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Abstract. Open boundaries are essential in the modeling of many applications including laser plasma acceleration in a
boosted frame, for which it has been shown that pseudo-spectral solvers (which can also be viewed as the limit of higher
order FDTD methods when the order goes to infinity) bring higher stability and accuracy . When modeling the absorption
of outgoing waves in simulations with open boundaries condition, Perfectly Matched Layers (PML) [1] are the state of
the art and can be applied to the pseudo-spectral solvers. This paper will present results from the application of the PML
to the absorption of waves with high order FDTD and pseudo-spectral solvers in 1D and 2D. 

INTRODUCTION

Particle-in-cell (PIC) has been the method of choice for the last fifty years for modeling plasmas that include
kinetic  effects.  The most  popular  electromagnetic  formulation uses  finite  difference discretization of  Maxwell's
equations in both space and time (FDTD) which produces fast solvers that scale well in parallel, but suffers from
various anomalous numerical effects resulting from discretization, field staggering and numerical dispersion. The
pseudo-spectral methods consist of one of the solutions to tackle these disadvantages. Besides, it is noted that the
pseudo-spectral method can be viewed as the limit of finite-difference approximations when the order of accuracy
tends to infinity [2], implying that the pseudo-spectral solvers improves the accuracy.

In 1973, Haber et al. presented a pseudo-spectral solver that integrates analytically the solution over a finite time
step,  under  the assumption that  the source  is  constant  over that  time step,  however the  difficulty  for  efficient
parallelization owing to global communications associated with global FFTs on the entire computational domains
has  rendered  it  rarely  used.  Recently, Vay et  al.  proposed  a  method for  the  parallelization  of  electromagnetic
pseudo-code solvers, enabling solvers combining the favorable parallel scaling of standard FDTD with the accuracy
of pseudo-spectral methods [3] .

Haber's pseudo-spectral analytical time-domain (PSATD) particle in cell (PIC) algorithm has various advantages
over the FDTD as it solves the vacuum Maxwell's equations exactly, has no Courant time-step limit, and offers
substantial  flexibility  in  plasma  and  particle  beam simulations  [4].  The  more  commonly  used  pseudo-spectral
time-domain (PSTD) algorithm enjoys some of these same advantages but has a restrictive Courant limit.

When simulating wave-structure interactions, an open boundary condition is often required to close the system,
in other words, to absorb the outgoing waves. In this case, various techniques have been used such as the one way
approximation  of  the  wave  equation  (initially  exhibited  for  acoustic  waves)  by  Engquist  and  Majda  [5],  or
Berenger's  more  efficient  Perfectly  Matched  Layer  technique  which  consists  in  surrounding  the  computational
domain with an absorbing medium whose impedance matches that of free-space. None of the free-space simulation
techniques is exact, meaning that a wave can be absorbed without reflection in particular cases only for specific
angles and wavelengths, usually for infinite wavelength with perpendicular incidence to the boundary.

The main focus of this article is the theoretical and numerical analysis of the PML in pseudo-spectral solvers. An
implementation of the PML in a PSTD solver was given by Ohmura et al. [6], but the estimates of the coefficients of
reflection with respect to wavelength and angle were not given.  As noted above, the pseudo-spectral method can be
viewed as the limit of finite-difference approximations when the order of accuracy tends to infinity [2]. Hence, our



study extends the analysis from second order FDTD [7] to higher order, obtaining the results of the PSTD solver as
the limit of the FDTD result when the order tends to infinity.

PERFECTLY MATCHED LAYER (PML)

Definition of the PML Medium

We consider the two-dimensional TE (transverse electric) mode in Cartesian coordinates for which the non-zero
field components are Ex , E y and Bz . In a PML medium, the Maxwell's equations write 

(1)

with c the speed of  light, ∂/∂ t the partial  derivative in  time, ∂/∂ x and ∂/∂ y the partial  derivative in x-  and
y-directions  respectively, (σx ,σ y) electric  conductivities, (σx

∗ ,σ y
∗) magnetic  conductivities  and Bz=Bzx+ Bzy .

This set of equation describes a medium that absorbs electromagnetic waves for finite values of the conductivities,
but still has the impedance of vacuum, providing that the relations σx /ϵ0=σx

∗ /μ0 and σ y /ϵ0=σ y
∗ /μ 0 hold.

Under these  conditions,  the  PML absorbs  perfectly  the wave of  any frequency coming at  any  angle at  the
infinitesimal limit. However, this property does not strictly holds for the discretized system which exhibits some
reflection that depends on the wavelength and angle of incidence of the waves [7].

Discretization of the PML

At second order, the wave equation in the PML medium (shown as in the set of equations 1) can be written in an
explicit linear form [7] as follows

(2)

Extension of these equations to higher order is straightforward [8].

Application to Staggered-Grid Pseudo-Spectral Time-Domain (PSTD) Solvers 

In the PSTD solvers,  the Fourier transformation is used for  the calculation of  the spatial  differentiations in
k-space, while the Leapfrog time step is retained for the temporal differentiation. Following the notations given in
[6], we have
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(3)

where F and F−1 are  respectively the forward  and inverse Fast  Fourier  transformations, k x and k y are  the
wavenumber in x- and y-directions. The terms exp(−ik x Δ x / 2) and exp(−ik yΔ y /2) represent the shifts in x- and
y-directions on the staggered grid.

REFLECTION OF A PLANE WAVE STRIKING A PML

For clarity, the derivation of the coefficients of reflection is presented in one dimension only. The same method
applies  to the derivation of the coefficients of reflection at  higher dimension. Following  [7],  the coefficient  of
reflection of a 1D plane wave propagating in the x-direction perpendicularly to the interface of the PML can be
computed with some analogy to the interferometer of Fabry-Perot, by integrating over the multiple transmission t
and reflection r  of rays between two rows of the grid (two plates in the interferometer). 

The coefficient of reflection for the entire layer is computed by summation of the coefficients of reflection of the
successive layer slices (locations i , i+1 /2 , i+1, i+3 /2... ). 

Coefficient of Reflection of the Entire PML Layer

Following  the  procedure  given  in  [7] ,  we
consider  a  PML layer  from j0 to j0+N L ,  where

N L is  the  depth  of  the  PML layer  in  number  of
nodes.  The  knowledge  of  the  coefficients  of
reflection and transmission of two consecutive slices
(details of the derivation of the analytical calculation
with extension to any order FDTD scheme are given
in  [8]),  say  slices  at j0+N L−1/2 and j0+N L ,
allows  us  to  calculate  the  coefficient  of  reflection

R j0+ N L−1 /2 of  the  two  consecutive  slices  taken

together. Fig.  1  illustrates  that  multiple  reflections
and transmissions of the wave need to be taken into
account  between  the  two  slices.  Their  integration
results in the following formula (valid at any order
and dimension) 

R j=r j−
t j R j+1 /2t j exp(−ik Δ x)

1+r j R j+1 /2exp (−ik Δ x)
, (4)

that  is  iterated  recursively  from j= j 0+ N L to
j= j 0 to get the coefficient of the entire layer.

RESULTS

In this section, we compare the coefficient of reflection from a PML for the FDTD solver at orders 2 to 128 and
the PSTD solver, as a function of wavelength and angle. Following [1], we define, for a grid cell of width Δ x ,
σ i=σmax(i Δ x /δ)n , with i∈[1; N L] where N L is the depth of the PML layer (in number of nodes), σmax=4 /Δ x ,
δ=5Δ x and n=2 .

FIGURE 1: Successive reflections and transmissions of a plane
wave between two consecutive row of grid slices. 
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Fig. 2 presents the coefficient of reflection of a plane wave that is striking a PML layer at normal incidence, as a
function of wavelengths. We observe a good agreement between the analytical calculation (represented by solid
lines) and the numerical results (represented by markers). The extension to higher order conserves the efficiency of
the PML layer and improves it at short wavelengths. As expected the coefficients of reflection obtained with the
PSTD solvers are very close to the ones of the FDTD solver at very high order. 

FIGURE 2: Coefficient of reflection with respect to the normalized
wavelengths of a plane wave striking a PML at normal incidence (lines:

analytical integration; markers: numerical simulations).

FIGURE 3: Coefficient of reflection of a plane wave with respect to its
angle of incidence with the PML layer, for a normalized wavelength

(lines: analytical integration; markers: numerical simulations). 



Fig. 3 shows the coefficient of reflection of a plane wave with respect to the angle of incidence ϕ for a given
wavelength, exhibiting a good agreement between the analytical calculation (solid lines) and the numerical results
(markers).  The coefficient  of reflection decreases at  higher order and higher angle of incidence. Tests on other
wavelengths show the same tendency [8].

CONCLUSION

Analysis  of  the  coefficient  of  reflection  of  a  PML layer  has  been  extended  to  any  order  for  the  FDTD
formulation of Maxwell's equations, and to its limit at infinite order, hence giving the coefficient for a PML layer
applied  with  a  PSTD solver.  Results  from the  analysis,  confirmed  from numerical  simulations,  show that  the
efficiency of absorption of the layer is improved at higher order (including at the PSTD infinite order limit) at most
wavelengths and angles .
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