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In the process of finding Einstein metrics in dimension n ≥ 3, we can search critical
metrics for the scalar curvature functional in the space of the fixed-volume metrics
of constant scalar curvature on a closed oriented manifold. This leads to a system of
PDEs (which we call the Fischer–Marsden Equation, after a conjecture concerning this
system) for scalar functions, involving the linearization of the scalar curvature. The
Fischer–Marsden conjecture said that if the equation admits a solution, the underlying
Riemannian manifold is Einstein. Counter-examples are known by O. Kobayashi and
J. Lafontaine. However, almost all the counter-examples are homogeneous. Multiple
solutions to this system yield Killing vector fields. We show that the dimension of the
solution space W can be at most n + 1, with equality implying that (M, g) is a sphere
with constant sectional curvatures. Moreover, we show that the identity component of the
isometry group has a factor SO(W ). We also show that geometries admitting Fischer–
Marsden solutions are closed under products with Einstein manifolds after a rescaling.
Therefore, we obtain a lot of non-homogeneous counter-examples to the Fischer–Marsden
conjecture. We then prove that all the homogeneous manifold M with a solution are in
this case. Furthermore, we also proved that a related Besse conjecture is true for the
compact homogeneous manifolds.
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1. Introduction and Summary of Results

Let M be a closed, connected, orientable manifold of dimension n ≥ 3. Consider
the scalar curvature s as a function on the space S of Riemannian metrics of fixed
(unit) volume and constant scalar curvature. Define the Laplacian as the trace of the
Hessian � = gij∇i∇j . Eigenvalues of the Laplacian are (necessarily non-negative)
constants λ ≥ 0 for which there exist functions u ∈ C∞(M), not identically zero,
such that

�u + λu = 0 (1)

(beware that in Besse [1], for instance, the opposite sign convention is used for �).
From Koiso [14], we can conclude that, for any g ∈ S, if s/(n− 1) is not a positive
eigenvalue of the Laplacian, then, for any symmetric bilinear 2-tensor h such that

Lh := ∇i∇jhij −�(hijg
ij) − hijR

ij = 0 and
∫

M

hijg
ijdµ = 0 (2)

we can find a one-parameter family g(t) in S with g′(0) = h. Thus, for generic
g ∈ S, the set of these h can be thought of as the tangent space of S. L is in fact
the linearization of the scalar curvature, so that

∂

∂t
(sg+th+O(t2))t=0 = Lh. (3)

Following [1, p. 128], suppose g is a metric with s/(n− 1) not a positive eigenvalue
of the Laplacian (so s = 0 is allowed). Define a metric g ∈ S to be critical for the
Einstein–Hilbert action E(g) =

∫
M

sgdµ if, given any one-parameter family g(t) in
S with derivative g′(0) = h as above, we have d

dtE(g)(0) = 0. Then g is critical in
this sense if and only if there exists some function f ∈ C∞(M) such that

(L∗f)ij := ∇i∇jf − (�f)gij − fRij = Rij − s

n
gij , (4)

where L∗ denotes the L2-adjoint of L. For completeness, we outline a proof in the
appendix. Now, taking the trace of Eq. (4), we obtain

�f +
s

n − 1
f = 0 (5)

so that, since s/(n− 1) is not a positive eigenvalue, we must have f a constant (in
fact, zero) and g must be an Einstein manifold Rij = (s/n)gij . Besse [1, 4.48] goes
further and asks, what if s/(n− 1) is in the spectrum? If g obeys Eq. (4) (and so is
formally critical), must g be Einstein? If g is not Einstein, f cannot be a constant.

In this work, we choose to focus on what happens if there are multiple solutions
f1 and f2 to (4). Indeed, since f is an eigenfunction of the Laplacian, we can write
u := 1 + f and rewrite (4) as the critical metric equation

∇i∇ju = uRij − s

n − 1

(
u − 1

n

)
gij . (6)

1540006-2

In
t. 

J.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 Z
hu

an
g-

da
n 

G
ua

n 
on

 0
3/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

February 26, 2015 15:29 WSPC/S0129-167X 133-IJM 1540006

Killing fields generated by multiple solutions

If u = 1 + f1 and v = 1 + f2 are solutions to the above, then their difference
x = f1 − f2 solves the linear equation

∇i∇jx = x

(
Rij − s

n − 1
gij

)
(7)

and x is an eigenfunction of the Laplacian with eigenvalue s/(n− 1). The Fischer–
Marsden Conjecture asked whether g that satisfy (7) are Einstein. Counter-
examples to that have been found (see, for instance, Kobayashi [11] and Lafontaine
[15]). We notice that almost all the known examples are homogeneous and the
dimension of the solution space of (7) is at least 2.

We will show that in general any product metric of the form Sm×N where N is
Einstein yields a counterexample. We will call an x satisfying (7) a Fischer–Marsden
solution.

If u and v are solutions to the critical metric equation (6), then (udv − vdu)�

is a conformal Killing field. Even nicer, if x and y are Fischer–Marsden solutions,
then

Y = x∇y − y∇x (8)

is a Killing field (as observed in Lafontaine [16] where the situation in dimension
n = 3 is studied). We show that such a Killing field satisfies the equations

RiljkY l = RijYk − RikYj − s

n − 1
(gijYk − gikYj), (9)

where Rijkl are components of the Riemann curvature tensor such that Rij =
−Rkikj , and

Ric(Y ) = ρY (10)

for some smooth function ρ defined where Y �= 0 (depending on g but not on choice
of Y ). Furthermore, if w is any Fischer–Marsden solution, then so is dw(Y ) =
Y i∇iw. There is a constant β < 0 such that, if x and y are L2-orthonormal Fischer–
Marsden solutions, then

|∇x|2 + β

x2
=

|∇y|2 + β

y2
=

∇ix∇iy

xy
= ρ − s

n − 1
. (11)

We use this to prove that the space of Fischer–Marsden solutions has dimension
less than or equal to (n + 1) with equality only if (M, g) has constant curvature. In
fact, we prove the stronger statement.

Theorem A. Let W be the space of Fischer–Marsden solutions of (7), and I be the
identity component of the isometry group of (M, g). Then I is locally SO(W )×G1

with a compact Lie group G1 which is the kernel of the action of I on W . Moreover,
all the SO(W ) orbits are either Sdim W−1 or its fixed points.
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We then show the following.

Theorem B. If (M, g) admits a Fischer–Marsden solution u of (7), then (after
a possible rescaling) its product with a positive Einstein manifold (with a constant
Einstein function) also has u as a Fischer–Marsden solution of (7).

Thus we exhibit many nonhomogeneous geometries admitting solutions of (7).
In the homogeneous case, we obtain a converse:

Theorem C. If (M, g) is closed homogeneous manifold admitting a nontrivial
Fischer–Marsden solution of (7), then we can write M = Sdim(W )−1 × N with
N a homogeneous Einstein manifold (with a constant Einstein function).

We shall study the nonhomogeneous case and equation of (6) from [1] in the
near future. Here, we like to mention that if there is a solution for (6) on a non-
Einstein manifold (on Einstein manifold (6) and (7) are essentially the same), we
can always choose u to be invariant under the isometry group and W ⊕ R(u − 1)
is an invariant subspace of eigenfunctions since any difference of two solutions of
(6) is a solution of (7). In particular, there is no homogeneous manifold M for (6)
except that M is Einstein. This is because if (M, g) is homogeneous and there is a
invariant solution u of (6), it must be a constant. The left side of (6) is zero and
the right side of (6) implies that g is Einstein. That is, we have the following.

Theorem D. The Besse conjecture is true for compact homogeneous Riemannian
manifolds.

This is possibly the first result for the Besse conjecture.
Throughout this paper, normal coordinates at considered points are used. See

[13, part I, p. 148] for a reference.
In Sec. 2 and thereafter, all Riemann metrics are assumed to have constant

scalar curvatures.

2. The Killing Fields and the Induced Map

First we remark that if u and v are solutions to

∇i∇ju = uRij − s

n − 1
(u − α)gij (12)

for some constant α, then

∇j(u∇iv − v∇iu) = ∇ju∇iv −∇iu∇jv − sα

n − 1
(u − v)gij , (13)

∇i(u∇jv − v∇ju) + ∇j(u∇iv − v∇iu) =
2sα

n − 1
(v − u)gij (14)

so that (udv − vdu)� is a conformal Killing field if α �= 0 and a Killing field if
α = 0 (see [1, p. 40] for basic properties for Killing vector fields). Moreover, any
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two scalar-function solutions u and v to (12) differ by a Fischer–Marsden solution,
so we henceforth restrict our attention to the equation

∇i∇jx = x

(
Rij − s

n − 1
gij

)
(15)

and denote solutions to the above by x and y, with the Killing field they generate by

Y i = {x, y}i = x∇iy − y∇ix. (16)

Our most important tool will be the map f �→ AY f = Y i∇if = df(Y ) with
f ∈ C∞(M). This induced map is skew-symmetric with respect to the L2-inner
product:∫

M

uAY vdµ +
∫

M

vAY udµ =
∫

M

Y i∇i(uv)dµ =
∫

M

∇i(Y iuv)dµ = 0 (17)

if Y is divergence-free. This is also because the isometry group is compact and there-
fore, any finite-dimension representation of it is skew-symmetric. Furthermore, if Y

is a Killing vector field, AY takes eigenfunctions of the Laplacian to eigenfunctions
of the Laplacian with the same eigenvalue.

The induced map AY also takes Fischer–Marsden solutions to Fischer–Marsden
solutions since Y is a Killing vector field. This is because, if ϕ is an isometry and
u is a Fischer–Marsden solution, then ϕ∗u is a Fischer–Marsden solution (since the
defining equation is in terms of Riemannian invariants). Thus, given a Killing field
Y and its one-parameter family of isometries ϕt, we have that ϕ∗

t u are solutions.
Taking the partial derivative with respect to t, we have that Y i∇iu = AY u is a
solution.

Henceforth, we write Au for AY u if there is no possibility of confusion. Now we
study the induced map in more depth.

Proposition 1. Let Y = {x, y} be a Killing field generated by Fischer–Marsden
solutions x and y. Let A be the map induced by Y . Then |Y |2 = xAy − yAx, and
A2x = −β2x and A2y = −β2y for some constant β.

Proof. We have

|Y |2 = (x∇iy − y∇ix)Y i = xAy − yAx. (18)

Next

0 = 2Y iY j∇iYj = Y i∇i|Y |2 = Y i(∇ix(Ay) −∇iy(Ax)

+ x∇i(Ay) − y∇i(Ax)) = xA2y − yA2x. (19)

If x = 0 at a point, then y = 0 or A2x = 0 there. But if x = y = 0 at a point, then
Y = 0 there so that A2x must also equal zero there. So the nodal (vanishing) set
of x is contained in the nodal set of A2x. It follows from an observation in Gichev
[4] that the eigenfunctions x and A2x must be linearly dependent.
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Actually, what [4] asserts is the following. Let u and v be eigenfunctions cor-
responding to the same eigenvalue. If a nodal domain (connected component of
the complement of the nodal set) of u is contained in that of v, then u = cv for
c a constant. Now let N [u] denote the nodal set of u and suppose N [v] ⊆ N [u].
Then N [u]c ⊆ N [v]c. If a connected component of N [u]c is not contained in a con-
nected component of N [v]c, then the boundary of the latter, namely N [v], intersects
N [u]c. But that is impossible since N [v] ⊆ N [u]. Thus if one nodal set is contained
in another, we can conclude that the eigenfunctions are linearly dependent.

We see that x and y are eigenvectors of A2 with the same eigenvalue. Since A

is skew-symmetric by (17), we have∫
M

xA2xdµ = −
∫

M

(Ax)2dµ ≤ 0 (20)

so we can write A2x = −β2x and A2y = −β2y for some constant β. This also
follows from (19).

This proves the proposition.

Proposition 2 (Special Form of the Curvature). Let Y be a Killing field
generated by Fischer–Marsden solutions x and y. We have

RiljkY l = RijYk − RikYj − s

n − 1
(gijYk − gikYj) (21)

and Rj
i Yj = ρY Yi for some function ρY defined where |Y | �= 0 for which dρY (Y )= 0.

Proof. Let Y = {x, y}. Taking its covariant derivative, we have by (15)

∇jYk = ∇jx∇ky − xy

(
Rjk − s

n − 1
gjk

)

−∇kx∇jy + xy

(
Rjk − s

n − 1
gjk

)
, (22)

∇jYk = ∇jx∇ky −∇kx∇jy. (23)

Since Killing fields Y satisfy ∇i∇jYk = RiljkY l (see, for instance, Besse [1, 1.81,
p. 40]), again taking the covariant derivative and applying (15) we obtain

RiljkY l =
(

Rij − s

n − 1
gij

)
Yk −

(
Rik − s

n − 1
gik

)
Yj . (24)

Then

0 = RiljkY iY lY k = RijY
i|Y |2 − s

n − 1
Yj |Y |2 −

(
Rc(Y, Y ) − s

n − 1
|Y |2

)
Yj

(25)

so that RijY
j = Rk

i Yk = ρY Yi for some function ρY . Then by divergence-freeness
of Y , symmetry of Ric, and skew-symmetry of ∇Y ,

dρY (Y ) = Y i∇iρY = ∇i(ρY Y i) = ∇i(RijY
j) = 0 + Rij∇iY j = 0 (26)
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since s is a constant, by the second Bianchi ∇iRij = 0 (see [1, p. 120, 4.19]) and
the proposition follows.

3. The Fischer–Marsden Solution Space and the Isometry Group

At this point we see, given Y = {x, y}, that x and y are special eigenfunctions for
AY . However, it is not clear how y and Ax are related. Let us explore this now.

Proposition 3. Let Ȳ and Y be two Killing fields that are pointwise linearly depen-
dent. Then they are linearly dependent as vector fields.

Proof. If they are pointwise linearly dependent, then

ȲiYj = YiȲj , Ȳi =
g(Ȳ , Y )
|Y |2 Yi = fYi. (27)

Then where |Y | �= 0,

∇j Ȳi = ∇jfYi + f∇jYi. (28)

Therefore,

∇ifYj = −∇jfYi, ∇jfYj = 0. (29)

It follows that

|∇f |2|Y |2 = −(∇jfYj)2 = 0 (30)

everywhere, which is only possible if f is constant, and Ȳ and Y are linearly
dependent.

Proposition 4. Let Y = {x, y} be a Killing field generated by L2-orthonormal
Fischer–Marsden solutions x and y. Let A be the induced map. Then there is a
constant β < 0 such that

Ax = βy, Ay = −βx, (31)

|∇x|2 + β

x2
=

|∇y|2 + β

y2
=

∇ix∇iy

xy
= ρY − s

n − 1
. (32)

Proof. Since Ax is also Fischer–Marsden, we know we can get another Killing
field by

Ȳ i = x∇iAx − Ax∇ix. (33)

But

Ax = x∇jx∇jy − y|∇x|2. (34)

So

∇iAx = ∇ix∇jx∇jy −∇iy|∇x|2 + x

(
ρY − s

n − 1

)
Y i

+ (xy − yx)
(

Rij − s

n − 1
gij

)
∇jx. (35)
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Thus

Ȳ i = x∇ix∇jx∇jy − x∇iy|∇x|2 + x2

(
ρY − s

n − 1

)
Y i

− x∇ix∇jx∇jy + y∇ix|∇x|2, (36)

Ȳ i =
[
x2

(
ρY − s

n − 1

)
− |∇x|2

]
Y i. (37)

By Proposition 3, we see that there is some constant β̄ such that

x2

(
ρY − s

n − 1

)
− |∇x|2 = β̄. (38)

We must have β̄ �= 0. Otherwise Ȳ = 0, and x∇iAx = Ax∇ix. Contracting with Y

now yields xA2x = (Ax)2. Actually, β̄ has nothing to do with y and only depends
on x. We could always make it to be −1 by rescaling as we shall see later on, on
the unit sphere. Integrating, we have −∫

M (Ax)2dµ =
∫

M (Ax)2dµ and so Ax = 0
and hence A2x = 0. But from Proposition 1, A2x/x = A2y/y so that also A2y = 0.
But then 0 =

∫
M

yA2ydµ = −∫
M

(Ay)2dµ so that Ay = 0. Since |Y |2 = xAy − yAx

by (18), we have Y identically 0. But then dx/x = dy/y so that y = Cx, which
contradicts the orthogonality of x and y. So indeed β̄ �= 0. Moving forward, from
Ȳ = β̄Y we have

x∇i(Ax − β̄y) = (Ax − β̄y)∇ix. (39)

Separating variables and solving the differential equation, there is a constant C

such that

Ax = β̄y + Cx. (40)

Integrating,

0 =
∫

M

xAxdµ = β̄

∫
M

xydµ + C

∫
M

x2dµ. (41)

Thus C = 0 since
∫

M xydµ by the assumption of L2-orthogonality. So Ax = β̄y.
Then Ay = −(β2/β̄)x by Proposition 1. We conclude that β �= 0, by reasoning
similar to that which implied β̄ �= 0.

Now write c = |β/β̄| and x̃ = x
√

c and ỹ = y/
√

c. Then we have Ax̃ = βỹ and
Aỹ = −βx̃. Integrating

ỹAx̃ + x̃Aỹ = β(ỹ2 − x̃2) (42)

we see that
∫

M x̃2dµ =
∫

M ỹ2dµ, which is the same as saying β̄2 = β2 (because x

and y are orthonormal by assumption). Since we have not yet fixed the sign of β,
we will fix β = β̄.

By considering the system of equations for Ax and Ay:

x∇ix∇iy − y|∇x|2 = βy, x|∇y|2 − y∇ix∇iy = −βx (43)
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and (38), we deduce

|∇x|2 + β

x2
=

|∇y|2 + β

y2
=

∇ix∇iy

xy
= ρY − s

n − 1
. (44)

Consider the first equality in (44), and examine a point where x = 0 and y �= 0
(such a point must exist, or else x and y are linearly dependent). We see that β < 0,
and this finishes the proof.

Proposition 5. The constant β < 0 and ρY do not depend on the choice of Killing
field Y generated by Fischer–Marsden solutions x and y, and we write simply ρ.
Moreover, if A is the induced map and u is a Fischer–Marsden solution orthogonal
to both x and y, we have Au = 0.

Proof. Let x, y, and z be orthonormal Fischer–Marsden solutions. Consider Y =
{x, y}, Z = {x, z} and U = {y, z}. Let β, β′, and β′′ be their respective constants.
Since Ric is symmetric, we have

(ρY − ρZ)YiZ
i = (Rij − Rij)Y iZj = 0. (45)

But at a point where Y �= 0, Z �= 0 and x �= 0, we have

ρY − ρZ =
|∇x|2 + β

x2
− |∇x|2 + β′

x2
=

β − β′

x2
(46)

by the first and last expressions in (44). Thus if ρY = ρZ we have β = β′. Otherwise
YiZ

i = 0 on an open dense subset, so that in fact YiZ
i = 0 everywhere. But that is

x2∇iy∇iz − xy∇ix∇iz − xz∇ix∇iy + yz|∇x|2 = 0. (47)

Dividing by x2yz we get

∇iy∇iz

yz
− ∇ix∇iz

xz
− ∇ix∇iy

xy
+

|∇x|2
x2

= 0. (48)

Substituting expressions involving the β constants from (44) into (48) yields

|∇x|2 + β + β′

x2
=

|∇y|2 + β′′

y2
. (49)

By considering (44) and (49) together, we see that if x = 0 and y �= 0, then
β + β′ = −|∇x|2 = β. So in fact, β′ = 0, a contradiction. So actually ρY = ρZ

and β = β′. If w is yet another solution, we have that ρ and β are the same for
{x, y}, {x, w} = {−w, x} and {−w, z} = {z, w}.

Now consider a Fischer–Marsden solution u orthogonal to x and y if any such
exists. Then

Au = (x∇iy − y∇ix)∇iu = (xyu − yxu)
(

ρ − s

n − 1

)
= 0 (50)

which proves the proposition.

With all the machinery in place, we can establish the following.
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Theorem 1. Let W be the Fischer–Marsden solution space, and I the identity
component of the isometry group of (M, g). Then I is locally isomorphic to SO(W )×
G1, where G1 is the kernel of the representation of I on W . In particular, W has
dimension at most n + 1, with equality implying that (M, g) is the round sphere.
Moreover, all the SO(W ) orbits are either spheres or its fixed points.

Proof. We continue our argument in the proof of Proposition 5. With Y =
{x, y}, Z = {x, z}, and U = {y, z}, we calculate

[Y, Z]j = Y i∇iZ
j − Zi∇iY

j = βU j . (51)

Therefore, x ∧ y → Y is a Lie algebra isomorphism from W ∧ W = so(W ) to its
image in the Killing fields. One could also use the following elementary argument
for a proof of the upper bound on dimension:

Let xi be an L2-orthonormal basis for the Fischer–Marsden solution space. If
there are at least (n + 1) of the xi, then choose these and consider {xi, xj}. These
are n(n+1)/2 Killing fields. Let us show that they are linearly independent. To see
this, suppose to the contrary that∑

1≤i<j≤n+1

αij(xi∇kxj − xj∇kxi) = 0 (52)

for constants αij not all zero. In particular, suppose that some specific αij is
nonzero. Relabeling indices if necessary, we can suppose α12 �= 0. Then

0 =
∑

1≤i<j≤n+1

αij (xi∇kxj − xj∇kxi)∇kx1 = β

n+1∑
j=1

α1jxj (53)

by Propositions 4 and 5. But the xj are linearly independent and β �= 0, so this
would mean α1j = 0 for every j: a contradiction. Thus (M, g) has n(n + 1)/2
linearly independent Killing fields, and so is maximally symmetric. There cannot
be more linearly independent Fischer–Marsden solutions, or that would induce an
even higher degree of symmetry. Being maximally symmetric, (M, g) must have
constant curvature. Since (M, g) is a closed Einstein manifold, we have for some
Fischer–Marsden solution x:

∇i∇jx +
s

n(n − 1)
xgij = 0. (54)

So that (M, g) is isometric to the round sphere by Obata’s Theorem [17] Theorem A.
In general, the tangent space of SO(W ) orbit at a given point is a subspace of

the space generated by ∇xi/xi −∇xj/xj and therefore, the dimension is ≤ k − 1.
The orbit passed through that point is a sphere or a point.

4. Examples and the Homogeneous Cases

Since the round sphere is an example of a Riemannian manifold with nontrivial
solutions to the Fischer–Marsden equation, it may be asked if there are others.
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Lafontaine in [16] shows that S1 × N is also an example, where N is a surface
of constant positive curvature. We show that our structure results fit quite well
with these known examples. For example, if M = S1×N , we could let β = −1 and
x = cos θ, then dx = −sin θdθ. The standard metrics gives |∇x|2−1

x2 = −1. Since S1 is
totally geodesic, we have ρ = R11 = 0, we could let s

n−1 = 1 and Rii = 1 with i > 1.
If n > 1, let x be one of the Euclidean coordinate for Sn in Rn+1, we can also

consider x = cos θ and dx = −sin θdθ. Then, ∇x generates geodesics. |dx|2 = sin2 θ

with the standard metrics for the unit sphere. |dx|2−1
x2 = −1. ρ = n−1, s = n(n−1)

and therefore, ρ − s
n−1 = n − 1 − n = −1 also. For the coordinates x, y, we have

|d(ax + by)|2 − 1 = −(ax+ by)2 with (a, b) an unit vector. We then have (dx, dy) =
−xy as in (44).

As a generalization, we exhibit the following examples.

Theorem 2 (Product with Einstein Manifolds). If (V, g′) is a manifold admit-
ting a Fischer–Marsden solution u, and (N, g′′) is a closed oriented Einstein man-
ifold with Einstein constant c2 > 0, then we can always rescale V so that u is a
solution to the Fischer–Marsden equation on M = V ×N with metric g = g′ + g′′.
If (V, g′) = (S1, dθ2), we do not rescale, but rather we set u to be cos(cθ) or sin(cθ).
If there are multiple solutions on (V, g′), the quantities β and ρ on (M, g) will be the
same as those on (V, g′). Conversely, if (M, g) is a product of (V, g′) and (N, g′′)
and admits a Fischer–Marsden solution u, then u must be the pull-back of a solu-
tion on one of the factors, and the other factor must be Einstein (with a constant
Einstein function).

Proof. If g′ and g′′ are Riemannian metrics, then the product metric g = g′ + g′′

on V ×N has Ricci curvature Ric = Ric′+Ric′′. The scalar curvature is s = s′+s′′.
The Hessian Dd(fh) of functions f ∈ C∞(V ) and h ∈ C∞(N) satisfies

Dd(fh) = hDdf, Dd(fh) = fDdh, Dd(fh) = df ⊗ dh (55)

for vectors tangent to V , vectors tangent to N , and the case where one vector is
tangent to V and the other to N , respectively.

Let V have dimension m. Rescale (V, g′) so that its scalar curvature sV satisfies
sV = (m − 1)c2, where c2 = s′′/(n − m) is the Einstein constant of (N, g′′), and
n = dim M . Thus the scalar curvature of (M, g) satisfies

s

n − 1
=

sV + (n − m)c2

n − 1
=

m − 1 + n − m

n − 1
c2 = c2. (56)

Let u be a Fischer–Marsden solution on V if m > 1, or if m = 1, choose u to be
cos(cθ) or sin(cθ). Working on (M, g), for vectors tangent to N , we have

∇i∇ju = 0 = (R′′
ij − c2g′′ij)u =

(
Rij − s

n − 1
gij

)
u (57)
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since the Einstein constant of (N, g′′) satisfies c2 = s′′/(n−m). For vectors tangent
to V , we have, if m > 1,

∇i∇ju =
(

R′
ij −

sV

m − 1
g′ij

)
u =

(
Rij − s

n − 1
gij

)
u (58)

since sV /(m − 1) = c2 = s/(n − 1). If m = 1, we have

∇i∇ju =
d2u

dθ2
= 0 − c2u =

(
Rij − s

n − 1
gij

)
u. (59)

If one vector is tangent to V and the other is tangent to N , the cross-terms vanish.
In all cases we have

∇i∇ju =
(

Rij − s

n − 1
gij

)
u. (60)

Thus u is a solution on M to the Fischer–Marsden equation. Now |∇u|2 is the same
whether ∇ and g are taken with respect to V or with respect to M . Also, if x and
y are two solutions, (x∇iy − y∇ix)∇ix will be the same on V and M , so that β

will not have changed. Therefore

ρV − sV

m − 1
=

|∇x|2 + β

x2
= ρM − s

n − 1
. (61)

Since sV /(m − 1) = s/(n − 1), we also have that ρ is invariant.
For the converse, suppose that (M, g) is a product of (V, g′) and (N, g′′) and

admits a Fischer–Marsden solution u. The equation for the cross-terms is

∂

∂xi

∂u

∂xj
= 0, (62)

where i indices are tangent to V and j indices are tangent to N . This is because
in such a case, the Christoffel symbols Γk

ij vanish, as do the terms gij and Rij .
The only way this equation can hold is if u = fh + f1 + h1, where f and f1 are
functions on V , and h and h1 are functions on N . However, then the equation is
∇if∇jh + ∇jf∇ih = 0, which implies

|∇f |2|∇h|2 = −(∇if∇ih)2. (63)

The only way that can hold is if one of the functions, say without loss of generality
h, is constant (say equal to h0) on a nonempty open set U ⊆ M . On the complement
of U , f must be constant. But then h − h0 is an eigenfunction of the Laplacian on
all of M . Since it vanishes on a nonempty open set, we must have h = h0 on all of
M . So we can write u = f + h without loss of generality. Plugging this u in for the
equations with indices tangent to V and N , respectively, we see that either f or h

must be constant. Without loss of generality, let h be constant, so that u = f .
Now that we know u is the pull-back of a function on V , we must have

0 = ∇i∇ju =
(

R′′
ij −

s

n − 1
g′′ij

)
u (64)
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for i and j tangent to N . It follows that (N, g′′) is Einstein with positive Einstein
constant s/(n − 1). On the other hand, for some constant τ , we have

∇′
i∇′

ju =
(
R′

ij − τg′ij
)
u (65)

for indices i and j tangent to V . Tracing gives us �′u = (s′ − τm)u, where m is
the dimension of V . Taking the divergence yields

∇′
j�′u = �′∇′

ju − R′
ij∇′ju = −τ∇′

ju (66)

whence we conclude that τ = s′/(m− 1). Thus u is a Fischer–Marsden solution on
V , as desired.

By looking at any example of the form S1 × N , we have x = cos(cθ) and
y = sin(cθ), and so ρ = 0. Thus there are nontrivial examples besides the sphere
where ρ is constant, and it becomes pertinent to prove

Proposition 6. Let (M, g) be a Riemannian manifold admitting k orthonormal
Fischer–Marsden solutions x1, x2, . . . , xk and suppose ρ is a constant. If P is a
homogeneous harmonic polynomial of degree α in k variables, then P (x1, x2, . . . , xk)
is an eigenfunction of the Laplacian with the corresponding eigenvalue equal to
−α[(α − 1)ρ − αs

n−1 ].

Proof. If P is a real-valued function of the xi, we have

�(P (x)) =
∑

i

∂P

∂xi
�xi +

∑
i,j

∂2P

∂xi∂xj
∇lxi∇lxj (67)

= − s

n − 1

∑
i

∂P

∂xi
xi +

(
ρ − s

n − 1

) ∑
i,j

∂2P

∂xi∂xj
xixj − β (�P ) (x), (68)

where we have used Eq. (44) to obtain the rightmost two terms. Because P is
homogeneous, this simplifies to

�(P (x)) = − sα

n− 1
P (x) +

(
ρ − s

n − 1

)
α(α − 1)P (x) − β(�P )(x). (69)

Since P is harmonic and ρ is constant, we are left with

�(P (x)) = α

[
(α − 1)ρ − αs

n − 1

]
P (x) (70)

as desired.

Proposition 7. Let (M, g) be a Riemannian manifold admitting k orthonormal
Fischer–Marsden solutions x1, x2, . . . , xk, then ρ is a constant if and only if ∇x1

is an eigenvector for the Ricci curvature operator. In this case, ∇xi generates
geodesics, and either (A) all those xi have a mutual zero, or (B) x2

1 + x2
2 + · · ·+ x2

k

is constant. In the latter case (B), we have ρ = s(k − 2)/((n − 1)(k − 1)), and
(x1, x2, . . . , xk) is a harmonic map into Sk−1. And moreover, M is a product of
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Sk−1 with a Einstein manifold. In the case (A), the common zero set of the solutions
are totally geodesic and all the geodesics generated by ∇xi have the same length.

Proof. By taking the derivative of (44), we see that ρ is constant if and only if
∇x1 is an eigenvector of the Ricci operator.

Indeed, we have that ∇ρ = 0 if and only if

2x−1

(
Rik − s

n − 1
gik

)
∇kx − 2Cx−1∇ix = 0

for any i by applying (7) with a constant C.
If ∇x1 is an eigenvector of the Ricci operator, then ∇∇x1

∇x1
|∇x1| = 0 by applying

(7) again. Therefore, the gradients generate geodesics, just as in the case of sphere.
Define r =

√
x2

1 + x2
2 + · · ·x2

k. If the xi have no mutual zero, then r is smooth,
and, for any σ ∈ R, we can consider rσ . We have

�(rσ) = σ


(σ − 2)rσ−4

∑
i,j

xixj∇kxi∇kxj + rσ−2
∑

i

(
|∇xi|2 − s

n − 1
x2

i

)
.

(71)

Using again the equations in (44), we obtain

�(rσ) = σ

(
(σ − 1)

(
ρ − s

n − 1

)
− s

n − 1

)
rσ − σβrσ−2(k − 2 + σ). (72)

For k > 2, setting σ = 2 − k, we see that rσ is an eigenfunction of the Laplacian.
But then it must change sign on a closed manifold, unless it is constant. So r is
constant. This implies that the eigenfunctions map M harmonically into Sk−1 (see
[3]). Moreover, we must have (σ − 1)(ρ − s/(n − 1)) = s/(n − 1), which implies
ρ = s(k − 2)/(n − 1)(k − 1). For example, if k = n + 1, we get ρ = s/n. If k = 2,
we carry out a similar analysis with log r, and obtain � log r = −2ρ, which implies
ρ = 0 by the Divergence Theorem. Thus we still have ρ = s(k− 2)/((n− 1)(k− 1)).

In the case (B), the fibers of the map are totally geodesic by [7, p. 52]. And
the orbits associated with the Killing vector fields Yij (obtained by (16) with xi

and xj in the place of x and y) are the same as those of ∇xi’s. Since ∇xi generate
geodesics, the orbits are totally geodesics also. Therefore, M = Sk−1 × N with N

the fibers of the map.
In the case (A), by [7, Proposition 3.1, p. 51], the common zero set of the

solution is totally geodesic. Also, since ∇x1 generates geodesics, from (44) we have
at a maximal point of x1, ρ − s

n−1 = −a−2 < 0 and (x′
1)2 − 1 = −a2x2

1. Therefore,
x = a cos t

a .

In the last sentence of the proof, it is very possible that: Let Na be maximal
point set of x1 and N−a be the minimal point set of x1. Then both of them are
submanifolds and there is one-to-one map between them introduced by the closest
point from the other submanifold. Those two points are connected by the geodesics
generated by ∇x1. The system of these geodesics generate a submanifold, which
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might be the required sphere of radius a. And M then is the product Sk−1 × N

with N = Na = N−a. Then the question remains that:

(a) Does this picture actually work out?
(b) Is ρ always a constant?

Corollary. If ρ is constant and the Fischer–Marsden solution space has multiplicity
m, then any m − 1 of the solutions have a common zero.

Proof. If the above formula for ρ holds, it uniquely defines k.

A situation where ρ will be constant is when (M, g) is homogeneous, a case we
can completely classify:

Theorem 3. Let (M, g) be closed, homogeneous and admit a Fischer–Marsden
solution. Then (M, g) must be of the form Sm×N where N is an Einstein manifold.

Proof. We can apply Proposition 7 directly.
But here we can offer another more group involved proof. The Fischer–Marsden

defining equation is written in terms of Riemannian invariants. Therefore, if W

is the space of Fischer–Marsden solutions, then the isometry group G has W as
an invariant subspace. Thus there is a Lie group homomorphism G → SO(W ).
Since G is compact, it is reductive, meaning that its Lie algebra can be written as
s ⊕ a, where s is semisimple and a is abelian. By the classification of simple Lie
groups, this means that we can write G is locally isomorphic to a finite covering
G̃ = SO(W ) × G′. The first factor must be SO(W ) since its orbits are spheres
or fixed points and sphere is simply connected. G̃ acts transitively on (M, g) by
isometries via γ̃ · m = π(γ̃) · m, where π is the covering map G̃ → G. The isotropy
group is π−1 of the isotropy subgroup of G. G′ fixs all the solution functions.
Therefore, the intersection of G′m with each SO(W ) orbit is unique. This gives a
product for M .

Thus M = Sm×N with the product metric. By Theorem 2, N must be Einstein.
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years before Guan came to United States, he had copies of the famous books [13]
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differential geometer Kobayashi. In those three years in Berkeley, Guan had written
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Appendix A

Here, we prove the assertion that tensors h satisfying

∇i∇jhij −�(hijg
ij) − hijR

ij = 0 and
∫

M

hijg
ijdµ = 0 (A.1)

can always occur as first derivatives of one-parameter families g(t) in S, provided
s/(n − 1) is not in the positive spectrum of g(0). To see this, consider that from
Theorem 2.5 in Koiso [14], we have that, given g(0) ∈ S, if we have a smooth
perturbation g̃(t), which might run outside of S, we can always write

g(t) = f(t)g̃(t) (A.2)

with f(0) = 1 and 0 < f ∈ C∞(M), so that g(t) actually lies in S for t close
enough to zero. It only remains to show that we have enough control to make any
hij as above the derivative of g(t) at zero. Indeed, let

g̃ij = gij(0) + thij . (A.3)

Then (g′(0))ij = hij + f ′(0)gij(0). Writing gij = gij(0) for brevity, what we now
need to show is that f ′(0) = 0. What we know is that f ′(0)gij is in the kernel of
�◦L, that is, the Laplacian composed with the linearization of the scalar curvature.
This is because, on one hand, hij is in the kernel of L and, on the other hand,
the linearization of �s is � ◦ L at g since the scalar curvature is constant. Thus
�L(g′ij(0)) = 0. So f ′(0)gij satisfies

�[∇i∇j(f ′(0)gij) −�(f ′(0)gijg
ij) − (f ′(0)gij)Rij ] = 0. (A.4)
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Thus

∇i∇j(f ′(0)gij) −�(f ′(0)gijg
ij) − (f ′(0)gij)Rij = c (A.5)

for some constant c, since harmonic functions are constant on a closed manifold.
But this is just

�(f ′(0) − c1) +
s

n − 1
(f ′(0) − c1) = 0 (A.6)

so that f ′(0) is equal to some constant c1. Thus g′(0)ij = hij + c1gij . However, we
know ∫

M

gijhijdµ =
∫

M

gij(g′(0)ij)dµ = 0. (A.7)

So c1 = 0 and g′(0) = h as desired.
Now we show that, if g ∈ S with s/(n − 1) not in the positive spectrum of g,

then g is critical for the Einstein–Hilbert action E(g) =
∫

M
sdµ if, and only if

∇i∇jf − (�f)gij − fRij = Rij − s

n
gij (A.8)

for some function f ∈ C∞(M). For, indeed, the left-hand side L∗f is the adjoint
of the linearization of scalar curvature applied to f , as can easily be checked. Now,
given a path g(t) in S with initial position g and initial velocity h, we have

d

dt

(∫
M

sdµ

)
t=0

=
∫

M

(∇i∇jhij −�(hijg
ij) − hijR

ij)dµ (A.9)

= −
∫

M

Rijh
ijdµ = −

∫
M

(
Rij − s

n
gij

)
hijdµ. (A.10)

Suppose now that LL∗u = 0. Then∫
M

(L∗u)2dµ =
∫

M

uLL∗udµ = 0 (A.11)

We have ∫
M

L
(
Rc − s

n
g
)

udµ =
∫

M

(
Rij − s

n
gij

)
(L∗u)ijdµ = 0. (A.12)

Now, it can easily be checked that LL∗ is elliptic. By the Fredholm alternative,
we must always be able to solve LL∗f = L(Rc − s

ng). Thus we have a Hodge-type
decomposition

Rij − s

n
gij = (L∗f)ij + vij , (A.13)

where v is in the kernel of L. Suppose this equation can be solved with v = 0. Then,
for any initial velocity h,

d

dt

(∫
M

sdµ

)
t=0

= −
∫

M

(L∗f)ijh
ijdµ = −

∫
M

f(Lh)dµ = 0 (A.14)

since h is in the kernel of L by definition. So g is critical. Otherwise, suppose that
there exists a non-identically-zero solution v. Then take that v to be the initial
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velocity. We have

d

dt

(∫
M

sdµ

)
t=0

= −
∫

M

|v|2dµ < 0 (A.15)

so that g cannot be critical. This finishes the proof.
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