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A B S T R A C T

Objectives: This study aims to identify a robust signature that performs well in predicting overall survival across
tumor phenotypes and treatment strata, and validates the application of Monte Carlo cross validation (MCCV) as
a means of identifying molecular signatures when utilizing small and highly heterogeneous datasets.
Materials and methods: RNA sequence gene expression data for 264 patient tumors were acquired from The
Cancer Genome Atlas (TCGA). 100 iterations of Monte Carlo cross validation were applied to differential ex-
pression and Cox model validation. The association between the gene signature risk score and overall survival
was measured using Kaplan-Meier survival curves, univariate, and multivariable Cox regression analyses.
Results: Pathway analysis findings indicate that ligand-gated ion channel pathways are the most significantly
enriched with the genes in the aggregated signature. The aggregated signature described in this study is pre-
dictive of overall survival in oral cancer patients across demographic and treatment strata.
Conclusion: This study reinforces previous findings supporting the role of ion channel gating, interleukin, cal-
citonin receptor, and keratinization pathways in tumor progression and treatment response in oral cancer. These
results strengthen the argument that differential expression of genes within these pathways reduces tumor
susceptibility to treatment. Conducting differential gene expression (DGE) with Monte Carlo cross validation, as
this study describes, offers a potential solution to decreasing the variability in DGE results across future studies
that are reliant upon highly heterogeneous datasets. This improves the ability of studies reliant upon similarly
structured datasets to reach results that are reproducible.

Introduction

Head and neck cancers are cancers of the upper airway and/or di-
gestive tract found in the oral cavity, laryngeal, pharyngeal, orophar-
yngeal, and hypo-pharyngeal tissues. Head and neck cancers make up
3% of cancers diagnosed each year [1,2]. Head and neck cancer in-
cidence has declined from 25 cases per 100,000 at risk in the 1990s to
15 cases per 100,000 at risk in the present day [3]. While the decrease
in head and neck cancer incidence may be due to a drop in tobacco use
[4,5], the mortality associated with these cancers has not changed
significantly in the last twenty years [6]. Human Papilloma Virus (HPV)
positive patients have been observed to have an improved survival and
response to treatment when compared to HPV negative patients.
However, these patients make up the minority of oral squamous cell
cancers (OSCC) [7]. Thus, the decline in mortality could be attributed
to decrease in smoking, increases in HPV positive cases, or other un-
known mechanisms.

Few studies have identified a group of genes predicting treatment

response in HPV-negative OSCC patients. To date, the most widely used
molecular signature guiding head and neck squamous cell carcinoma
(HNSCC) treatment is HPV status. HPV status can be measured directly
through polymerase chain reaction analysis, or indirectly through cy-
clin-dependent kinase inhibitor 2A (CDKN2A) expression. However,
HPV preferentially infects oropharyngeal tissues which make up only
15% of HNSCC [8]. There have been multiple studies that have iden-
tified the genetic markers that improve prediction of overall survival
when HPV status is known [9–12]. Unfortunately, there has been less
focus on HPV-negative OSCC patients, an HNSCC subgroup that is
known to respond significantly worse to treatment than patients with
Oropharyngeal Squamous Cell Carcinoma (OPSCC) [9,12]. OSCC pa-
tients have been shown to be less likely to be HPV positive than Or-
opharyngeal cancer patients and thus are more reflective of the out-
comes of HPV negative patients.

Past studies examining molecular signatures in OSCC have found
that pathways in cell migration, cell-to-cell signaling and interaction,
and cellular growth and proliferation are predictive of overall survival
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[13,14]. The keratin pathway is also notable in that it has been iden-
tified by several studies for its role in predicting the conversion of
leukoplakia to malignant tumor, tumor progression, nodal stage, and
overall response to treatment [15]. Of the OSCC studies listed the lar-
gest sample was 130 patients [14]. A common theme among the re-
ported studies is low reproducibility in the genes identified as pre-
dictive of advanced disease or survival.

There has been much success in the production of site specific
predictive models that draw upon the rich resource of data in the TCGA
[16]. Models predicting survival in glioblastoma, colorectal, ovarian,
and even head and neck cancer have drawn upon TCGA data in the past
[17–21]. The 2015 study examining head and neck cancer data in the
TCGA focused on gene mutations that were observed across all head
and neck cancer patients and in those patients that tested HPV positive.
While this study did describe treatment response, it did not utilize gene
expression data when conducting survival analyses. This study does
draw upon gene expression data in the TCGA to produce an aggregated
model that predicts survival across strata of tumor behavior, treatment
regimen, and gender.

There are a host of methods that can be applied in the identification
of a predictive molecular signature. When composing a signature that is
predictive and prognostic, there are several quality checkmarks that
must be addressed. Model building of any kind must go through an
internal validation process where data is divided between test and
training data. While model simplicity or complexity improve model
usability, they are superseded in importance by measures of model
performance [22]. Internal validation is an acceptable form of valida-
tion only when the test data set is completely untouched and no aspect
of test data plays a part in model development. A drawback to splitting
data in this way is the decrease in model efficiency due to the use of
only a subset of the total data. One method addressing this inefficiency
is to split a dataset into training and test data many times in a Monte
Carlo validation (MCCV) or leave-one-out cross validation. These
methods lead to nearly unbiased estimates of model performance (in
the case of leave-one-out cross validation), and do not require sacrifice
of sample size [23,24]. These methods have been applied by other
studies in the successful identification of predictive models in many
different types of cancer using leave-one-out cross validation [25–29]
and MCCV [30,31]. The application of MCCV involves random sam-
pling without replacement which means that subsets of the population
with gene expression values with strong effect have a greater oppor-
tunity to have that effect detected. MCCV differs from k-folds cross
validation in that in MCCV an observation may be chosen to be in-
cluded in a test set multiple times over the total number of iterations
over all analyses opposed to one time in K-fold validation. MCCV is also
viewed as a more conservative approach to cross validation as it
overestimates the model prediction error in comparison to a k-fold cross
validation which tends to underestimate prediction error [32]. External
validation is an important and often costly task required for measuring
a model’s exportability. It is for this reason that robust internal vali-
dation measures should be adopted by those studies that lack the
funding to carry out external validation in early stages of analysis.

Methods

Datasets

The Cancer Genome Atlas (TCGA) is a large, multi-dimensional,
multi-center project compiling genomics data for over 29 cancer types
into one central database [33]. TCGA contains clinical and demo-
graphic variables, gene expression profiling data, SNPs, protein ex-
pression, and methylation data. Clinical data on radiation dose, de-
mographic variables, exposures (tobacco, alcohol, and HPV),
chemotherapy type, and measures of overall and disease progression-
free survival are included in the TCGA database (Table 1). Data ac-
cessed for this study were publicly available through the TCGA genomic

data commons data portal. 523 head and neck cancer cases were
downloaded from the data portal with all corresponding gene expres-
sion counts and corresponding clinical data. Of these 523 patients 313
OSCC patients were selected. 264 of the remaining 313 OSCC patients
were included as only these patients possessed full survival data.

Differential expression analyses

Differential Gene Expression (DGE) analysis is a method of identi-
fying genes that are expressed differently across time, tissue, and con-
ditions, such as disease states [34]. This method of analysis uses fold
change and significance criterion to select the genes in a molecular
signature for predicting tumor phenotype, clinical subtype, or treat-
ment response. All patients with cancer in tongue, lip, alveolar ridge,
hard palate, floor of mouth, maxilla, and buccal mucosa were included.
OSCC patients were the largest grouping of head and neck cancer pa-
tients and thus provided the most power to detect influential genetic

Table 1
Patient demographics stratified by low and high risk molecular signature.

Characteristics ALL (264,
100%)

Low Risk (n= 151,
57%)

High Risk (n= 113,
42%)

Vital status
Alive 189 (130, 86.6%) (59, 52.2%)
Deceased 75 (21, 13.9%) (54, 47.7%)

Age
Age greater than 60 152 (85, 56.2%) (67, 59.2%)
Age less than 61 112 (66, 43.7%) (46, 40.7%)

Gender
Female 88 (55, 36.4%) (33, 29.2%)
Male 176 (96, 63.5%) (80, 70.7%)

Tumor grade
G1 34 (19, 12.6%) (15, 13.3%)
G2 153 (92, 61.3%) (61, 54.4%)
G3 59 (29, 19.3%) (30, 26.7%)
G4 5 (3, 2.0%) (2, 1.7%)
GX 11 (7, 4.6%) (4, 3.5%)

Race
White 224 (127, 86.3%) (97, 88.1%)
Not White 33 (20, 13.6%) (13, 11.8%)

Clinical stage
Stage I 8 (4, 2.7%) (4, 3.6%)
Stage II 57 (28, 19.1%) (29, 26.1%)
Stage III 58 (38, 26.0%) (20, 18.0%)
Stage IVA 126 (71, 48.6%) (55, 49.5%)
Stage IVB 6 (4, 2.7%) (2, 1.8%)
Stage IVC 2 (1, 0.6%) (1, 0.9%)

Alcoholic Drinks > 2 consumed per day
TRUE 57 (37, 50.6%) (20, 41.6%)
FALSE 64 (36, 49.3%) (28, 58.3%)

History of smoking
TRUE 195 (113, 74.8%) (82, 72.5%)
FALSE 69 (38, 25.1%) (31, 27.4%)

Tumor Necrosis Greater than or equal to 15%
TRUE 115 (60, 41.0%) (55, 50.4%)
FALSE 140 (86, 58.9%) (54, 49.5%)

Radiation > 66 Gy
TRUE 23 (14, 11.4%) (9, 9.2%)
FALSE 196 (108, 88.5%) (88, 90.7%)

Receiving chemotherapy
TRUE 95 (60, 39.7%) (35, 30.9%)
FALSE 169 (91, 60.2%) (78, 69.1%)

“Chemotherapy” is not specific to a given chemotherapeutic agent. This merely reflects
whether a patient was assigned to chemotherapy treatment or not. History of Smoking
stratifies patients into “never” or “ever” smokers. High Grade includes G1 and G2 pa-
tients, while low grade includes G3, G4, GX tumor grades. Not all characteristics total to
264 as some variables were incomplete (Tumor Grade NA=2, Clinical Stage NA=7,
alcohol consumption per day NA=143, Tumor Necrosis NA=9, Radiation NA=45)
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pathways predicting treatment response. DGE analysis yielded a list of
genes that are expressed differently between two strata. The strata used
in this study were vital status within five years of follow-up. The TCGA
RNA sequencing data were preprocessed with RSEM software, yielding
normalized counts per million (CPM) gene expression counts [16]. The
data were filtered to CPM≥ 2, absolute fold change ≥1.5, Fisher’s
exact p-value≤ 0.05 and a false discovery rate ≤0.05. The list of genes
produced by these filters was used to create a predictive signature
comprised of 20 genes selected by the highest absolute log fold change
value.

100 Runs of differential gene expression analysis using Monte
Carlo validation

A defining feature of MCCV is the random selection of observations
into test and training sets across multiple iterations [35]. This study did
require that some randomness be sacrificed, as a constant proportion of
living and deceased were included at each iteration (opposed to a
random proportion) to ensure that Cox regression survival analyses
could be conducted. DGE analysis was repeated 100 times with a ran-
domly selected (without replacement) set of 100 patients from the 264
total patients. Of the 100 patients selected in each iteration, 66 survived
past 5 years and 34 were deceased prior to 5 years. At each iteration the
top 20 genes with highest absolute fold change value were chosen to be
placed in an additive Cox regression model predicting overall survival
in OSCC patients. An AUC was produced for each of the signatures
(comprised of 20 genes) created at each of the 100 iterations using the
remaining 164 patients as a test set. The selected genes were aggregated
to yield a table counting the number of times each gene met filter cri-
teria over all the 100 iterations (Supplemental Table 1). 100 iterations
is double the number of iterations used in previous studies applying
MCCV for similar purposes [36,37]. The number of genes within the
final model was set at 40 to produce more robust estimates of survival
than those models with 20 genes. The number of genes included in the
signature did not exceed 40 as the model would not converge properly
due to sample size restrictions. This application of MCCV has been used
in the past to identify genetic predictors of disease status in breast
cancer and Parkinson’s disease [36,37]. This study applies a similar
method to identify those gene expression patterns that exert the
greatest influence in predicting treatment response in OSCC.

The final aggregated model was comprised of counts per million for
each gene in the final aggregated signature multiplied by a model
weight. Once all 40 of the weighted CPM were summed across all 40
genes a risk score would be generated indicating whether a patient
would be set into high (> 1.5) of low (≤1.5). The cutoff for high risk
and low risk was set as the minimum difference between sensitivity and
specificity on the ROC curve. This minimum value was identified using
the pROC package in R [38].

In order to provide additional assurance that these results were not
reached by chance alone, the study repeated the 100 signature vali-
dations using genes that were randomly selected from the 20,530 genes
in the dataset. The distribution of AUC across 100 runs of signatures
based upon DGE analysis results were compared to the distribution of
AUC derived from signatures comprised of genes that were randomly
selected. To visualize these results, histograms were created by binning
AUC by frequency (Supplemental Fig. 1).

Sensitivity of the aggregated signature

The sensitivity of the aggregated signature was validated by ap-
plying it to clinical subsets of all 264 test patients. Kaplan-Meier sur-
vival curves were used for this series of validation. Cox regression was
used to determine the sensitivity of the aggregated signature when
other variables were in the model. The cox model included race,
gender, chemotherapy treatment, and tumor grade. Alcohol consump-
tion and radiation variables were run in the model with dummy

variables to address the effect of large amount of missingness within
these variables (145 missing variables in alcohol consumption, 45
missing variables for radiation dose). These variables were not found to
have a significant impact on the estimates produced for the high risk
scores and were excluded from the final cox regression model. Tumor
Necrosis was excluded from the model due to the high amount of cor-
relation with the gender variable which led to unstable estimates (There
were no female patients with tumor necrosis< 15% present in the
sample). Clinical stage was not included within this analysis due to the
improved fit offered by the tumor grade variable, and both clinical
stage and tumor grade were found to be nonsignificant when included
within the model. Similar results for both tumor grade and clinical stage
are not unexpected as tumor grade is a component of the clinical sta-
ging criteria. All analyses used age as a strata to prevent bias created by
any skewness in the distribution of age within each variable. Univariate
cox regression was performed to provide context for multivariable
analyses (Table 2).

Pathway enrichment analysis methods

The R packages edgeR, and PA Reactome were used to conduct DGE
and pathway enrichment analyses, respectively [39,40]. Pathway ana-
lysis tools and annotation databases were used to examine which
pathways were enriched with the most frequently identified genes in
the signatures produced over one hundred rounds of DGE. It is im-
portant to note that false discovery rate (FDR) produced by PA Re-
actome was not weighted for the frequency we observed genes to be
significant over the 100 run DGE analysis, and thus the 0.05 FDR should
be considered a conservative threshold. A table of those pathways
meeting a Fisher exact p-value threshold of 0.05 was included in the
results (Table 3).

Results

Differential gene expression

Each run of the DGE analysis identified differentially expressed
genes based upon the gene expression values of randomly selected
patients. An AUC reflecting the accuracy of each signature (each com-
prised of 20 genes) was recorded over 100 runs. These AUCs had a
median of 0.84, max of 0.96, minimum of 0.65, mean of 0.83, and a
standard deviation of 0.04. Similar analyses were performed on gene
signatures of genes randomly selected from the 20,530 genes in the

Table 2
Univariate and multivariable cox regression analyses.

Univariate Multivariable

Characteristic HR 95%
Confidence
Interval

p-value HR 95%
Confidence
Interval

p-value

No Smoking
History

0.7 0.4–1.2 0.24 0.6 0.1–3.2 0.5

Female Gender 0.4 0.2–0.7 0.002 0.4 0.2–0.07 0.004
Tumor

Grade < 2
0.7 0.5–1.2 0.23 0.7 0.4–1.2 0.6

Caucasian Race 1.0 0.4–1.9 0.96 1.0 0.5–2.16 0.90
Chemotherapy

Not
Received

1.9 1.1–3.4 0.01 1.9 1.1–3.5 0.01

High Risk
Signature

3.3 1.9–5.5 <0.0001 3.25 1.3–6.3 < 0.0001

Univariate and Multivariable Cox Regression adjusting for pertinent clinical strata. All p-
values less than 0.05 are considered significant. Radiation and Alcohol not included in
analyses within table due to high number of missing observations. Tumor Necrosis re-
moved from table due to the fact that there were 0 female patients with tumor ne-
crosis> 15%. All Analyses were age stratified.
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dataset. The distribution of AUC for signatures made of randomly se-
lected genes were median of 0.5, max of 0.63, minimum of 0.36, a mean
of 0.5 and a standard deviation of 0.05 (Supplemental Fig. 1)

Differential gene expression analysis results were aggregated into a
list of 40 of the most frequently identified differentially expressed genes
included over all 100 runs of MCCV (Supplemental Table 1). When this
molecular signature was tested in the dataset containing all patient data
(n=264), it was found to correctly classify patient survival status, and
it was found to have a specificity of 72%, sensitivity of 72%, and an
area under the ROC curve of 75% (Fig. 1a and b). The distribution of
patient demographics across risk scores can be viewed in (Table 1).

Validation of aggregate signature across tumor phenotypes and clinical
strata

This model was applied to subsets of the 264 patient test dataset.
When overall survival difference was measured using all patients in the
test set, it was found that there was a significant difference in patient
survival outcomes when stratifying by the molecular signature risk
score (p-value=2.6e−08) (Fig. 1c). When stratifying by tumor grade,
the signature was predictive of survival in those patients with high
grade (Greater than G2) tumors and low grade (Less than G3) tumors
(p-value 0.0008, 8.8e−06), respectively (Fig. 2a and b).

The log rank survival by molecular signature risk score in only those
patients receiving chemotherapy was (p-value=0.002). The sig-
nificance of difference by risk score in those patients not receiving
chemotherapy was (p-value=0.002) (Fig. 3a and b). This signature
continues to be predictive when all women were removed from the
sample and the prediction of survival in men alone was tested (p-
value=9.7e−07). However, this signature was not predictive in
women and was found to be only marginally significant (p-
value=0.04) (Fig. 3c and d).

Univariate and multivariable cox regression

After adjusting for confounding variables, the signature risk score
continued to be predictive of treatment response in both multivariable
and univariate analyses (Table 2). High risk score was associated with
an HR of 3.2 (95% CI 1.3 to 6.3, p-value < 0.0001) times greater odds
of death when compared to patients with low risk score in a univariate
model. No significant effect was discovered when this model was

applied to women alone. It was observed that both the signature and
tumor necrosis lost effect size when performing multivariable adjust-
ment. As this seemed indicative of possible correlation between the two
variables, a Spearman correlation test was applied and yielded a 21%
correlation significant with a (p-value=9e−04). Our results showed
that in addition to the signature risk score, gender and chemotherapy
treatment were also predictive of overall survival.

Pathway analysis results

Significant pathways enriched with genes in the original signature
were Interleukin, Calcitonin, ligand-gated ion channel transport, kera-
tinization, and cornified envelope pathways (Table 3). There were no
pathways that were enriched with greater than 2 genes from our sig-
nature. The most significantly enriched pathway was the ion channel
transport pathway In total 11 genes from the 40 genes within the ag-
gregated signature were identified as being enriched in the aforemen-
tioned pathways. The ligand gated ion channel transport pathway
passed both fisher exact test and false discovery rate thresholds for
significant enrichment (fisher’s exact p-value=2.3 2–06, False dis-
covery p-value= 3.4 e−04). Genes within the ligand gated ion channel
transport pathway were GLRA4 and HTR3C which were identified as
significantly differentially expressed in 17% and 13% of the MCCV
respective replications. All pathways listed in Table 3 meet a Fisher’s
exact p-value of 0.05 or less.

Discussion

Interpretation of signature validation

The aggregated signature was shown to be predictive of treatment
response in OSCC patients regardless of chemotherapy treatment status,
or tumor grade. In addition to the identification of a signature that
predicts overall survival in OSCC patients, this study also validated the
use of Monte Carlo cross validation in producing gene signatures that
are more likely to be reproduced across multiple studies. This method
can be adopted by other researchers that wish to apply free and publicly
available data to the testing of hypotheses in a manner that has the
greatest likelihood of reproducibility across datasets.

Table 3
Pathway analysis of aggregated signature.

Pathway name Number of genes from
aggregate signature in pathway

Total number of
genes in pathway

Fisher’s exact p-
value

Aggregated signature genes
found in pathway

Ligand-gated ion channel transport 2 33 2.27E−06 HTR3C; GLRA4
Defective pro-SFTPC causes pulmonary surfactant metabolism

dysfunction 2 (SMDP2) and respiratory distress syndrome
(RDS)

1 2 0.005 SFTPC

Assembly of active LPL and LIPC lipase complexes 1 30 0.01 FGF21
Surfactant metabolism 1 52 0.01 SFTPC
Formation of the cornified envelope 2 130 0.01 KRT38; KRT72
Defective ABCA3 causes pulmonary surfactant metabolism

dysfunction type 3 (SMDP3)
1 9 0.02 SFTPC

Regulation of signaling by NODAL 1 12 0.03 LEFTY2
Calcitonin-like ligand receptors 1 11 0.03 CALCR
Plasma lipoprotein remodeling 1 54 0.03 FGF21
Class B/2 (Secretin family receptors) 2 99 0.04 CALCR; GLP2R
Keratinization 2 218 0.04 KRT38; KRT72
POU5F1 (OCT4), SOX2, NANOG repress genes related to

differentiation
1 10 0.04 CDX2

Interleukin-4 and 13 signaling 1 212 0.04 IL17A

Pathway analysis produced using Pathway Reactome. The “Fisher’s exact p-value” represents the probability that the genes would be selected if they were selected by chance alone. Only
pathways with a p-value less than 0.05 were listed in this table. The false discovery rate (FDR) was also calculated but not shown here. The FDR represents the probability that a gene is
significantly enriched in error. The FDR is considered to be a conservative measure of significance, as it is not weighted to adjust for the number of times a gene was identified over 100
runs. Of the pathways listed only the first “Ligand-gated ion channel transport” had an FDR p-value of less than 0.05 (p-value= 3.43E−04).
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Interpretation of pathway enrichment

The ion gate channel pathway was one of the pathways enriched
with genes in the aggregated signature identified in this study. Ion gate
channel pathway genes within the aggregated signature that were
found to be significantly enriched were 5-Hydroxytryptamine Receptor
(serotonin receptor) (HTR3C) and Glycine Receptor Alpha (4GLRA4).
HTR3C has also been reported to be associated with other upper GI
cancers such as esophageal adenocarcinoma [41]. Other Ion channel
regulators like voltage-gated potassium channel Kv3.4 mRNA expres-
sion have been found to affect the progression of OSCCs, and inhibition
of Kv3.4 inhibits growth of OSCC [42–44]. POU5F1, OCT4, SOX2,
NANOG gene repression pathways were also found to be significantly
enriched. These genes play a role in chemosensitivity to platinum based
chemotherapies [45,46]. The keratin pathway is also notable in that it
has been identified for its role in predicting the conversion of leuko-
plakia to malignant tumor [47,48]. The MCCV approach did not detect
all pathways typically associated with the development of OSCC.
Pathways associated with HPV negative OSCC development include
AKT, JNK, IL-6/STAT3, ILK, RAS, MAPK/ERK, p38/PAK, TGFβ, PI3K/

mTOR and WNT signaling. The research questions focused upon by this
study were which pathways were associated with treatment response.
Thus, pathways associated with disease progression were not identified.
Evidence of supporting literature is provided (Supplemental Table 2) in
a matrix of gene names and search terms related to OSCC, head and
neck cancer, and cancer treatment response produced by Pubmatrix
[49] (Supplemental Table 2). The Pubmatrix results show that 65% of
genes identified in this study are supported by existing literature re-
porting these genes’ roles in treatment response, survival, and pro-
gression.

Strengths and limitations

This study had several limitations, TCGA data are known to be
biased towards patients with later stage cancers with tumor sizes that
are greater than 200 g [21,50]. Additionally, samples in TCGA are
contributed by multiple academic medical centers where collection
methods may vary. When studying rare cancers it is common to have
analysis curtailed by sample size, which is the limitation that this study
hopes to specifically address through the application of MCCV. OSCC

Fig. 1. Validation of Aggregated Signature by Histogram, ROC Curve, Overall Survival Plot. ROC curve threshold was selected by taking the point where there was a minimal difference
between sensitivity and specificity. True Positive Fraction is synonymous with “Sensitivity”, False Positive Fraction is synonymous with 1-Specificity.
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occurs more often in men than women and thus women only make up
approximately 1/3 of our sample. The Monte Carlo validation approach
is well suited to address these sample size limitations and is meant to
serve as a model for other studies utilizing similar datasets. A drawback
of the MCCV approach is that it necessitates discarding signatures
identified as predictive in single runs. Such sacrificed signatures may
indeed point to true biological mechanisms which the other iterations
of analysis did not detect due to their unique mix of patients. MCCV is
designed to exclude all but the strongest effects. In many cases a
combination of weak effects of genes may produce a predictive sig-
nature that can classify patients with accuracy but makes interpretation
of biological mechanisms difficult. This study provides support for
greater adoption of MCCV when conducting genomic or transcriptomic
research in less common cancers.

Conclusion

The role of ion gate channel pathway in OSCC and its role in a
molecular signature predicting treatment response is supported by this
study. The ion channel gate pathway was the only pathway to pass both
fisher exact test and false discovery rate significance thresholds. These
results provide evidence that applying a MCCV approach to DGE model
creation is a suitable method to control variability in results when using
heterogeneous datasets, and offers a method of validation prior to de-
voting time and funding required for additional sequencing. The ro-
bustness of this signature was supported by the finding that the dis-
tribution of AUC for random signatures and signatures selected through
MCCV were completely separate. Those researchers adopting hetero-
geneous datasets combined over multiple studies must address issues of
result variability if they truly wish to contribute to the advancement of
this field. This study describes and validates one approach that may be
applied towards this goal.

Fig. 2. Survival Analysis, Stratifying by Tumor Grade. High tumor grade in the lot refers to patients with tumor grade of three or greater. Low tumor grade refers to patients with grade of
grade 2 or lower.
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