the true traffic state.

Further, macroscopic traffic models of traffic networks are
by construction formed of multiple PDE discretizations that
interact with each other through junctions, increasing the
occurrence of nonlinearities. Stochastic traffic models for
which evaluations of (7) is a closed-form operation must
make restrictive assumptions to control these nonlinearities,
namely assuming high levels of instrumentation stochastically
simulating only a freeway, leaving onramps, offramps, and
arterial roads as known and nonrandom (see for example [8] or
[25]). While this is effective for simulating well-instrumented
freeways, the use of GPS data for traffic estimation is most
highly desired in locations with relatively low detection in-
frastructure, making simplified models undesirable.

For these reasons, ensemble or sequential Monte Carlo
methods have been the major focus of research in traffic
state estimation. At a high level, these method also ap-
proximate fθ(·), but rather than by approximating it with a
computationally tractable model, they approximate fθ(·) with
classical Monte Carlo techniques - sampling repeatedly from
fθ (xt|xt−1) and obtaining the Monte Carlo approximation
to (7),

pθ (xt|yT−1) =

∫
pθ (xt−1|yT−1) fθ (xt|xt−1) dxt−1

≈
P∑
p=1

pθ (xp,t−1|yT−1) δfθ (xp,t|xp,t−1)

= p̂θ (xt|yT−1) ,

(11)

where P is some integer denoting the total number of samples
drawn from f(·), p ∈ {1, . . . , P} indexes individual samples
(or atoms of the probability distribution), and δfθ (xp,t|xp,t−1)
is the Dirac delta, which places a unit mass on the point
xp,t|xp,t−1, itself denoting the value of the pth sample from
f(·). The final equality indicates that the empirical PDF
p̂(xt|yT−1) consists of a weighted sum of P point masses,
with support on the point xp,t|xp,t−1, with individual weights
pθ(xp,t−1|yT−1), where the weights sum to one. A straightfor-
ward application of the strong law of large numbers shows that
as P →∞, p̂ (xt|yT−1)→ p (xt|yT−1) almost surely [22].

As our filtering scheme is recursive, the term
pθ (xp,t−1|yT−1) denotes the posterior probability assigned
to atom p from the previous timestep, which is approximated
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by replacing pθ(xt|yT−1) in (8) with p̂θ(xt|yT−1) from (11):

pθ(xt|yT ) =
pθ(xt|yT−1)gθ(yt|xt)

pθ(yt|yT−1)

≈ p̂θ(xt|yT−1)gθ(yt|xt)
pθ(yt|yT−1)

=
1

pθ(yt|yT−1)

[
P∑
p=1

pθ (xp,t|yT−1)

× gθ (yt|xp,t) δfθ (xp,t|xp,t−1)

]

=
1

pθ(yt|yT−1)

P∑
p=1

pθ (xp,t|yT ) δfθ (xp,t|xp,t−1)

= p̂θ (xt|yT ) , (12)

where gθ(yT |xp,t) denotes a pointwise evaluation of the like-
lihood function for the value of the pth sample at time t.

The factor 1/pθ(yt|yT−1) plays the role of a normalizing
constant. In practice it is not calculated explicitly. Instead, after
the posterior probability pθ (xp,t|yT ) is calculated for each
particle, the P probabilities are normalized so that their sum
equals one. This normalized version of the posterior probabili-
ties pθ (xp,t|yT ), and the prior probabilities pθ (xp,t|yT−1), are
usually referred to the weight of particle p in their respective
empirical PDFs. They are often abbreviated as wp,t−1 and
wp,t, respectively. The Monte Carlo prediction and update
steps in (11) and (12) then become

p̂θ (xt|yT−1) =

P∑
p=1

wp,t−1δfθ (xp,t|xp,t−1) (13a)

p̂θ (xt|yT ) =

P∑
p=1

wp,tδfθ (xp,t|xp,t−1), (13b)

where the weights are normalized after a measurement is
received so the PDF will sum to one as previously discussed:

wp,t =
wp,t−1gθ(yt|xp,t)∑
p wp,t−1gθ(yt|xp,t)

. (13c)

In practice, some portion of the particles will stray very far
from the true state, obtain very low weights, and be useless
for state estimation. Therefore, after evaluation of a posterior
PDF in (13b), a resampled version of p̂(xt|yT ) may be created
from P particles of the original empirical PDF, sampled with
replacement. Various resampling schemes have been proposed
and studied (see, for example, the discussion in [22]), and
deep discussion is beyond the scope of this paper. In this paper
we use a simple multinomial resampling scheme, where each
particle has a selection probability of wp,t.

Finally, note that the likelihood gθ(·) is only evaluated for
specific values of the conditioned term - namely, the particle-
specific value xp,t. Let us make the following conditional
independence assumption to take advantage of this:

Assumption 2. Given a value of Xt, the state of the entire
network at time t, individual measurements in the vector Yt
are conditionally independent. Equivalently, the measurement
noises of individual measurements are independent.

The above assumption allows us to further factor the like-
lihood:

gθ(yt|xp,t) =

M∏
i=1

pθ(yt,i|xp,t)

=

M∏
i=1

pθ(yt,i|xp,t,L(i)),

(14)

where i ∈ {1, . . . ,M} indexes individual elements of the M -
long measurement vector y and L(i) denotes the link where
measurement i takes place.

Given an ensemble of particles {xt,p|yt,p}Pp=1, a variety of
point estimates of the system state may be obtained, among
them the empirical mean

E [Xt|Yt] ≈
P∑
p=1

wt,pδ (xp,t|yt) . (15)

The above construction is implemented to estimate density
using only density measurements in Algorithm 1. Algorithm 1
is itself not novel.

Algorithm 1 (Particle Filter for Traffic Density Estimation).
Inputs:

• PDF of density initial conditions pθ(X
ρ
0 )

• Stochastic cell transmission model fθ(x
ρ
p,t|x

ρ
p,t−1)

• Density measurement likelihood function pθ(yi|xρL(i)),
where L(i) indicates the link of the ith measurement

1) Initialization: At time t = 0:

a) Sample an ensemble of particles of the density
state, xρp,0 ∼ pθ(X

ρ
0 ), the distribution for the initial

condition
∀ p ∈ {1, . . . , P}.

b) Set the initial weights wp,0 = 1/P
∀ p ∈ {1, . . . , P}.

2) Prediction: At time t > 0, ∀ particle p, sample
xρp,t ∼ fθ(x

ρ
p,t|x

ρ
p,t−1) by evaluating a one-step stochas-

tic cell transmission model update
3) Data assimilation: ∀ particle p, at time t

a) For each measurement received at time t, yt,i,
compute the per-measurement likelihood
gp,i = p(yt,i|xρp,t,L(i))

b) Compute the overall particle likelihood,
gp =

∏
i gp,i

c) Compute the (unnormalized) posterior particle
weight, w̃p,t = wp,t−1gp

4) Normalization: Normalize the particle weights,
wp,t = w̃p,t/

(∑
p w̃p,t

)
5) Resampling: If resampling is desired, resample P par-

ticles with replacement from {xρp,t} with selection prob-
ability of particle p = wp,t

6) If t = tfinal, end, otherwise t ← t + 1 and return to
step 2
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III. RAO-BLACKWELLIZED PARTICLE FILTER FOR DATA
FUSION

A. Rao-Blackwellization as an improvement for sequential
Monte Carlo

Our algorithm makes use of a modification to standard
particle filtering known as a Rao-Blackwellized Particle Filter
(RBPF). The name refers to the Rao-Blackwell Theorem,
a well-known result from mathematical statistics (see e.g.
the discussion in [26, Ch. 3]), which states that an estimate
based on data may be improved in terms of expected convex
loss, and will never be worsened, by conditioning on a
sufficient statistic. In the setting of Monte Carlo methods, Rao-
Blackwellization refers to a method for improving a Monte
Carlo sampler over several random variables. Should some
subset of the random variables have distributions as explicit
functions of another subset, gains in computational cost and
accuracy can be made by making use of these explicit distribu-
tions, rather than approximating them with Monte Carlo [27].
Rao-Blackwellization has gained broad adoption in Sequential
Monte Carlo methods in particular [28]. If there exists some
subset of the state vector, xB whose distribution is an explicit
function of the remaining states, xA then by analogy xA is
a sufficient statistic for xB . We may then take a shortcut in
evaluating our Monte Carlo prediction step in (11):

pθ (xt|yT−1)

=

∫
pθ (xt−1|yT−1) fθ (xt|xt−1) dxt−1

=

∫
pθ (xt−1|yT−1) fθ,A

(
xAt |xt−1

)
fθ,B

(
xBt |xAt

)
dxt−1

≈
P∑
p=1

pθ(xp,t|yT−1)
(
δfθ,A

(
xAp,t|xp,t−1

)
× δfθ,B

(
xBp,t|xAp,t

))
,

(16)

where fθ,A (·) is a PDF for the state subset XA
t |Xt−1 (that is,

a truncated version of fθ(·) that only has domain in the space
of xA), fθ,B(·) is our closed-form PDF for xB , and the use of
the Cartesian product × is needed due to the individual Dirac
deltas residing on disjoint subsets of x. In addition, the second
line makes use of the fact that, XB being an explicit function
of XA, we have that XB

t is conditionally independent of Xt−1
given XA

t .
When implementation is possible, Rao-Blackwellization of

a particle filter offers significant advantages. Reducing the size
of the state that one must approximate through Monte Carlo
brings improvements in computation time and eliminates error
in approximating xB through Monte Carlo approximation.
Indeed, Rao-Blackwellization of particle filters were origi-
nally proposed for a reduction in the variance of estimated
distributions [28]. Reducing computation time also allows
for improved estimates by freeing additional computational
resources to simulating more particles, allowing for richer
predictions of p (xt|yT−1). For these reasons, RBPFs have
gained recent popularity for improving approximations of
computationally difficult problems in large state-space settings,
such as the simultaneous localization and mapping problem

in robotics [29]. We are particularly interested, though, in its
immediate application for data fusion.

B. Implementation for traffic data fusion

As mentioned in Section II-D, first-order traffic models pre-
dict one-step model updates only in terms of density, leaving
the velocity likelihood term pθ (yvt |xvt ) in (10) unspecified.
The lack of a plug-in likelihood has been a hindrance for data
fusion on first-order models, but by making use of an RBPF,
we may overcome this.

Recall from (3) that under a first-order traffic model, the
average velocity of a link may be computed from the link’s
density and flow (itself a function of the density). Let us
then say that link density is a sufficient statistic in the Rao-
Blackwell sense for link velocity. We may then factor the
likelihood in an analogous manner to the operation in (10),

gθ(yt|xt) = gθ(y
ρ
t , y

v
t |x

ρ
t , x̄

v
t ) = pθ(y

ρ
t |x

ρ
t )pθ(y

v
t |x̄vt , x

ρ
t )

= pθ(y
ρ
t |x

ρ
t )pθ(y

v
t |x̄vt )pθ(x̄vt |x

ρ
t ), (17)

where we introduce x̄vt , a random variable denoting the
average velocity of a link, whose PDF pθ(x̄vt |x

ρ
t ), is an explicit

function of the link density under a first order model, and
pθ(y

v
t |x̄vt ) is a likelihood denoting the distribution of velocity

measurements given an average velocity. This last function
will then incorporate information such as the distribution of
vehicle velocities about a link’s nominal velocity, as well as
measurement noise of individual probe measurements around
their sensors’ true velocity.

The variable x̄vt is a time-varying quantity that describes the
system, but it is not a state of the system - the only system
state of the CTM is density. It is instead an intermediary
between the true state xρ and observations yv . We refer to
it as a pseudostate.

Note that while we have referred to (3) as the source of the
PDF pθ(x̄

v
t |x

ρ
t ), which follows the original formulation (3)

in treating link velocity as a nonrandom function of density,
various authors including, notably, Sumalee et al. in [25],
have proposed flow and velocity as random functions of
link density. A practitioner would be free to incorporate this
stochasticity in this function.

By applying assumption 2, we may further simplify (17):

gθ(yt|xt) = pθ(y
ρ
t |x

ρ
t )pθ(y

v
t |x̄vt )pθ(x̄vt |x

ρ
t )

=

Mρ∏
i=1

pθ(y
ρ
t,i|x

ρ
t,L(i))

×
Mv∏
j=1

pθ(y
v
t,j |x̄vt,L(j))pθ(x̄

v
t,L(j)|x

ρ
t,L(j)),

(18)

where i ∈ {1, . . . ,Mρ} indexes the Mρ-long density measure-
ment vector yρt , j ∈ {1, . . . ,Mv} performs the same function
for yvt , and L(·) denotes the link of the associated measure-
ment. Equation (18) is the likelihood we use in implementing
our RBPF.

An implementation of our RBPF scheme is described in
algorithm 2. This algorithm is constructed in similar manner
to algorithm 1, but with (18) used for the likelihood gθ(·).
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Algorithm 2 (Rao-Blackwellized Particle Filter for Density
Estimation on Pseudo-Second-Order Model).
Inputs:
• PDF of density initial conditions pθ(X

ρ
0 )

• Stochastic cell transmission model fθ(x
ρ
p,t|x

ρ
p,t−1)

• Per-link predicted velocity distribution pθ(x̄vt,L(i)|x
ρ
t,L(i))

• Density and velocity measurement likelihood functions
pρθ(yi|x

ρ
L(i)) and pvθ(yi|xvL(i)), where L(i) indicates the

link of the ith measurement

1) Initialization: At time t = 0:
a) Sample an ensemble of particles of the initial

density, xρp,0 ∼ pθ(X
ρ
0 ), the distribution for the

initial condition
∀ p ∈ {1, . . . , P}.

b) Set the initial weights wp,0 = 1/P
∀ pθ ∈ {1, . . . , P}.

2) Prediction: At time t > 0, ∀ particle p, sample
xρp,t ∼ fθ(x

ρ
p,t|x

ρ
p,t−1) by evaluating a one-step stochas-

tic cell transmission model update
3) Data assimilation: ∀ particle p at time t,

a) For each measurement received at time t, yt,i
i) If yt,i is a density measurement, compute the

per-measurement likelihood
gp,i = pρθ(yt,i|x

ρ
p,t,L(i))

ii) If yt,i is a velocity measurement,
A) Compute the predicted link velocity distri-

bution pθ(x̄vt,L(i)|x
ρ
t,L(i))

B) Compute the per-measurement likelihood
gp,i = pvθ(yt,i|x̄vL(i))

b) Compute the overall particle likelihood,
gp =

∏
i gp,i

c) Compute the (unnormalized) posterior particle
weight, w̃p,t = wp,t−1gp

4) Normalization: Normalize the particle weights,
wp,t = w̃p,t/

(∑
p w̃p,t

)
5) Resampling: If resampling is desired, resample P par-

ticles with replacement from {xρp,t} with selection prob-
ability of particle p = wp,t

6) If t = T , end, otherwise t← t+ 1 and return to step 2

C. Discussion

We refer to this traffic model construction as a pseudo-
second-order traffic model, due to the middle ground it
occupies between traditional first and second-order models.
In the traffic data fusion literature, second-order models are
proposed due to a claimed ability to estimate velocity as
well as density (see e.g. [10]). What is meant is that in a
second-order model, the traffic velocity undergoes stochastic
updates independent of the traffic density (recall (9)). Our
model also treats velocity as a random variable and seeks to
estimate it, but no Monte Carlo steps are performed in the
velocity domain. Instead, velocity state estimation is done in
closed form (the Rao-Blackwellization computation of (17)-
(18)). The estimation of velocity with a PF does not in general

require that the estimation be done with Monte Carlo. Indeed,
this recalls the original justification for Rao-Blackwellization
of sampling schemes [27], in that unnecessary Monte Carlo
should be avoided when possible.

Of course, the first-order assumption underlying our use of
xρ as a “sufficient” estimator for xv in the pseudo-second-
order model may reasonably be called into question. There
is much debate among traffic theorists as to which PDEs
truly govern traffic flow. Our position is that, while it may
be the case that the CTM is a simplification that cannot
capture some traffic phenomena, its simplicity is a boon in
corridor-scale filtering applications. The problem considered
in this paper, fusing data from many loop detectors and probe
points presupposes application at the scale of a corridor or
larger, where more complex models may be unwieldy. As
an example, the CTM parameters can be quickly estimated
from loop detector data that is obtained in the form of flow-
density pairs, but parameters governing additional complex
behavior would require additional data sources or hand-tuning,
which may become infeasible for corridor-scale applications.
Note that the most successful filtering algorithm for traffic
data fusion at a corridor scale has been the first-order v-CTM
model [9], [2].

Finally, while the development in this section has dealt
with a Rao-Blackwellization of a particle filter in particu-
lar, note that the derivation only used the PF formalism in
specifying the form of the approximation PDFs p̂θ(xt|yT−1)
and p̂θ(xt|yT ) as weighted sums of Dirac deltas. The Rao-
Blackwellization steps can easily be applied to data assimila-
tion with other traffic data filtering schemes by repeating the
factorization of the likelihood.

IV. EXPERIMENTAL RESULTS

We describe two numerical experiments to demonstrate the
ability of the RBPF in assimilating velocity measurements to
improve density estimates. The first of the experiments uses
simulated data, where a “ground truth” state trajectory was
created through stochastic simulation, and PFs were used to
recover the full trajectory given fixed-location noisy density
measurements {yρ}, simulated moving velocity measurements
{yv}, or both. The second experiment uses real density and
velocity measurements collected from the site, and attempts to
predict the density observed by a held-out subset of the loop
detectors.

Both experiments use a CTM scheme as the prediction
framework, with the model based on a section of Westbound
I-210 (Fig. 3). The stretch of freeway of interest has a length
of approximately 19 miles, and was divided into 127 model
links with length averaging roughly 200 m. In addition, the
section of interest has 23 onramps and 21 offramps. The stretch
of road has 42 PeMS loop detectors [16] along the freeway
mainline. The model was trained against loop data collected
during the morning of October 13, 2014. On this date, 8 of
the loop detectors were determined to be malfunctioning on
Oct 13 through identification as such by the PeMS software
or manual checking [30]. The fundamental diagram used in
the model was the triangular fundamental diagram due to
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Fig. 3. Test site of interest: a 19-mile stretch of I-210W near Los Angeles,
CA.
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Fig. 4. Traffic congestion patterns of the model as fit to October 13, 2014.

Daganzo discused in Section II-A. The fundamental diagram
parameters were trained according to the procedures described
in [19] and [31], with undetected ramp data imputed according
to the method of [32]. Driver behavior at offramp junctions
was modeled with turning ratios, calibrated according to the
procedure of [21] from the previous month of data. This
direction is the peak direction in a typical morning, so the
extent of congestion is relatively large (Fig. 4).

For all experiments, the fundamental diagrams (and thus
the PDF pθ(x̄vt |x

ρ
t )) were taken to be noiseless (i.e. a nonran-

dom function equal to (3)) for simplicity. A commonly-used
likelihood in the literature for assimilating density measure-
ments is a Gaussian density [7], we select gθ

(
yρi |x

ρ
L(i)

)
=

N (xρL(i), σ̂
2
ρ

L(i)) with σ̂2
ρ

L(i) being the sample variance of the
density of link L(i) across all particles. We also select the
likelihood for assimilating velocity measurements as Gaus-
sian, pθ (yvi |x̄vL(i)) = N (xvL(i), σ̂2

v

L(i)) with σ̂2
v

L(i) defined
similarly.

A. Estimating simulated traffic densities

This simulation evaluated the performance of the RBPF on
reconstructing a known true state. In this experiment, a single
simulation of an afternoon period with the stochastic CTM
model trained as described above was recorded and taken as
the “actual” value of {xt}, t ∈ 1, . . . , tfinal. This “actual”
value is shown in Fig. 5a, and featured significantly more
congestion than the model baseline. We attempted to estimate
the full density state across all timesteps using simulated noisy

measurements. The point estimates of {xt} described below
are the empirical means (15) produced by the filter.

The true density state is shown in Fig. 5a. One estimation
run used a particle filter as described above, with access to
density measurements of freeway links where detectors are
located in the real world (Fig. 5b). These measurements were
contaminated with additive noise sampled from a Gaussian
distribution with a standard deviation equal to 10% of the
measured value. The second estimation run used a RBPF and
had access to these same density measurements as well as
simulated velocity measurements. The velocity measurements
were sampled randomly to simulate various penetration rates:
for penetration rate PR, velocity measurements of number
equal to floor(PR · 100) were reported to the filter every
five minutes. Each link had a probability proportional to its
occupancy of reporting a noisy velocity. This random selection
was done with replacement, so a link may report multiple
measurements. These five-minute bins were used to mimic
the typical procedures of data fusion methods, where probe
measurements are retained and filtered into the model at
the same time that loop data is next received; for PeMS,
these data are reported in five-minute intervals. These velocity
measurements were also contaminated with additive noise
from a Gaussian distribution with a standard deviation of 10%
of the measured value.

The state estimate generated by the particle filter with access
only to these density measurements is shown in Fig. 5c,
the estimate produced using only the velocity measurements
appears in Fig. 5d, and the estimate generated by the RBPF
with access to both the density and velocity measurements
is shown in Fig. 5e. We quantified the estimation accuracy
by comparing the mean absolute percentage error (MAPE),
i.e. the average of the quantities

∣∣∣x̂ρ`,t − xρ`,t∣∣∣/xρ`,t for all links
` and times t, of the two runs. The results are summarized
in Table I. Examination of the figures and table show that
qualitatively, all estimates compare well to the true state, but
data fusion via the RBPF quantitatively outperforms the other
two estimates in predicting density.

B. Real data on a corridor scale

We now present the results of our real-data experiment. As
mentioned above, our model was trained against loop data
from October 13, 2014. The dataset used for the experiment
was recorded on October 22, 2014. The loop data used were
obtained from the California PeMS database [16]. The probe
data were obtained from a major mapping data provider.

Fig. 6 presents the raw loop data used in this procedure.
Note that the traffic behavior on October 22 was different from
that of October 13, with much larger and longer-lasting areas
of congestion (high density).

Of the 35 working detectors on this date, 15 were randomly
selected as a “test” set whose density measurements were
compared against the estimates, and the measurements of
the remaining detectors were provided to the filters. In the
CTM simulations, onramps with working detectors had their
measured flow input to the simulation on a five-minute delay
with a simple zero-order-hold assumption (that is, that the
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Fig. 5. Density contour maps from a simulated experiment with loop and probe data (veh/m). Black = no data. (a) “Ground truth” simulation. (b) Simulated
density measurements. (c) Estimated with density measurements. (d) Estimated with velocity measurements of 3% penetration rate. (e) Estimated with fused
data.
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TABLE I
DENSITY MAPE METRICS FROM SIMULATION. CONG. = CONGESTED, FF = FREEFLOW.

MAPE
Without Simulated Loops With Simulated Loops

Simulated Penetration Rate Cong. Links FF Links Overall Cong. Links FF Links Overall
None 28.57% 6.54% 11.05% 8.60% 4.00% 4.94%

1% 3.86 5.64 5.28 3.65 3.72 3.71
2% 2.89 5.66 5.09 3.39 3.69 3.63
3% 2.44 5.88 4.93 2.52 3.72 3.47
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(b)

Fig. 6. PeMS loop data of the site (veh/m). Black = no data. (a) Oct 13, 2014 (calibration date). (b) Oct 22, 2014 (test date). Note that the traffic patterns
exhibit broader congestion periods on Oct 22.

average flow for a given five-minutes would be equal to the
average measured flow of the previous five minutes), with per-
timestep additive Gaussian noise sampled from a Gaussian
distribution with standard deviation equal to 15% of this
nominal value. All other simulation parameters were set up
identically to the simulated experiment.

A problem common to attempts to use third-party probe data
for traffic estimation is matching noisy GPS points to individ-
ual roads, and filtering out those points that are not sent from
vehicles in transit in the direction of interest. Map-matching
schemes attempt to perform this filtering by reconstructing a
vehicle’s trajectory along the network and matching individual
reports to the mapped links. In the present experiment, though,
our network is very simple; we only seek to estimate the
state along the mainline, so we used a simpler probe point
filtering scheme: non-overlapping rectangular bounding boxes
were drawn around each link and probe points were assigned
to the link whose bounding box they fell within, if any. Further,
probe points with reported headings outside of 15◦ of a link’s
end-to-end bearing were discarded. To filter out erroneous
data, individual measurements yi that evaluated to a likelihood
g(yi|xi,p) ≈ 0 for all particles p were excluded from the
calculations. Such measurements may be the result of, e.g.,
parked cars within the bounding box or faulty equipment.

The probe data were tagged with a hashed device identifier;
after our crude map-matching scheme, probe points associated
with 2613 unique devices remained. Over this same 12-hour
period, the loop detectors along the freeway reported an
average cumulative flow of approximately 182,000 vehicles

along the mainline, resulting in an estimated penetration rate
of roughly 1.42% of our probe data.

Results are shown in Fig. 7. It is known that traffic models
are limited in open-loop (that is, without data filtering) predic-
tion accuracy due to factors including day-to-day variability
in driver and road characteristics and a low signal-to-noise
ratio exhibited in freeway offramp and onramp measurements
(i.e., PDE boundary conditions); Fig. 7c shows a baseline
simulation using as-detected on- and off-ramp flow values
from Oct 22, but no mainline measurements, to demonstrate
a base level of error to which filtered estimates may be
compared against. Qualitatively, one sees that the use of the
probe data (shown in Fig. 7a) produces a density estimate
with larger and longer-lasting congestion periods (compare
Figs. 7d, 7f). As a specific example, we wish to direct the
reader’s attention to the congestion patterns in the first 10
links. Note that in Fig. 6b, a period of high density occurs
in the first few detectors during 6-8 AM. These detectors are
excluded from the simulation (Fig. 7b), and accordingly the
density-only particle filter does not predict that congestion
occurs in these links during this period (Fig. 7d). There exist
probe measurements during that period that show low velocity
(Fig. 7a), and when the PF is run with these measurements
available, congestion is predicted (Fig. 7e).

In fact, our algorithm as implemented for this test may
be a little too eager to assimilate probe measurements. Note
that after 10 AM on the same few detectors, the congestion
wholly clears in reality (Fig. 6b). However, the RBPF still sees
a number of probe data that continue to report low velocity
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(observe the cloud of blueish points in this area in Fig. 7a).
With no loop data to counteract this, the RBPF continues to
estimate congestion until the cloud of low-velocity probe data
clears (Fig. 7f). Recall that in our construction of the RBPF
likelihood functions discussed at the beginning of this section,
the probe measurements are taken to be distributed symmetri-
cally about the CTM-predicted velocity x̄vt with exponentially-
decaying outliers (i.e. tail behavior) due to the Gaussian
assumption. However, the empirical evidence here shows that,
at least in this location, this is not a good assumption. Instead,
a large number of probe data reported slow velocities despite
the loop detectors in the area reporting low density. The RBPF
then estimated a region of high density that would be in
agreement with high density that would be in agreement with
the low-velocity probe data through (3). This suggests the need
for investigation into the tail behavior and non-stationarity (in
the timeseries sense) of the PDF pθ(y

v
t,L(i)|x̄

v
t,L(i)).

Fusing the loop and probe data (Fig. 7f) produces an esti-
mate that appears largely similar to the probe-only estimate,
but tends to obtain lower error (Table II). Data fusion generally
outperformed use of the disjoint sets in estimating the density
measurements for most detectors in terms of MAPE metric,
despite oversensitivity to probe data resulting in errors.

One may notice the high amounts of error in these results
compared to the simulated results in Table 1. This is due to two
factors. First, the CTM is a relatively simple model of traffic,
and while it can easily capture broad congestion patterns, it
cannot reproduce some higher-order traffic phenomena to high
accuracy. Second, the “ground truth” density measurements
the estimates are compared against are not actually the true
density values, but rather the noisy measurements from the
loop detectors. This type of loop detectors is known to be noisy
[3]. We did not attempt to denoise the loop measurements. A
low MAPE value would thus require that the model estimate
reproduce the loop’s sensor noise, which we feel is infeasible.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a filtering scheme for tractably es-
timating vehicle density while assimilating probe velocity
data in the structure of a Rao-Blackwellized particle filter by
exploiting some conditional independence assumptions. Use
of these assumptions led to a model that implicitly estimated
vehicle velocity for the purposes of filtering, which we referred
to as a pseudo-second-order model. We demonstrated the
effectiveness of our model for a long freeway corridor.

Our numerical experiments were based on a freeway, but
the particle filter itself is not restricted to traffic networks
of this rigid structure, and is applicable to more complex
networks. Of particular interest might be interconnected urban
networks; these networks typically have lower fixed detection
infrastructure then freeways, and our second experimental
result of solely velocity data being used to estimate density
is encouraging for this application. Any application, though,
would have to overcome difficulties in accurately matching
probe measurements to individual road segments, which is
itself a difficult problem.

Immediate theoretical avenues for investigation that present
themselves are estimation of the PDFs pθ(x̄|xρ) and pθ(yv|x̄v)

in (17) (denoting the distribution of a road segment’s average
velocity about a model-predicted velocity, and the distribution
of individual vehicle measurements about a link’s average ve-
locity, respectively). Typically these PDFs have taken assumed
form [25], but estimation of these distributions from data
would allow for more accurate filtering models. Another item
of immediate applicability is the use of a particle smoother to
recreate the state trajectory while taking into account future
probe measurements, but given the high dimensionality of
traffic network models, this would not be a straightforward
application either.
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Fig. 7. Density estimation of traffic density of the corridor on Oct 22, 2014 with real data. Black = no data. (a) Raw probe speeds (m/s). (b) Loop density
subset provided to filters (veh/m). (c) “Best-case” open-loop prediction (veh/m). (d) Estimation with loop data only (veh/m). (e) Estimation with probe data
only (veh/m). (f) Estimation with data fusion (veh/m).
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