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Common antibiotics, azithromycin 
and amoxicillin, affect gut metagenomics 
within a household
Jessica Chopyk1, Ana Georgina Cobián Güemes1, Claudia Ramirez‑Sanchez2, Hedieh Attai1, Melissa Ly1, 
Marcus B. Jones3, Roland Liu1, Chenyu Liu4, Kun Yang4, Xin M. Tu4, Shira R. Abeles2, Karen Nelson3 and 
David T. Pride1,2* 

Abstract 

Background  The microbiome of the human gut serves a role in a number of physiological processes, but can 
be altered through effects of age, diet, and disturbances such as antibiotics. Several studies have demonstrated 
that commonly used antibiotics can have sustained impacts on the diversity and the composition of the gut micro‑
biome. The impact of the two most overused antibiotics, azithromycin, and amoxicillin, in the human microbiome 
has not been thoroughly described. In this study, we recruited a group of individuals and unrelated controls to deci‑
pher the effects of the commonly used antibiotics amoxicillin and azithromycin on their gut microbiomes.

Results  We characterized the gut microbiomes by metagenomic sequencing followed by characterization 
of the resulting microbial communities. We found that there were clear and sustained effects of the antibiot‑
ics on the gut microbial community with significant alterations in the representations of Bifidobacterium species 
in response to azithromycin (macrolide antibiotic). These results were supported by significant increases identi‑
fied in putative antibiotic resistance genes associated with macrolide resistance. Importantly, we did not identify 
these trends in the unrelated control individuals. There were no significant changes observed in other members 
of the microbial community.

Conclusions  As we continue to focus on the role that the gut microbiome plays and how disturbances induced 
by antibiotics might affect our overall health, elucidating members of the community most affected by their use 
is of critical importance to understanding the impacts of common antibiotics on those who take them.
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Background
The human microbiome is a combination of microorgan-
isms (viruses, bacteria, fungi, etc.) living in the human 
body that together outnumber our own number of cells 
[1]. There have been varied studies describing the dif-
ference in the colonic microbiome according to sex, 
ethnicity, geographic location [2], as well as co-inhabit-
ants of a household [1]. The microbiome in turn can be 
affected by underlying comorbidities such as diabetes or 
inflammatory bowel disease [3], but also by diet [4]. The 
microbiomes of individuals with more diverse microbial 
communities are more stable and therefore more resist-
ant to invasion [5], thus a depletion in microbial diversity 
can negatively impact gut health [6]. In the era of rising 
antimicrobial resistance, the effect that antibiotics have 
on human microbiota has been of increasing interest. 
According to the Centers for Disease Control and Pre-
vention (CDC), as of 2014, more than 260 million courses 
of antibiotics were prescribed, with at least 30% of the 
outpatient antibiotic prescriptions analyzed in that year 
deemed to be unnecessary [7]. And according to the 2019 
CDC’s Antibiotic Resistance Threats report, more than 
2.8 million antibiotic-resistant infections occur in the US 
yearly, with a mortality rate of 35,000 people per year [8].

Since the discovery that co-inhabiting individuals tend 
to share similar microbiomes, there is increasing inter-
est in how social relationships affect the microbiome. 
We know that close social relationships, especially close 
spousal relationships, are linked to similar gut micro-
biomes [9] and skin microbiomes [10]. The benefits of 
social interactions have become evident as individuals 
who were cohabiting with their spouse had higher alpha-
diversity than individuals who were unmarried and liv-
ing alone [9]. The link between couples’ microbiomes is 
so pronounced that one can predict which individuals are 
in a romantic relationship based on their skin microbiota; 
for instance, our daily shedding of biological particles has 
resulted in similar foot microbiome profiles of partners 
[10]. Microbial communities are even shared amongst 
dogs and their coinhabiting owners—Song et al. showed 
that adults with dogs have more diverse skin microbiota 
that is shared with their dogs [11]. Indeed, it is evident 
that our ‘microbial cloud’—or the distinct, personalized 
airborne bacterial emissions that humans release—can 
play a significant role in bacterial transmission amongst 
individuals [12].

Bacteria are not the only microorganisms that can be 
transmitted within a household. In fact, it is estimated 
that there are over 1012 viral particles in the human gut 
[13], and while they play an important and complex role 
[14], their transmission mechanism is largely unknown. 
Several phages have been found capable of transducing 
antibiotic resistant genes [15]. Recent evidence has even 

shown that antibiotic resistant bacteria harboring genes 
that allow immune evasion can be transmitted between 
humans and household livestock, as seen with methicillin 
resistant S. aureus prophage [16]. Given the transmission 
of phages amongst the household [17], the interconnect-
edness of microbial communities between coinhabiting 
individuals is hard to deny, and the implications of this 
interconnectedness, especially in regard to antibiotic use, 
has yet to be fully understood.

The effect of broad-spectrum antibiotics on the human 
microbiome includes changes in the microbial compo-
sition, an increase in antibiotic resistance genes, and an 
increase in virulence genes [18]; in particular, the spread 
of AMR genes among pathogens in clinical settings is 
especially concerning [19]. Current research has mostly 
focused on antibiotics such as ciprofloxacin and clinda-
mycin [20], which are known to have side effects such as 
Clostridium difficile colitis and lead to slower recovery 
of the microbiome than other antibiotics [21]. However, 
as discussed in Abeles et  al., the effect of the two most 
overused antibiotics, azithromycin and amoxicillin, in the 
human microbiome has not been thoroughly described. 
Though azithromycin and amoxicillin are widely pre-
scribed [22] for having a milder effect on the gut micro-
biome, they still significantly decrease the diversity of the 
gut [6, 23].

This study evaluated 56 subjects, of which 24 house-
holds had cohabitants, whereas 8 lived alone. In the 
cohabitant households consisting of 2 people, one of 
them took either amoxicillin or azithromycin, while the 
other took placebo (Vitamin C). The control group of 8 
lone individuals did not take either antibiotic or placebo. 
The same cohort was previously evaluated via 16S pro-
filing (Abeles et  al., 2016). Our goals in this study were 
to show the difference in microbiota of household con-
tacts who simultaneously received antibiotics (amoxicil-
lin vs azithromycin) vs placebo by using metagenomics to 
understand changes in bacteria abundances at the species 
level, alterations in gene functions that encode antibiotic 
resistance, and compositional differences in the phage-
ome that might result from antibiotic perturbations.

Results
Subject demographics
We recruited 56 subjects comprising 24 separate house-
holds over a 6-month period from the University of Cali-
fornia San Diego undergraduate campus (Table S1, Figure 
S1). There were two separate individuals enrolled from 
each household, with 1 individual receiving an antibiotic 
(amoxicillin or azithromycin) and the other receiving a 
placebo (vitamin C). We included an additional 8 subjects 
who were not enrolled with a housemate. Antibiotic/pla-
cebo were given once per day with half the participants 
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receiving therapy for 3 days and the other half for 7 days. 
Fecal samples were collected on day 0, day 3, day 7, week 
8, and at 6 months.

Fecal metagenome sequencing
In total 282 samples were sequenced on the Illu-
mina HiSeq. After quality filtering and merging there 
was a total of 5,568,491,056 reads, with an average of 
19,746,422 (± 3,848,408 Standard Deviation, SD) per 
sample and a median of 20,060,036 reads per sample. The 
average GC content for all the high-quality reads was 46% 
(+ / − 1.5% SD) overall. There was no significant differ-
ence in GC content among the amoxicillin treated par-
ticipants, the azithromycin treated participants, or the 
non-household controls at each time point sampled (data 
not shown).

Bacterial relative abundances in response to antibiotics
The bacterial genera with the highest relative abundance 
among all subjects included Bacteroides (34.3 ± 25.7% 
S.D.), Bifidobacterium (5.2 ± 10.2% S.D.), Ruminococcus 
(5.0 ± 7.0% S.D.), Eubacterium (4.7 ± 5.6% S.D.), Prevotella 
(4.6 ± 13.9% S.D.), Faecalibacterium (4.5 ± 4.8% S.D.), and 
Blautia (4.3 ± 5.3% S.D.) (Figure S2). For these genera we 
compared their relative abundances among all amoxicil-
lin treated participants, all azithromycin treated partici-
pants, and all non-household controls at each time point 
sampled (Fig. 1). We found that the azithromycin treated 
participants had a significantly (Kruskal–Wallis with 
permutation test; p < 0.05) lower relative abundance of 
Bifidobacteria compared to controls after starting anti-
biotic therapy (after day 0). Bifidobacteria was also sig-
nificantly lower in azithromycin treated participants than 
the amoxicillin treated participants at day 7 and week 8 
(p < 0.001). Additionally, we observed that at day 7 and 
week 8 the relative abundance of Bacteroides was signifi-
cantly higher (p < 0.05) in the azithromycin treated par-
ticipants compared to the non-household controls. The 
amoxicillin treated participants had a significantly higher 
(p < 0.05) relative abundance of Bacteroides compared to 
controls only on day 3.

We then focused on the azithromycin treated partici-
pants and compared the 7-day (Azith 7d) and 3-day trials 
(Azith 3d) with their household and non-household con-
trols (Fig. 2). Bifidobacteria was significantly lower at all 
time points following day 0 in the Azith 3d participants 
compared to non-household controls. For the Azith 7d 
participants Bifidobacteria was significantly lower in 
relative abundance compared to the non-household con-
trols at day 3, day 7, and week 8. They were also signifi-
cantly lower than their housemates at day 7.

Again, we observed that at day 7 and week 8 the relative 
abundance of Bacteroides was significantly higher in both 

the Azith 3d and Azith 7d treated participants compared 
to the non-household controls. Interestingly, the house-
mates of both Azith 3d and Azith 7d treated participants 
that were given placebo treatment exhibited statistically 
significant lower relative Bifidobacterium (Kruskal–Wal-
lis; p < 0.05) abundance at week 8. This difference was also 
seen in the housemates of the Azith 7d treated patients 
at day 7 but was above the significance cutoff. The same 
process was conducted for the amoxicillin treated par-
ticipants, with the only significance determined to be the 
Amox 3d participants having a higher relative abundance 
of Bacteroides compared to non-household controls on 
day 3 (Figure S3).

Using a Spearman’s test we also determined whether 
there was any correlation between the relative abundance 
of the seven most dominant genera and duration of anti-
biotic use (between day 0 and day 7) within each group. 
These results agreed with our previous analyses with 
regard to the abundance of Bifidobacteria. We found 
that the abundance of Bifidobacteria decreased signifi-
cantly between days 0 and 7 for both the Azith 3d (Spear-
man; R =  − 0.6, p = 0.0081) and the Azith 7d (Spearman; 
R =  − 0.71, p = 0.00086) participants. There was no signif-
icant change for either the household or non-household 
controls. Taken together, these data show the impact of 
azithromycin use of the gut microbiome, predominantly 
with regard to Bifidobacteria.

In addition, to identify specific bacterial species that 
had a relative abundance significantly associated with 
antibiotic use at each time sampled, we used multivariate 
association with linear models (MaAsLin2) pipeline con-
trolling for age, sex, and race and corrected for multiple 
comparisons. This pipeline was run on all azithromycin 
treated participants, all azithromycin household con-
trols and all non-household controls. Using this method, 
the only significant associations were detected between 
azithromycin treated participants and non-household 
controls at day 7 for two bacterial species. Bacteroides 
vulgatus was significantly (p = 0.022, coefficient -0.063) 
higher and Bifidobacterium longum was significantly 
(p = 0.004, coefficient 0.025) lower in the azithromycin 
treated participants (Figure S4). This pipeline was also 
run on all amoxicillin treated participants, all amoxicillin 
household controls, and all non-household controls with 
no significant changes in relative abundances identified.

Shifts in Antibiotic Resistance Genes (ARGs)
To assess antibiotic resistance in the samples before, 
during, and after antibiotic therapy we conducted a 
BLASTX analysis of reads against the CARD database 
[24]. In total we identified over 314 ARGs, confer-
ring resistance to over 81 drug classes/combination of 
drug classes, as designated by CARD. To determine a 
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Fig. 1  Relative abundance (± standard error) of the most dominant bacterial genera among all amoxicillin treated participants, all azithromycin 
treated participants, and all non-household controls at each time point sampled. The y-axis represents the relative abundace of the dominant 
bacterial genera, and the x-axis represents the therapy they received and grouped by the time point sampled. Bars are colored by their antibiotic 
therapy group (amoxicillin, purple; azithromycin, red; non-household controls, gray). *denotes significance based on Kruskal–Wallis tests 
with correction via the Holm method
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normalized abundance for each ARG we utilized the 
reads per million (RPM) metric. The drug classes that 
were on average 2% or greater included: tetracycline 
(31.6 ± 10.4% S.D.), glycopeptide (10.6 ± 6.1% S.D.), 
cephamycin (6.9 ± 7.8% S.D.), MLS (macrolide, lincosa-
mide, streptogramin) (5.6 ± 5.8% S.D.), peptide (5 ± 2.3% 
S.D.), rifamycin (4.8 ± 2.3% S.D.), aminoglycoside 
(4.7 ± 4.8% S.D.), macrolide (3.7 ± 3.4% S.D.), diamino-
pyrimidine (2.4 ± 3.1% S.D.), cephalosporin (2.4 ± 2.6% 
S.D.), lincosamide (2.3 ± 2.5% S.D.), and glycylcycline; 
tetracycline (2.1 ± 3.3% S.D.) (Figure S5). MLS resist-
ance was primarily represented by changes in the rela-
tive abundance of the erm gene. Similar to what we 
conducted for the bacterial relative abundances, we 
compared the ARG drug classes whose abundance 
was > 5% among all amoxicillin treated participants, all 
azithromycin treated participants, and all non-house-
hold controls at each time point sampled (Fig.  3). We 
observed that the azithromycin treated participants 
had a significantly higher abundance of MLS ARGs 
compared to non-household controls at days 7, week 8, 
and month 6 (Kruskal–Wallis; p < 0.05). Conversely, the 
azithromycin treated participants had a lower abun-
dance of glycopeptide ARGs at week 8 and peptide 
ARGs at day 7 and month 6.

When parsing the antibiotic treatment groups by 
length of therapy and adding the household controls, 
we observed a similar pattern (Fig.  4). For the Azith 
7d participants MLS ARGs were significantly higher 
in abundance compared to both the household and the 
non-household controls at day 7 and week 8. For the 
Azith 3d participants the MLS ARGs were significantly 
higher in abundance compared to both the household 
and the non-household controls at days 3 and 7.

Again, using a Spearman’s test we determined 
whether there was any correlation between the abun-
dance of ARG drug classes and duration of antibiotic 
use (between day 0 and day 7) within each group. We 
found that the abundance of the MLS ARGs increased 
significantly between days 0 and 7 for both the Azith 
3d (Spearman; R = 0.58, p = 0.012) and the Azith 7d 
(Spearman; R = 0.51, p = 0.03) participants. The only 
other significant drug class was the peptide ARGs, 
which decreased significantly in the Azith 7d (Spear-
man; R =  − 0.47, p = 0.048) participants. There was no 
significant change for either the household or non-
household controls.

Changes in phage community composition in response 
to antibiotics
In order to more faithfully mine virus taxa from the 
metagenomic data, reads were assembled into contigs. 
Not surprisingly, most of the phage contigs were from 
the three major families of Caudovirales (Fig. 5). Using a 
Spearman’s test we determined for all groups that there 
were no significant correlations between the abundance 
of the three major families of Caudovirales and duration 
of antibiotic use (between day 0 and day 7).

Discussion
The purpose of this study was to evaluate the effects of 
two of the most commonly used antibiotics in the U.S., 
amoxicillin and azithromycin, on the microbiome of 
inhabitants in the same household. While prior studies, 
including our own, have demonstrated that these antibi-
otics can impact the microbiome [20], in this study, we 
use metagenomics to gain genome-level insights into the 
microbiome and patterns of antimicrobial resistance. In 
our prior study using this same cohort of individuals, 
we used 16S rRNA to evaluate changes in the microbi-
ome of individuals and their household members but did 
not have genome-level insights into particular organisms 
that were impacted by the use of the antibiotics [20]. In 
that study, we determined that there were significant and 
long-lasting impacts not only on the fecal microbiome, 
but also on the salivary microbiome in response to anti-
biotics, but the greatest impacts were observed on the 
fecal microbiome. For that reason, we focused the efforts 
of this study on the fecal microbiome to identify which 
individual microbes and antibiotic resistance gene mark-
ers may be impacted by these antibiotic courses.

In clinical medicine, we recognize the impacts of amox-
icillin on our commensal microbes. While previously 
considered a broad-spectrum antibiotic, the abundance 
of beta lactamases present in human pathogens and com-
mensals makes its impact more difficult to predict [25, 
26]. The antibiotic has impacts on gram positive, gram 
negative, and anaerobic microorganisms that do not pos-
sess beta lactamases. It also has a relatively short half-life 
compared to azithromycin, which has an extended half-
life, which could result in more long-lasting effects on 
the microbiome [27]. While these antibiotics do not have 
the same spectrums of activity, there is some overlap in 
the microorganisms they target [28]. Our major find-
ings were different for each antibiotic, with there being 

(See figure on next page.)
Fig. 2  Relative abundance (± standard error) of the most dominant bacterial genera among participants with 7-day azithromycin therapy (Azith 
7d) and 3-day azithromycin therapy (Azith 3d) and their household and non-household controls. The y-axis represents the relative abundace 
of the dominant bacterial genera, and the x-axis represents the therapy they received, grouped by the time point sampled. Bars are colored 
by the therapy they received (Azith 7d, dark orange; Azith 3d, dark red; Azith 7d household controls, light orange; Azith 3d household controls light 
red; non-household controls, gray). *denotes significance based on Kruskal–Wallis tests with correction via the Holm method
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Fig. 2  (See legend on previous page.)
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Fig. 3  Relative abundance of the most dominant ARG drug classes among all amoxicillin treated participants, all azithromycin treated 
participants, and all non-household controls at each time point sampled. The y-axis represents the relative abundace of the dominant drug classes, 
and the x-axis represents the therapy they received grouped by the time point sampled. Boxplots are colored by their treatment status (amoxicillin, 
purple; azithromycin, red; non-household controls, gray). Abundace calcuated via reads per million (RPM) metric. *denotes significance based 
on Kruskal–Wallis tests with correction via the Holm method
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a significant and sustained reduction in Bifidobacterium 
species in response to the azithromycin therapy. We also 
identified an increase in the relative abundance of Bac-
teroides species. While the increase in Bacteroides may 
be a specific response to the reduction of Bifidobacteria, 
more studies are needed to determine possible causa-
tion. At Week 8 post-treatment with both amoxicillin and 
azithromycin we noticed a significant decrease in Blautia 
species, which remained slightly decreased at 6  months 

post-treatment. Blautia has been found to have health 
benefits [26], including a negative association with obe-
sity [29, 30] and inflammatory disease [31]. That some 
of the most abundant bacteria in the gut are impacted in 
response to these antibiotics, suggests that the effects of 
these antibiotics on gut microbiome health may be sub-
stantial and long-lasting.

We also saw a significant decrease in the relative 
abundance of Bifidobacterium in the placebo-treated 

Fig. 4  Relative abundance of the most dominant ARG drug classes among participants with 7-day azithromycin therapy (Azith 7d) and 3-day 
amoxicillin therapy (Azith 3d) and their household and non-household controls at each time point sampled. The y-axis represents the relative 
abundace of the dominant drug classes, and the x-axis represents the therapy they received grouped by the time point sampled. Boxplots are 
colored by their treatment status (Azith 7d, dark orange; Azith 3d, dark red; Azith 7d household controls, light orange; Azith 3d household controls 
light red; non-household controls, gray). Abundance calculated via reads per million (RPM) metric. *denotes significance based on Kruskal–Wallis 
tests with correction via the Holm method
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housemates of the Azith 3d and Azith 7d treated par-
ticipants. Bifidobacterium are among the taxa previ-
ously identified as often being shared between spousal 
pairs and associated with reduced disease incidence and 
severity [9], but the previous study did not include the 
analysis of the effect of microbiome perturbations on 
the microbial communities. Here, we provide evidence 
of azithromycin treatment resulting in the reduction in 
Bifidobacterium in not only the treated individual, but 
also their close housemate months after the conclusion 
of the antibiotic regimen. Given the association of sta-
ble Bifidobacteria populations with improved gut health 
[32] Fthese results could have important implications of 
the gut health of more than just the individual receiv-
ing antibiotic treatment. No other significant changes 
were observed in members of the microbial community, 
which highlights how stable the microbiomes were. The 
reduction of Bifidobacteria in the non-treated room-
mate requires further investigation. One possibility is 
the transmission of Bifidobacteria lytic phages from the 
treated roommate, however this was not supported in the 
virome analysis. An alternative explanation is noise in the 
system since Bifidobacteria relative abundances were low.

The antibiotic resistance class that was enriched in the 
azithromycin treated patients was the MLS class that 

includes macrolides, lincosamides, and streptogramins. 
Although they have different chemical structures, MLS 
antibiotics have a similar mode of action. They inhibit 
protein synthesis by binding to overlapping sites on the 
50S ribosomal subunit. The predominant mechanisms 
of resistance to MLS antibiotics are target modification 
through methylation of rRNA, active efflux and anti-
biotic inactivation [33]. In this case, we found that erm 
genes were specifically enriched. These genes function by 
dimethylation of a single adenine in the 50S ribosomal 
subunit, leading to cross-resistance of the 3 drugs classes. 
While the erm gene is probably best known for its role in 
erythromycin resistance, it has also been shown to confer 
resistance to azithromycin [34]. We found that the MLS 
drug classes were significantly and sustainably higher 
compared to both the household and non-household 
controls, suggesting its change in abundance was a direct 
response to azithromycin therapy.

Because we previously identified differences amongst 
the viral communities within a household [17], we also 
characterized some elements of the virome communities 
in this study. In our prior study, we characterized the rel-
ative proportions of the virome that were shared within a 
household and found that viruses likely were commonly 
shared amongst household members. We did not identify 

Fig. 5  Relative abundace of the dominant bacteriophage families over time and antibiotic treatment. The y-axis represents the realtive abundace 
of the dominant phage families, and the x-axis represents the different subjects grouped by time and the therapy they received. Groups 
that received antibiotics, placebo (household controls), or no therapy (controls) are labeled accordingly
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trends in that study that were associated with antibiotic 
use. In this study, we characterized the viral community 
in a different manner by characterizing those viruses we 
could identify from metagenome reads and assembling 
them into larger viral contigs. We found bacteriophages 
in the fecal community mostly from the Caudovi-
rales families Siphoviridae, Myoviridae, and Podoviri-
dae (Fig. 5). Similarly to our previous study, we did not 
observe any significant correlations between these viral 
families and duration of antibiotic use. However, specifi-
cally targeting the viral population through chemical or 
mechanical concentration may provide a more accurate 
picture of the potential changes brought on by antibiotic 
use.

In our analyses of the longitudinal data, we only exam-
ined relationships across the different groups within each 
assessment time. Although we did find differences of 
interest for our hypothesized relationships in response to 
azithromycin (macrolide antibiotic), we were not able to 
model and test if such differences changed over time. In 
future studies, we will employ longitudinal models such 
as the generalized estimating equations to examine such 
temporal trends.

Conclusions
As we characterize the microbiome of the gut, there is 
still much we do not know about the responses to anti-
biotic perturbations. Prior studies have demonstrated 
that there can be long-term impacts of commonly used 
antibiotics on the gut microbiome [35, 36], and also have 
suggested that specific microbes in the gut may be shared 
between individuals in close contact [17]. While much 
has been revealed over time about the impacts of com-
mon antibiotics on the gut microbiome, there still is a 
knowledge gap as to the potential medium-term changes 
that can be observed in individuals taking the same anti-
biotic. We performed this study using metagenomics of 
the gut microbiome to further our understanding of spe-
cific microbes that may be impacted by common antibi-
otics. We found that Bifidobacterium was significantly 
impacted in individuals taking the antibiotic azithromy-
cin. These observations were not found in non-household 
controls, which provides some assurance that the effects 
of antibiotics can be individual-specific.

Methods
Cohort design
This study was retrospectively registered as a clinical 
trial (NCT05169255). It was not designed to conform 
to CONSORT guidelines; however, does conform to 
many of them. Forty-eight subjects were enrolled in the 
study in pairs, with 2 individuals living in each house-
hold. An additional 8 individuals were enrolled without a 

housemate and received no therapy over the course of the 
6-month study. Households were randomized into either 
the amoxicillin or azithromycin arms of the study. Those 
subjects also were randomized to receive either antibi-
otic or placebo; however, because of the large numbers of 
penicillin allergies reported (Table S1) and subjects using 
oral contraceptives (interact with azithromycin), some 
subjects who were randomized to receive antibiotics 
were given the placebo, while their housemate received 
the antibiotic instead. Of the household pairs, 6 pairs 
were placed into the 3-day amoxicillin arm, 6 pairs were 
placed into the 7-day amoxicillin arm, 6 pairs were placed 
into the 3-day azithromycin arm, and 6 pairs were placed 
into the 7-day azithromycin arm (Fig. 1). In each house-
hold, 1 subject received either 3 or 7 days of an antibiotic 
and the other subject received either 3 or 7  days of the 
placebo (vitamin C). Vitamin C was used as placebo since 
it is conveniently packaged and it has no safety concerns. 
The dose of amoxicillin was 500 mg twice daily, and the 
dose of vitamin C was 500  mg twice daily. The dose of 
azithromycin was 500  mg on the first day, and 250  mg 
daily thereafter (this dosing was used to be consistent 
with the commonly prescribed Z-Pak). In the azithromy-
cin arm, the placebo was given at 500 mg once daily. Each 
subject enrolled donated feces on day 0 (day prior to anti-
biotics), day 3 (3 days after initiation of antibiotics), day 7, 
week 8, and month 6. Of the 24 households enrolled, 5 of 
those households were lost to follow-up and did not pro-
vide specimens at the month 6 time point. Each subject 
provided fecal specimens that were immediately frozen at 
-20 °C prior to transporting on ice to the study site where 
they were frozen ad -80  °C until use in this study. They 
were encouraged to provide specimens in the AM prior 
to breakfast to facilitate their use in this study. Exclusion 
criteria included prior antibiotic use for 1  year prior to 
the initiation of the study, and preexisting medical con-
ditions such as diabetes, inflammatory bowel disease, 
and organ transplantation that might result in signifi-
cant immunosuppression. All subjects self-reported their 
health status and were genetically unrelated.

Sequence processing
After sequencing the paired-end reads were quality 
trimmed using Trimmomatic ver. 0.39 (sliding win-
dow:4:30 min len:60) [37] and then merged with FLASH 
ver. 1.2.11 [38]. Reads were then mapped to the human 
genome with inclusive parameters via Bowtie2 ver. 2.3.5.1 
and Samtools ver 1.7, and any subsequent human reads 
were removed [39, 40].

Taxonomic and ARG assignments
Filtered and quality reads were taxonomically profiled 
using MetaPhlAn2 with default parameters [41]. The 
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genera with the highest relative abundances across sam-
ples were used for detailed analysis, a cutoff of an average 
relative abundance of 4% was used. In addition, filtered 
and quality reads searched against the “Comprehen-
sive Antibiotic Resistance Database” (CARD; retrieved 
May 2020) via DIAMOND BLASTX (ver. 0.9.24.125) (E 
value ≤ 1e-5) [24, 42]. Reads were considered an ARG if 
it had > 40% coverage and > 80% amino-acid identity to 
a CARD protein [43, 44]. A normalized abundance was 
calculated for all ARGs with a minimum of 10 assigned 
reads via the reads per million (RPM) metric, which con-
siders both gene length and sampling depth [40, 45].

VirSorter
Quality reads were then assembled de novo with MEGA-
HIT [46]. Viral contigs were mined from each assembled 
library using VirSorter. Contigs classified as category 1 
(“most confident” predictions) and category 2 (“likely” 
predictions) were then subjected to a protein- BLAST 
(tBLASTx. 2.6.0 +) (E value ≤ 1e-5) against the NCBI 
viral database. Abundance was calculated for each contig 
by recruiting quality-controlled reads to assembled con-
tigs using Bowtie2 ver. 2.3.5.1 and then using the “depth” 
function of Samtools ver 1.7 to compute the per-contig 
coverage [39]. To normalize abundances across libraries, 
contig coverages were divided by the sum of coverage per 
million, similar to the TPM metric used in RNA-Seq [40, 
45]. Scripts performing these assignments and normali-
zation are available at https://​github.​com/​dnasko/​baby_​
virome.

Statistics
Comparisons of the relative abundances of the seven 
dominant bacterial genera and the abundance of 
the dominant ARG drug classes were assessed using 
Kruskal–Wallis with inference based on permutation 
tests and multiple-comparison [46] correction via the 
Holm method [47]. To identify specific bacterial species 
that had a relative abundance significantly associated 
with antibiotic use at each time sampled, we used mul-
tivariate association with the linear mixed-effect model 
(MaAsLin2) controlled for multiple comparison via FDR 
[48]; Fixed effects: antibiotic treatment, age, race, and 
sex; random effects: subject [49]. Permutation-based 
inference was used to improve inference validity. To test 
for differences among the subject demographics by treat-
ment group we used an ANOVA and Fisher exact test of 
independence for numerical and categorical data, respec-
tively. All tests were run in RStudio Version 1.0.153.
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