
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Reproducible user-level simulation of multi-threaded workloads

Permalink
https://escholarship.org/uc/item/49n628jp

Author
Pereira, Cristiano

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49n628jp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Reproducible User-Level Simulation of Multi-Threaded Workloads

A dissertation submitted in partial satisfaction of the requirements for the

degree

Doctor of Philosophy

in

Computer Science

by

Cristiano Pereira

Committee in charge:

Brad Calder, Chair
Bill Lin
Harish Patil
Tajana Rosing
Curt Schurgers
Dean Tullsen

2007

c©

Cristiano Pereira, 2007

All rights reserved.

The dissertation of Cristiano Pereira is approved, and

it is acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2007

iii

DEDICATION

This dissertation is dedicated to my family, who have defined the per-

son I have become. To my dad Glebson, my mom Magdalena and my brother

Marcelo.

iv

EPIGRAPH

“for Distinction Sake, a Deceiving by Words, is commonly called a Lye,

and a Deceiving by Actions, Gestures, or Behavior, is called Simulation.”

Robert South (1643-1716)

v

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgments . xiii

Vita and Publications . xvi

Abstract . xviii

I Introduction . 1
A. How computer architects use simulation 2
B. Motivation . 5
C. Contributions . 8
D. Organization . 9

II Simulation Background . 11
A. Level of simulation detail . 12

1. Functional simulation . 13
2. Cycle-accurate (detailed) simulation 14
3. Detailed simulation methodologies 16

B. Full-system and user-level simulation 21
C. Reducing the amount of simulation through sampling 22

1. Reaching the simulation samples 24
2. Choosing the simulation samples 29

D. Accelerating simulation . 37
1. Using parallel hosts . 37
2. Direct-execution . 39
3. FPGA-based simulation . 40

E. Binary instrumentation . 41
F. Summary . 43

vi

III Efficient Checkpointing for Uni-Processor User-Level Simulation . . . 44
A. Application-Level Simulation . 47

1. pinLIT . 47
2. SimpleScalar . 50

B. Existing Logging Approach . 51
1. Emulating System Calls . 51
2. Benefit of Automated Logging 56

C. Automatic Logging . 56
1. Overview . 57
2. Introducing pinSEL . 61
3. Dynamic Instrumentation . 62
4. Timestamps . 63
5. System Effects Log Files . 63
6. Simulating Multi-threaded Programs on

Uniprocessor Systems . 71
7. Atomic Analysis . 72
8. Architecture Simulation . 74

D. Logging Results . 76
1. Benchmarks . 77
2. Avoiding Software Complexity of System Effects Emulation . . 77
3. Log Sizes and Logging Overhead 78
4. Log Sizes Per Simulation Point 82
5. Log Sizes for Non SPEC Programs 84

E. Other Uses of pinSEL Checkpoints 85
F. Related Work . 88

1. Handling system effects for User-Level Simulation 88
2. Full system simulation . 89
3. Checkpoint Mechanisms . 90

G. Summary . 93

IV Deterministic Simulation for Multi-Threaded Workloads
on Multi-Processors . 95
A. Checkpoints for Reproducible Multi-Threaded Execution 99

1. Logging Shared Memory Dependencies for Multi-Processors . . 99
2. Memory Model and Deterministic Simulation 105
3. Picking Samples for Simulation 106

B. Deterministic Simulation . 107
1. Deterministic Simulation Implementation 107

C. Comparing Samples across Architecture Configurations 114
1. Differences Between Checkpointed Behavior and Baseline Con-

figuration . 115

vii

2. Classifying the Synchronization Stalls 116
3. Matching Synchronization Stalls Across Configurations 118
4. Calculating Sample Speed-ups 119

D. Methodology . 123
E. Evaluation . 125

1. Estimating the speed-ups across simulation runs 127
2. Understanding the synchronization stalls 130
3. Limitations of Deterministic Simulation 135

F. Related Work . 136
1. Dealing with Non-Determinism 136

G. Summary . 138

V Summary and Future Challenges . 141
A. Capturing operating system side effects automatically 142
B. Deterministic simulation of multi-threaded programs 143
C. Future Challenges . 144

Bibliography . 147

viii

LIST OF FIGURES

Figure I.1 Typical scenario when comparing architecture config-
urations. A benchmark, consisting of m programs, is
simulated through n different configurations. 4

Figure II.1 (a) On-line sampling; (b) off-line sampling, using check-
points. 25

Figure II.2 (a) Full program detailed-simulation; (b) Statistical sam-
pling; (c) Representative sampling. 31

Figure II.3 (a) SimPoint for single-threaded program; (b) SimPoint
for shared-memory multi-threaded programs. 37

Figure III.1 Traditional emulation of system calls in user-level sim-
ulators . 52

Figure III.2 Code snippet taken from the SimpleScalar source file
(syscall.c) used to emulate system calls. 54

Figure III.3 Instructions executed by the thread. Check marks mean
the load value was logged. 58

Figure III.4 pinSEL instrumentation tool representation. 60
Figure III.5 Example of pinSEL’s mechanism to log system effects. . 66
Figure III.6 Atomic analysis problem. 73
Figure III.7 Number of dynamic instructions and dynamic read mem-

ory instructions for the SPEC2000 programs examined. 79
Figure III.8 pinSEL logger runtime slowdown (number of times, not

percentage) over native execution for the SPEC2000
programs. 81

Figure III.9 pinSEL log sizes to capture the full execution of the
SPEC2000 programs, with and without compression us-
ing bzip2. 81

Figure III.10 Number of system calls executed in SPEC 83
Figure III.11 SEL size required to capture a simulation point of 100M

instructions for each SPEC program on average, with-
out compression. 83

Figure III.12 SEL size required to capture 100 million load instruc-
tions for interactive desktop applications with compres-
sion. 85

Figure III.13 Average number of loads executed between two inter-
rupts (including system calls and asynchronous inter-
rupts). 85

ix

Figure IV.1 Comparison of deterministic execution-driven simula-
tion with trace-driven and pure execution-driven simu-
lation for multi-threaded workloads on multi-processors. 97

Figure IV.2 Netzer transitive optimization 100
Figure IV.3 Directory table used to detect shared memory depen-

dencies . 101
Figure IV.4 Example for the directory table state after hypothetical

memory operations executed by threads 1 and 2. 103
Figure IV.5 Deterministic simulation using Asim [28]. The feeder in-

forms the performance model that certain instructions
need to be synchronized. The feeder wakes up the in-
structions when the dependencies are satisfied. 109

Figure IV.6 Percentage of instructions predicted as shared memory
dependencies by the bloom filter due to aliasing as the
number of bits used to implement it varies. 112

Figure IV.7 Problem with skipping system calls; (a) Checkpointing
run; (b) Simulation run. 114

Figure IV.8 (a) - IPCs with all synchronization stalls, with only
common stalls and without any stall; (b) - Weighted
Speed-up Calculation 122

Figure IV.9 Average number of instructions and memory operations
per sample for each benchmark 126

Figure IV.10 Slowdown to collect the 10 samples for each program . 126
Figure IV.11 Log sizes of the SEL checkpoints per sample 126
Figure IV.12 Percentage of synchronization stall for baseline configu-

ration, broken down in categories: (a) true-dependencies
(RAW); (b) false-dependencies (WAR/WAW); (c) Before-
System-Call; (d) After-System-Call 128

Figure IV.13 Percentage of synchronization stalls not common across
the baseline and cfg1, w.r.t. the total number of cycles
simulated . 128

Figure IV.14 Weighted speed-ups computation for baseline against
cfg1 and cfg2, when using only the non-common syn-
chronization stalls across the runs, and when using all
the synchronization stalls. 130

Figure IV.15 Histogram of number of dependencies that generate syn-
chronization stalls, classified by stall length, across all
programs. 131

Figure IV.16 Histogram of percentage of synchronization stalls w.r.t
to total number of cycles, classified by stall length . . . 131

x

Figure IV.17 Sample breakdown representation. Long synchroniza-
tion period starts at instruction counts a1, b1 and c1
and ends at instructions a2, b2, c2 134

Figure IV.18 Weighted speed-up computation after breaking down
the samples for eliminating the stalls longer than 100, 000
cycles from the baseline runs 135

xi

LIST OF TABLES

Table II.1 Levels of detail for architecture simulation 13

Table IV.1 Baseline simulator configuration 123
Table IV.2 SpecOMP programs used. 124
Table IV.3 Experimental and baseline configurations. 127

xii

ACKNOWLEDGMENTS

None of the work presented in this dissertation would have been possible

without the assertive guidance of Prof. Brad Calder, who always kept me focused

and motivated about the research conducted throughout the years we worked

together. Thank you for bringing me to the architecture lab, for opening the

doors at Intel and for doing a great job as an advisor, whether in person or

remotely.

I also would like to thank my colleagues from the architecture lab and

the embedded systems lab, where I started the long PhD journey. From the

embedded systems lab, I would like to thank Frederic Doucet, for the countless

hours of discussions and for the camaraderie; Ravindra Jejurikar, for his stress-

free way of handling things and the many discussions on various research topics;

Yuvraj Aggarwal, for always trying to keep it fun. I must also thank Jeffrey

Namkung and Zhen Ma for many hours spent on discussions and coffee breaks.

I cannot forget my friends from UC Irvine, where everything started so many

years ago. In particular, Marcio Buss, for his friendship, for the surfing together

and for all the beers we drank together. From the architecture lab, at UC San

Diego, I would like to thank Satish Narayanasamy, for the research discussions,

for making things look simple and for the games of table tennis. I also would

like to thank Erez Perelman, Jeremy Lau, Jeffrey Brown, Jack Sampson, Michael

Van Biesbrouck and Ganesh Venkatesh for their help on many technical and

non-technical issues.

I must not forget to thank all of the folks from VSSAD, Intel, Mas-

sachusetts, whose help and support were also indispensable for completing this

dissertation. In particular, I am very thankful to Harish Patil for his mentorship,

enthusiasm, perseverance and for the great advice given during my long and re-

warding internship at Intel. I am also grateful to other VSSAD members: Robert

xiii

Cohn, Greg Lueck, Chi-Keung (CK) Luk, Geoff Lowney, Aamer Jaleel, Michael

Adler, Mark Charney, Joel Emer and many others.

I am also grateful to Kaylene Grove, who has always supported me and

given me a good reason to leave the office and go home. I am also thankful to

her family, who have adopted me and made me feel at home here in the US.

Finally, I would like to thank my family back in Brazil. They are the

reason I was able to make it this far. They have always supported my decisions,

even when I decided to leave them to embark on a journey 6,000 miles away from

them.

Chapter III contains material that appears in “Automatic Logging of

Operating System Effects to Guide Application-Level Architecture Simulation”,

Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn and Brad

Calder, in International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS). The dissertation author was the primary investigator

and author of this paper. Portions of Chapter III are Copyright c©2006 by the

Association for Computing Machinery, Inc. Permission to make digital or hard

copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

Chapter IV contains material that appears in “Reproducible Simula-

tion of Multi-Threaded Workloads for Architecture Design Exploration”, Cris-

tiano Pereira, Harish Patil and Brad Calder, submitted to the 14th International

xiv

Symposium on High-Performance Computer Architecture, Salt Lake City, UT

February 16-20, 2008. The dissertation author was the primary investigator and

author of this paper.

xv

VITA

1998 Bachelor of Science in Computer Science
Pontifical Catholic University of Minas Gerais, Brazil

2000 Master of Science in Computer Science
Federal University of Minas Gerais, Brazil

2007 Doctor of Philosophy in Computer Science
University of California, San Diego, USA

PUBLICATIONS

“Reproducible Simulation of Multi-Threaded Workloads for Architecture Design
Exploration” Cristiano Pereira, Harish Patil, Brad Calder. Submitted to the 14th
International Symposium on High-Performance Computer Architecture. Febru-
ary, 2008.

“Recording Shared Memory Dependencies for Application-Level Replay Debug-
ging” Satish Narayanasamy, Cristiano Pereira, Brad Calder. The 12th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. October, 2006.

“Software Profiling for Deterministic Replay Debugging of User Code” Satish
Narayanasamy, Cristiano Pereira and Brad Calder. The 5th International Con-
ference on Software Methodologies Tools and Techniques. October, 2006.

“Automatic Logging of Operating System Effects to Guide Application-Level
Architecture Simulation” Satish Narayanasamy, Cristiano Pereira, Harish Patil,
Robert Cohn and Brad Calder. International Conference on Measurement and
Modeling of Computer Systems. June, 2006.

“Dynamic Phase Analysis for Cycle-Close Trace Generation” Cristiano Pereira,
Jeremy Lau, Brad Calder, Rajesh Gupta. Proceedings of the International Con-
ference on Hardware/Software Codesign and System Synthesis. September, 2005.

“Leakage Aware Dynamic Voltage Scaling for Real-Time Embedded Systems”
Ravindra Jejurikar, Cristiano Pereira, Rajesh Gupta. Proceedings of 41st Design
Automation Conference (DAC’04) San Diego. June, 2004.

“PASA: A Software architecture for building power aware embedded systems”
Cristiano Pereira, Rajesh Gupta, Mani Srivastava. In the proceedings of the IEEE
CAS Workshop on Wireless Communications and Networking - Power efficient
wireless ad hoc networks. September, 2002.

xvi

“JADE: An Embedded Systems Specification, Code Generation and Optimization
Tool” Cristiano Pereira, et. al. Proceedings of the XIII Symposium on Integrated
Circuits and System Design. September, 2000.

“Code Generation and Optimization for Embedded Systems Specified in SDL”
Cristiano Pereira, MSc. Dissertation - UFMG (Federal University of Minas
Gerais) - Computer Science Department, Belo Horizonte, Minas Gerais, Brazil.
July, 2000.

xvii

ABSTRACT OF THE DISSERTATION

Reproducible User-Level Simulation of Multi-Threaded Workloads

by

Cristiano Pereira

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Brad Calder, Chair

As the complexity of processors increases, it becomes harder for de-

signers to understand the non-trivial and many times non-intuitive interactions

among the micro-architecture internal structures. Understanding these interac-

tions is important because it helps pinpoint bottlenecks, enabling designers to

reason about sources of performance loss and improve their next generation of

processors. To help designers understand these interactions in current and, more

importantly, in future generation designs, designers make heavy use of computer

architecture detailed simulation. These simulators model the behavior of the pro-

cessor on a per-cycle basis, allowing designers to look at very detailed trade-offs.

Building and maintaining these simulators is a large and complicated task. In

addition, recent trends in designing micro-architectures with multiple cores in

the same chip brings new challenges that affect the way simulation results should

be compared. This dissertation focuses on techniques to help build and maintain

simulators, as well as techniques to improve the way architects evaluate design

choices using simulation.

Existing user-level simulators require manual hand coding for the emu-

lation of each and every possible system effect (e.g., system call, interrupt, DMA

xviii

transfer) that can impact the application’s execution. Developing such an emu-

lator for a given operating system is a tedious exercise, and it can also be costly

to maintain it to support newer versions of that operating system. Furthermore,

porting the emulator to a completely different operating system might involve

building it all together from scratch. The first contribution of this dissertation is

a technique to automatically capture the system effects to an application. The

system effects are captured in logs and then used to guide achitecture simulation.

By using the proposed technique, the complexity of implementing and maintain-

ing user-level simulators is greatly reduced. In addition, the technique guarantees

deterministic simulation on uni-processor systems.

As multi-core processors become main stream, techniques to address

efficient simulation of multi-threaded workloads are needed. Simulation of multi-

threaded workloads on multi-core systems suffer from non-determinism across

runs in different architecture configurations. If the execution paths between two

simulation runs of the same benchmark, with the same input, are too different,

the simulation results cannot be used to compare the configurations. The other

contributions of this dissertation focus on techniques to efficiently collect simula-

tion checkpoints for multi-threaded workloads. It extends the previous technique

to efficiently collect logs for uni-processor simulation. Using these checkpoints,

multi-threaded simulation in multi-core systems becomes deterministic. The de-

terministic simulation results in stalls that would not naturally occur in execu-

tion. This dissertation proposes techniques that allow one to accurately compare

performance across architecture configurations in the presence of these stalls.

xix

I

Introduction

Advances in system integration technology have enabled a steady in-

crease in transistor density, with more transistors used by every new generation

of processors. Recent processor designs, such as the Intel Dual-Core Itanium 2

Processors, released in 2006, have more than 1 billion transistors in a single chip.

This abundance of transistors allows the design of complex architectures, enabling

the implementation of aggressive techniques to dynamically execute instructions

out-of-order, exploiting as much instruction level parallelism as possible [32].

More recently, even as the rate of performance increase achieved by exploiting

instruction level parallelism bottoms out, computer architecture still continues

to advance by transitioning to designs where many processing units are included

in a single chip [29], known as multi-core processors.

As the complexity of processors increases, it becomes harder for de-

signers to understand the non-trivial and many times non-intuitive interactions

among the micro-architecture internal structures. Understanding these interac-

tions is important because they determine the speed at which programs execute

in that architecture. To help designers understand these interactions in current

and, more importantly, in future generation designs, designers make heavy use of

computer architecture simulation.

1

2

In a recent study, Yi et al [79] shows the trend in performance evaluation

methodologies for papers accepted to the International Symposium on Computer

Architecture (ISCA), the most important conference on computer architecture.

In summary, in 1985, 7% of the papers accepted evaluated their architectural

enhancements using simulators. In 2004, the number jumped to 87%. The reason

for that is the complexity of recent designs. The micro-processor manufacturing

industry is not different. Mainstream microprocessor design and manufacturing

companies such as Intel Corporation and Advanced Micro Devices (AMD) also rely

heavily on simulation to help evaluate design choices and understand the behavior

of workloads running on their chips. This is also due to complexity of new designs

and the prohibitive cost to build prototypes, as the fabrication processes become

more expensive. Therefore, it is clear that simulators are indispensable tools

for the current and future success of computer architecture research, both in

academia and industry.

This dissertation focuses on techniques to help build and maintain simu-

lators, as well as techniques to improve the way architects evaluate design choices

using simulation of multi-threaded workloads in multi-core processors.

I.A How computer architects use simulation

Researchers use simulators to model the behavior of a micro-processor

architecture in details. Simulators can be used for many purposes: 1) to un-

derstand the bottlenecks of the current designs; 2) to assess the viability of im-

plementing architectural enhancements, which in many cases are proposed as a

result of understanding the bottlenecks; 3) to project performance of workloads

and benchmarks in new architectures; 4) to create inputs to analytical models.

The de facto standard for computer architecture simulation models is based on

execution-driven, cycle-accurate simulators. These are simulators that execute

3

each instruction of the workload being examined, modeling the path through

which the instruction proceeds as it advances through the various stages of a

processor pipeline. This behavior is modeled on a per-cycle basis, to help un-

derstand what happens during each cycle of execution, in the various processing

units. They are widely used because of their accuracy in predicting performance

and because of their ability to model speculative execution. They enable the

evaluation of detailed trade-offs, which is not possible using other higher-level

simulation models, such as analytical simulation.

To help evaluate the performance of a given micro-architecture, design-

ers typically execute standard workloads that represent a diversity of behaviors,

also known as benchmarks [3, 4, 9, 24]. When understanding the effects of a new

architectural feature or enhancement, the benchmarks are run in the simulators,

modeling different architecture configurations – where each configuration imple-

ments a possible variation of the enhancement (perhaps with different parame-

ters) – in order to collect quantitative results. These results are then analyzed and

a conclusion is drawn as to whether the enhancement is beneficial. Figure I.1 illus-

trates the scenario. A benchmark, composed of m programs, is simulated with n

different configurations. Each configuration represents a design point in the space

of possible choices. For example, the first configuration can be a processor with

half the size of L1 data and instruction caches as configuration 2. Or configura-

tion 1 can use a different implementation of a cache coherence protocol, compared

to configuration 2. Typically one of the configurations is the baseline, which is

used as a common denominator to rank the results of the other configurations 1.

The simulations for each configuration are run and the results are output. These

statistics, collected during the simulation runs, are used to evaluate them. For

example, if the goal of the enhancement is to maximize performance, a common

1Alternatively, designers may look at radically different design options. In those cases, however, higher level
models are also adequate.

4

Benchmark
(m programs)

Configuration 1

Configuration 2

Configuration n

…

Simulator

Results 1

Results 2

Results n
…

Figure I.1: Typical scenario when comparing architecture configurations. A
benchmark, consisting of m programs, is simulated through n different config-
urations.

way to evaluate the design choices is to use a performance-related metric, such as

the number of instructions completed per cycle (IPC), for a workload. Once the

IPCs for the configurations are available, the next step is to compute the speed-

up across the runs. If the goal is minimize energy consumption, other metrics are

better suited, such as the energy-delay-product, which seeks to minimize energy

without a significant impact on performance. One basic requirement for these

comparisons to work is that the amount and type of work executed across the

various simulation runs is the same. As will be shown later, this is not always

the case, and techniques to ensure this property are beneficial.

5

I.B Motivation

As previously noted, a cycle-accurate and execution-driven simulator is

a powerful tool to understand the behavior of a program running on a micro-

architecture, and the complex interactions among internal micro-architectural

structures. However, the accuracy and visibility comes at the cost of very high

run-times required to complete the simulations. For instance, Simplescalar, a

widely used simulator employed by academics, can execute less than 1 million

instructions per second (on a modern Pentium 4 2.4GHz processor) when model-

ing a moderately complex out-of-order single core processor, with a very simple

memory hierarchy. Industry simulators, on the other hand, which tend to model

real architectures with very detailed and complex models, are even slower. The

performance model used in Chapter IV simulates a multi-core processor, with a

complex memory hierarchy and interconnection network. These models execute

on the order of 1K to 10K instructions per second. This is because of the com-

plexity of the models, the richer level of detail, and because the modular nature

of the simulator’s implementations, which are meant to be used for generations of

processor designs. This leads the implementation of industry simulators to em-

phasize on re-usability and well defined interfaces across the various components

modeled.

Simulators are also be classified in terms of what they model. Two

broad categories are commonly found: user-level and full-system simulators. Full-

system simulators simulate in detail both the user-level code, the operating sys-

tem and device drivers code. They model the processor and all other peripherals

needed for the correct execution of the program. These simulators can generally

boot unmodified operating system codes. However, implementing and maintain-

ing a full-system simulator is a very complex task. Even configuring benchmarks

to run in those simulators can be a hard task. If the applications do not spend a

6

significant amount of execution in the operating system, the complexity of imple-

menting these simulators is not warranted. Examples of full-system simulators

are Simics [43], SimOS [59] and SoftSDV [70]. User-level simulators only perform

detailed simulation of the user-code and the system shared libraries. Even so,

the interactions with the operating system need to be emulated for the program

to execute correctly during simulation. For example, if the program executes a

system call to read data from a file, that system call’s side effects have to be

reflected in the simulation for correct execution, otherwise the program does not

read the data it needs to continue its execution. Examples are such simulators

Simplescalar [17] and SMTSim [68].

Existing application-level simulators require manual hand coding for the

emulation of each and every possible system effect (e.g., system call, interrupt,

DMA transfer) that can impact the application’s execution. Developing such an

emulator for a given operating system is a tedious exercise, and it can also be

costly to maintain it to support newer versions of that operating system. Fur-

thermore, porting the emulator to a completely different operating system might

involve building it altogether from scratch. This is the first problem area where

this dissertation makes contributions. A technique to automatically capture the

system effects to an application in logs is proposed. A collection of logs, referred

to as a checkpoint, is then used to guide architecture simulation. By using the

proposed technique, the complexity of implementing and maintaining user-level

simulators is greatly reduced. In addition, the technique guarantees determinis-

tic simulation on uni-processor systems, which is desired for accurate comparison

of configurations. Chapter III presents and discusses the proposed technique in

detail.

The cost of running simulations is worsened as the length of benchmarks

to be simulated increases. The latest version of SPEC benchmarks, released in

7

2006, executes close to one trillion instructions on average, up from an average

of 114 billion instructions for SPEC2000. With the recent focus on multi-core

architectures increasing attention has shifted to the simulation of multi-threaded

benchmarks. These programs are good candidates to exploit the full benefit of

multi-core architectures, by the use of thread-level parallelism. Examples of these

programs are found in multi-threaded benchmarks such as SPECOMP2001 [9]

and RMS (Recognition-Mining-Synthesis) [24]. These programs consist of mul-

tiple threads of execution, which execute cooperatively in order to accomplish a

program’s task. These programs also have a large dynamic instruction count, in

the order of trillions of instructions.

Furthermore, multi-threaded benchmarks, when executed in multi-core

architectures, present yet another challenge: non-determinism across simulation

runs with different architecture configurations, as pointed out by Alameldeen

et al [7] and Lepak et al [41]. This breaks the requirement noted earlier in

section I.A, that the execution paths are executed across the simulations runs,

guaranteeing that the workload is performing the same amount of work across

the runs. However, this is not true for shared-memory multi-threaded programs.

The non-determinism comes from the fact that threads do access shared memory

locations in a different order during simulation of different architecture config-

urations. This is because threads’ rate of progress with respect to one another

changes. For example, the order in which locks are acquired by threads in one

architecture configuration can be different across two runs. Also, the number of

cycles and instructions spent spinning for a lock can be different. As a result,

the execution paths across two executions are not guaranteed to be the same.

If the variation in the execution paths is significant, two simulation runs cannot

be compared directly, because the amount and type of work performed differs

across executions. The problem is worsened when the operating system behav-

8

ior is also modeled, since changes in the architecture configuration can result in

interrupts arriving at different points in the execution, causing the OS to sched-

ule threads differently across two runs. One possible solution to overcome this

problem is to increase the number of simulation runs needed to evaluate a given

configuration, as proposed by Alameldeen et al [7] (and explained in chapter IV).

This, however, increases the run-time cost of evaluating new designs significantly.

This is the second problem area where this dissertation makes contributions. In

particular, an extension to the checkpointing mechanism for uni-processor sim-

ulation is presented in Chapter III. This extension allows efficient capturing of

enough information to guarantee deterministic execution also in multi-core archi-

tecture simulation. To guide simulation from these checkpoints, modifications in

a simulator are required. These modifications make the simulation deterministic.

Deterministic simulation requires the introduction of stalls in the simulation that

would not naturally occur in the execution of the program. This dissertation pro-

poses techniques to account for these stalls in order to allow designers to compare

simulation runs and make decisions about them.

I.C Contributions

The complexity of building and maintaining computer architecture sim-

ulators, the need for determinism across simulations, the need for techniques for

efficient creation of user-level simulation checkpoints, and the new challenges aris-

ing as a result of the multi-core era, motivated the development of the techniques

presented in this dissertation. The contributions of this work are summarized as

follows:

• Automatic logging of operating system effects. A technique and a tool

to capture and log operating system effects for simulation is presented. The

technique enables capturing checkpoints for user-level simulators in a very

9

easy and portable manner. It trivializes the need to implement emulation

support in these simulators. It also enables deterministic simulation on

uni-processor systems because it removes the sources of non-determinism

from the simulation. This is especially important if one wants to analyze

interactive applications and applications whose interactions with the outside

world (e.g. network I/O) dictate its behavior.

• Efficient capture of multi-threaded program behavior. An extension

of the tool to capture system effects enables capturing of multi-threaded pro-

gram executions on multi-core2 systems. These checkpoints can be used to

guide multi-threaded workload simulation on multi-cores deterministically.

• A technique for comparing design alternatives using deterministic

simulation in the presence of artificial stalls, introduced to remove

non-determinism. The implementation of a deterministic simulator and a

technique to compare simulation runs when using a deterministic simulator

is presented. Deterministic simulation introduces artificial stalls to ensure

same execution paths across simulation runs with different configurations.

The proposed techniques show how to account and deal with these stalls.

I.D Organization

This dissertation is organized as follows. Chapter II presents a brief

description of simulation in computer architecture. It describes different simu-

lation styles and techniques to reduce and speed-up simulation. In particular,

it discusses statistical and representative sampling. These are techniques used

to select samples for simulation. Chapter III also explains mechanisms used to

reach a sample for simulation, once it is selected. The techniques presented in

2The focus is on multi-core systems, but nothing prevents a user from applying the technique on multi-
processor systems.

10

other chapters can be directly applied with both types of simulation sampling.

This chapter concludes with an introduction to binary instrumentation, which is

used in the implementation of the tools described in chapters III and IV. Chap-

ter III discusses a tool, called pinSEL, and the algorithm applied to automatically

capture system effects in checkpoints, which are then used to guide architecture

simulation. It provides a detailed description and an evaluation of log sizes and

run-time overhead to collect the logs. Chapter IV describes the extensions made

to the pinSEL checkpoints to support deterministic simulation of multi-core work-

loads. This technique is a step towards addressing variability in multi-threaded

workloads, when running in multi-processor systems. It also describes the sim-

ulation changes needed to guide simulation from these checkpoints. Chapter IV

concludes with a description of the techniques to deal with the artificial stalls

introduced during simulation, in order to allow design exploration in multi-core

architectures. These stalls can be used to provide a speed-up estimate when com-

paring two designs. Finally, chapter V summarizes the dissertation and identifies

future research directions.

II

Simulation Background

Simulators model the performance of a system. They are used to predict

the behavior of future generation machines and to understand the performance

of current machines, in order to find bottlenecks and fix performance bugs. For

future generation processors, a simulator, usually implemented in software, is an

inexpensive and flexible way to understand the performance, simply because the

processor does not exist. An alternative would be to prototype the processor,

but that is expensive, especially with today’s designs, whose implementations

contain more than one billion transistors in a single chip. Understanding the

performance of existing processors can be done with direct measurements, but

simulation models provide a much higher level of visibility, and enable the flexibil-

ity to change the sizes of internal structures very easily (e.g. cache associativity).

Although inexpensive compared to building a prototype, and flexible, simulators

are complex to implement and maintain, particularly as the number of cores per

chip increases.

Simulators are, in general, software tools. The platform in which the

simulator executes is defined as the host, and the architecture simulated is called

the target. The host platform can be any architecture and does not need to be

tied with the target. For instance, the host platform can be a x86 machine, and

11

12

the target a PowerPC architecture.

II.A Level of simulation detail

Simulation can be performed at various levels of detail, depending on

the type of study to be done and also the amount of accuracy required. At the

lowest level, a micro-architecture can be modeled at the circuit level, to verify and

understand the behavior of the transistors implementing the system. Executing

simulations at this level of detail is extremely slow, and not practical for a typical

computer architecture study, where many millions of instructions are executed.

A common practice is to use circuit-level simulators to derive analytical models,

which are then used along with simulators that model the architecture at higher

levels of abstraction [40]. At a higher level of abstraction there are also gate-level

simulators. These simulators do not model circuits, but structures such as AND

or XOR gates and their wire interconnections. Above gate-level, one can find

RTL (register transfer level) simulators. These model structures such as adders

and multipliers, and registers. The registers store intermediate results between

computations. A common way to specify an RTL model is to use hardware de-

scription languages (e.g. VHDL). Instead of connecting gates with wires, higher

level statements, such as reg0 = reg1 + reg2, describe the implementation of the

architecture. Above the RTL level, there are detailed cycle-accurate simulators.

These simulators model the behavior of micro-architectural structures and their

inter-connection, on a per-cycle basis. These models are usually implemented

by high-level languages such as C/C++. Typical micro-architectural structures

present in these models are caches, instruction queues, re-order buffers, branch

predictor tables, etc. At this level, the internal implementation of these struc-

tures is irrelevant, and only the time to perform operations and the functionality

are modeled. For instance, users of cycle-accurate simulators do not care how

13

Table II.1: Levels of detail for architecture simulation

Level of detail What is modeled

Circuit transistor behavior
Gate gates (AND, OR, etc) and wires
RTL registers and arithmetic structures (ADDERs,

MUXes, etc)
cycle-accurate micro-architecture structures (branch predictors,

instruction queues, caches, re-order buffers)
functional programmer visible structures (registers

and memory)
analytical abstract structures (queues, servers, etc)

many gates are used for implementing a cache. Instead they care whether a given

address is a hit or miss, as well as the latency and power to access it. Functional

simulators implement yet another level of abstraction, where no internal micro-

architectural structures are modeled. Rather, only programmer-visible structures

exist. Finally, there are analytical models, which use theories such as queuing

models or petri-nets, for instance, to model the behavior of the architecture.

Table II.1 presents a summary of the descriptions above. The focus of this dis-

sertation is on cycle-accurate simulation models, which are very popular in both

academia and in industry, due to their accuracy in predicting performance. The

next section expands on cycle-accurate and functional simulators, due to their

importance in computer architecture research.

II.A.1 Functional simulation

Functional simulation models the functional behavior of the architec-

ture. This involves executing or interpreting the instructions defined by the

instruction set architecture (ISA) correctly. Functional simulators model the vis-

ible architectural registers and the memory states. The only goal is to correctly

execute instructions from a program by updating the simulated registers and

14

memory. Hence, no modeling of time or internal micro-architectural structures

is performed.

Functional simulation is useful for many tasks. One example is charac-

terization of the micro-architectural independent program behavior throughout

the execution. By looking at basic block profiles, instructions mixes (e.g. number

of integer, floating point, memory access, control instructions, etc), one can un-

derstand the nature of the program. This is useful, for example, to create input

for statistical simulators [52, 26]. Functional simulators can also emulate other

peripherals, in addition to the processor. This allows software developers to write

code for a future hardware platform before the platform is built.

II.A.2 Cycle-accurate (detailed) simulation

Cycle-accurate simulation not only models the functional behavior of the

micro-architecture ISA, but also the timing behavior of each instruction. When

executing cycle-accurate simulations, the path taken by an instruction while exe-

cuting through the processor’s pipeline is modeled in detail. As a result, the time

to execute an instruction depends on its type (integer or floating point arithmetic,

control flow, etc), and also on the state of the internal micro-architecture struc-

tures. For example, a load instruction that misses the cache will take longer to

execute than one that does not. Due to the level of detail simulated, computer

architecture cycle-accurate simulators are also called detailed simulators. In this

dissertation these terms will be used interchangeably.

Detailed simulators are much more complex to implement, because they

model the interactions between internal structures in the micro-architecture.

Typically every pipeline stage is modeled. At each cycle of execution, the state

of each structure is updated, and instructions advance in the pipeline according

to the latencies specified by the performance model. In addition, the simula-

15

tors keep track of the simulated time and statistics related to each step (e.g.

cache misses, branch mispredictions). Detailed simulators usually separate the

functional model from the performance model. The latter is what models the

timing (e.g. latencies) and functional (e.g. branch prediction outcomes) behavior

of the various structures of the micro-architecture. Since hardware structures

have finite sizes, resource contention also needs to be modeled accurately. For

instance, if at some point all floating point functional units are busy executing

instructions, a new floating point instruction ready to dispatch has to wait for a

unit to be freed before it starts executing. Also, support to flush instructions in

the wrong-path of execution is required, if speculation is supported. All of this

detailed modeling adds to the run-time cost of executing these simulators, which

is not as high as lower level simulators, but is still significant. Cycle-accurate

simulators in academia execute less than one million instructions per second. In

the industry, that number is on the order of tens of thousands of instructions per

second.

Multi-processor cycle-accurate simulation. When simulating mul-

tiple cores of execution, the overheads are higher because work in p different

processing units is modeled at every clock cycle. In addition, interactions across

processors take place. For instance, a shared memory location that is written by

one processor has to be invalidated in other processors’ caches. This invalidation

takes a given number of cycles, depending on the interconnection network. At

every clock cycle the interconnection network also models the packets traveling

through it. When the cycle at which the invalidation message is supposed to

arrive is reached, the remote processor receives the data, causing its cache line to

be invalidated. If a multi-processor simulator is implemented sequentially, there

is p times as much work to do, where p is the number of processing units in the

target, in addition to the work to model the inter-connection network.

16

II.A.3 Detailed simulation methodologies

There are traditionally two styles of detailed simulation: trace-driven

and execution-driven.

Trace-driven

In trace-driven simulation, as the name implies, a trace of events is

fed to the simulator. For a cache simulator, an event can be a memory access

event, represented by an effective address and the type of access (read or write).

For a branch simulator, a trace can be a sequence of program counter values

and a flag, indicating if the branch is taken or not. Traditionally, trace-driven

simulation consists of three stages: trace collection, trace reduction and trace

processing. The events can be collected in different ways. A common way is to

use hardware support for collecting them by probing the system buses. Another

way is using binary instrumentation [65, 42]. Binary instrumentation allows the

registration of call-backs, which are executed during run-time. The call-backs

can specify arguments through which the architectural state is passed, which

is then output as traces. Trace compression can be implemented by using a

standard compression algorithm (e.g. Lempel-Ziv), trace filtering (storing partial

addresses, for cache lines only) or trace sampling. Uhlig and Mudge [71] present

a comprehensive survey on trace-driven memory simulation, covering techniques

for collection, compression and processing.

Trace-driven simulation feeds a fixed trace of events, regardless of the

feedback from the timing model. This fixed trace is the sequence of events ob-

served when the trace was collected. Typically, only the committed path of

execution is captured. As a result, speculative execution cannot be modeled.

One could obviously augment the trace with alternative paths for speculation,

but that adds complexity and increases the sizes of the traces. Another issue

17

with trace-driven simulation is that it is hard to accurately model the behavior

of modern processors, which execute instructions out-of-order dynamically and

very aggressively. For example, for a trace of memory accesses, it is hard to

model the correct latencies between memory operations accessing the cache, and

in what order. This is because this information depends on aspects other than the

address and the memory operation type. These other aspects are the latencies for

executing other instructions, on which the memory access instruction depends,

the type of the instructions, and internal structures of the pipeline. To model

these correctly, more information needs to be added to the trace, which also adds

complexity and increases the trace size.

In spite of the drawbacks previously described, trace-driven simulation

does have its advantages. Trace-driven simulators are easy to implement, be-

cause they do not need to model the functional behavior of the architecture,

but only interpret the events in the trace. The simulations are also completely

reproducible, a consequence of the inflexibility inherent to the traces.

Multi-processor trace-driven simulation. Trace-driven simulation

has also been used to study performance of multi-processors. On multi-processors,

the interleaving of the events depend on the latencies associated with the target

micro-architecture. A trace represents one possible interleaving, which occurred

when it was collected. When simulating different configurations though, the in-

terleaving can change. The changes in interleaving can result in different execu-

tion paths across the different runs. Un-protected access to data (data races) and

synchronization operations are examples of such occurrences. When using traces,

however, even if the interleavings change, the change does not affect the traces.

This can result in inaccuracies because the traces from the various processing

units deviate from the original parallel behavior, and the new parallel behavior

traced is not coherent with the interleaving, because the trace is fixed. The phe-

18

nomena has been defined by Dubois et al [25] as trace-shifting. It can result in

incorrect logical behavior and timing predictions. Koldinger et al [35] showed

that different runs in multi-processors generate different traces, and these traces

result in a different number of cache misses for different cache block sizes. This

is because of the variability across different runs for collecting the traces. This

variability has been recently defined by Alameldeen et al [7] as space-variability.

Space-variability comes from the fact that different interleavings for shared mem-

ory updates are resultant in each run. The different interleavings happen because

the relative progress of threads differs from run to run when running on real hard-

ware. This is due to differences in the environment across the runs, different OS

scheduling, levels of bus congestion, arrival time for interrupts or differences in

the system load when running a program on a real machine. Koldinger et al [35]

showed that, for comparing simulation results across two cache block sizes, one

has to either average out the results from the different traces, for each configura-

tion, or compare the simulations of the same trace. They observed that when the

same trace is used across configurations, the trend in cache misses is the same for

all the traces. However, it must be pointed out that errors due to trace-shifting

are not accounted for, and those errors can affect the results of the traced run.

A technique is presented in chapter IV to account for these variations by stalling

threads when the behaviors deviate, providing an error metric for the perfor-

mance estimates. In addition, the technique uses execution-driven simulation,

with some restrictions to guarantee determinism.

Execution-driven

Execution-driven simulation 1, on the other hand, does not rely on a

fixed trace of events. Instead, it fetches the actual instructions from the program

1Instruction-driven was the common term used in the 80s and early 90s; execution-driven at those times
referred to what is now called direct-execution.

19

binary, decodes and executes them just like the real hardware would. On a branch

prediction, the predicted program counter determines the next instructions to

simulate. Since the actual instructions have all the information necessary to

simulate its path as it advances in the pipeline, a very accurate simulation model

can be built and executed. On a detailed simulator, instructions are only executed

when their operands are available, and there are free hardware structures to

accommodate them. Execution-driven simulation also allows accurate modeling

of speculation. When a branch is mispredicted, the simulator executes the wrong-

path instructions until it finds out that the path is incorrectly predicted. At that

point it kills all the instructions in the wrong-path and flushes them out of the

pipeline, rolling back any effect they may have enacted. The dynamic behavior

of the micro-architecture is therefore modeled with much more accuracy than a

trace-driven simulator. This accuracy, on the other hand, is also a disadvantage

of execution-driven simulation, because of the complexity necessary to implement

it.

Multi-processor execution-driven simulation. These simulators

model multiple processors or cores of execution. At every clock cycle, each

processor advances its own instructions in the pipeline. On top of the addi-

tional slowdowns, multi-processor simulation also suffers from non-determinism

when executing multi-threaded cooperative workloads. Alameldeen et al [7] point

out that multi-threaded workload runs on multi-processor simulators are non-

deterministic across different architectural configurations. This is referred to as

space-variability. As a result, two simulation runs cannot be compared directly

because they are not guaranteed to execute the same paths, as in most single-

threaded workloads. Consequently, one does not know if the differences in per-

formance are because of the architectural change or because different paths were

executed. In single-threaded workloads, the sequence of committed instructions

20

is usually deterministic.2 As a result, comparing multi-threaded workload simu-

lation runs in multi-processors requires a different methodology. Alameldeen et

al [7] showed that for a fair comparison, each workload needs to be run for n times

for the same configuration to obtain average behavior in each one of them. How-

ever, for the same configuration, simulators are deterministic, differently from

real machine runs as shown by Koldinger et al [35]. To obtain variability dur-

ing simulation for the same configuration, they proposed the insertion of random

perturbations in the latencies to access memory. This results in variable behavior

even when running the same configuration during simulation. Once a program

is run for n times in each configuration, the average results can be used to make

decisions. Using statistical techniques, they can choose n to give a certain con-

fidence on the results. For very small architectural configuration changes, n can

be quite large, as shown by Lepak et al [41]. The cost of running n times is

increased run-time for performing simulations, which is now n times more expen-

sive when using multi-threaded workloads. Given simulators’ speed and length

of benchmarks, the run-time cost increases quite significantly, especially when

many configurations are to be explored. Barr [11] also demonstrated the vari-

ability across runs of multi-threaded benchmarks. Lepak et al [41] proposed a

technique for deterministic-simulation, where a single run of a benchmark in each

configuration is used to compare the runs. Their technique uses logs to guide the

simulator and ensure determinism by introducing artificial stalls. A determinism-

stall error metric is used to estimate the error in simulation results. The simulator

then ensures the same path of execution for each thread. The technique proposed

in Chapter IV builds upon the same idea. However, the method to collect the

logs is more efficient and can be used with large applications. The mechanism

to account for the artificial stalls and compute the performance estimates is also

2There can be examples where this is not true. Some system calls are inherently non-deterministic. Even
some libraries can change their behavior depending on the architecture configuration.

21

improved significantly.

II.B Full-system and user-level simulation

Some benchmarks spend significant time executing operating system

code. Example are I/O bound applications like TPC-C [22] and other server

applications like DSS (Darwin Streaming Server) or web servers. For accurate

performance modeling of these applications, it is important to execute not only

the application code, but also the operating system code (e.g. system calls,

interrupt handlers, etc). Full-system simulators perform detailed simulation of

the user-code, shared libraries, operating system code and device-drivers as well.

Hardware structures such as I/O devices, DMAs, interconnection buses, network

devices, and timers need to be modeled in these simulators, so the operating sys-

tem code and device-drivers execute correctly. Although very detailed, maintain-

ing full-system simulators is a complex task. These simulators need to be capable

of booting and executing un-modified operating system and device drivers code.

Supporting different versions of operating systems requires constant updating

of the simulators. Another obstacle for full-system simulation is the difficulty

to reproduce the complex environments needed for by real applications. These

applications may require special run-time license-checking mechanisms, special

device drivers, they may have specific kernel dependencies, large storage require-

ments and elaborate installation procedures, all of which are non-trivial tasks to

accomplish. Therefore, getting latest versions of some applications to run in those

simulators is a time-consuming task. Hence, the complexity of such simulators is

warranted only if the applications spend a significant amount of time in the OS

code.

User-level simulation performs detailed simulation of the user-level (ap-

plication) code and the system shared libraries only. For correctly executing

22

programs, these simulators need to emulate the behavior of the operating sys-

tem, and reflect the side effects of the system interactions in the application’s

execution. These side effects result from system calls, asynchronous interrupts

and DMA transfers. The emulation is a complex task, but it is significantly

simpler than simulating the behavior of the full machine. Typical user-level sim-

ulators, however, only emulate a limited set of system interactions, in particular

system-call interactions. This is due to the tedious and time-consuming nature

of the emulation. The traditional techniques for emulation are also hard to port

across different operating systems because they rely on the host platform for the

emulation, tying the simulator to it. Chapter III explains in detail how the tra-

ditional emulation techniques work. Furthermore, asynchronous interrupts and

DMA transfers are not emulated, limiting the scope of possible applications that

can be simulated. If the benchmarks to be studied do not spend significant time

in the OS code, using user-level simulators is a better option because they are

simpler to build, modify and maintain.

Chapter III proposes a scheme to collect logs for user-level simulation

trivializing the need for emulation support. This scheme relies on a binary instru-

mentation tool we created. The log collection mechanism is simple, automatic

and independent of the OS. Furthermore, the problems with reproducing the ex-

ecution environment to run an application are minimized. If the application can

run on the native environment, it can be analyzed by our tool, which creates logs

to guide simulation.

II.C Reducing the amount of simulation through sam-

pling

Given today’s simulator speeds and the dynamic instruction counts of

benchmarks, it is impossible for designers to simulate full program runs in order

23

to evaluate a new architectural enhancement. Full runs of SPEC2000 benchmarks

would take, on average, more than a month to complete. On more detailed mod-

els, such as the ones used in industry, full runs of SPEC2000 benchmarks would

take years. With multi-processor architecture and multi-threaded workloads,

non-determinism makes the problem even worse. As a result, a lot of research

has focused on techniques to reduce the amount of simulation. In particular,

many have focused on techniques to simulate only selected samples of execution

for a given benchmark, because of their dramatic impact on the run-time cost

of running the simulations. A sample, in this context, is an interval of execu-

tion.3 An interval of execution is a contiguous sequence of dynamic instructions

executed by a program. The goal of sampling is to simulate enough intervals

of execution that, together, capture the time-varying behavior of a program.

Sampling is used to estimate some program characteristics such as the average

number of instructions per cycle (IPC). The number of samples and their length

determines the accuracy of the sampling mechanism. If the program does not

present much time-varying behavior throughout the execution, a small number

of samples should capture its behavior. If the program presents a lot of variation

in its behavior over time, more samples are needed to capture them all. In order

to simulate the samples of execution for a given set of programs, techniques to

choose and simulate those samples are needed. This section focuses on these two

aspects and first discusses how to simulate a sample. There are two methods for

doing this. The first executes simulation in a fast mode, called fast-forwarding, up

until the start of the sample. At that point, the simulation switches to a detailed

simulation mode and starts collecting statistics. The second collects checkpoints

of the program execution at the beginning of the samples, and later loads them

into the simulator. For both methods, the architectural state at the beginning

3Computer architects often refer to a sample as an interval of execution. A set of samples from a program is
used to estimate statistics from that program. In statistics, however, a sample usually refers to a collection of
sample units or measurements.

24

of the sample is not the same as it would be, had the program executed detailed

simulation from the beginning. This results in bias for the simulation results.

This section also discusses techniques to minimize the bias.

II.C.1 Reaching the simulation samples

Fast-forwarding

In general, for maintainability and modularity reasons, simulators sepa-

rate functional simulation from timing simulation (or detailed simulation). This

separation allows a simulator to execute programs in these two different modes:

one performing only functional simulation and another performing both func-

tional simulation and detailed simulation. The former is commonly called fast-

forwarding, because the execution of the program advances forward at faster

speeds than using detailed simulation (since no timing is modeled). When switch-

ing from functional model to detailed mode, the programmer visible state is

carried over to the detailed simulation, which then starts collecting statistics.

When switching from detailed simulation to functional simulation, timing model-

ing and statistics collection stops, and functional simulation only resumes. Fast-

forwarding is commonly used to advance to samples of execution.

Cold-start effects. When switching from functional to detailed simu-

lation, many of the processor structures modeled are in a cold state. This is be-

cause no instructions were using them in functional mode. Examples are caches,

branch predictor tables and coherence directories, which are empty. Hence, some

action needs to be taken to bring the simulator into a state close to what it would

have been, had detailed simulation executed from the beginning and up to the

start of the sample. This is referred to as sample warm-up. When using fast-

forward, one simple way to do so is to implement yet another simulation mode,

called functional warming. In this mode, functional simulation is executed, but

25

fast-forwarding
functional warming
detailed simulation

checkpoint checkpoint checkpoint checkpoint

(a)

(b)

not simulated at all
detailed simulation

Figure II.1: (a) On-line sampling; (b) off-line sampling, using checkpoints.

major processor structures such as cache and branch predictors are still accessed.

This ensures that these structures are not empty.

The amount of functional warming required before a sample depends

on the sample size (number of instructions) and the warm-up accuracy desired

(relative to a perfect warm-up approach, which is the state the micro-architecture

structures would be if detailed simulation was executed from the start of the pro-

gram). Haskins and Skadron [31] use an approach called memory reference reuse

latency (MRRL). MRRL analyzes the program’s code to determine the number

of instructions to be used for functional warming. This number guarantees that

a given percentage of accesses (e.g. 99%) in the sample are warmed up. An-

other simpler but less accurate technique, is to use trace-stitching [6], originally

proposed with trace-driven simulation, but also applicable to execution-driven

simulation with fast-forwarding. In trace-stitching, the final state of the previous

sample is used to approximate the state of the next sample. Trace-stitching only

performs well if the number of cache misses that would have occurred, between

the samples, is confined to a small set of cache lines. Hence its performance de-

26

pends on the applications, sample size and the sampling period. Figure II.1-(a)

illustrates a simulation using fast-forwarding, functional warming and detailed

simulation. A program starts execution from the beginning in functional mode.

Before a sample starts, execution is switched into functional warming. Once

the sample is reached, detailed simulation takes place. Using SimpleScalar [76],

functional simulation was reported to be 60x faster than detailed mode. Func-

tional warming, which updates only cache and branch prediction structure, is 75%

slower than functional simulation only. The disadvantage of using fast-forwarding

is that the execution of each sample is serialized. In addition, it can still take

a long time to fast-forward a program and simulate all of the samples, even in

functional mode. Techniques have been proposed to speed up fast-forwarding us-

ing JIT compiling [42]. Even so, fast-forwarding time is not completely removed,

and for large applications, which execute trillions of instructions, it can still take

significant time. To address that, checkpointing is commonly used.

Checkpoints

A checkpoint can be defined as a snapshot of the program’s execution,

which is stored to a file, and later loaded into the simulator. Collecting the

checkpoints involves using fast-forwarding to reach the samples. At that point, a

checkpoint for the sample is recorded. In one fast-forwarding run, a checkpoint

for each sample can be stored. In later runs, fast-forwarding is no longer needed,

since each checkpoint can be loaded directly into the simulator. Using check-

points eliminates the fast-forwarding time from the simulations. In addition, it

enables parallel simulations of all samples, because the samples are independent.

Figure II.1-(b) illustrates the use of checkpoints, assuming that the checkpoints

were already created. During simulation, no functional execution is performed,

but the checkpoints are used to simulate each sample. A checkpoint contains two

27

types of information: programmer visible state and micro-architecture state.

Programmer visible state. The programmer visible state consists of

the register states and the initial memory values needed by the program. For user-

level simulators, the checkpoints also need to contain the effects to the user-code

coming from system interactions (through system calls, DMAs and asynchronous

interrupts). For the memory image in the checkpoint, one can naively copy the

entire memory image to the checkpoint. However, during the simulation of a

sample, only a subset of the memory image is actually used by the program.

In this subset, some locations in the image are read and some are written to.

Only the locations which are read for the first time during the execution of the

sample, before being written to, need to be in the checkpointed memory image.

This is because the locations which are written to first will have the correct

values in memory. These values are generated by the write operations. A similar

observation has been made in other related work [14, 50]. Chapter III presents a

technique to efficiently and automatically collect the system side effects and the

memory state. Full-system simulators need to store more state in the checkpoints

in order to start the simulation at a consistent state. In addition to the memory

used by all applications currently running, it is often the case that the disk image

also need to be stored, so that I/O operations executed during simulation of

the checkpoint are properly handled. The memory state of all running processes

also goes to the checkpoint. As a result, these checkpoints can be quite large.

Furthermore, the checkpoints are not proportional to the size of the samples.

Using schemes to reduce the amount of simulation through sampling can require

a large number of checkpoints, in which case reduced checkpoint sizes is desirable.

Micro-architecture state. The programmer visible state has enough

information to correctly start the functional simulation of the program. However,

the state of the internal micro-architecture structures (e.g. caches, branch pre-

28

diction tables) is cold, similarly to fast-forwarding. This is because no simulation

has executed before the checkpoint is loaded. As a result, a checkpoint may also

carry information to warm up the architectural state. Cache and branch predic-

tor states are the most important structures to warm up in uniprocessors. When

a structure is not warmed-up, the simulation results are affected. For example, in

the case of a branch prediction, more mispredictions are potentially found during

the simulation of the sample because the state of the branch predictor table was

cold. This difference in simulation results is called a bias. The simplest strategy

is no warm-up, where no information to initialize internal architectural state is

provided. For this strategy, long samples are the only way to minimize the bias

in simulation results [53]. Other warm-up strategies also exist. For the memory

hierarchy, hit on cold is one strategy, where every first cache access is considered

a hit. This technique works well if the program’s hit ratio during the sample is

high. Fixed length warm-up is another strategy, in which one uses a period of

detailed simulation prior to the beginning of a sample [20]. The MRRL tech-

nique presented in the previous section, by Haskins and Skadron [31], can also

be used to create the warm-up portion of a checkpoint. Creating a checkpoint

to warm up a micro-architectural structure is beneficial because it avoids using

functional warm-up. However, if the information in the checkpoint is specific to

a given structure configuration, the warm-up information is only useful for that

configuration. If this is the case, different checkpoints for a sample are needed,

for each configuration to be studied using simulation. Hence, a checkpointing

mechanism that stores micro-architectural information, independent of the archi-

tecture configuration, is desired. Van Biesbrouck et.al. [14] proposed an approach

called Memory Hierarchy State (MHS), which stores cache warm-up information

for the largest cache to be explored. The MHS is collected through functional

simulation. The warm-up information can then be re-used to warm-up smaller

29

caches as well, making the structure independent of the micro-architecture.

Checkpointing for multi-processor simulation

Checkpointing is also applied for simulation of multi-processor plat-

forms. In this context, a programmer visible state is needed for each processor or

core. In addition, warm-up state is needed for structures other than caches and

branch predictors. Barr [11] proposed a scheme to warm up both the caches and

the cache coherence directory, assuming a directory-based protocol. This scheme

is called memory timestamp-record (MTR). MTR stores cache information and

timestamps for the last readers and the last writer to each cache block. Each

cache block carries a timestamp, a tag, and bits indicating whether the block is

dirty and/or valid. The k most recent cache blocks to a cache set are stored. This

allows the warm-up of different cache sizes and associativities, assuming a least-

recently-used replacement policy. These checkpoints are also micro-architecture

independent, which is a desired feature, as noted previously. The timestamps

allow the re-construction of the directory, because one can infer the interleavings

for cache accesses using the timestamps. Wenisch et al [74] use Simics [43] full-

system checkpoints for saving the programmer visible state and the cache state for

simulation. They use detailed simulation to warm up other micro-architectural

structures such as micro-processor interconnect queue states.

II.C.2 Choosing the simulation samples

In the previous section, the techniques to avoid detailed-simulation of

an entire program were discussed. However, the criteria for selecting a set of

samples for simulation was not addressed. This section describes the most com-

mon methods. There are two common sampling techniques used in computer

architecture simulation studies: statistical sampling and representative sampling.

30

Both require simulation of only a small fraction of the execution (less than 1%)

with low error rates (within 3%) [80, 33], when compared to the full program

detailed simulation.

Other techniques were commonly practiced until recently, using a single

sample, selected by some ad-hoc criteria. One method is to perform detailed

simulation only on the first X instructions or to fast-forward Y instructions and

perform detailed simulation on X instructions. These techniques have been shown

to poorly represent the entire behavior of the program. Other techniques have

also been proposed, such as reducing the input set for running a given workload.

The basic idea is to modify the original reference input so that the benchmarks

run to completion, but with a much lower instruction count than the original

reference. MinneSpec [34] is one example of this technique. Unfortunately, Yi

et al [80] has shown that the technique performs poorly when compared to the

reference run results. This is because running a reduced input set does not

exercise the simulation in the same way that the reference input does.

Figure II.2 represents the execution of a program as horizontal bars,

where shaded areas represent detailed simulation. Figure II.2-(a) illustrates full-

program execution using detailed simulation, which is impractical due to the

high run-time cost. The next two sections describe statistical and representative

sampling.

Statistical sampling

Statistical sampling [76, 21, 39] is based on well-known theory for esti-

mating a property of a population using samples, or a subset of the population,

which are taken at random. By looking only at samples, one can infer the prop-

erty for the entire population. The estimated property can be the mean of the

population, its variance, or some other characteristic. In order to give the de-

31

(b)

Profile Analysis

(a)

(c)

Figure II.2: (a) Full program detailed-simulation; (b) Statistical sampling; (c)
Representative sampling.

signer some certainty about the estimated property, it is common practice to

compute the statistical confidence of the estimate, using a confidence interval,

along with a confidence level.

SMARTS is a framework to perform statistical sampling for micro-

architecture simulation. In SMARTS [76], the user chooses a desired confidence

and an initial number of samples n. Detailed simulation is only performed in each

sample. A characteristic of the program, such as its IPC, is then estimated from

these samples, and a confidence on the estimate is calculated. The confidence is

quantified by a confidence level (1− α) and a confidence interval x± ε.x, where

x is the population mean estimate and ε is the error in the estimate. The confi-

dence interval, with a confidence level α, for a population’s mean µ is computed

as x ± ε.x where ε is given by (z.Vx)√
n

, z is the 100[1 − (α/2)] percentile of the

standard normal distribution, Vx is the estimated coefficient of variation, and n

is the number of samples. The interpretation of the confidence interval, in this

32

case, is that α percent of all possible samples, from that population, result in

an interval that captures the true mean µ [76, 23]. These formulas work for a

number of samples sufficiently large (i.e. n > 30).

Given an initial number of samples n for a program, and a coefficient

of variance Vx, one can compute the confidence interval for a given confidence

level or vice-versa. If the confidence is not acceptable, a new n is chosen, and

the experiments are re-run. Figure II.2-(b) illustrates the statistical sampling

approach. The shaded areas represent the program intervals where detailed sim-

ulation is executed. The areas in white are the portions of the program not

simulated in detail. Wunderlich et al [76] showed that statistical sampling results

in error rates of ±3% with a confidence level of 99.7%. It results in speed-ups of

35x to 60x when compared to full-detailed runs (shown in Figure II.2-(b)). The

drawbacks of statistical sampling are that a large number of small samples need to

be taken throughout the entire execution of the benchmarks. If fast-forwarding

with functional warming is used, this can take a significant time, dominating

the simulation time. If checkpoints are used, a large number of checkpoints are

needed, which can be inconvenient and result in large storage requirements. Ad-

ditionally, since the intervals representing a sample unit are very short (e.g 10,000

instructions or so), warm-up of micro-architecture structures must be done care-

fully. To mitigate these issues, Wenisch et al [73] proposed the use of statistical

sampling with checkpoints, where the checkpoints are called live-points. These

contain only the live-state needed by the sample, similar to the work presented

by Van Biesbrouck [14].

Statistical sampling for multi-processors. Statistical simulation

has been largely applied for single-processor architecture studies. Only recently,

efforts have been directed to multi-processor simulation. Ekman and Stenstrom [27]

showed that the number of samples needed to capture the time-varying behav-

33

ior of multi-threaded programs is usually lower than single-threaded programs.

They show that a factor of p reduction can be obtained, where p is the number of

processors. This is true when the various threads of execution are not performing

the same work at the same time. In other words, their behavior is not aligned

(e.g. through the use of barriers, for instance). As a result, the overall variation,

when looking at the aggregated results (e.g. IPC) of all threads, is smoothed

out, requiring less samples. This is useful when the designer is only interested

in the overall behavior and not the behavior of each thread. When the latter is

true, the number of samples does not decrease. However, if the threads are highly

synchronized and perform the same work at the same time, the variation does not

decrease, nor does the number of samples. It should be noted that none of these

approaches consider space-variability in the simulation samples when running the

simulations across different configurations.

Representative sampling

Representative sampling [36, 55, 62] does not rely on samples taken at

random. Instead, it relies on profiling an architectural independent property of

the program’s execution, and using the profile to intelligently choose the samples.

Program structures used to build the profile can be basic block profiles [61],

loop branches, instruction mix, memory address information, register usage and

procedures [38]. A program is broken into intervals of execution and a profile is

collected for each interval. These profiles can then be analyzed using machine

learning techniques, such as clustering, to find out a set of intervals that represents

the execution of the entire program, thus capturing its time varying behavior.

Only those intervals are simulated in detail.

SimPoint. The SimPoint [62] representative sampling approach picks

a small number of samples, which accurately create a representation of the com-

34

plete execution of the program. It breaks a program’s execution into intervals,

and for each interval it creates a code signature (or profiles based on the code

executed). It then clusters intervals with similar code signatures into phases.

The idea is that intervals of execution with similar code signatures have simi-

lar architectural behavior, and this has been shown to be the case by extensive

research [62, 37, 53, 80]. Therefore, only one interval from each phase needs to

be simulated in order to recreate a complete picture of the program’s execution.

SimPoint then chooses a representative from each phase and performs detailed

simulation on that interval. Taken together, this sample of intervals can represent

the complete execution of a program. The set of chosen sample intervals is called

simulation points, and each simulation point is an interval on the order of mil-

lions of instructions. Each simulation point is run through detailed simulation,

allowing one to project the performance of the program based on the results from

the sample. Since the intervals of execution used by SimPoint are large (e.g. 100

million instructions), issues related to warming up micro-processor structures are

minimized. In addition, since the number of simulation points for representing

the full execution accurately is small (e.g. 10 for SPEC2000), the number of

checkpoints needed is also small. SimPoint accuracy is within 2%, relative to the

full detailed simulation runs of SPEC2000 programs.

Figure II.2-(c) illustrates how representative sampling works. The pro-

gram is broken into intervals and the profiles for each interval differ from one

another, represented in the figure by different patterns. However, some intervals

are similar to others. The key idea is that intervals with similar profiles (same

patterns) are repetitive behaviors recurring over time. These behaviors do not

need to be simulated over and over again. The profiling analysis discovers this

and picks one sample from each group of intervals with similar behavior.

Representative sampling for multi-processors. Representative

35

sampling has been used in industry [53] and in academia for running architec-

tural simulations for single-threaded programs on uni-processors. Representative

sampling, in particular SimPoint, has also been used by Van Biesbrouck et al [15]

for detecting phases in multi-programmed workloads on SMT processors with

more than one context. In their work, phases for each program are identified

individually. After that, a co-phase matrix is built, for the possible combinations

of phases across the various programs. This co-phase matrix is used to guide de-

tailed simulation of the phase combinations, and gather the statistics for each of

them. It is also used to guide fast-forwarding when a phase combination already

simulated is reached again. Results from their research show that only 1% of

a workload is simulated in detailed mode, with accuracy within 4%, when com-

pared to the full-detailed simulation runs of the workload. In multi-programmed

workloads, the behavior of each individual program does not change as the ar-

chitecture configuration is modified because there is no sharing of memory across

the programs. Hence, there is no space-variability to deal with.

For multi-threaded programs that share memory, a complete solution

for selecting representative samples, and simulating them for design exploration

has not been provided yet. Perelman et al [56] proposed a methodology for

selecting simulation points for multi-threaded programs. In their work, a profile

for each interval of execution per thread of the program is created. These profiles

are fed to SimPoint together, which then finds the phases and selects samples.

Figure II.3-(a) illustrates SimPoint for single-threaded programs. Figure II.3-(b)

illustrates the process for multi-threaded programs. A profile for each thread

(e.g. T1, T2, ..., Tn) is collected. The figure shows each thread with a different

shade. These profiles across all threads are fed to SimPoint, which selects the

simulation samples from them altogether. The simulation samples are selected

on a per-thread basis. This is in contrast with a possible approach in which

36

profiles could be combined across all threads, representing the parallel behavior

across them. After the phase analysis is finished, each interval from each thread

is assigned to a phase. In order to get a global picture of phase behavior across all

threads, the intervals of execution from each thread must be aligned according

to what was observed during profiling (the profiles in Figure II.3-(b) are un-

aligned specifically to illustrate this phenomena). A simulation sample across

all threads is the simulation interval of execution picked by SimPoint from one

thread, along with the intervals that were executed in parallel in the other threads.

Perelman et al [56] found that the phases across threads align quite well. This

is because, in these applications, each thread is executing the same code, and

also because the execution of the threads is very synchronized. Is it also worth

mentioning that the simulation points are selected based on one profile from one

run. However, when doing design space exploration across configurations, the

profiles can change due to space-variability. As a result, the profile of the code

simulated in a different architecture can be different from the profile selected by

SimPoint. Therefore, comparing the simulation across different architectures can

lead to inaccurate results, because execution paths differ across the runs. The

technique presented by Alameldeen et al [7] can be used in this case, with the

added cost of running simulations multiple times. Even so, if the profile of the

simulated run changes, the sample may no longer be representative. Alternatively,

the techniques presented in Chapter IV, used for deterministic simulation for

design space exploration, can be directly integrated with such an approach for

representative sample selection. More discussion on this is presented chapters IV

and V.

37

SimPoint

Simulation points

SimPoint

Simulation points

T1 T2 Tn

…

(b) (a)

Figure II.3: (a) SimPoint for single-threaded program; (b) SimPoint for shared-
memory multi-threaded programs.

II.D Accelerating simulation

The techniques presented in the previous section reduce the amount

of simulation by means of simulation sampling. There are also techniques to

accelerate the simulation of the samples. The techniques described in this section

strive to reduce the overall time to execute all the samples of execution from a

benchmark, for the different configurations examined.

II.D.1 Using parallel hosts

One obvious and easy way to accelerate the time to run simulations is to

take advantage of a batch system, in which several nodes of computation execute

jobs in parallel. The goal of the batch system is to schedule, prioritize and load

balance the execution of the jobs. As described in Chapter I, designers evaluate

n variations of an architectural enhancement by simulating m programs. There

are therefore n.m independent tasks that can run in parallel. In addition, the

individual experiments can also be run in parallel through the use of checkpointed

samples. Assuming k samples per program, there are now n.m.k jobs that can be

run in parallel. Although this can provide significant reduction in time to execute

38

the simulation runs, the end-to-end time to run each job still plays a key role in

the turn-around time of experiments. Running experiments is an interactive task

and it is often the case that the completion of previous experiments determines

the new set of experiments. Hence, the quicker a set of experiments is finished,

the quicker decisions are made, and consequently time-to-market for a product

decreases.

In order to fully exploit the availability of parallel hosts, one can also

parallelize each simulation run, so that the simulation consists of many threads

of execution, each running on a separate processor. Multi-processor simulation

models a target that is intrinsically parallel. One intuitive way to break up the

simulation in threads of execution is to map each target processor to a host pro-

cessor. This allows the simulation to take advantage of the parallelism available

in the host platform. However, a major challenge lies in ensuring proper syn-

chronization for the host parallel computations, so that the target processors’

interactions are modeled correctly.

The Wisconsin Wind Tunnel [48] is an example of a simulator that

takes this approach. As long as the target processors do not interact, the threads

of execution can execute in parallel, in each target processor. However, when

there are interactions, threads need to be synchronized correctly. For example,

in shared memory architectures, a write to a shared variable must eventually be

visible to other processors. Assume that a write at cycle t must be visible by

another processor at cycle t + δ, according to the model and the state of the

interconnection network. The other processor execution must be able to detect

that event before its simulated time exceeds t + δ. One simple way to implement

this is to synchronize all the target processors at every target simulated cycle. A

well-known strategy to synchronize computations in parallel multi-processor is to

break the target processors’ execution into lock-step intervals named quanta. All

39

the host processors must synchronize at every quanta, to exchange events and

properly model the target processors interactions. The granularity of the quanta

determines the accuracy with which the interactions are modeled, because the

communications across processors are only noticed at the end of the quantum.

The Asim simulator [28] was also modified to incorporate parallel pro-

cessing. Asim is a very modular simulator, in which each hardware structure

is implemented by a module. Modules communicate through ports, which en-

force latencies when modules communicate. By adhering strictly to these ports,

for communication, the modules (in this case, processors) can be executed by

threads, enabling each target processor to be executed in a host processor [10].

Mermaid is another example of an implementation of a parallel simulator for

parallel model [57]. They separate computational models from communications

models. The communication model is implemented by a single thread and com-

municate with the computational models through message passing.

II.D.2 Direct-execution

In execution-driven simulators, every instruction of the target architec-

ture is interpreted by the simulator. This allows the simulator to model the

behavior of the instructions in any level of detail necessary. The cost involved

is proportional to the amount of detail, and to the fact that instructions are in-

terpreted. Direct-execution executes the target instructions directly in the host,

natively [75, 47]. The gains in speed come from the fact that blocks of instructions

are executed natively, and the simulator is only invoked at certain events, such as

branches, or when simulated processors need to interact. Direct-execution could

invoke the simulator at each instruction boundary, but the gains in speed would

be reduced. The Wisconsin Wind Tunnel [48] makes use of direct-execution to

improve speeds of memory simulation. For simulation of a memory hierarchy, for

40

example, they instrument every load and store to invoke the simulator and handle

the simulation of the memory events. Since direct-execution does not invoke the

simulator frequently, in order to maximize speed, the accuracy of the simulation

is usually reduced. Direct-execution also ties the host and the target platforms,

since the same instruction set is required for it to work.

II.D.3 FPGA-based simulation

The simulators referred to thus far are all implemented using high level

languages such as C/C++. However, the high density of transistors available

with today’s technology also enables the fabrication of large field-programmable

gate array (FPGA) chips. A recent trend is to use FPGA devices to execute

simulations of processor models because these devices offer the flexibility of re-

programmability with the speed of hardware execution.

FPGA-based simulators have reported and projected speeds two orders

of magnitude faster than their software counterparts [72, 8, 54, 19]. There are two

approaches for simulating a computer architecture in a FPGA. The first approach

is to emulate the entire implementation of the architecture in the FPGA [72]. For

the implementation to be useful for performance analysis, it has to, of course,

allow for visibility and statistics collection for each run of the simulation. The

advantage is that the amount of communication from the FPGA board to the

outside host system is reduced. On the other hand, implementing an entire design

in FPGA may not be feasible. For instance, a multi-core architecture with 2MB

L2 private caches would be hard to fit in FPGAs.

Another approach takes advantage of the functional and timing parti-

tioning present in most simulators, also discussed in section II.C.1. The func-

tional simulator implements the data path, and the semantics of the ISA, to

execute instructions. The timing model keeps track of latencies and the control-

41

path of the structures implemented. For instance, a cache in the timing model

does not store any data, but only keeps track of tags, valid and dirty bits. In

software simulators, most of the run-time is spent in timing modeling because

of the large number of parallel structures to model, and also due to the fact

that statistics are tracked. Given this knowledge, it seems appealing to let a

hardware (inherently parallel) platform to model the timing, and relinquish the

functional modeling to software, sitting on the host platform connected to the

FPGA [19, 8, 54]. This greatly simplifies the amount of logic going into the

FPGA, enabling it to fit bigger performance models. On the downside, there is a

greater cost of communication between the FPGA board and the host platform

implementing the functional model. The communication has to be minimized

and implemented carefully to avoid large performance overheads. FPGA-based

simulation also requires a change to the way architects are used to writing sim-

ulators. The timing specification needs to be written in hardware description

languages, and not high level languages such as C/C++. Also, there are many

tools and simulators already implemented in software used by companies and

research groups. The approaches presented in chapters III and IV are applicable

to FPGA based simulation as well. Operating system side effects emulation and

non-determinism across simulation runs of multi-threaded programs simulated in

different configurations are problems to be solved there as well.

II.E Binary instrumentation

Binary instrumentation is a technique to observe the behavior of in-

structions executed by a program through the insertion of additional code. The

instrumentation can be done statically, at compile time, dynamically, during ex-

ecution, or by modifying the source code.

This section focuses on dynamic binary instrumentation because of its

42

use to implement the techniques described in chapters III and IV. Furthermore,

the description of this section is based on a binary instrumentation infra-structure

called Pin [42], from Intel Corporation. Binary instrumentation allows one to

observe the architectural state of a process, such as its registers and memory

values, as well as control flow information. It allows users to add function calls,

called analysis routines, through which architectural state can be passed in as

arguments.

The instrumentation is performed dynamically, by a just-in-time (JIT)

compiler. The instrumentation engine intercepts the execution of the first instruc-

tion of the program and translates a sequence of instructions from the original

binary (a sequence of basic blocks) into a new sequence of instructions. The

program then executes the translated instructions. The translated sequence of

instructions is almost identical to the original one, except that the instrumen-

tation engine ensures that, after the sequence is executed, it regains control in

order to instrument the following sequence. The translated instructions are put

into a code cache. When the code is translated, the instrumentation engine has a

chance to insert the instrumentation code, or the analysis routines calls. Eventu-

ally, most of the code executed by the program comes from the code cache, along

with the analysis routines. Only when new code, un-instrumented by the appli-

cation, is touched does the instrumentation engine have to execute again. This

type of instrumentation requires no recompilation of the application’s binaries or

shared libraries.

Pin, the instrumentation engine used in this dissertation, offers a rich set

of APIs for inspection and instrumentation of the program binary, allowing one

to monitor instructions depending on type (memory read or write, addition, mul-

tiplication, control flow, etc.), number of operands, and others. Instrumentation

can also happen at the basic block, procedure calls or image loading levels. Ad-

43

ditionally, it allows call-back registration for specific events, such as system calls,

signals, and beginning and end of a thread. Pin only instruments the user-code

and the shared libraries, not the operating system code.

II.F Summary

This chapter presented an overview of computer architecture simulation

and techniques to both reduce and speed-up simulation, which is 4 to 6 orders of

magnitude slower than the hardware it models. This chapter is not a complete ref-

erence for all existing techniques and simulators, but it aims to motivate the fact

that implementing and maintaining simulators requires multi-person-year efforts.

Conducting studies based on performance models also present many challenges

that are overcome by the techniques described in this chapter. However, there are

challenges remaining, which motivated the work presented in this dissertation.

Recently, there has been an effort towards implementing simulation

models in hardware, to improve speed and maintain the same accuracy achieved

by today’s software models. It will take some time, though, until the use of these

hardware models become mainstream.

The contributions presented in the following chapters of this disserta-

tion are steps towards helping designers with their tasks of both building and

using simulation. The next two chapters delve into the detail of the proposed

techniques, along with presenting the results and a more detailed comparison

of related work. Chapter V presents the conclusion and directions for further

exploration.

III

Efficient Checkpointing for

Uni-Processor User-Level

Simulation

As previously discussed in chapter II, user-level simulators only per-

form simulation of the application code and system libraries. These simulators

do not simulate what goes on while handling an operating system call or in-

terrupt. Nevertheless, a time consuming part of building such a simulator is

correctly emulating the system effects executed as part of the workload under

study. For example, the traditional solution [17, 68, 63] to emulate system calls

for these simulators is by gathering the required input values from simulated reg-

isters and memory state and using them to invoke the call natively. In addition,

most of these simulators do not support system effects such as DMA transfers or

asynchronous interrupts because of their emulation complexity.

Emulating operating system effects, even just the system calls, can be

a tedious exercise. For system calls, the programmer has to be aware of the

input and output semantics of every call that needs to be emulated. Apart from

44

45

having to handle the complexity of an emulator, porting the simulator to run

on a different operating system is labor intensive. Even maintaining a simulator

with system emulation can be quite expensive, since the emulator can break when

the simulator is run on newer versions of the same operating system. Problems

can arise when there are changes to the operating system interface used by the

application being simulated because this can require changes to the emulation

system. In addition to all these problems, a good number of system effects are

non-deterministic in nature, and as a result, emulating them using native system

calls during simulation can cause small variations across different simulations of

the same program, with the same input. Hence, simulation results may not be

completely reproducible.

In this chapter, a technique and a tool that can automatically cap-

ture the side effects of all the operating system interactions to support user-level

simulation are presented. The tool is called pinSEL (Pin-System Effect Log-

ger), which is built using the Pin [42] instrumentation tool. System effects are

captured by executing an instrumented version of the binary natively on the op-

erating system for which the workload binary was compiled. The instrumented

code creates the System Effect Log (SEL) when executed. For each system call

executed, the log contains the changes to the register state effected by the sys-

tem call. The log also contains the values of memory locations accessed by load

instructions executed after the system call, if those memory locations were modi-

fied by it. The algorithm to identify the registers and memory locations modified

by a system call is independent of the semantics of the system call and hence

it is easy to implement. The algorithm also allows the implementation to be

fully portable across operating systems. The SEL also contains memory values

modified by other system interactions such as asynchronous interrupts or DMA,

if those modified memory values are accessed by the program being simulated.

46

Thus the SEL enables deterministic simulation of a program-input pair across

system calls, interrupts and DMA transfers. Deterministic simulation is impor-

tant to accurately compare different alternatives during design space exploration.

In addition, pinSEL can also support simulation of multi-threaded applications

on uniprocessor systems, which is discussed in section III.C.6.

Using pinSEL, an user-level simulator can avoid the emulation of system

effects and the associated complexity. As a result, one can easily simulate real

applications from standard operating systems. For example, SimpleScalar [17],

which has been widely used for over a decade, emulates just enough number

of systems calls to support the simulation of SPEC and similar applications,

and cannot support simulation of many real world programs. Using the pinSEL

approach, one can now simulate real world Linux applications on an x86 version

of SimpleScalar [17], which was modified to consume the logs, without having to

emulate any system calls or complex interactions with asynchronous interrupts

or DMA transfers. At Intel Corporation, engineers were successful in using the

techniques proposed in this chapter to generate the SEL logs to quickly and easily

support user-level architecture simulation of MAC OS and Windows applications.

Without pinSEL it would not have been practical to port their tool, called pinLIT,

to support architecture simulation of applications for these operating systems.

pinLIT (Pin-Long Instruction Trace) is a tool used at Intel Corporation to gather

checkpoints to support architecture simulation.

Using the approach proposed in this chapter, one simulates only the

execution of application code and the user level libraries. This is useful for study-

ing applications like desktop and scientific programs, which spend a significant

amount of execution time in the user level code. Even interactive applications

like acroread and powerpoint, which spend 80% and 76% of execution time

respectively in application code and user level libraries [13], can be captured by

47

the approach. However, the approach has limitations in that it cannot be used

to study applications that are heavily dependent on system interaction (e.g., I/O

bound applications like TPC-C [22] and web servers such as DSS that spend

significant amount of execution time in the kernel code).

III.A Application-Level Simulation

This section describes two system call logging infrastructures – pinLIT,

which is used at Intel Corporation, and SimpleScalar, which is widely used in

academia.

III.A.1 pinLIT

An approach used at Intel Corporation, for simulation, is to first use

SimPoint [62] to determine representative samples in a program’s execution. Then

a tool called pinLIT is used to create a checkpoint for each sample. A sample’s

checkpoint contains everything needed by their simulator to simulate the sample.

In this section, this baseline technique used to create a sample’s checkpoint is

summarized.

SimPoint

The first step is to choose, for a program-input pair, the execution in-

tervals for detailed simulation. SimPoint is used to choose the samples to be

simulated. Note that other methods can be used to choose the simulation sam-

ples; the selection algorithm is not the focus of this study. A more detailed

description of SimPoint is found in chapter II.

48

Creating Checkpoint Image

Once the simulation points are chosen, the next step is to create check-

points for each simulation point using pinLIT (Pin-Long Instruction Trace) tool,

which is built using the Pin [42] dynamic binary instrumentation tool. The check-

point and system call tracing mechanism used in pinLIT generates the logs used

to guide simulation, as described in the Intel’s UserLIT [63] simulation infras-

tructure.

A checkpoint image for a simulation interval contains all the necessary

code and data information that is required for simulating the interval that it

represents. This includes a trace of all the input and output values for the system

calls executed within the simulation interval.

A checkpoint image for a simulation point is created as follows. The

instrumented binary is executed natively and once the execution reaches the sim-

ulation point, the processor’s architectural register state is copied to the check-

point. In addition, pinLIT copies all the pages that contain application code and

shared libraries to the checkpoint.

For the code and data pages, pinLIT tries to avoid checkpointing the en-

tire data image of the process that exists at the beginning of the simulation point.

Instead, pinLIT copies the pages lazily to the checkpoint when they are first used

during the simulation interval. This approach avoids logging those data and code

pages that are never accessed inside the simulation point and thus reduces the

size of the checkpoint. The address locations inside the checkpoint image where

the code and data pages are copied to are stored in a table at a particular location

in the checkpoint image. This table, called the CheckpointPageTable, is required

during simulation to restore the code and data pages.

In addition to copying pages accessed by the program to the checkpoint,

pinLIT also logs enough information about the execution of system calls so that

49

they can be handled during simulation. pinLIT has code specific to each sys-

tem call that determines the inputs and outputs for every one of them. Before

executing a system call, the analysis code in pinLIT logs information about the

input values to the system call, along with their address location (for memory

operands) or the register name. After the return from the system call, the re-

turn value and any memory locations and values modified by the system call are

logged. When the system calls are encountered during simulation, the control is

transferred to a special system call handler that verifies the arguments and writes

the output in the proper memory and register locations. If the input arguments

are different, then simulation is halted, since the simulation environment requires

and only supports deterministic simulation.

Simulation Using pinLIT’s Checkpoint Image

A description of how the simulator uses the checkpoints follows. The

simulator first loads the checkpoint image into its address space and starts the

program’s execution from address 0. pinLIT, when creating the image, inserts

special code at that memory location. The inserted code performs basic initial-

ization tasks such as setting up the correct mode of execution for the processor,

configuring the status bits for floating point registers, and inializing the virtual

address translation engines. This is equivalent to an operating system boot code,

and thus it is called a mini-OS. The mini-OS initializes the simulated page table

using CheckpointPageTable to map the virtual addresses of the application to

the physical addresses where the code and data pages from the checkpoint image

are loaded. The mini-OS also registers a system call handler which is invoked

whenever a system call is encountered during the program’s execution inside the

simulator. Finally, the architectural register’s contents are read from the check-

point image and written to the registers. Note that this sets the PC to the first

50

instruction executed at the beginning of the simulation interval.

When a system call is encountered the system call handler verifies if

the system call input values match the checkpoint image values and writes the

outputs to the simulated registers and memory. The system call itself is ignored.

III.A.2 SimpleScalar

SimpleScalar supports a system call checkpoint mechanism called EIO

(External I/O) logging, which is a trace of the output values of system calls.

Playing back the system calls effects from the log ensures deterministic behavior,

even if the system call has non-reproducible behavior (e.g. gettimeofday).

An EIO file contains a checkpoint of the initial program state that in-

cludes memory values and architectural registers that represents the state of the

system at the beginning of the simulation interval. The rest of the EIO file con-

tains information about every system call, including all input and output values

and the name of the registers and memory address locations where those values

should reside.

When the simulator encounters a system call, it restores the necessary

register and memory values by reading them from the EIO trace. This method

enables deterministic program execution across all the simulation runs.

The mechanism to copy registers and memory values modified by system

calls, used by both pinLIT and SimpleScalar EIO traces, is the same mechanism

used to emulate system calls during simulation, which is presented in the next

section. As it is shown, the mechanism is error prone, complex and very tedious

to implement. It is also hard to port when the simulator is run on different

host operating systems. As a result, these checkpointing tools do not support the

execution of all system calls, which restricts them to creating checkpoints for some

programs (e.g. programs that use system calls not handled by the approaches).

51

In addition, since it is hard to port, it limits studies for applications running only

on certain operating systems.

III.B Existing Logging Approach

User-level simulators need to emulate system calls for correct execution

of applications. In this section, solutions for emulating system calls are discussed

in detail. Additionally, concrete examples llustrate the complexity involved in

emulating them.

III.B.1 Emulating System Calls

This section describes in detail how system calls are emulated in Sim-

pleScalar [17]. SimpleScalar’s instruction decoder can interpret Alpha [64],

ARM [60] and PISA [2] instruction set architectures. Recently, support for x86

ISA was added. For clarity, in the examples of this section, we assumed that an

Alpha OSF [46] target binary is to be emulated on a Linux [1] x86 architecture.

Note from chapter II that a host is the architecture running the simulation and

a target the simulated architecture

Approach

When a system call is invoked by the simulated application, by executing

an instruction which triggers it (e.g. x86 int 0x80 instruction), a special system

call handler in the simulator is called. Figure III.1 illustrates the steps for this

approach of emulating the system calls. In the figure, the host OS is Linux

running on a x86 architecture. The emulated OS is an Alpha OSF, and the

binaries are compiled for the same OS and architecture. The numbers with

circles represent the steps the simulator goes through. The system call handler’s

operation can be summarized in three parts.

52

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

Host Machine
User-Level Simulator

Architecture
Simulation

Engine
(Alpha ISA)

System
Call

Emulation
(Alpha OSF
emulation)

����������	
…��	���

�	����������
���������������

Host OS (x86 Linux) Executes
syscall natively

1

2
3

Figure III.1: Traditional emulation of system calls in user-level simulators; 1)
System Call is decoded; 2) Memory is allocated in the host OS and the corre-
sponding system call invoked natively; 3) The register and memory side-effects
are copied into simulated register and memory respectively.

First, when a system call is found, it invokes the emulation engine.

The system call handler, inside the emulation engine, has to decode the system

call invoked by the application and obtain the necessary input arguments from

the simulated register and memory locations. This is represented by step 1 in

figure III.1. Decoding a system call is dependent on the system call identification

numbers, which are specific to an operating system. For the Linux operating

system, for instance, these numbers are specified in the header file unistd.h.

This decoding part of emulation should support the operating system for which

the application was been compiled for (Alpha OSF in this example). Figure III.2

shows a code snippet extracted from SimpleScalar [17], in which the switch

statement has a case for each system call emulated.

Second, the system call arguments are used to invoke an equivalent

system call, which executes natively on the host machine, represented by step 2

53

in figure III.1. This part of the emulation should support the operating system in

which one wants to execute the simulator, because the arguments to the system

call are specific to that operating system. In the example, the simulator (e.g.

SimpleScalar) supports execution of Alpha binaries compiled for Alpha OSF

systems (supported by the decoding part of the emulator) on x86 Linux systems

(on which the emulator natively executes the system calls).

Third, the result values obtained from the native execution of the sys-

tem call are used to modify appropriate registers and memory locations in the

simulator. This is shown as step 3. The emulation engine copies the register and

memory side effects back into the simulator, to update its state.

Examples

Consider how the open system call is emulated. The system call opens

a file returning a file descriptor. The registers mentioned in this section are

Alpha [64] registers, the target platform. For the open system call, register A1

contains the flag input and A0 contains the address to the location containing the

filename. The flag input format can change between operating systems or new

versions of the same operating system, which requires changes to the emulation

system.

For open, the filename is copied into a temporary buffer. The temporary

buffer and an integer containing the flag value are used as arguments to invoke

the open system call natively. The file descriptor returned from the native system

call is then copied into the V0 register, or if an error happens the register A3

is set to the error code. Note, the emulation of the open system call would be

affected if either the binary is compiled for a different operating system or if the

host on which the simulator is executed changes.

Consider another example, which is illustrated in Figure III.2. The read

54

switch (syscode) {

...

case OSF_SYS_open:

{

/* omitted for clarity */

}

break;

case OSF_SYS_read:

{

char *buf;

/* allocate same-sized input buffer in host memory */

if (!(buf = (char *)calloc(regs->REG_A2, 1)))

fatal("out of memory in SYS_read");

/* read data from file */

regs->REG_V0 = read(regs->REG_A0 /* fd */, buf, regs->REG_A2 /* size */);

/* check for error condition */

if (regs->REG_V0 != -1) {

regs->REG_A3 = 0;

else /* got an error, return details */

regs->REG_A3 = -1; regs->REG_V0 = errno;

/* copy results back into target memory */

mem_bcopy(mem, Write, regs->REG_A1 /* buf */, buf, regs->REG_A2);

free(buf);

}

break;

...

}

Figure III.2: Code snippet taken from the SimpleScalar [17] source file
(syscall.c) used to emulate system calls (the code was modified to improve
clarity). This source file has over 3500 lines of code to emulate only about 81
system calls.

55

system call is used to read a specified number of bytes from a file and copy the

values read to a buffer. To emulate this system call, SimpleScalar invokes the

read system call natively using the contents of register A0 and A2 as arguments,

where A0 contains the file handle and A2 contains the size of the buffer in bytes.

The read system call also requires a pointer buf to the location where the read

contents need to be stored. To accomplish this, SimpleScalar allocates a buffer

of size specified by the A2 register and passes the pointer to the read system

call. Once the system call returns, the contents of the buffer are copied to the

simulated location whose address can be found in the A1 register. Finally, the

A3 register is written with the error code returned from the native execution

of the read system call. It also modifies the register V0, with the return value

from the system call. Note that, the read call can modify the memory location

pointed to by A1 and the number of locations modified is dependent on the size

specified in the register A2. Thus, it is necessary to capture the system effects

on the memory locations.

For this example, A0, A1 and A2 determine the memory locations modi-

fied by the system call. Other system calls have different interfaces (e.g. pointers

to structures, etc), and each case must be handled individually. The example

shown is a simple case. More complex cases are the readv system call, which

specify an array of buffers or the ioctl system call, which is used for a variety of

purposes, each one with a special data structure with pointers and specific behav-

iors. These memory inputs and outputs are system call specific and this is why

creating these emulation systems is tedious, error prone, and hard to maintain.

Handling Asynchronous Interrupts and DMA

Emulating more complex interactions with the system through asyn-

chronous interrupts and DMA are even tougher to handle in an execution driven

56

simulator. It would require modeling the full system including the external pe-

ripheral devices. One example of such system is Simics [43]. Hence, applications

affected by interrupts and DMA are not supported in the user-level architectural

simulators [17, 68, 63]. The logging approach proposed in this chapter captures

the memory effects seen during application level execution, which simplifies the

execution of such applications significantly.

III.B.2 Benefit of Automated Logging

The above implementation for logging system effects is not desirable for

a number of reasons. Note, that handling of system calls involves identifying

the input and output values of each system call. This requires decoding and

writing code to handle each system call. This method is not portable to simulate

applications compiled for a different operating system or even for a different

version of the same operating system. In addition, pinLIT and SimpleScalar do

not support applications that use asynchronous interrupts and DMA transfers.

These issues are solved with an automated system effect logging to capture all

forms of system effects, which is described next.

III.C Automatic Logging

In previous sections, we presented a description of how popular cycle

accurate simulators [17, 68, 63] need to emulate system calls to achieve correct

program execution. For example, SimpleScalar emulates 81 unique system calls

to support simulation of SPEC and similar programs. In comparison, the pinLIT

simulation tool, used at Intel Corporation, emulates 258 system calls, to support

a much wider range of applications compiled for the most popular Linux kernels.

Emulating these system effects is tedious to implement, hard to maintain, and

error prone.

57

In this section, an instrumentation tool that can automatically capture

system effects in a log is described. This logs can then be used to guide ar-

chitecture simulation. The tool can also support simulation of multi-threaded

programs on a time-shared uniprocessor system, which is discussed in detail in

section III.C.6. It can also be extended to support deterministic simulation of

multi-threaded programs on multi-processor systems. This is described in chapter

IV.

III.C.1 Overview

Instead of emulating the system calls one by one, the idea proposed

in this chapter is to automatically capture all the system effects to a program’s

execution in a System Effect Log (SEL). This log file is part of a checkpoint,

which can be used to replay the program’s execution and simulate it without

having to emulate any system effects. The SEL replaces the system effect logging

approach used for pinLIT and the SimpleScalar EIO checkpoint trace, described

in section III.A. The SEL checkpoints are also used for emulating system calls in

the Asim [28] simulator. The logging approach described here is much easier to

implement and maintain, and it provides support for asynchronous interrupts and

DMA transfers, which are supported neither in the pinLIT nor the SimpleScalar

EIO tracing mechanism.

Our system effect logger, named pinSEL, uses a dynamic instrumen-

tation tool called Pin [42]. This section briefly describes the key concept that

allows one to automatically capture system effects. A straight-forward way to

capture the system effects to a program execution is to log the value of every sin-

gle load instruction executed by the program, and to log the register states and

the PC value after handling a system call or an interrupt. Figure III.3 illustrates

this approach. Note that all the load instructions executed by the program are

58

 ����reg5 � load [B]
 ����reg1 � load [C]
 syscall

 ����reg0 � load [A]

 ����reg2 � load [C]
 ����reg3 � load [A]

[C]�55;[D] �99

 ����reg4 � load [B]

Figure III.3: Instructions executed by the thread. Check marks mean the load
value was logged.

logged (indicated by a check-mark next to the instruction). After a system call

executes, the processor register values are logged. The system call in the exam-

ple changes locations C and D. As the program continues executing, the values

loaded by the load operations after the system call are logged as well. Hence the

values modified by the system call are captured because the value from memory

location C is logged and reused during simulation. However, this method is too

expensive, both considering runtime and log size overhead. Instead, pinSEL logs

a load value only if:

1. The load is the first memory operation to access the memory location or;

2. The memory location accessed by the load has been modified due to a system

effect.

The second condition is determined by keeping track of a user-level

shadow copy of the memory space that is read and written by the application

during execution. The redundant copy is called the user-level copy, because it

is maintained in the pinSEL’s address space, and is updated by pinSEL for load

and store operations executed by the application. The user-level copy is not

updated when the system modifies the corresponding application’s memory state

while it is handling system calls, interrupts or DMA transfers. Hence, if an

59

application’s memory location is modified due to a system effect, and later a load

accesses the same location, pinSEL detects a mismatch between its user-level copy

and the corresponding value in the application’s address space. When pinSEL

detects such a mismatch for a load, it can determine that the program’s memory

value has been changed by some system event external to the program being

profiled, and hence it knows that the load value needs to be logged. A similar

mechanism is used to capture the system effects to the register states before

and after a system call or interrupt. Figure III.4 shows a representation of the

instrumentation tool, which resides in the same address space of the application.

Note that when system calls, interrupts and DMA transfers take place, only

the actual application memory is updated. Thus, for a program’s execution,

automatic logging of external system effects to its execution state are logged,

without having to explicitly model and emulate the system interactions.

The algorithm used by pinSEL is inspired by the checkpoint scheme

used in BugNet [50], for debugging. In their work, a hardware mechanism to

log system effects is proposed. Their mechanism uses a bit per word in a cache

line, to indicate whether a given word has to be logged during execution. If the

bit is not set, when accessing the word in the cache, the word value is logged.

This bit is set when the first access to the word happens. After a system call or

an interrupt, all the bits are cleared so that load values modified by the system

call also gets captured, if they are accessed. This also means that the values

that were already logged previously need to be re-logged. BugNet also relies on

hardware mechanisms for cache coherence to reset the bits for the words changed

by a DMA transfers in order to log its memory side effects. pinSEL does not rely

on any hardware mechanism or operating system support. It simply relies on

comparing the values in the user’s memory space with the values in the shadow

copy kept internally. In addition, since pinSEL is a software tool, it can keep

60

����������	
������
����

���
 �	�����

�	�����	

���

�����

�����

������
����

��
����������	

�����

����

�����
�����

���
���	�����

�	�������

� !�

��	� !
����������	

�"�����

���������

#����

�

"
��
�
�
�

Figure III.4: pinSEL instrumentation tool representation. Both the application
and pinSEL’s instrumentation reside on the same address space. The instrumen-
tation monitors memory and register values changed by the application. The
instrumentation also keeps a shadow copy of the application touched memory.

61

track of a large number of memory accesses (unbounded if enough memory is

available), hence reducing the size of the logs. Finally, BugNet does not provide

support for logging of the code executed by the application, whereas pinSEL logs

the code as well.

The SELs can then be used to replay a program’s execution, to guide ar-

chitecture simulation and avoid the need to emulate the system interactions. The

simulation of application level execution is accurate as SELs enables determinis-

tic replay of program execution. However, there can be small inaccuracies (less

than 1% error) while simulating mis-speculated paths if those execution paths

access memory locations that have not been logged. This limitation is discussed

in more detail in section III.C.8.

III.C.2 Introducing pinSEL

The goal is to collect a System Effect Log (SEL) to guide reproducible

architecture simulation. The SEL contains the initial register, program counter

and memory (code and data) values accessed by the program execution and all

the system effects to those memory and register states. In addition, for multi-

threaded programs executing on time shared uniprocessor systems, it also con-

tains information about thread interleaving which is discussed in section III.C.6.

The SEL can be for the complete execution of a program or just for a sample of

program execution. The sample could be hand picked, or chosen using tools such

as SimPoint [62].

The SELs are collected by dynamically profiling the program execution

using binary instrumentation. pinSEL is similar to pinLIT in that it is used to

collect checkpoint traces for simulation. The difference is that in pinSEL the

system effects to both memory and register states are captured using a generic

algorithm that is completely independent of the operating system. As a result,

62

pinSEL can easily capture system effects due to interrupts and DMA transfers,

unlike pinLIT, which does not capture those effects at all.

III.C.3 Dynamic Instrumentation

To profile a program using pinSEL the program is executed natively on

the system that it was compiled for. pinSEL then dynamically instruments the

program binary, and the SELs are gathered as the program executes. Pin [42]

provides interfaces that allows instrumentation of classes of instructions, specific

functions, system calls and interrupt events, allowing the registration of call-

backs to our analysis routines at those instrumentation points. When a pinSEL’s

analysis routine is invoked for an instrumentation event, pinSEL can examine

the program’s architectural register and memory states, update its internal data

structures, and log information to the SEL files if necessary. Then after it is done

with the analysis for an instrumentation event, the program’s execution continues

until the next instrumentation point before invoking an analysis routine again.

pinSEL uses Pin’s interface to instrument every load and store instruc-

tion, so that the analysis routines can keep track of user-level memory state of

application’s data sections and capture its initial state and subsequent system

effects to them. pinSEL also instruments every basic block. The basic blocks

are instrumented to log the initial state and system effects to code regions in the

application’s memory. One example of code modified by the system is when ap-

plications dynamically load a library. When a library is loaded (through a mmap

call in Linux), it can potentially overwrite code that was already in memory. If

pinSEL did not detect that the code changed, when it tried to execute code from

the region overwritten, it would execute the incorrect code.

Finally, pinSEL instruments every system call and the user-level inter-

rupt handlers. Pin allows it to register call-backs to analysis routines that are

63

invoked before and after the execution of system call and interrupt handlers,

allowing pinSEL to capture system effects to the register state.

III.C.4 Timestamps

Every log entry in SEL contains a timestamp that tells when that entry

has to be used during simulation.

Two types of timestamps are used in the logs - memory operation count

and instruction count. The current memory operation count of a program exe-

cution is the number of dynamic load and store instructions executed since the

start of the logging, whereas instruction count is the total number of instructions

executed since the start of the logging. Tracking instruction count at the gran-

ularity of every instruction incurs high instrumentation overhead. Instead, the

instruction count is only updated after executing a basic block, where a basic

block is a sequence of instructions with a single entry and a single exit point.

The above two counts are tracked only for the application’s execution

(user code and user level libraries) and are not updated during the execution of

the system kernel code. Hence, while simulating the application’s execution, these

timestamps can be accurately tracked to determine when to use a log entry. To

reduce the size of the timestamp being logged, instead of logging the full memory

and instruction counts as the timestamp, the logs sizes are optimized by just

logging the difference between the prior count and the new count for the current

log entry.

III.C.5 System Effects Log Files

A SEL for a program’s execution is composed of the following three log

files, at a minimum.

64

• Code Update Log - The purpose of this log is to record the initial memory

values of the code regions and the system effects to them. This ensures that

programs using self-modifying code and dynamically loaded libraries can

be handled. Each entry contains (a) an instruction count and (b) the code

contents of a basic block and its size. During simulation, when the number of

instructions simulated is equal to the instruction count of the next log entry

to be used, the logged code for the basic block is restored to the simulated

memory before executing the next instruction. The effective address for

restoring the code log entry is the simulated program counter (PC) value.

• Data Update Log - The purpose of this log is to record the initial mem-

ory values of the data regions and the system effects to them. Each entry

contains (a) a memory operation count, and (b) the value of a load opera-

tion. During simulation, before executing a load operation, if the simulated

memory operation count is equal to the memory count of the next entry in

the log, the logged value is restored to the simulated memory. The effective

address used to restore the log value is the effective address of the simulated

load, which can be determined during simulation and hence need not be

logged.

• Register Update Log - The purpose of this log is to record the initial states

of the architectural register values and the program counter values, and cap-

ture subsequent updates to them due to the execution of both synchronous

interrupts (system calls) and asynchronous interrupts. At the beginning of

execution, the initial values of all the registers and the program counter are

copied to this log. Then an entry in the log is created whenever an interrupt

is encountered with the following information: (a) the instruction count,

(b) the value in the program counter before the execution of the interrupt,

(c) the sequence of register values modified by the interrupt handler along

65

with the name of the modified registers, and (d) the program counter value

after the execution of the interrupt, if it had been modified. The instruc-

tion count along with the PC value, before the execution of the interrupt,

together accurately capture the time at which the interrupt was executed

during the program’s execution. During simulation, when it is time to use

an entry from this log, the logged register values are restored in the corre-

sponding simulated target registers. Also, the logged PC value is restored

to the simulated program counter if it was also logged. Note, any memory

value updated by the interrupt is logged in the Code and Data Update Log.

In addition to the above logs, SEL also records necessary information

to simulate multi-threaded programs on a uniprocessor system. This is described

in section III.C.6. The following describes how each of the above logs is created

in more detail.

Code and Data Update Log

To capture changes in memory due to system interaction, pinSEL main-

tains a data structure called the UserMemState. The UserMemState keeps track

of the values for every memory location accessed by the application. The values

in UserMemState are updated only for the load and store instructions executed

by the application and not by the system code. This is because only the applica-

tion is instrumented. Thus, it keeps track of what it is called user-level memory

state. It is essentially a hash table, indexed by the effective addresses. Each

entry in the table mirrors 4KB of application’s address space. The initial value

for each address location in the table is set to zero.

Each load and store is instrumented to keep track of data values in

UserMemState. To keep track of code regions in the application’s address space,

the program’s basic blocks are instrumented.

66

 store 15, [B]

 syscall

Initial values: [A] = 10; [B] = 20;
 [C] = 30; [D] = 40;

 ���� reg0 � load [A]

[C]�55;[D] �99

inv D
30 C
15 B

10 A
Val Addr

UserMemState UserMemState

(a) (b) (c)

40
30

15

10

Mem

99
55

15
10

Mem

inv D
30 C
15 B

10 A
Val Addr

 reg3 � load [A]

 ���� reg1 � load [C]

 ���� reg2 � load [C]

 reg4 � load [B]

Figure III.5: Example of pinSEL’s mechanism to log system effects. (a) - Instruc-
tions executed by the thread. Check marks mean the load value was logged. (b)
- UserMemState and actual memory state right before executing the system call;
(c) - UserMemState and actual memory state after executing the system call and
before executing any other instruction.

Analysis for Store - Whenever the application executes a store to

an address in its address space, the value in UserMemState is updated for that

address with the store’s output value. Stores are instrumented before their exe-

cution to obtain the effective address, and after to obtain the value from memory.

Analysis for Load - When executing a load, the value in the applica-

tion’s memory for the load’s effective address is checked against the corresponding

value in the UserMemState. If they differ, then it implies that, (a) it is first time

that memory location is being accessed or (b) the accessed memory location has

been modified by the system while handling a system event or (c) the memory

locations was evicted out of the UserMemState structure1. In addition, if the ap-

plication’s store instruction modifies a memory location, it would have correctly

updated the UserMemState when the store was executed. Therefore, whenever

the load value is different from the corresponding value in the UserMemState, its

value is logged in the Data Update Log along with the current memory count.

This ensures that the initial memory data values as well as system effects to them
1For the implementation presented in this chapter, the size of the UserMemState structure is unbounded.

However, if the memory footprint of the application is too large, the structure may need to have a fixed size. In
that case, entries in the structure can be replaced by other entries, similarly to a hardware cache structure.

67

are captured in the Data Update Log. Loads are only instrumented before their

execution, to read the value from memory that will be loaded.

When the value for the load is logged because it differs from the value in

UserMemState, the UserMemState’s value for the load’s address is updated with

the new value observed in the application’s memory. This is required to make

UserMemState consistent with the new value found in the application’s memory

state, so that future loads to the same location will not result in additional logs,

unless it gets modified due to a system effect.

Figure III.5-(a) shows a sequence of instructions executed by a thread.

A syscall instruction invokes a system call, which changes the memory values

as shown in the dotted box. Figures III.5-(b) and III.5-(c) show the state of

the UserMemState, along with the actual memory state, represented by Mem, at

different points of the execution. The initial values for the hypothetical memory

locations accessed are also shown in the figure. Figure III.5-(b) shows the state

of UserMemState right before executing the system call. Values for memory lo-

cations A and C are logged, because they are the first access to those locations.

Value for memory location B is not logged because the access was a store. Note

that the values in the UserMemState for A, B and C match the value in memory,

because the instrumentation code updated the UserMemState structure. Loca-

tion D has not been accessed yet, hence it shows an inv value, representing an

invalid value, which could be just zero. After the system call executes, memory

locations C and D are modified with values 55 and 99 respectively. Figure III.5-

(c) shows the state of UserMemState and the actual system memory. The values

in UserMemState are not updated because the system call code is not instru-

mented by pinSEL. This means that when the first instruction after the system

call executes, loading a value from C, pinSEL will log it because it mismatches

the value in the actual memory. The following two loads will not be logged be-

68

cause they are not the first accesses to those locations and the values match the

ones in memory. Even though location D was modified by a system call, it was

never logged because the user code never touched location D. Hence only system

call side effects used by the application are logged.

Analysis for Basic Block - The Data Update Log created by ana-

lyzing load and store instructions captures the initial memory values and system

effects to only the data values accessed by the application. It does not con-

tain the instructions fetched for execution, unless they are loaded by some load

instruction.

For the binary instrumentation analysis, an instruction fetch can essen-

tially be treated as a load from the address specified by the program counter

value. To capture the code, every basic block in the program is instrumented

to register a call-back routine that is invoked before the execution of each basic

block. A basic block is a sequence of instructions with a single entry and a single

exit point. Hence if the program control reaches the beginning of a basic block,

all the instructions in the basic block are executed.

When the analysis routine is invoked just before the execution of a

basic block, the N bytes of application’s memory values at the location specified

by the program counter value are checked against the corresponding values in the

UserMemState. If the comparison fails for any of the bytes, the value is logged

in the Code Update Log along with the instruction count. Also, the value in

UserMemState is updated with the up-to-date value in application’s memory in

order to make them consistent.

During simulation, when the simulated instruction count equals the in-

struction count in the next code log entry to be consumed, the code from the log

is restored to the simulated memory using the address in the simulated program

counter.

69

Handling Self-Modifying Code and DLLs - The code logging mech-

anism handles applications using self-modifying code. The Code Update Log cap-

tures the initial values in the code regions during execution. An application using

self-modifying code modifies itself by executing store instructions, which will be

deterministically replayed during simulation. That is, one knows the exact input

and output values for each store instruction and hence handling self-modifying

code is not an issue.

It can also handle applications using dynamically loaded libraries (DLLs).

A dynamic library can be loaded during a program sample’s execution through

the invocation of a system call (eg: mmap system call in Linux). Since the Code

Update Log captures any changes to the code regions, it will also capture the

contents of the dynamically linked libraries when they are fetched from memory

for execution.

Note, a more light weight approach (in terms of run-time overhead) for

logging code is to integrate the code logging with the run-time system used to

execute the program, instead of instrumenting every basic block. Using this type

of run-time system, no code can execute until it has first been pre-processed. The

first time it is executed, it will be analyzed once and the code to be executed will

be logged. Then the code will not have to be analyzed for logging again, unless

it is modified. If there is self-modifying code, then the code would be invalidated

by the run-time system. It will then be re-analyzed before it can execute again,

and when it is, it will be re-logged. The run-time system to support this type

of approach could be a virtual machine or a dynamic binary instrumentation

system like Pin. Recall from section II.E that instructions are first translated to

a code cache before they start execution. The logging would take place when this

translation happens. Since the code is analyzed for logging only once before it is

first executed, the run-time overhead will be minimal compared to instrumenting

70

every basic block.

Register Update Log

The Code and Data Update logs described in the previous section can

capture initial memory values and the system effects to them. In addition, the

initial register and program counter (PC) values need to be logged, and system

effects to them due to the execution of a system call or an interrupt handler.

At the beginning of the execution of a sample, the initial values of

the architectural registers and the program counter are copied into the Register

Update Log. Thereafter, an entry in the log is created whenever the program

execution encounters a system call or an interrupt.

Pin [42] provides APIs to register call-backs to analysis routines be-

fore and after the execution of system call (synchronous interrupt) and signal

(asynchronous interrupt) handlers called SIGNAL BEFORE CALLBACK and

SIGNAL AFTER CALLBACK.

Before the execution of a system call or an interrupt, the state of all the

application’s architectural register values and the program counter value (which

are accessible through Pin’s interface) are logged in pinSEL’s internal data struc-

ture. Then immediately after the execution of the system call or the interrupt,

the current register and PC states are compared with the recorded values. The

values of the registers and PC for which the comparison fail are logged in the log

entry. This eliminates the need to know the system call register use conventions

and intricacies for the operating system and the architecture where the tool is

running.

Each log entry also contains the instruction count and the program

counter value before the execution of the system call or the interrupt. These two

values, together constitute a timestamp that tells when the log entry should be

71

used during simulation. During simulation, the next log entry from this log is

used, if the simulated instruction count is greater than or equal to the logged

instruction count, and if the simulated program counter value matches with that

of the logged PC value.

III.C.6 Simulating Multi-threaded Programs on

Uniprocessor Systems

The approach described also allows simulation of multi-threaded pro-

grams on uni-processor systems. For each thread, a SEL consisting of Code,

Data and Register Update log is created and all the data structures in the pin-

SEL used to create these logs are kept private to each thread. Whenever a new

thread is created within a sample’s execution, a Register Update Log for the

thread is created and the thread’s initial register and program counter values

are logged. Thereafter, for each system call or interrupt executed as part of

the thread, a new log entry in the thread’s Register Update Log is created. As

memory instructions are executed, the Data Update Log for each thread is also

populated with memory values

During simulation, the thread inter-leavings are simulated just as they

would occur on a uni-processor. To achieve this one needs to capture context

switches and log sufficient information about them in a Context Switch Log. This

log file is shared among all the threads in the program’s execution and is created

as follows. Whenever there is a context switch from one thread to another, an

entry in this log is created. Context switches between the threads of the profiled

application are detected as follows. Pin internally keeps track of a unique thread

ID for each thread and these IDs are accessible from the analysis routines. Inside

each analysis routine, the current thread ID is compared against the thread ID

seen by the last executed analysis routine. If they differ, then it means that there

72

was a context switch.

On detecting a context switch, an entry in the Context Switch Log is

created. The entry contains the thread IDs of the thread that is context switched

out and the thread that is context switched in. Also, the log entry contains

the memory count corresponding to the last memory operation executed by the

thread that is context switched out. While simulating a thread, its memory count

count is tracked, and if it equals to the memory count for an entry in this log, it

means that the thread needs to be context switched out. From the logs, it is also

known which thread should start simulation next. The above mechanism is useful

for simulating multi-threaded programs on uniprocessor systems by reproducing

the thread inter-leavings.

III.C.7 Atomic Analysis

In section III.C.5, the analysis functions that can automatically capture

the system effects to memory are described. To record the Data Update Log,

pinSEL’s analysis routine compares the load value with the value in UserMem-

State when executing every load. However, between the execution of the analysis

routine and the application’s load, there can be another thread that modifies

the memory value accessed by the load. For this to happen, a thread has to be

context switched out after the analysis routine executes, and another thread that

modifies the value context switched in. Once the original thread context switches

in again, the value seen by the analysis routine can be different from the value

that is actually loaded by the instruction. Essentially, the execution of the appli-

cation’s load and the analysis routine is not guaranteed to be atomic. Figure III.6

illustrates the problem. Thread 1 executes a memory operation reading a value

from memory location A. This memory location is initialized to 0. Its analysis

routine, executed before the instruction executes, knows the effective address and

73

�

�

�

�

�

�

�

�

�

�

�

BeforeAnalysisRoutine(A, 0);
insti-1

…

insti+1

Thread 1 Thread 2
Initial value: [A] = 0

store 1, [A]

instj-1

instj+1

…

…

…

 reg � load [A]

Figure III.6: Atomic analysis problem. Thread 1 executes a load instruction. Its
analysis routine sees the instruction loading 0. However, thread 2 changes the
value after the analysis routine reads the value. As a result, thread 1’s instruction
actually reads the value 1. Hence the value logged is incorrect.

the value that will be read by the instruction, which is 0 in the example. However,

before the load instruction executes, thread 1 is context switched out, and thread

2 context switched in. Thread 2 then modifies the value to 1, by storing to the

same address. Consequently, the analysis routine sees the load reading the value

0 but the actual instruction reads the value 1, which is incorrect. Note that if

the instrumentation happened after the instruction executed, the problem would

not be solved. The same exact problem could happen between the execution of

the instruction and the analysis routine executed after.

This is not a problem for single threaded SPEC programs, but it needs to

be handled for multi-threaded programs with shared memory interactions. Pro-

grams with asynchronous interrupts do not suffer from the same issue because the

instrumentation engine (Pin [42]) only delivers interrupts at the end of a basic

block. Therefore the interrupt never happens between the analysis routine and

the instruction. This atomicity problem is solved by doing the following. Every

every memory operation is instrumented before and after its execution. A lock is

acquired when executing the analysis routine before the instruction executes and

released when executing the analysis routine after the instruction executes. To

74

minimize contention for the locks, a lock per address range is implemented. Note

that the locks to guaranteed atomicity are only needed for multi-threaded pro-

grams. When capturing single-threaded programs, the locks are not necessary,

and hence are not implemented. This reduces the overhead in instrumentation

time because it avoid acquiring/releasing the locks, as well as eliminates the need

to execute analysis routine code after most memory operations (to release the

locks). A more efficient solution can be implemented by rewriting the memory

access instructions. This could be done by the binary instrumentation engine

when instrumenting instructions. For example, for a load instruction, the binary

instrumentation engine re-writes the instruction such that the values are first

copied to memory local to the thread. This memory is then used by the instruc-

tion and by the analysis routines, hence guaranteeing that the same values are

seen by both. For write instructions, the memory is written to the shared mem-

ory area as well as a local memory area. The analysis routines then accesses the

data from the local memory. However, instructions that perform read-modify-

write operations still need locking to guarantee atomic behavior. Nevertheless,

the amount of locking could be reduced significantly.

III.C.8 Architecture Simulation

pinSEL’s logging approach replaces the pinLIT logging approach for sys-

tem effects and SimpleScalar EIO traces to deterministically guide the program’s

execution through simulation. The above sections describe how and when to use

each of the logs to guide simulation. A version of SimpleScalar which runs x86

binaries has been implemented and modified to consume pinSEL logs to guide

simulation. At the University of California, San Diego, pinSEL is currently used

to collect SELs for Linux applications which can then be used for simulation

in SimpleScalar-x86. At Intel, pinSEL’s approach of logging system effects has

75

been used by pinLIT for Linux, Mac OS, and Windows applications, to guide

architecture simulation. Recently, the pinSEL tool has also been used to guide

architecture simulation on the Asim [28] simulator.

Advantages of pinSEL

The main advantage of using the SELs described thus far is the ability to

automatically log system effects to avoid emulation of system calls in simulators.

Another advantage of using our pinSEL approach is that the simulator can easily

support the simulation of applications compiled for any operating system as long

as Pin [42] can support it.

The other advantage of using SELs is that it provides deterministic re-

execution of the program to guide simulation. Since the same SEL is used across

all simulation runs, the load instructions read exactly the same values and hence

the execution of the program follows the same path in all the simulation runs.

This is an important property for simulating user interactive applications and

applications whose behavior depends on the events coming from the external

world. One example of such application is a web server, whose behavior depends

on the content as well as the network latencies observed.

Limitation

Simulations based on checkpoints and traces can be affected when it

comes to simulating the wrong path (mis-speculated path) in the program’s ex-

ecution. When simulating using pinSEL logs in SimpleScalar, it is still possible

to model the wrong path execution similar to execution driven simulation. How-

ever, there could be small inaccuracies in the simulation, if the wrong path of

execution tries to execute code or data that was neither logged nor regenerated

during simulation. In such an event, the wrong path execution can either stop

76

fetching down the mis-speculated path or it can proceed by consuming a null

value.

Van Biesbrouck et.al. [14] examined this issue for their technique to re-

duce the checkpoint sizes which is described in section III.F.3. Their simulation

uses optimized checkpoints that contain only the code and data addresses used

during the sampled simulation interval and as a result experience the same prob-

lem as pinSEL guided simulation does. However, they found that the error in

performance metrics due to the above inaccuracy is less than a 1% on average.

Moreover, this inaccuracy is consistently biased in one direction across different

simulation runs for an application while exploring the architecture design space,

enabling a fair comparison across different design alternatives.

Finally, pinSEL’s utility is limited when one wants to use it to study

applications whose performance is heavily dependent on system interaction. For

example, one would only be able to capture less than half of the execution of

I/O bound applications like TPC-C [22] and other server applications like DSS

(Darwin Streaming Server), since they spend so much time executing in system

code. However, there are many interactive desktop applications like acroread

and powerpoint, etc, which spend 76% to 80% of their execution time in appli-

cation code and user level libraries [13] (non-kernel code), which can be captured

with our approach. This makes pinSEL useful to evaluate these types of applica-

tions.

III.D Logging Results

In this section the runtime overheads in collecting pinSEL logs along

with the log size overheads for all of the SPEC programs and a handful of desktop

interactive programs are examined. The execution of all these programs was

traced using pinSEL. The generated logs were then used in x86 SimpleScalar to

77

guide simulation. The logs were also used to guide simulation in the Asim [28]

simulator, developed by Intel.

III.D.1 Benchmarks

For evaluating and verifying the logging approach all the SPEC2000

programs with reference inputs were run under pinSEL to collect logs for simu-

lation. A handful of desktop interactive Linux programs were also run. For the

interactive applications each program was run natively for about two minutes.

After that the same actions were replayed with the program instrumented with

pinSEL to gather the logs.

The programs we examined were xpdf, acroread, ggv, xv and rdesktop.

The first two are used to read PDF documents and ggv is used to read Postscript

documents. xv is an image processing application. rdesktop is used to remotely

access a Windows system. For the first three programs, files, were open and read,

browsed through, enlarged, and exited. xv was ran and used to open two JPEG

images, zoom in and out on an image and run an image sharpening utility that

comes along with the application over those images. For the rdesktop program,

a connection was open to a windows machine, and a few web-sites were browsed

using firefox. Also power-point was opened and worked on before logging out.

III.D.2 Avoiding Software Complexity of System Effects Emulation

One important result of the approach presented in this chapter is that to

collect logs and to simulate a wide variety of applications, including real interac-

tive programs, no system emulation support needs to be provided. In comparison,

Intel’s pinLIT has a large body of switch-case statements to handle each of the

258 different system calls and it still can simulate only a limited variety of ap-

plications. x86 SimpleScalar has support for emulating only 81 different system

78

calls which is the set of system calls that are sufficient to simulate the SPEC

workload. However, this support is inadequate to simulate interesting desktop

applications.

Using the automated pinSEL logging approach, one can now simulate

any type of application in the x86 SimpleScalar and Asim simulators. Also, since

the application level simulation approach is independent of the operating system,

it ensures the portability of the simulator to any version of Linux operating

system. This means that the logs can be collected in any machine were Pin

works, and simulated in those simulators. The approach is easily portable to

other operating systems, as long as there is a binary instrumentation tool that

can allow us to collect SEL files, which is why at Intel, pinSEL has enabled

simulation of Windows and MAC OS based applications.

Though the mechanism can enable simulation of any application in x86

SimpleScalar or Asim, as pointed out in section III.C.8, the evaluation will be

meaningful only for those applications that spend a significant proportion of

execution time in the application and user level shared libraries.

III.D.3 Log Sizes and Logging Overhead

This section examines the runtime and space overhead in generating SEL

logs for the full execution of the SPEC2000 programs. For this, the SPEC2000

programs were run over the reference inputs with the pinSEL tool to generate

the logs. The results are averages for each program ran with all its reference

inputs. Figure III.7 shows the number of dynamic instructions and the num-

ber of dynamic memory read instructions executed by the SPEC2000 programs.

On average, there are 119 billion dynamic instructions and 30 billion dynamic

memory read instructions.

Each entry in the hash table structure (UserMemState) keeps track of

79

0
50

100
150
200
250
300
350
400

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
six

tra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

wu
pw

ise
av

er
ag

e

dy
na

m
ic

 in
st

ru
ct

io
n

co
un

t i
n

Bi
lli

on
s

instructions mem reads 501

Figure III.7: Number of dynamic instructions and dynamic read memory instruc-
tions for the SPEC2000 programs examined.

4KB of data or code. Figure III.8 shows the slowdown for running the program

with the pinSEL tool. The runtime overhead is with respect to natively exe-

cuting the workload. The figure breaks down the slowdown in three categories.

The first (pin) measures the underlying slowdown of the binary instrumentation

system. This is the slowdown for translating instructions into the instrumenta-

tion engine’s code cache and executing them from there. This overhead is about

1.5x. The second slowdown is the overhead of a memory and basic block profiling

(mem-prof), which are two types of instrumentation heavily used by pinSEL. This

measures how much overhead is present from invoking the analysis routines to

profile basic blocks and memory operations. The instrumented instructions and

the intrumentation points (e.g. before the instruction, after the instruction, etc)

are the same instrumented by pinSEL. The code executed by the analysis rou-

tines is much simpler though. For the basic blocks, it increments a counter with

the number of instructions executed in that basic block. For memory operations,

it counts them and breaks the counts down per category, where the categories

are: read or write of one byte, read or write of two bytes, read or write of a word,

and read or write of multiple bytes. This resembles the way pinSEL keeps track

of memory operations and hence measures the overhead of invoking the analysis

routines for each case. This overhead is on the order of 19x on average. This

80

is the minimum overhead to just execute the basic profiling needed by pinSEL.

The remaining overhead is due to pinSEL’s analysis routines code, to look up

the UserMemState structure and log the data if needed. This overhead is about

71x. This overhead depends on how many instrumentation instructions are exe-

cuted on behalf of each memory operation. It roughly depends on the number of

memory operation instructions in the program, and also on the type of memory

operation (the categories mentioned above). The worst-case total runtime over-

head is about 135x for galgel and perlbmk. On average, slowdown experienced

is about 92x. These overheads are for tracking the full execution of the program.

Also, notice that the runtime overhead due to instrumentation for programs that

usually have low IPC (eg: mcf) is only in the order of 15x. Whereas, programs

with high IPC experience slowdowns in the order of 120x to 130x (gap, perlbmk

and vortex).

Figure III.9 shows the log sizes for capturing the SEL for the full execu-

tion of SPEC2000 programs studied. The results show log sizes with and without

compressing the logs using bzip2, ran with the default compression level. In the

worst case, it requires about 235MB of un-compressed SEL to capture the full

execution of fma3d, and only requires 9MB of SEL after compressing it using

bzip2. On average, it requires only about 24MB of uncompressed SEL, which

when compressed requires 2.5MB of disk space to capture the full execution of

a SPEC2000 program running the reference inputs. The size of the SEL files is

dominated by the Data Update Log.

The sizes of SELs are dependent on the number of system calls ex-

ecuted and are also heavily dependent on the amount of data read from the

system through those system calls. Since fma3d, a mechanical response simula-

tion program, reads a large amount of data (a large number of finite elements for

its simulation) from its input files through system calls, it incurs a large log size

81

0
20
40
60
80

100
120
140
160

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
six

tra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

wu
pw

ise
av

er
ag

e

Sl
ow

do
w

n
O

ve
r N

at
iv

e

pin mem-prof pinSEL

Figure III.8: pinSEL logger runtime slowdown (number of times, not percentage)
over native execution for the SPEC2000 programs.

0.01

0.10

1.00

10.00

100.00

1000.00

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
six

tra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

wu
pw

ise
av

er
ag

e

SE
L

Si
ze

 in
 M

B

SEL-Uncompressed SEL-Compressed

Figure III.9: pinSEL log sizes to capture the full execution of the SPEC2000
programs, with and without compression using bzip2.

82

overhead.

Note that only the load values touched for the first time or modified

by system calls are logged. For logging the data touched for the first time,

UserMemState is analogous to a cache structure, and hence only the misses due

to cold start are logged. Since pinSEL uses a unbounded number of entries in

the UserMemState data structure, the number of load values to be logged is

very small. In addition, all the data that is written to first, before being read,

does not need to be logged, because it can be generated during simulation. As

a result, only 0.01% of the load instructions result in log entries, which explains

the small size for the logs. On average, only 56KB for every 100 million memory

instructions executed by the program.

Figure III.10 shows the total number of system calls executed in the

SPEC2000 programs studied. On average, there are about 6,700 system calls

executed during the full execution and in the worst case for sixtrack there are

about 104,000 system calls being executed.

III.D.4 Log Sizes Per Simulation Point

It is a common practice in computer architecture to choose representa-

tive samples of program execution [62] and perform detailed simulation only for

those samples to save simulation time. Chapter II discusses SimPoint and other

possible techniques. Hence, a quantitative analysis of the SEL size overhead for

capturing an arbitrary sample of program execution is presented.

To quantify the average SEL size for an arbitrary sample, each program’s

execution is broken in 100 million consecutive intervals (samples). For a program,

a SEL is collected for each interval. To create a SEL for an interval, all the entries

in the pinSEL’s data structures (e.g., UserMemState, register values, etc) must

be cleared at the beginning of the interval of execution. This will ensure that

83

1
10

100
1000

10000
100000

1000000

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
six

tra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

wu
pw

ise
av

er
ag

edy
na

m
ic

 #
 o

f s
ys

ca
lls

Figure III.10: Number of system calls executed in SPEC

0.10

1.00

10.00

100.00

1000.00

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lg

el
ga

p
gc

c
gz

ip
lu

ca
s

m
cf

m
es

a
m

gr
id

pa
rs

er
pe

rlb
m

k
six

tra
ck

sw
im

tw
ol

f
vo

rte
x

vp
r

wu
pw

ise
av

er
ag

eSE
L

Si
ze

 in
 M

B

Figure III.11: SEL size required to capture a simulation point of 100M instruc-
tions for each SPEC program on average, without compression.

the SEL captured for an interval of execution (sample) has all the information to

simulate the program’s execution starting at the beginning of that sample. Thus,

using a SEL for a given sample enables the simulation of only the 100 million

instructions in the sample.

Figure III.11 shows the average SEL size (without compression) for 100

million instructions of execution for each program. The SEL size shown for a

program is an average of the SEL sizes of all 100 million intervals for the pro-

gram. The results show that on average, it requires 1.75MB of SEL to capture

a program’s 100 million instruction sample. In the worst case, for swim, it re-

quires 159MB of SEL to capture a sample of program execution (100 million

instructions). But as shown in Figure III.9, the SEL size required to capture the

full execution of swim is only 1.5MB. Similar results, can be observed for applu,

apsi, mgrid, mcf, wupwise, ammp, art, galgel, vortex and lucas.

84

The reason for this difference is that for an arbitrary sample, all the

data live (touched by the application for the first time in the sample) coming into

the sample’s execution which are used (through a load) before getting redefined

(through a store) during the sample’s execution needs to be logged. In the worst

case, this could potentially be every single load executed in a sample of execution.

In the case of SPEC2000, an average of 3.5% of the memory read values are

logged, when collecting checkpoints for samples of 100 million instructions. In

comparison, when one starts generating a SEL from the start of execution, the

only data that is live to that SEL is the data read from the global data segment

and input data files used during execution. In addition, the data brought into

memory by system calls is also logged. All the other data generated by the

program itself during its execution is not logged when generating one SEL starting

from the beginning of execution. This is the reason for the average sample size for

a SEL being larger than the size of a single SEL generated for the full execution.

A similar observation was made by Bronevetsky et al [16] in their design of

a checkpoint and recovery system. They choose to create a checkpoint of the

application’s state during program execution when the amount of live data is

smaller, so that the resulting checkpoint size is also smaller.

III.D.5 Log Sizes for Non SPEC Programs

Logs were also gathered for a few interactive desktop applications which

can now be simulated easily in x86 SimpleScalar and Asim. Each of these in-

teractive programs was run for a few minutes performing some common tasks.

Figure III.12 shows the average SEL size (with compression) required to capture

100 million load instructions. On average, it requires about 0.4MB of compressed

SEL to capture 100 million load instructions for these interactive applications.

The average number of load instructions executed between two system calls or

85

0
2
4
6
8

10
12

acr
ore

ad gv
xca

lc
xpd

f xv

rde
skt

op

Ave
rag

e

SE
L

Lo
g

Si
ze

M

B
/ 1

00
 m

ill
io

n
Lo

ad
s

Figure III.12: SEL size required to capture 100 million load instructions for
interactive desktop applications with compression.

1
10

100
1000

10000
100000

1000000

acr
ore

ad gv
xca

lc
xpd

f xv

rde
skt

op

Ave
rag

e

Lo

ad
s

/ I
nt

er
ru

pt

Figure III.13: Average number of loads executed between two interrupts (includ-
ing system calls and asynchronous interrupts).

interrupts in the Figure III.13, for these applications, is also shown. It varies

from 1000 load instructions for gv, which incidentally also requires the largest

SEL size, to about 460,000 load instructions for xv, which requires a smaller SEL

size.

III.E Other Uses of pinSEL Checkpoints

The logging scheme presented in this section has proved to be very useful

when generating checkpoints for simulation. By using the checkpoints proposed,

one can avoid the emulation of the system interactions completely, including

system calls, DMA transfers and interrupts, and guarantee deterministic results

across simulations of uni-processor architectures. The checkpoints are useful in

86

other contexts as well.

The checkpoint log files can be viewed as a mechanism to compress

the dynamic execution of the program. The minimum amount of information is

stored in the logs, and the rest of the information is re-generated during execution

of the program. The simulator can be viewed as one possible tool to decompress

the logs and to retrieve the instructions to be executed. This does not mean that

the simulator is trace-driven. It just means that a subset of the instructions and

the data read from the program simulated comes from the logs. The simulation

is still execution driven, and complex mechanisms such as wrong-path behavior

can still be modeled.

In addition to the simulators modified in this work, another tool to de-

compress the logs was also developed. In particular a tool also based on binary

instrumentation, named pinPLAY , because it is also based on Pin [42]. This tool

reads the initial code, data, and register states from the pinSEL logs. Once these

are loaded, the binary instrumentation engine starts fetching instructions, trans-

lating them into the code cache and executing them. Because the instructions

are executed natively, after the binary translation takes place, the execution of

the program from the pinSEL checkpoints is fast. Executing under the binary

instrumentation engine, also enables one to use almost all the APIs provided by

it2, in order to analyze and print out any information about the program being

executed. As a result, this tool can be used to generate traces for trace-driven

simulation as well. One example is generating memory access traces, or branch

outcome traces. Such framework for tracing and analysis of programs is similar

to the ones presented by Bhansali et al [12] and Xu et al [78].

The pinPLAY tool was also extensively used to help debugging the

implementation of the simulators which consume the pinSEL logs. pinPLAY was

2The APIs that use the binary debug section, with all the symbol information, do not work because only
parts of the binary are available from the log

87

used to generate a trace of committed instructions, which is then compared to

the trace of committed instructions generated by the simulator. If these traces

match, it means that the modifications in the simulators to consume the pinSEL

checkpoints are correct.

And finally, at Intel, the pinPLAY tool is used to integrate the check-

point generation mechanism with the sample selection mechanism [53]. In par-

ticular with SimPoint [62]. SimPoint requires a two-pass approach for selecting

checkpoints for simulation, as described in chapter II. One pass is needed to pro-

file the program (e.g. collect basic block vectors) behavior. From these profiles

the simulation points are selected. Another pass is needed to “visit” the simula-

tion points and generate the checkpoints, which is done by the pinLIT (defined

in Section III.A.1) tool. This two-pass process is executed by using binary in-

strumentation, due to its easy of use and speed. Visiting the simulation points

requires that the executions paths taken by the profiled run and the checkpoint-

ing run to be the same. This is required to make sure that the profiled behavior

is the same behavior captured by the checkpoint, and also to be able to find

the regions of interest [53]3 However, this is specially hard to achieve for inter-

active applications, but also a problem for non-interactive applications, because

the behavior of certain system calls is non-deterministic in nature. Using pinSEL

checkpoints for the full runs along with pinPLAY solves this issue, because the

runs under pinPLAY are guaranteed to be deterministic. In this way, the run

that profiles the program, also generates pinSEL checkpoints for the entire run.

The simulation points are selected based on the profiles. The second run, to cre-

ate the checkpoints for each sample, are executed from the pinSEL checkpoints,

which is deterministic and guarantees the same execution paths. Then for each of

the simulation points selected, a new pinSEL checkpoint is generated with only

3A common practice to find the region for simulation is to use a program counter and the number of times
the program counter appears in the execution to mark the beginning of a region. With slight variations from
run to run, these markers may not be found. Under pinPLAY this problem is solved.

88

the information for that sample.

III.F Related Work

This section discusses existing solutions to handle system effects.

III.F.1 Handling system effects for User-Level Simulation

Many popularly used cycle accurate simulators [17, 68, 63] simulate

just the user code and this is sufficient for studying many micro-architecture

level optimizations and design choices using workloads like SPEC. However, even

though their goal is to simulate only the user code, they still have to emulate

the system calls to obtain correct execution of the program. The conventional

solution to emulate system calls is to decode the system call and obtain the

arguments. Then using those arguments the simulator invokes an equivalent

system call that can be executed natively on the host machine on which the

simulator is executing. The result values obtained from this native execution are

then used to modify appropriate simulated registers and memory locations. The

output of the system call can be stored in a trace (e.g., EIO trace in SimpleScalar)

so that future simulations can use those traces instead of emulating the system call

again. Using system call traces like EIO traces ensures deterministic simulation,

and we describe this approach in more detail in Section III.B.

The above approach is not desirable for a number of reasons. First, the

programmer writing the emulator needs to explicitly handle each system call to

find the registers and memory locations that contain the input/output operands.

This code is then only valid for a given operating system. To use the simulator on

multiple operating systems would require the emulation of the simulated system

calls for each of these systems. Even maintaining the simulator to run on the

same operating system requires changes over time to support newer versions of

89

the operating system. Similarly, if the user desires to run a workload compiled for

different versions of an operating system, the emulation may need to change if the

operating system interface has changed. To top it all, complex system interactions

due to asynchronous interrupts and DMA transfers cannot be handled easily with

this form of emulation, which is required to correctly execute real world desktop

applications like acroread and powerpoint.

This chapter described a simple binary instrumentation solution to cap-

ture the effects of all types of system interactions without having to explicitly

emulate each system call or interrupt. Since our solution is independent of the

operating system, it is very easy to provide simulator support to execute binaries

compiled for various operating systems, as well as to allow the simulator to be

compiled and executed in any operating system.

III.F.2 Full system simulation

There exist full system functional simulators like Simics [43], SimOS [59]

and SoftSDV [70] that can emulate the full system including the operating system

and all interaction with the external devices. Therefore, one option for building

performance simulators would be to execute the binary inside a functional full

system simulator and use that as a front end to feed traces of instructions executed

to the cycle accurate performance simulator [28, 44, 18].

However, building and maintaining full system simulators is very expen-

sive. It requires multiple person-years of effort to develop them. Also, they need

to be modified constantly to support newer systems. In addition, the execution

environment required for running real applications on full system simulators can

be hard to reproduce, because of dependencies on specific kernel or device drivers

versions, run-time license checking, elaborate installation procedures and large

storage requirements. Therefore having a full system simulator in the front-end

90

incurs higher runtime overhead during simulation. Moreover, if the goal is to an-

alyze the performance of just the user code then it is an unwarranted complexity

to have a full system simulator as a front end.

It is highly desirable to have a way of handling all forms of system

effects to correctly execute the application during simulation, but still preserve

the simplicity of user-level simulators. The solution in this chapter is targeted

toward achieving this goal.

III.F.3 Checkpoint Mechanisms

Detailed cycle accurate simulation of the full program execution is very

time consuming. Sampling techniques like SimPoint [62] and SMARTS [76] are

used to find representative samples of program execution. Simulating only these

samples have been shown to provide accurate simulation results. The Sample

Starting Image (SSI) is the state needed to accurately emulate and simulate the

sample’s execution to achieve the correct output for that sample. Various check-

point mechanisms have been proposed to capture the SSI [58, 14, 66] with min-

imal checkpoint size. In this section these checkpoint mechanisms are described

as they are related to the technique used to collect the pinSEL logs to capture

system effects.

Szwed et.al. [66] proposed SimSnap, which instruments the application’s

binary, with the SSI corresponding to a sample and necessary code to restore it.

Thus, during simulation, the simulated application’s binary can itself restore the

SSI for the sample to be simulated. To create such a binary, they first obtain the

SSI of the application’s state at the beginning of a sample by natively executing

the instrumented binary of the application.

Ringenberg et al. [58] proposed an Intrinsic Checkpointing mechanism

which also embeds SSI into the binaries and lets the application restore itself

91

during simulation. Their focus is to create one binary, that restores the SSI

for all of the simulation points needed to simulate the execution of that binary,

for a specific input. In doing this, they make an observation that to create the

SSI for a simulation point they can take the ending memory image of the last

simulation point, and just update it with all of the stores that occurred between

the end of the last simulation point and the start of the current simulation point.

In addition, they optimize the restoration process by choosing to restore only

those locations that are read at least once inside the simulation interval. The

intrinsic checkpointing approach achieves the purpose of checkpointing the SSI

at the beginning of a simulation interval by having a list of memory stores that

need to be executed to get the memory image up to date for the start of the new

simulation interval. This saves a significant amount of space over storing the full

memory image state for each simulation point. Note that the simulator using

this binary with intrinsic checkpoints still needs to have support for emulating

the system call and other system interactions. This is because the only thing

that the intrinsic checkpoint scheme ensures is that the simulation point has

the correct SSI. Thus, intrinsic checkpointing does not address the problems of

handling system effects, which is the focus of the pinSEL approach.

Van Biesbrouck et.al. [14] also proposed an algorithm to reduce the size

of SSI. Their technique assumes the EIO trace generation mechanism used in

SimpleScalar to handle system calls. In the EIO traces generated by the default

SimpleScalar, the SSI is the full memory image of the application at the beginning

of the simulation interval along with a trace of result values of all the system calls

executed (EIO trace) within the simulation interval. Instead of having the full

memory image for SSI, they log initial memory values only for the locations that

are accessed within the simulation interval. They also consider representing the

same information in a different format in the form of Load Value Sequence (LVS)

92

which is essentially a trace of all the load instructions. Their approach focuses

on reducing the size of the SSI, and not upon providing system call logging.

They still rely upon the EIO traces and system call emulation in SimpleScalar

for that. pinSEL’s logging focus is to not have to provide any system emulation

for SimpleScalar, while at the same time enabling the simulation of real (non

SPEC) programs on SimpleScalar.

Checkpoints for Replay-Debugging

BugNet [50] is a hardware mechanism to record checkpoints during exe-

cution. When a program crashes, the checkpoints are used for replay debugging.

BugNet also records user-level memory values in order to replay the execution de-

terministically. In their mechanism, every load value is logged unless a bit in the

cache says that the word being loaded has already been logged. Upon executing

a system call or interrupt, BugNet logs all the registers and resets all the bits in

the cache line. By reseting the bits, the load locations changed by the system call

or interrupt are logged. BugNet relies on cache coherence mechanisms to reset

the bits of words changed by DMA transfers. In contrast, pinSEL does not rely

on any hardware mechanism or operating system support. pinSEL maintains a

copy of user-level memory and compare the values of the copy with the values

in memory. By doing that, it can detect all forms of memory changes by the

operating system with a simple comparison. Also, since pinSEL is not tied to

the hardware, it can maintain a large copy of user memory and hence minimize

the number of log entries. Finally, BugNet does not log the code executed by

the application, whereas pinSEL provides a mechanism to log the code and the

system effects to it, which allows correct handling of dynamically loaded libraries.

93

III.G Summary

One of the primary requirements for an architectural performance sim-

ulator is the ability to handle interactions with the system through system calls,

asynchronous interrupts and DMA transfers. Conventional solutions such as Sim-

pleScalar and pinLIT provide system support by emulating system calls, and they

do not provide support to deal with asynchronous interrupts nor DMA transfers.

This chapter presented an automated logging solution for capturing

system effects. The system effects are captured without the knowledge of the

semantics of any system interaction. This was accomplished using a binary in-

strumentation tool to gather system effect logs, which are then used to guide

architecture simulation. This approach is very easy to implement and is easy

to port to other operating systems and architectures. Previously, SimpleScalar

was capable of emulating only 81 system calls, which essentially limited its use

to SPEC workloads. But with the help of the pinSEL logging support, it is

now capable of simulating any linux application. As a result, any application

that spends significant amount of time in application code and user level shared

libraries can be evaluated using SimpleScalar.

Acknowledgments

Chapter III contains material that appears in “Automatic Logging of

Operating System Effects to Guide Application-Level Architecture Simulation”,

Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn and Brad

Calder, in International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS). The dissertation author was a primary investigator

and author of this paper. Portions of Chapter III are Copyright c©2006 by the

Association for Computing Machinery, Inc. Permission to make digital or hard

94

copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or permissions@acm.org.

The implementation of the tools presented in this Chapter resulted from

an internship realized by the author with the VSSAD group at Intel Corporation,

during the year of 2006, at Hudson, Massachusetts. The author is very thankful

for the support provided by the members of the Pin [42] Team, developers of the

binary instrumentation engine. Special thanks go to Harish Patil, Robert Cohn,

Greg Lueck, Chi-Keung (CK) Luk and Mark Charney for the technical support.

IV

Deterministic Simulation for

Multi-Threaded Workloads

on Multi-Processors

As traditional micro-processor designs, based on a single cores, hit the

wall in terms of instruction level parallelism and power consumption, multi-core

designs rise as an alternative to improve both performance and energy consump-

tion [29]. These processors can increase the throughput of applications composed

by many tasks or processes (server applications for instance). In addition, by

dividing programs’ execution into many tasks that share data and execute in

parallel, multi-core processors can significantly speed-up the execution of some

applications. Hence, in order to fully exploit the performance potential of multi-

core designs, applications need to be made parallel. As a result, multi-threaded

benchmarks where many threads of execution share an address space are becom-

ing increasingly popular. These applications can achieve significant speed-ups

when running on processors with multiple cores. One example of such bench-

marks is SpecOMP [9].

95

96

In addition to a very large instruction count, benchmarks for future

multi-core processors face yet another simulation challenge: non-determinism.

The non-determinism comes from the fact that threads access shared memory

in different order during simulation of different architecture configurations. This

happens because the relative progress of threads change. For example, the order

in which locks are acquired by threads in one architecture configuration can be

different across two runs. Also, the number of cycles and instructions spent spin-

ning for a lock can be different. The changes in execution paths can result in an

increased number of instructions spinning for locks or a change in the functional-

ity of the application. For instance, some multi-threaded applications may allow

access to unprotected data structures, which results in non-determinism during

the execution. As a result, the execution paths across two executions are not

guaranteed to be the same. If the variation in the execution paths is significant,

two simulation runs cannot be compared directly, because the amount and type

of work performed differs across executions. The problem is worsened when the

operating system behavior is also modeled, since changes in the architecture con-

figuration can result in interrupts arriving at different points in the execution,

causing the OS to schedule threads differently across runs. This non-determinism

problem has been pointed out in previous research [7, 41, 11, 35, 30].

In this chapter, we present a technique to guarantee reproducible be-

havior of multi-threaded programs, when simulated under different architecture

configurations. The technique focuses on user-level simulation of multi-threaded

programs. It ensures the same execution paths by removing the sources of non-

determinism during execution. The pinSEL tool [49], presented in chapter III,

guarantees deterministic simulation of single and multi-threaded programs on

uni-processors. The approach presented in this chapter builds upon it and ex-

tends pinSEL to guarantee reproducible behavior for multi-core processors’ simu-

97

Re
pr

od
uc

ib
ilit

y
Fidelity

Execution-driven

Deterministic
Execution-driven

Trace-
driven

Figure IV.1: Comparison of deterministic execution-driven simulation with trace-
driven and pure execution-driven simulation for multi-threaded workloads on
multi-processors.

lations as well. The technique enforces the same order of shared memory accesses

across simulations. The shared memory ordering is dictated by forcing threads to

wait until dependencies are resolved, according to a pre-recorded order. Forcing

threads to wait introduces artificial stalls, when running on a given architecture

design. We present an approach to account and deal with these artificial stalls.

The approach allows comparison across simulation runs to evaluate the best con-

figuration. The stalls introduced are used as a measure of fidelity affected by the

technique.

Our approach for deterministic simulation is execution-driven with the

constraint that shared memory updates follow a fixed trace, which guarantees

determinism. Figure IV.1 compares execution-driven deterministic simulation

with trace-driven simulation and traditional execution-driven simulation. Deter-

ministic execution-driven simulation is not as strict as trace-driven simulation

because it allows non-shared memory operations to be interleaved according to

the memory model used. It also allows simulation of wrong-path execution and

hence a more accurate modeling of modern processor architectures. It provides

98

the same degree of reproducibility that trace-driven simulation does, because the

execution paths are repeatable. Compared to pure execution-driven simulation,

it does not provide a simulation with the same degree of fidelity because it forces

the order of shared memory updates. Pure execution-driven simulation does not

guarantee reproducibility though, which makes it difficult to compare results [7].

Although there is a loss in fidelity, sur deterministic execution-driven technique

can provide error estimates, and give the designer confidence in the results.

The approach extends pinSEL to capture shared memory dependencies

across threads. It logs the dependencies efficiently by using transitive optimiza-

tions. The technique reduces the number of dependencies logged while still al-

lowing more relaxed memory models to be simulated. As in chapter III, the tool

can capture checkpoints for full-program runs or only samples of execution.

The contributions presented in this chapter can be summarized as fol-

lows:

• An efficient mechanism to create simulation checkpoints of user-level code

for large multi-threaded applications is presented. These checkpoints contain

enough information to reproduce the execution path of the program exactly,

on multi-core architectures. It allows efficient capturing of shared memory

dependencies, with reasonable speeds and log sizes.

• The implementation of a deterministic simulator, which consumes the check-

points, and provides 100% reproducible behavior (execution of the same

control paths) across different architecture configurations, is described.

• Enforcing reproducibility during multi-threaded simulation introduces arti-

ficial stalls in the results. The techniques presented provide mechanisms to

account for the artificial stalls, allowing comparison of two simulation runs

for design space exploration.

99

IV.A Checkpoints for Reproducible Multi-Threaded Ex-

ecution

The pinSEL checkpointing mechanism described in chapter III only

guarantees reproducible simulation for multi-threaded programs running on unipro-

cessors. This section describes the extensions to handle reproducible simulation

of multi-threaded programs on multi-processors.

In order to reproduce the execution of a multi-threaded execution on

an uniprocessor, one needs to reproduce the exact thread context-switch inter-

leavings as observed during logging. For uni-processor simulation pinSEL creates

a Context Switch Log, which contains entries representing when threads should

context switch. The Context Switch log is shared across all threads. In addition,

the log files described in section III.C are created for each thread, so that each

thread restores its own memory and registers during simulation. On multi-core

processors however, recording the inter-leavings of threads as they are context

switched is not sufficient to reproduce the execution. This is because threads are

run in parallel and the execution depends on the order in which shared mem-

ory locations are updated. Hence an approach to record the shared memory

dependencies across threads is needed.

IV.A.1 Logging Shared Memory Dependencies for Multi-Processors

This section explains the approach to record the shared memory de-

pendencies across threads. For guaranteeing reproducible simulation, the order

recorded needs to be obeyed during simulation. This means that the same exact

execution paths and shared memory dependencies seen during logging, across the

different threads, will be simulated from one simulation to the next.

In order to log shared memory dependencies, there are two sub-problems

that need to be solved. The first problem is related to detecting these shared

100

2:Load A

1:Store B

Thread 1 Thread 2

1:Store A
2:Load B

Figure IV.2: Netzer transitive optimization

memory dependencies during logging. The second problem is related to effi-

ciently logging this information to reduce the log size. Previous hardware pro-

posals [77, 50] observed that shared memory dependencies can be detected by just

looking at the coherence messages in a multi-processor system. They used the

Netzer transitive reduction algorithm to reduce the log size. The approach used

for logging shared memory dependencies is similar to the hardware proposal [77],

but it is implemented completely in software. It also implements the Netzer

transitivity reduction algorithm [51] to minimize log sizes. The Netzer algorithm

works by exploiting the transitive property in a system that assumes sequential

consistency. For example in Figure IV.2, there is a read-after-write (RAW) de-

pendency between StoreB on thread 1 and LoadB on thread 2. However, this

dependency does not need to be logged, because the write-after-read (WAR) de-

pendency between LoadA on thread 1 and StoreA on thread 2 transitively implies

it. Later in the chapter, we present a discussion on how a sequentially consis-

tent memory order is collected. This does not mean that it can only simulate

sequentially consistent memory models, as explained in section IV.B.

For detecting shared memory dependencies, a global data structure that

emulates a cache coherence directory is used. This data structure is a hash table

indexed by the effective address of a memory operation. The table is referred to

as a directory hereafter. Each entry represents a range of addresses and contains

101

Director
y

Store A

Load B

�
�
�
�
�
�
�
��
	
�

�
�
�
�
� Dir Entry

Dir Entry
Dir Entry

Dir Entry

 last writer tid writer timestamp

vector of last access timestamps

hash

Figure IV.3: Directory table used to detect shared memory dependencies

the thread ID of the last thread to write to that address range, along with the

timestamp of the memory operation that wrote to the address. The timestamps

in this context are the dynamic memory instruction count since the beginning

of the logging. In addition, each entry also contains a vector of the timestamps

with an entry for each thread that accessed that address range. These times-

tamps are used to create a log entry that represents the dependency between

two instructions across the threads. The timestamps are also used to implement

the Netzer optimization. Figure IV.3 illustrates the table described above. The

shared memory dependencies are logged in a Race Log, maintained per thread,

which has entries in the following format:

local_mcount remote_tid remote_mcount

local_mcount is the memory count of the dependent thread, remote_tid

is the thread ID of the remote thread upon which the local thread depends on, and

remote_mcount is the memory count of the remote thread. The interpretation

of a race log entry is as follows. The current thread, consuming the log, cannot

execute its memory operation local_mcount until the remote thread identified

by remote_tid executes its memory operation remote_mcount, because there is

a dependency between the two. In order to minimize log sizes, only the difference

102

between current local_mcount and the previous one is logged. Similarly only

the difference between the current remote_mcount and the previous one for the

same thread is logged as well.

For every load and store instruction executed by the program, the direc-

tory entry where the instruction’s effective address maps to is accessed. The entry

is accessed to log shared memory dependencies and also to update its fields. The

logging algorithm and the table update steps are explained now. The following

actions happen for each instruction, depending on its type:

• Load Instruction - If the last writer ID for that thread is different than

the current thread ID for the load, a read-after-write dependency is logged,

if the dependency was not implied by another dependency already. The de-

pendency is logged using the timestamp for the read instruction, the thread

ID of the remote writer, and the timestamp of the write instruction. The

vector of last access timestamps position for the thread accessing the di-

rectory entry is updated with the current memory count timestamp of that

thread.

• Store Instruction - The vector of last accesses is checked and a depen-

dency between every thread (except the thread executing the store) that

last accessed that memory location is logged, if those dependencies were not

implied by other dependencies already. Each dependency is logged using the

timestamp for the store, the thread ID of each remote thread and the times-

tamp of that thread from the last access vector. Distinguishing between

write-after-read and write-after-write dependencies is not needed (although

it can be done by simply looking at the last writer ID and timestamp). Both

the vector of last accesses and the last writer timestamp and ID are updated

with the timestamp of the store operation and the thread’s ID.

Figure IV.4 shows an instance of the directory table entries updated,

103

�
�
�
�
�
�
�
��
	
�

�
�
�
�
�

Thread T1 Thread T2

last writer id / ts T1 / 2

2: Store A

Addr range [A:D]

Directory

T1 T2

1: Load A
2 1

1: Load E

2: Store E

RAW last access

last writer id / ts T2 / 2

Addr range [E:H]

T1 T2
1 2 last access

... LLD LLD 2

Figure IV.4: Example for the directory table state after hypothetical memory
operations executed by threads 1 and 2. LLD stands for last-logged-dependency
and ts stands for timestamp. Each directory entry shows the address range it
represents, the last writer thread id and the timestamp when the write opera-
tion accessed the table, and the vector of last access from each thread to those
locations.

104

after executing four instructions from thread T1 and T2. Each instruction is

associated with a timestamp, which is the memory count for the thread executing

it. The sequence of instructions shown in the figure represent the hypothetical

order in which they executed (the total order is (T1 : 1) → (T1 : 2) → (T2 :

1) → (T2 : 2), where the tuples represent the thread id and the timestamp

for the memory instruction). The table on the right hand side shows the state

of the directory entries representing the address ranges [A : D] and [E : H]. At

bottom of each thread a vector of timestamps for each remote thread indicates the

timestamp for the last dependency that was logged between the local thread and

each remote thread (there is only one entry in the figure because there are only

two threads in the example). This vector is called the last-logged-dependency

vector (LLD). It is used to implement the Netzer transitive optimization. The

figure shows the final state of the table. Let’s now step through the execution of

each instruction. Assume the table is initially empty. When LoadE executes, it

updates the last access vector entry for thread T1 with the timestamp 1 in the

directory entry corresponding to address range [E : H]. StoreA then executes

and updates the last writer id and timestamp to T1 and 2 respectively, for the

directory entry corresponding to address range [A : D]. No dependencies are

logged at this point because the table was previously empty, and hence there are

no dependencies. When LoadA executes, it looks up the directory entry [A : D],

and finds out that there was a last writer and the writer id is different than its own

thread id. Hence a dependency is logged using the timestamp of LoadA, which is

1, and the thread id and timestamp of the last writer from the directory, which are

T1 and 2 respectively. The last access vector position corresponding to thread

T2 is also updated with LoadA’s timestamp. In addition, since a dependency

was logged, the LLD entry corresponding to T1 is updated, indicating that a

dependency with T1, using timestamp 2, was logged. Finally, StoreE executes.

105

It looks up the directory entry and finds out that T1 has accessed that address

with timestamp 1 (for the LoadE). Hence a dependency needs to be logged.

However, it finds out from the LLD that the last dependency logged with T1

was for timestamp 2. This means that the dependency is already implied, and

therefore need not be logged. Even though no dependency is logged, StoreE

updates the fields last writer id and last writer timestamp, with values T2 and

2, respectively.

Since the global hash table is shared across threads, each entry in the

table is protected by a lock. This lock is the same lock used to guarantee instru-

mentation atomicity described in section III.C.7. This guarantees consistent state

of the hash structure entries as well as gives a valid sequentially consistent order

for the shared memory updates. This is because the implementation acquires

and releases a lock before executing every memory operation in the instrumented

application. As a result, when the tool sees that a memory operation to a shared

location from thread A happened after a memory operation from thread B for

the same location, it must be the same sequence observed by the processor.

By adding the Race Logs, the pinSEL checkpoints have enough infor-

mation to reproduce the execution of multi-threaded workloads on a multi-core

architecture. Next section presents a discussion about the changes introduced in

the simulator to guarantee deterministic simulation for those workloads.

IV.A.2 Memory Model and Deterministic Simulation

A memory model determines the order in which reads and writes are

allowed to execute in a multi-processor system. An execution-driven simulator

allows the simulation of relaxed memory models because it can execute memory

operations out-of-order, according to the timing model, as long as the restrictions

imposed by the memory model are satisfied. The approach for deterministic

106

user-level simulation is execution-driven, but it is constrained by the race logs.

Because it is execution-driven it also allows instructions to be executed in any

order specified by the timing model, but only if no shared memory dependencies

are violated. Hence it also allows simulation of relaxed memory models as well,

but with the restriction that memory accesses to shared-memory obey a pre-

determined order, which is in fact what provides the determinism. Given this

restriction, using deterministic simulation for performance evaluation of different

memory consistency models does not allow those dependencies to change during

design exploration. Even though those dependencies are resolved in the order

recorded, the technique proposed tracks when this occurs, and accounts for it

when estimating the performance across two architecture configurations.

IV.A.3 Picking Samples for Simulation

The logging and simulation approach allows selecting the regions to

checkpoint manually, or using techniques such as systematic sampling [76, 74] or

Simpoint [62, 56]. For Simpoint, a two-pass approach is required, one for profiling

the code and selecting the samples and another to generate the checkpoints. This

two-pass approach can be implemented using the pinPLAY tool briefly described

in section III.E. In that section, it was explained how the tool can be used to

generate checkpoints with SimPoint, for single-threaded programs. The same

technique could be applicable for multi-threaded programs. As noted in chap-

ter II, a complete solution for picking simulation regions, using representative

sampling, has not yet been provided. The contributions presented in this chapter

take steps toward this direction. The focus of this chapter, though, is not on pick-

ing samples, but to show that the samples can be simulated deterministically for

design space exploration and performance estimates can be provided. Therefore

for the analysis provided in this chapter the samples are picked uniformly.

107

IV.B Deterministic Simulation

This section describes the changes made to an execution-driven simu-

lator used by Intel Corporation, in order to consume our user-level checkpoints.

This allows the simulator to reproduce the execution of workloads across different

architecture configurations. This guarantees that the simulation is determinis-

tic by ensuring the same execution paths for all threads, therefore making the

executions comparable across simulation runs.

IV.B.1 Deterministic Simulation Implementation

The Asim [28] simulator was modified to consume the extended pinSEL

checkpoints. Asim is a framework to create and maintain performance models. It

allows for modular designs where components from different models can be put

together to build another model, allowing Asim to be used for many performance

models.

Asim separates the functional model from the performance model. The

functional model is implemented as an instruction feeder. The performance model

dictates the execution by asking the feeder to supply instructions. This allows a

performance model to use different feeders and vice-versa, and simplifies the im-

plementation of a new model, because the functional component is reused from

previous implementations. A feeder which supplies instructions and memory

values from pinSEL checkpoints was implemented. The feeder supplies register

values and memory side effects for system calls by restoring those during sim-

ulation at the appropriate time from the checkpoints. In addition to that, the

feeder dictates the order in which shared memory accesses are performed, to en-

sure determinism. By implementing a feeder, most processor performance models

simulated by Asim can use our deterministic simulation approach.

Asim fits in the category of timing-first simulators [45]. This means

108

that the timing models controls which and when instructions should be executed.

Through the implementation of well defined interfaces, the performance model

controls the execution of the feeder by invoking method calls to fetch, decode, ex-

ecute, perform memory operations, kill and commit an instruction. By using this

interface, the simulation resembles the way the hardware executes instructions

more closely. This implies that incorrect implementation of the timing model can

lead to incorrect execution of the program, making it easier to identify bugs in

the performance model. This also means that the feeder does not know that an

instruction is speculative until it is notified by the timing model. Because of this,

the functional model (feeder) has to implement support for rolling back instruc-

tions which are on the wrong path of execution. Different performance models

call these methods at different point of the execution depending on the timing

specifications of the model. This allows for great flexibility when re-using a given

feeder. Figure IV.5 illustrates the interface between a performance model and

a feeder. The arrows show how the control comes from the performance model.

The implementation of the deterministic simulator adds feedback from the feeder

to the performance model, which is used to control shared memory dependencies.

Enforcing Shared Memory Dependencies

The checkpoints for simulation of multi-threaded workloads contain a

pre-determined order in which shared memory is accessed, which is the same

order that was recorded during the collection of the logs.

During simulation the feeder needs to tell the performance model that

certain instructions must wait until its shared memory dependencies with other

threads are resolved. A dependency is resolved when the performance model

makes the memory operation visible to the other processors in the model. For

the models we use, where a Processor Consistency [5] memory model is imple-

109

�

����������	�

�����������
������������

�
�����

��	��	�����������

�������������������

����������

������������

��������������

		����������		��������

������������

Enforcement of shared memory dependencies

Figure IV.5: Deterministic simulation using Asim [28]. The feeder informs the
performance model that certain instructions need to be synchronized. The feeder
wakes up the instructions when the dependencies are satisfied.

mented, the reads are completed at commit time and the writes are visible when

the memory interconnect network makes them available to other processors. At

that point the write is completed. In the models where the deterministic simu-

lation approach was implemented, when a memory operation is made visible to

other processors, the feeder is notified, in order to update its own internal memory

image. At this point, the feeder also notes whether shared memory dependen-

cies have been satisfied or not. If they have been satisfied, the feeder notifies

the performance model that those instructions no longer have shared-memory

dependencies.

The pinSEL feeder knows the timestamps for all the instructions that

have cross-thread dependencies. When fetching instructions, it checks if the time-

stamp of the instructions matches the timestamps of the next cross-thread depen-

dency. If they match, the instruction is marked with a cross-thread dependency

flag indicating that it cannot execute until the dependency is resolved. When

an instruction is ready to be dispatched for execution, because all its operands

dependencies are satisfied and the functional units are available, the simulator

110

checks whether this instructions has a logged cross-thread dependency, by check-

ing the cross-thread dependency flag. If it does, the instruction is not allowed to

dispatch until these dependencies are resolved as well. This incurs stalls cycles

during the execution, which hereafter are referred to as synchronization stalls.

These stalls would not naturally occur in the execution. Note that synchroniza-

tion stalls can be also generated when executing a wrong-path. This is because

the feeder does not know which instructions are speculative or not when fetching

them and hence it will mark speculative instructions whose timestamps match

the timestamp of shared memory dependencies. This is not a problem because

the cycles spent synchronizing would be spent anyways executing the bad path,

until it is killed.

Using Netzer Optimized Race Logs

In a cross-thread dependency, the dependency source is defined as the

instruction in the remote thread and the dependency destination the instruction

in the local thread. For instance, in a RAW dependency, the write is the source

and the read the destination. In section IV.A it was mentioned that the Netzer

optimization is used to log only the minimally necessary dependencies to en-

force thread ordering in a sequentially consistent model. This reduces the size

of the Race Logs significantly, by two orders of magnitude. Using the Netzer

transitive optimization, though, requires that all the memory instructions before

the dependency source must be completed before the dependency source instruc-

tion has completed its memory access. This is because in sequentially consistent

processors, memory operations are completed in the program order.

Similarly, no memory instruction after the dependency destination in-

struction is allowed to execute before the destination instruction completes its

memory operation. In Figure IV.2, LoadA is the source of the WAR dependency

111

and StoreA the destination. As a result, during simulation, no memory instruc-

tions after StoreA can execute before all memory instructions before LoadA have

completed.

Ideally, a solution that can benefit from the reduction in number of

dependencies, but still allow as much out-of-order execution of memory operations

as the under-lying memory consistency model implemented allows is desired.

This minimizes the amount of synchronization stalls when using deterministic

simulation, hence increasing its fidelity. Our goal is then to be able to determine

whether there are any potential conflicts between the memory operations “before

the dependency source” and “after the dependency destination” instructions,

without logging extra dependencies. This can be done by associating a bloom

filter with each dependency logged. The bloom filter is a hash table indexed by

the effective address of the memory instructions after the dependency destination.

If the instruction has a dependency with any instruction before the dependency

source, the bloom filter entry will have a one. Otherwise it will have a zero.

Since instructions must be committed in-order, the bloom filter only

needs to contain the effective addresses of n instructions after the dependency

destination, where n is the maximum number of instructions that can be in-flight

during the execution. The effective addresses of these instructions need to be

checked against the effective addresses of the instructions before the dependency

source. An alternative to using the bloom filter would be to log all the dependen-

cies without using netzer. This would result on two orders of magnitude increase

in number of dependencies recorded in the Race Log file.

This bloom filter is built using a variation of the pinPLAY tool presented

in section III.E. The tool consumes each checkpoint and executes the program

under Pin. This tool is executed once to generate the bloom filters for each

dependency, which is then added to the checkpoints. Since the tool executes

112

0%
5%

10%
15%
20%
25%
30%
35%

32 64 128 256 512 1024
Number of bits in the bloom filter

%
 o

f a
lia

si
ng

Figure IV.6: Percentage of instructions predicted as shared memory dependencies
by the bloom filter due to aliasing as the number of bits used to implement it
varies.

the instructions natively, because it uses binary translation, collecting the bloom

filter for each checkpoint takes a very short amount of time, less than 10 seconds

for ±300 million instructions checkpoints.

During simulation, when a memory instruction is ready to dispatch past

a dependency (an instruction which is younger than the waiting instruction) that

has not been satisfied yet, it checks the bloom filter for that dependency. If the

bloom filter tells it that it is safe to dispatch, it does not need to stall. Otherwise

it has to stall because there is a potential dependency with an instruction before

the dependency source that may not have executed yet.

Since a bloom filter is associated with each dependency, it is important

to minimize its size to avoid an adverse effect on the log sizes. However, a

bloom filter which is too small will result in too much aliasing, hence preventing

instructions which do not have shared memory conflicts from being dispatched.

In order to determine the size of the bloom filter to use, a study of the amount

of aliasing resultant from the bloom filter as a function of its size was performed.

This study was performed for the benchmarks used in section IV.E. Figure IV.6

shows the percentage of instructions that are predicted to have a shared memory

conflict as the size of the bloom filter varies. A bloom filter of size 256 bits needs

113

32 bytes of storage. For the studies presented in section IV.E, a bloom filter size

of 256 bits was used.

System Calls

The deterministic simulation approach presented in this chapter is tar-

geted for user-level simulation. As a consequence, no operating system code is

simulated while executing from the checkpoints. Instead the system call side ef-

fects are restored from our log files. This is not a problem with single-threaded

programs. However, for multi-threaded programs, once system calls that exe-

cuted during logging are not executed during simulation, the relative progress of

threads with respect to one another is changed. Consequently a thread “jumps”

ahead of the other threads during simulation, differently from what was observed

when collecting the logs. To deal with this problem, whenever a thread executes a

system call, pinSEL also logs the instruction count of all executing threads before

and after the system call. The timestamps of all the other threads represent the

state of those threads before and after the system call, and allows one to measure

how much progress the other threads made while executing the system code.

Figure IV.7-(a) shows an example illustrating the mechanism. The fig-

ure shows the checkpointing run and the simulation run. On the checkpointing

run thread 1 executes a system call (representing by the black portion of its ex-

ecution). When the system call was invoked thread 2 was executing instructions

X. After the execution of the system call, thread 2 was executing instruction Y .

During simulation, the system call instruction is not actually executed,

it is just skipped. Its register and memory side effects are restored nonetheless,

to guaranteed correct execution. To reproduce the exact behavior that was ob-

served during logging, for that system call, the simulator forces the thread to

synchronize with all the other threads before and after the system call, as shown

114

Thread 1 Thread 2

Time spent
on system
call

Thread 1 Thread 2

(a) (b)

Artificially
stalled

Checkpointing run Simulation run

X

Y

X

Y

Figure IV.7: Problem with skipping system calls; (a) Checkpointing run; (b)
Simulation run.

in Figure IV.7-(b). This allows it to model the time spent on the system calls

during simulation, and to maintain the threads “in-sync” according to the logged

execution. The stalls due to the system call are dealt with in the performance

analysis described in the next section.

IV.C Comparing Samples across Architecture Configura-

tions

The end goal of the deterministic simulation approach presented in this

dissertation is to allow designers to evaluate the performance of a given archi-

tecture enhancement or feature. Hence throughout this section, it is assumed

that a designer is comparing a baseline configuration with an experimental con-

figuration. The designer is looking for an answer on how fast or how slow the

experimental configuration is, relative to the baseline configuration, so he/she

can decide whether it should be incorporated in a future processor design.

115

In the previous sections it was explained how to create the checkpoints

for simulation and also how to enforce deterministic behavior during simula-

tion. This guarantees that the same execution paths and therefore that the same

amount and type of work is performed across both configurations, hence allowing

one run in the baseline to be directly compared to another run in the experimental

configuration. One consequence of enforcing reproducibility is that the simulator

needs to introduce synchronization stalls that would not occur in the execution

of the program. This section addresses how these stalls are taken into account,

to calculate errors in the performance estimates provided by the technique. This

involves comparing simulation samples to be able to determine which architecture

configuration performs better. In section IV.E, we present quantitative results to

show how the technique works for some design options experimented with.

IV.C.1 Differences Between Checkpointed Behavior and Baseline Con-

figuration

When using the checkpoints, the program behavior simulated is for a

valid execution of the benchmark on the machine where the checkpoints were

collected. As a result, the relative progress of threads, when collecting the check-

points, is likely to be different from the relative progress observed during the

simulation. This is because these two machines are different. This difference

results in synchronization stalls even for the baseline configuration. Later it is

shown that many of these stalls are present in both the baseline and the ex-

perimental configuration, which means that they represent a bias in the same

direction for both configurations, and therefore should not affect the relative

performance comparison.

Another source of difference in behavior between the checkpoint creation

run and the simulation comes from the fact that while collecting checkpoints for

116

the program, the binary instrumentation affects the behavior of the application

by executing instrumentation instructions. Section IV.E shows how to deal with

some of these effects originated from the instrumentation code.

IV.C.2 Classifying the Synchronization Stalls

As previously noted, the determinism comes at the cost of synchroniza-

tion stalls added during the execution to keep the execution coherent with the

checkpoints. The simulator keeps track of the synchronization stalls introduced

during the simulation and divide them up in four categories:

• True-Dependencies Stalls - These are stalls needed to enforce the order

of cross-thread RAW dependencies.

• False-Dependencies Stalls - These are stalls needed to enforce the order

of cross-thread WAR/WAW dependencies.

• Before-System-Call Stalls - These stalls are introduced to make sure that

whenever a thread is about to execute an instruction to invoke a system call,

the other threads are approximately executing the same instructions as they

were when the execution was recorded. This is needed to make sure the

threads are in the same state as in the logged execution, when the system

call is invoked.

• After-System-Call Stalls - These stalls are also introduced to model the

time executing a system call. As explained in section IV.B.1, this is needed

to maintain the threads in-sync with respect to the checkpoints, since it

models the time spent executing the system calls in terms of instructions

executed by the other threads.

The synchronization stalls are introduced to ensure determinism. These

can translate to additional cycles spent during simulation when a thread is stalled

117

artificially, which needs to be tracked in order to determine an estimated error

for the performance evaluation.

When the simulator is stalling an instruction due to a shared mem-

ory dependency, other instructions are allowed to be dispatched if: 1) they are

older than the instruction waiting for the dependency to be satisfied; 2) they

are younger but not a memory operation instruction; 3) they are younger and

they are a memory instruction, but they have no potential cross-thread depen-

dencies according to the bloom filter (associated with the youngest instruction

stalling due to cross-thread dependencies), and they also have no operand de-

pendencies pending. This means that while we are stalling an instruction due

to a cross-thread dependency, other instructions can make progress. As a result,

the pipeline is not completely stalled. Of course, if the synchronization stalls

are long, eventually the pipeline will stall because internal processor queues (e.g.

ROB) will fill up, preventing other instructions from making progress, or because

the instruction is in the critical path of execution, causing other instructions to

wait for it in order to dispatch.

In order to measure when an instruction that is stalled due to cross-

thread dependencies is in the critical path, a technique similar to Tune et al [69]

is used. The key observation is that an instruction is likely to be in the critical

path if it reaches the bottom of the instruction queue before it is dispatched. In

the deterministic simulator, whenever a thread is stalling due to a cross-thread

dependency, the simulator keeps track of the number of cycles where instructions

that are younger than the instruction stalling are allowed to dispatch. It also

keeps track of the number of cycles where no instructions are not allowed to

dispatch at all, and the oldest instruction in the queue is the instruction installing

due to a cross-thread dependency. When the latter is true, this means that the

pipeline is completely stalled due to the synchronization stalls. By doing this, it

118

can keep track of the artificial synchronization stalls during simulation that result

in whole pipeline stalls. These are the stall cycles accounted for when calculating

the performance estimates for the simulation.

IV.C.3 Matching Synchronization Stalls Across Configurations

When running a given checkpoint sample on two different configura-

tions, the relative progress across threads can lead to different behavior of these

threads on each configuration. During simulation, the difference in behavior will

be translated in some threads reaching a shared memory update in different order

than it happened in the original execution. This leads to a different number of

synchronization stalls while running in each configuration. As suggested earlier,

however, a number of these stalls are common across both configurations. This is

because those stalls are present due to the intrinsic difference between the behav-

ior captured and the behavior being simulated. The difference in behavior can

introduce stalls in the simulation, but some of the stalls will be common for both

configurations. The remaining stalls are a result of differences in the configura-

tions. Those are a direct consequence of the variation in relative thread progress

presented by the program as a result of the changes in the architecture. These

need to be tracked precisely, so that a meaningful performance estimate for the

simulation can be given. Consequently, the first step is to identify the common

stalls across two runs, which will enable one to figure out the stalls resultant from

configuration changes.

The mechanism to identify the stalls which are common across the con-

figurations works as follows. First the two configurations are simulated. Each

simulation run creates a file with all the dependencies which generated synchro-

nization stalls. This file is referred to as a stall trace, and each entry in the file is

called a synchronization event. A synchronization event is an instruction which

119

generates one of the stalls presented in section IV.C.2. For each synchronization

event, a record with the thread ID and the instruction count for the instruction

that generated the event is kept, along with the number of stalls generated. The

thread ID and instruction counts uniquely identify the stall event. Because the

behavior of the threads is deterministic across the simulation runs, these synchro-

nization events can be identified across runs (by the thread ID and instruction

count), if they generate stalls in both of them. Given that, the synchroniza-

tion events across the runs can be matched up and the number of stalls which

are common across them calculated. These are stalls originated from the same

synchronization events. For example, if a dependency generated 50 synchroniza-

tion stall cycles in one run, but 15 in the other, for the same event, 15 of those

cycles are common. The other 35 cycles are only present in one run, due to

differences in thread progress. The difference in stalls for each run is calculated

and recorded in the stall traces. This difference is the total number of common

synchronization stalls across all the runs subtracted from the total number of

synchronization stalls for each run. This difference is later used to estimate the

error when comparing simulations.

IV.C.4 Calculating Sample Speed-ups

Once the difference in synchronization stalls across the simulation runs is

calculated, it is then used to estimate the error in performance resultant from the

deterministic simulation. The error in performance estimate is due to artificially

stalling threads to guarantee determinism. In this work, the metric to evaluate the

performance gains across two samples is the weighed-speedup [67]. The formula

to compute the speed-up is given in equation IV.1.

ws =
1

#threads

∑
i∈threads

IPCexpi

IPCbasei

(IV.1)

120

The formula equalizes the speed-ups on a per thread basis by dividing

each thread IPC for the experimental configuration by its IPC in the baseline con-

figuration. This metric is used because threads run at different rates of progress,

when running on different configurations. As a result, different threads may

reach the end of the sample in different runs. For example, assuming there are

two threads T1 and T2. In one run, T1 runs faster than T2 and reaches the

end of the sample before T2. At that point the sample is terminated because

it is not fair to continue the simulation with only one thread running. This is

because the thread only “terminated” executing the instructions in the sample,

and continuing measuring the executing of only the other thread is not accurate,

it is simply an artifact of using samples. On a different run though, thread T2

runs faster and finishes its instructions before T1. As a result, the instruction

counts for each thread are different across the runs when simulating the samples.

Using the weighted-speedup helps mitigate this effect, by equalizing the speed up

across the threads.

The deterministic simulation can increase the number of simulated cy-

cles as a result of the artificial synchronization stalls introduced. The increase in

cycles is therefore a quantitative measure of error. Because of that these stalls

need to be measured precisely, so the simulation can give the most accurate

relative performance estimate for a sample, in the presence of the stalls. The

error in performance estimation between two runs of deterministic simulation is

proportional to the difference in synchronization stall cycles between the runs

of the same sample in different configurations. The difference are the stalls not

matched across the runs as explained in section IV.C.3. This allows one to cal-

culate a range of IPCs that can expected from the run of the sample. One IPC

includes the stalls introduced and not common across the runs, the other does

not.

121

The method to compute the speed-up works as follows. First the simu-

lations are run for both the baseline and the experiment configurations. Then the

common stalls from the two runs are calculated, as described in section IV.C.3,

on a per thread basis. The goal of this step is to find out the common stalls,

which is the bias for both samples in the same direction. These do not affect the

performance comparison. The non-common stalls in each configuration are used

to compute two IPCs for each thread. One IPC including the stalls which are

not common across the configurations, referred to as IPCSTALLS, and one not

including those stalls, referred to as IPCNO−STALLS. Figure IV.8-(a) illustrates

it. It shows the hypothetical IPC for the baseline and the experiment. There are

three IPCs shown in the figure for each run. The lowest IPC shows the IPC with

all the synchronization stalls. This is before the stalls which are common across

the configurations are factored out. Once the common stalls are subtracted, an

IPC with the non-common synchronization stalls is obtained. This is what is

called IPCSTALLS. The third IPC, the highest, includes no synchronization stalls

at all. This is what is referred to as IPCNO−STALLS. The difference between

IPCSTALLS and IPCNO−STALLS is the range of IPCs expected from each configu-

ration as a result of the stalls introduced due to the differences between the two

configurations.

With both IPCSTALLS and IPCNO−STALLS for each thread, for the base-

line and the experimental configuration, one can then compute two weighted

speed-ups, ws low and ws high, as follows:

ws low =
1

#threads

∑
i∈threads

IPCSTALLS
expi

IPCNO−STALLS
basei

(IV.2)

ws high =
1

#threads

∑
i∈threads

IPCNO−STALLS
expi

IPCSTALLS
basei

(IV.3)

These two weighted speed-up calculations give a range of speed-ups

122

IP
C

w
-s

pe
ed

-u
p

1

S1 S
2

S3

(a) (b)

IPC without any
sync. stalls

IPC with common
sync. stalls

IPC with all
sync. stalls

baseline experiment

Figure IV.8: (a) - IPCs with all synchronization stalls, with only common stalls
and without any stall; (b) - Weighted Speed-up Calculation

expected from the architectural experiment, considering the error, measured as

the amount of synchronization stalls which are not common across the two runs.

If this range is completely below or completely above 1, we can safely conclude

that the experiment is either slower or faster than the baseline respectively. If the

range of speed-ups contains 1 within its limits, then one cannot safely conclude if

the experimental configuration is better than the baseline. These three situations

are illustrated in Figure IV.8-(b), by the bars S1, S2, S3. For the first bar S1 we

can safely conclude the experiment is slower than the baseline, the second bar

S2 is inconclusive, and for the third bar S3, the experiment is faster than the

baseline. From equations IV.2 and IV.3, it is also clear that the amount of stalls

not common across the runs will determine the range of speed-ups, hence the

need to compute it precisely. Section IV.E presents quantitative results on how

the technique works for the benchmarks experimented with.

123

Table IV.1: Baseline simulator configuration

Core 2.4GHz, 4-issue, 128 ROB
entries

Per Core Cache Hierarchy Separate Instruction and
Data caches 32KB, 8-way,
64-byte line size
Unified second level: 256KB,
8-way, 64-byte line size

IV.D Methodology

To evaluate the proposed simulation methodology, we experimented

with multi-threaded programs from the SpecOMP [9] benchmarks. Four threaded

runs of these benchmarks were executed. The checkpoints were collected on a

machine running with four Intel r©XeonTM64bits CPUs operating at 3.66GHz,

running Linux operating system.

For the results presented in section IV.E, the Asim [28] simulation frame-

work was used, with a performance model simulating a hypothetical four core

64bits x86 processor. The baseline configuration relevant for this work is pre-

sented in Table IV.1. For this study, the number of threads is the same as the

number of cores simulated. Hence each thread is mapped to one core. During

simulation, a sample is terminated when the first thread in the sample executes

all of its instructions for that sample.

We used the SpecOMP programs listed in table IV.2. These are parallel

versions of spec programs. One of the advantages of use pinSEL is that it is based

on binary instrumentation and hence execute faster (1 to 2 orders of magnitude)

than functional simulators. As a result, we can collect samples for very large

program runs. We collected samples for these benchmarks using their train and

reference runs. The average instruction count for the programs in table IV.2 for

124

Table IV.2: SpecOMP programs used.

Program Description
ammp Computational Chemistry
applu Parabolic/elliptic partial differential equations
apsi Solves problems regarding temperature, wind, velocity

and distribution of pollutants
equake Finite element simulation, earthquake modeling
fma3d Finite element crash simulation
galgel Fluid dynamics: analysis of oscillatory instability
wupwise Quantum chromodynamics

the reference input runs is 3.7 trillion instructions, and for the train runs 433

billion instructions. This work did not intend to choose representative samples

for simulation, as discussed in section IV.A.3. In order to collect samples for test-

ing the simulation methodology, the programs were executed under pinSEL and

samples were collected uniformly throughout their executions. 10 samples were

collected for each benchmark, each with approximately 300 million instructions.

From these samples, we observed that the samples from the train input runs pre-

sented more time-varying behavior across samples. Hence we chose to use those

samples for the experiments presented in the next section. For this programs

the highest instuction count is for wupwise, with 1.5 trillion instructions and the

lowest equake with 110 billion instructions.

Figure IV.10 shows the runtime overhead for collecting the logs, break-

ing it down in three components. The slowdown incurred by pin itself, without

any instrumentation. The slowdown of a simple basic block profiler (inst-prof),

which is the overhead of fast-forwarding between samples, and finally the addi-

tional overhead to collect the samples. The slowdown of Pin [42] by itself is quite

low, in the order of 1.5x. The overhead for using inst-prof, compared to the na-

tive execution, is 9x. Using the pinSEL tool, this overhead increases to 31x. This

125

is because in addition to profiling the basic blocks, which is the only operation

performed between the points where the checkpoints are collected, pinSEL also

needs to create the checkpoints for each sample. In addition to the overhead of

profiling the memory operations for logging the data, these runs also incur over-

heads for acquiring a lock before each memory operation and releasing it after, as

well as logging shared memory dependencies. Figure IV.11 shows the checkpoint

sizes to collect the logs. The average size of uncompressed SEL checkpoints is

119 megabytes per sample, which reduces to 35 megabytes when compressed with

bzip2. The worst case log size, when compressed, is 138 megabytes per sample

for wupwise. The best case is galgel, requiring only 3 megabytes per sample.

The race log file, which stores the logged dependencies along with the bloom

filters, represent about 6% of the log sizes. The size of the checkpoint log files is

on average 43KB per one million memory read instructions.

The benchmarks were run for different configurations presented in sec-

tion IV.E. After that the weighted speed-ups were computed, as presented in

section IV.C.4, across the different runs. This gives a range of possible speed-ups

that are discussed in the next section.

IV.E Evaluation

The technique for deterministic simulation was evaluated using the bench-

marks mentioned in section IV.D. In this section, simulation results for experi-

ments with different architectural configurations are described. The experiments

change the cache size of the cores according table IV.3, and provide an estimate

for the speed-ups achieved.

126

0
100
200
300
400
500

ammp applu apsi equake fma3d galgel mgrid wupwise averagein
st

ru
ct

io
n

an
d

m
em

or
y

co
un

t p
er

 s
am

pl
e

in
 m

ill
io

ns instructions mem reads

Figure IV.9: Average number of instructions and memory operations per sample
for each benchmark

0
10
20
30
40
50
60

ammp applu apsi equake fma3d galgel wupwise average

sl
ow

do
w

n
fa

ct
or

 o
ve

r
na

tiv
e

pin inst-prof pinsel

Figure IV.10: Slowdown to collect the 10 samples for each program

1

10

100

1000

ammp applu apsi equake fma3d galgel wupwise average

SE
L

si
ze

s
in

 M
B

SEL Uncompressed SEL Compressed

Figure IV.11: Log sizes of the SEL checkpoints per sample

127

Table IV.3: Experimental and baseline configurations.

Configuration name Parameters

baseline L1 Instruction and Data caches: 32KB, 8-way,
64-bytes line size
L2 Unified cache: 256KB, 8-way, 64-bytes line size

cfg1 L1 Instruction and Data caches: 16KB, 8-way,
64-bytes line size
L2 Unified cache: 128KB, 8-way, 64-bytes line size

cfg2 L1 Instruction and Data caches: 64KB, 8-way,
64-bytes line size
L2 Unified cache: 512KB, 8-way, 64-bytes line size

IV.E.1 Estimating the speed-ups across simulation runs

The first set of results to look at is the number of synchronization stalls

stalls present in the baseline configuration for the benchmarks we simulated.

These are resultant from the differences in configuration from the machines were

the traces were collected and also from alterations in program behavior origi-

nated from the instrumentation. Figure IV.12 shows the results for the SpecOMP

benchmarks. The figure breaks down the synchronization stalls in the four cate-

gories we described in section IV.C. For these benchmarks, on average, 10.8% of

the cycles spent during simulation of the samples are due synchronization stalls.

From these, 6.5% of the cycles were due to system calls, and the 4.3% for shared

memory synchronization stalls.

The synchronization stalls presented in figure IV.12 are intrinsic to the

checkpoints, because of the reasons discussed in section IV.C.1. Those stalls

are relative to simulating the checkpoints in the baseline configuration. In the

next set of experiments simulation runs for two different configurations were

performed. The objective was to examine how many synchronization stalls are

common across configurations and, from that, determine the difference in stalls

128

0%

5%

10%

15%

20%

 ammp
 applu apsi

 equake
 fm

a3d
 galgel

 wupwise
average

%
 o

f s
yn

ch
ro

ni
za

tio
n

cy
cl

es

br
ea

kd
ow

n

true dep false dep before system call after system call

Figure IV.12: Percentage of synchronization stall for baseline configuration, bro-
ken down in categories: (a) true-dependencies (RAW); (b) false-dependencies
(WAR/WAW); (c) Before-System-Call; (d) After-System-Call

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

 a
m

m
p-

ba
se

 a
m

m
p-

cf
g1

 a
pp

lu
-b

as
e

 a
pp

lu
-c

fg
1

 a
ps

i-b
as

e

 a
ps

i-c
fg

1

 e
qu

ak
e-

ba
se

 e
qu

ak
e-

cf
g1

 fm
a3

d-
ba

se

 fm
a3

d-
cf

g1

 g
al

ge
l-b

as
e

 g
al

ge
l-c

fg
1

 w
up

w
is

e-
ba

se

 w
up

w
is

e-
cf

g1

av
er

ag
e-

ba
se

av
er

ag
e-

cf
g1

%
 s

ta
lls

 n
ot

 c
om

m
on

 b
et

w
ee

n
ba

se
lin

e
an

d
cf

g1

true dep false dep before system call after system call1.36%
2%

Figure IV.13: Percentage of synchronization stalls not common across the baseline
and cfg1, w.r.t. the total number of cycles simulated

due to changes in the configurations simulated.

The configurations presented in Table IV.3 were simulated. Figure IV.13

shows the percentage of cycles relative to the total number of cycles simulated,

which are not common across the runs of the baseline and cfg1. For ammp, for

instance, just under 1% of the execution cycles for the baseline were spent with

synchronization stalls which are not common with the synchronization stalls spent

when running cfg1. Conversely, 1.36% of the cycles spent with synchronization

stalls, when running cfg1, are not common with the baseline. fma3d had 2% of

129

its cycles, when running configuration cfg1, not common with the baseline. For

the other SpecOMP programs, these percentages are smaller.

The differences in synchronization stalls presented in figure IV.13 corre-

late directly with the errors in speed-up predictions across the two configurations.

This is because those differences are used to compute a range of IPCs for each

thread and consequently the range of weighted speed-ups expected. Figure IV.14

shows the weighted speed-up computations between the baseline configuration

and configurations cfg1 and cfg2. The figure shows sets of four bars. The first

two bars (cfg1-nomatch and cfg2-nomatch) show the weighted speedup results

when using all the stalls in the computation (hence not using the approach to

match the common stalls). This represents a scheme close to the approach pro-

posed by prior work [41], where stalls are not matched across simulation runs. In

their work, the error bars are not as high as shown in figure IV.13 because they

collect their checkpoints using the simulator, while modeling the baseline con-

figuration. Even so, during deterministic simulation, there can still be instrinsic

stalls in the checkpoint as a result of the mechanism used to control the progress

of threads. For example, in a RAW dependency, value of the write can be made

visible one cycle before the read attempts to read it. However, during determin-

istic simulation, the read is stalled when its ready to dispatch. As a result, all the

cycles between the ready to dispatch cycle and the cycle where the write is made

available will be synchronization stalls, even though the checkpointing configu-

ration is the same as the deterministic simulation run. As a result, considering

the intrinsic checkpoint stalls result in higher error bars. Using the matching

technique proposed in this chapter eliminates this problem. In our experiments,

since the checkpoints are collected on a configuration different from the baseline,

the intrinsic checkpoint stalls are higher, which results in higher error bars if no

matching is performed. The remaining two bars in figure IV.13, labeled (cfg1-

130

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

ammp applu apsi equake fma3d galgel wupwise average

w
ei

gh
ed

 s
pe

ed
-u

p
(a

ve
ra

ge
 a

cr
os

s
sa

m
pl

es
) cfg1-nomatch cfg2-nomatch cfg1-match cfg2-match

1.361.21 1.361.30 1.22 1.211.151.17 1.36 1.15

Figure IV.14: Weighted speed-ups computation for baseline against cfg1 and
cfg2, when using only the non-common synchronization stalls across the runs,
and when using all the synchronization stalls.

match and cfg2-match) show the weighted speed-ups when using the algorithm

described in section IV.C.4, which matches the common stalls and uses only the

difference in stalls to compute the estimates. ammp is the benchmark with the

highest range of speed-up estimations. Between the baseline and cfg1, the speed-

up ranges from 0.949 to 0.972. Between baseline and cfg2, the speed-up range

is between 1.07 and 1.092. This difference is smaller for the other benchmarks,

some of which are invisible in the figure. As expected, the error in the weighted

speed-up calculation very closely tracks the percentages of synchronization stall

cycles not common across the configurations. It is clear that not matching the

stalls across the runs leads to very large speed-up range estimations, which do not

give the designer the necessary confidence to make a decision. This emphasizes

the importance of matching the common stalls across the configuration runs, one

of the contributions of our work over the previous approach.

IV.E.2 Understanding the synchronization stalls

To better understand the nature of the synchronization stalls presented

in figure IV.12, another set of measurements was realized. Some of the synchro-

nization stalls observed are due to different behavior between the machine where

131

the checkpoints were collected and the simulated machine. Others are caused

by alterations in the application behavior caused by the instrumentation code.

To understand these better, the number of dependencies that generate synchro-

nization stalls was gathered, classified by the length of those stalls. Figure IV.15

plots a histogram of the number of dependencies that generated stalls, separated

by the length of the stalls. More than 90% of the dependencies that generate

stalls generated stalls under one thousand cycles.

050100150200250300350400450500

0-1
0

10
-50

50
-10

0

10
0-5

00

50
0-1

00
0

10
00

-50
00

50
00

-10
00

0

10
00

0-5
00

00

50
00

0-1
00

00
0

10
00

00
-50

00
00

50
00

00
-10

00
00

0

> 1
00

00
00

de

p
th

at
 g

en
er

at
ed

 s
ta

lls 625 880

Figure IV.15: Histogram of number of dependencies that generate synchroniza-
tion stalls, classified by stall length, across all programs.

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%

0-1
0

10
-50

50
-10

0

10
0-5

00

50
0-1

00
0

10
00

-50
00

50
00

-10
00

0

10
00

0-5
00

00

50
00

0-1
00

00
0

10
00

00
-50

00
00

50
00

00
-10

00
00

0

> 1
00

00
00

%
 o

f t
ot

al
 e

xe
cu

tio
n

cy
cl

es 5.7%1.6% 1.0%1.2%

Figure IV.16: Histogram of percentage of synchronization stalls w.r.t to total
number of cycles, classified by stall length

The next step was to find out what percentage of the synchronization

stalls each of the stall ranges from figure IV.15 represent from the total number

of synchronization stalls. This is shown in figure IV.16. From figure IV.12, one

can see that about 10.8% of the total cycles executed on average are due to

132

synchronization stalls. So the percentages show on figure IV.16 add up to that

same amount. The figure shows that a large number of the stalls are generated

by a few dependencies. These dependencies stalls for a large number of cycles.

This means that for those dependencies there is a large deviation in the behavior

from the checkpoint and the behavior being simulated. Note that these stalls

are for the baseline configuration runs, and not stalls resultant from simulating

two different configurations. There are two reasons why this large stalls could

happen:

1. The architecture configuration where the traces were collected is very differ-

ent from the architecture configuration being simulated;

2. There are alterations in the behavior of the program because one of the

analysis routines in the pinSEL tool took too long execute. This could hap-

pen because of a context switch while executing the analysis routine or just

because the analysis routine spend a long time executing I/O operations,

for example. These result in one thread not making progress and the other

making progress, which causes long synchronization cycles during simula-

tion.

Looking at the traces collected by pinSEL we observed that there are

periods in the execution where one thread is not making progress while the other

threads are executing instructions. This could happen because a thread is ex-

ecuting a system call. This case can be identified from the logs because the

timestamps of all threads are logged before and after the system calls, in or-

der to synchronize the thread before and after a system call. Hence long stalls

due to system calls are properly identified and accounted as a system call stall.

However, some of these long stalls observed are due to shared memory dependen-

cies. The log files were examined to help understand why these stalls were being

generated. By looking at the logs, we observed that many occurrences of the

133

long stalls due shared memory dependencies are for periods of execution where

one thread is not making progress, and that is not happening due to a system

call. These are conjectured to be stalls resultant from heisenbug effects caused

by the instrumentation code. If these stalls are not due to heisenbug effects, they

are resultant from a large difference between the machine where the checkpoints

were collected and the simulated machine. These are due to a large deviation in

behavior between the two machines.

Whether these large stalls are likely to be alterations in the behavior of

the program’s execution resultant from the instrumentation or a result of a large

deviation between checkpointing machine and simulated machine, eliminating

those effects from the samples is desirable. By doing this one can capture a more

accurate behavior of the program, and at the same time reduce the amount of

synchronization stalls resultant from these altered behaviors.

Once a simulation run is finished, the long stalls are eliminated as fol-

lows. The stall trace resultant from the simulation is examined. This trace will

contain all the dependencies that originated stalls along with the number of stalls

generated. The dependencies also contain the instruction counts of all threads at

the beginning of the stall period and also at the end. The instruction counts allow

one to find out the amount of progress other threads made while the dependent

thread was synchronizing. This allows one to get a global view of the behavior

of the simulation run during the synchronization stall. With this information we

can then remove this slice of time from the simulation run, hence removing the

altered or deviating behavior from the sample. This is effectively breaking down

the sample in smaller samples, which do not include the slice in time when the

long stalls occurred. Figure IV.17 shows an example. The synchronization stall

period started when thread A needed to synchronize with some other thread.

The synchronization period started when threads A, B and C had instructions

134

Thread A Thread B

Long
synchronization
stall period

a1

a2

b1

b2

sample 1

sample 2

Thread C

c1

c2

Figure IV.17: Sample breakdown representation. Long synchronization period
starts at instruction counts a1, b1 and c1 and ends at instructions a2, b2, c2

with timestamps a1, b1 and c1 committed. It ended when when instructions with

timestamps a2, b2 and c2 committed (if thread A is the one synchronizing, for

instance, a1 and a2 will be consecutive numbers). Every synchronization stalls

contains this information in the stall trace.

For our results, the samples were broken using synchronization stalls

longer than 100, 000 cycles for the SpecOMP runs. The long synchronization is

removed from sample, breaking it down into smaller samples. In the example from

figure IV.17, the sample is broken into two smaller samples. The first starts at

the beginning of the original sample and end at instructions counts a1, b1 and c1.

The second starts at instruction counts a2, b2, and c2 and ends at the end of the

original sample. The average size of the samples before breaking them down was

±300 million instructions per sample, across all threads. After breaking them

into smaller samples, the average size was reduced to 86 million instructions,

with ammp the smallest average sample size of 1.6 million instructions, and apsi

the largest, with an average sample of 114 million instructions. As the samples

135

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

ammp applu apsi equake fma3d galgel wupwise average

w
ei

gh
ed

 s
pe

ed
-u

p cfg1 cfg2

Figure IV.18: Weighted speed-up computation after breaking down the samples
for eliminating the stalls longer than 100, 000 cycles from the baseline runs

become smaller, we need to add warm-up information into the checkpoints, to

avoid an excessive simulation bias resultant from cold-start effects.

After the samples are broken, only remaining smaller samples are simu-

lated with the configurations from Table IV.3. Figure IV.18 shows the speed-up

estimation results when simulating these samples. The estimations are within

the ranges presented in figure IV.14, but the error bars are much smaller, giving

a more accurate estimation. All the programs except fma3d had their speed-up

range estimations reduced significantly. fma3d still has many synchronization

cycles under 100, 000, which are not common across the runs.

IV.E.3 Limitations of Deterministic Simulation

This chapter shows that deterministic simulation can be used for evalu-

ating design changes for multi-threaded workloads. It has shown that for different

cache configurations one can determine a range of speed-ups expected from the

design change. One limitation of deterministic simulation is that order in which

shared memory updates are performed is fixed across simulations. As a result

deterministic is not as applicable when evaluating designs changes that require

shared memory updates to be resolved differently. One example is comparing

the performance of two different memory models. Nevertheless, deterministic

simulation is useful for evaluating things such as cache configurations, branch

136

predictions and changes in pipeline width.

A second limitation of deterministic simulation is that for some design

options, if the amount of synchronization stalls not common across the runs

is too high, the results given by the simulation may not be conclusive. This

happens when the range of speed-ups includes 1 within its limits, in which case

one is not sure whether the experimental architectural is slower or faster than

the baseline. If this happens, one can resort the method we presented to break

down the samples when the amount of deviation is too high, in smaller samples.

A alternative is to collect more samples to verify if the same results hold across

all the samples.

IV.F Related Work

This section discusses prior work related to handling non-determinism

when simulating multi-threaded workloads on multi-core architectures, simulat-

ing multi-threaded applications, and creating checkpoints for multi-threaded sim-

ulation.

IV.F.1 Dealing with Non-Determinism

Non-determinism in the execution of multi-threaded workloads has been

recognized in prior research work [7, 41, 11, 35, 30]. Alameldeen et al [7] shows

that for multi-threaded workloads, in particular server workloads, non-determinism

can affect simulation results significantly, because the execution paths of the pro-

gram and OS scheduling can change the behavior of the runs dramatically. If one

run in each configuration is used to compare simulation results, there is a chance

the conclusion reached is wrong because the behaviors of the runs was not the

same. In some sense this is similar to comparing two runs of the same benchmark

with different inputs. This is clearly inaccurate. They propose the use of statisti-

137

cal techniques to handle this problem. In their approach one simulates a program

on the same configuration multiple times, inserting random perturbations to in-

duce different behaviors (this is done because simulating the same benchmark

on the same configuration is deterministic). This allow them to estimate the

average behavior in that configuration within a confidence level. The same thing

is done for a second configuration. For both configurations they then obtain the

intervals of confidence for a given confidence level α. A confidence interval is a

function of the number of samples (sample size in statistics terms) and the level

of confidence desired. A sample here is a run of the program in one configuration.

By increasing the number of samples and the level of confidence one can obtain a

tighter interval, which is likely to contain the true estimated characteristic, e.g.,

the IPC of the run. Assume that experiments for configurations A and B are

performed, and that it is know that A outperforms B (A’s IPC is higher B’s).

Also assume that a confidence level α = 95% is used to compute the confidence

intervals. After running the experiments n times for each configuration one can

obtain the intervals of confidence for each one of them. If these intervals do not

overlap, there is a chance of at most 5% that the true IPC is not contained in

the intervals. As a result, there is at most a 5% chance that the IPCs from

each experiment may lead to the incorrect conclusion that B is better than A.

If the confidence intervals do overlap, the probability of wrong conclusion would

be higher. In that case, increasing n to get tighter intervals of confidence would

be required. The cost of their technique is the requirement to run the program

multiple times for the same configuration. Very small configuration changes can

result in a large n, which can be impractical. The technique proposed in this

chapter advocates running the program once for each configuration and compar-

ing the runs directly. If there is variability across the runs, this variability will be

translated into synchronization stalls cycles, which can then be used to obtain a

138

relative performance estimate. It also eliminates the sources of non-determinism

due to OS scheduling because it focuses on user-level simulation.

Lepak et al [41] proposed deterministic simulation for full-system sim-

ulators. Their work presented the implementation of a full-system deterministic

simulator, which also introduces artificial stalls to ensure determinism. The work

presented in this chapter differs from theirs in many aspects. First it proposes a

binary instrumentation approach for efficient collection of the checkpoints. This

makes it practical to collect checkpoints for large applications such as SpecOMP

programs. Second we propose an user-level deterministic simulation, which elim-

inates the non-deterministic behavior originated from the OS. To be able to use

this for multi-threaded simulation, tracking synchronization stalls before and af-

ter OS calls needed to be tracked and included that in our error model. The

most significant improvement made over the previous technique is the tracking

and matching of the common stalls across simulation runs precisely, and only

using the stalls that are different between the configurations towards the perfor-

mance estimates. This significantly reduced the error bars over the prior results,

and allows one to distinguish smaller speedups.

IV.G Summary

As the multi-core processor designs become mainstream, the use of

multi-threaded applications to take full advantage of such designs is of primary

importance. Simulating these benchmarks poses all the challenges that exist when

simulating single-threaded programs. In addition, multi-threaded workloads suf-

fer from non-determinism. This means that running the same benchmarks with

the same inputs on different architecture configurations leads to a different exe-

cution paths across the runs. When the execution paths change, comparing the

runs is no longer valid because the behaviors simulated are different.

139

This chapter presented a technique to handle the non-determinism prob-

lem in multi-threaded simulation for multi-core designs. The technique focuses on

user-level deterministic simulation. The simulation is deterministic because the

behavior of a workload is completely reproducible from run to run, by controlling

the sources of non-determinism. An efficient technique to create checkpoints for

deterministic simulation of multi-threaded workloads was presented. It contains

a pre-determined order of shared memory updates, which are enforced during

simulation. The chapter also presented the implementation of a deterministic

simulator that consumes these checkpoints. The proposed technique introduces

stalls during the simulation, which would not naturally occur during the exe-

cution of the program, so it can control the progress of threads and ensure a

deterministic execution. A technique to account for and deal with these stalls in

order to provide a performance estimate for the simulation runs was described.

Acknowledgements

Chapter IV contains material that appears in “Reproducible Simula-

tion of Multi-Threaded Workloads for Architecture Design Exploration”, Cris-

tiano Pereira, Harish Patil and Brad Calder, submitted to the 14th International

Symposium on High-Performance Computer Architecture, Salt Lake City, UT

February 16-20, 2008. The dissertation author was the primary investigator and

author of this paper.

The implementation of the tools presented in this Chapter resulted from

an internship realized by the author with the VSSAD group at Intel Corporation,

during the year of 2006, at Hudson, Massachusetts. The author is very thankful

for the support provided by the members of the Pin [42] Team, developers of the

binary instrumentation engine. Special thanks go to Harish Patil, Robert Cohn,

Greg Lueck, Chi-Keung (CK) Luk and Mark Charney for their help and technical

140

support.

In addition, the modifications to the Asim simulator, also implemented

while working for VSSAD, would not have been possible without the help of many

in VSSAD and AMI groups. In particular, I would like to thank Brian Slechta,

Chris Weaver, Joel Emer and Carl Beckmann for their help and technical support.

V

Summary and Future Challenges

Simulators are an indispensable tool for computer architecture research,

both in industry and in academia. They are heavily used to evaluate current sys-

tems because of the level of visibility and flexibility they provide. By simulating

current architectures, designers can understand and fix the bottlenecks for future

processor generations. Simulators are even more important to characterizing the

performance of future generation processors. Their use avoids the cost of build-

ing hardware prototypes, and provides the flexibility to experiment with many

design options before implementation.

For a simulator to be useful, however, it needs to be accurate. Accuracy

enables simulators to model complicated interactions among internal structures

of the processor. A de facto standard in computer architecture simulation is the

use of execution-driven cycle-accurate simulators. These simulators provide a

high level of accuracy but at the cost of very long run-times due to implemen-

tation complexity. In addition to the complexity of simulators, another problem

designers must address is the long running time of benchmarks, which can run

for trillions of instructions. The standard solution to mitigate this problem is to

choose representative samples from the execution of a program and only simu-

late these samples, which gives an accurate representation of the overall program

141

142

behavior. Techniques to do this efficiently were described in chapter II.

V.A Capturing operating system side effects automati-

cally

Simulators can model the behavior of a machine in different levels of

detail. Simulators can also model the entire machine, including the operating

system, device drivers and user-level code, or only the user-level code. The type

of simulator to use depends on the programs to be examined. While user-level

simulators are simpler than full-system simulators, implementing user-level sim-

ulators is also a complicated task. A particularly difficult task is to emulate

the operating system behavior so that programs can execute correctly. Operat-

ing system emulation is used in two contexts. One is to support the execution

of programs during simulation when those programs interact with the system

through system calls, asynchronous interrupts and DMA transfers. The other is

to create checkpoints for user-level simulation. These checkpoints are used when

performing sampled-based simulation and need to include the register state, code

and data needed by the program during the simulation of the sample, as well the

system interactions side effects to them.

Chapter III described in detail how state-of-the-art user-level simulators

perform emulation of system interactions. The standard way to emulate system

interactions, both in academia and in industry, is complex, tedious, difficult to

maintain, and hard to port across different operating systems. It ties the simula-

tor to the host architecture and may require re-implementing the entire emulation

support when programs running on a different operating system, not supported

by the simulator, need to be examined. This dissertation has presented a tech-

nique that trivializes operating system emulation in user-level simulators. The

technique can be used to create checkpoints for full-program executions or for

143

simulation samples. The approach is based on binary instrumentation and uses

an algorithm which is completely independent of the operating system and its

intricacies. It not only provides support for discovering the side effects of system

calls, but also of asynchronous interrupts and DMA transfers. The algorithm

relies on binary instrumentation to maintain a shadow copy of user memory and

to identify when memory values were changed by the system. Only the values

changed by the system and used by the program are logged in a checkpoint. The

checkpoint is then used to guide simulation. We implemented a tool called pin-

SEL, used to collect the results presented in the dissertation. The technique has

been adopted by Intel Corporation to guide their simulators and has enabled In-

tel engineers to port their checkpointing tools to support simulation of programs

from different operating systems (e.g. Mac OS and Windows), other than Linux.

The only requirement is that the instrumentation tool (e.g. pinSEL) must run

on the operating system for which the programs were compiled.

V.B Deterministic simulation of multi-threaded programs

More recently, with the widespread use of multi-core processors, simula-

tion of multi-threaded programs in these processors is gaining special attention.

These benchmarks present yet another challenge for designers to face when run-

ning experiments: the runs across different configurations are non-deterministic.

The simulation runs can exercise different paths of execution because shared-

memory locations are updated in different order. This makes the comparison

across simulation runs difficult, because one does not know if the change in re-

sults is due to the hardware enhancement, or simply because the behavior of the

programs has changed.

Chapter IV presented a technique to deal with the non-determinism

problem. It first presents a technique to efficiently collect checkpoints for user-

144

level simulation of multi-threaded programs, running on multi-core systems. The

technique extends the pinSEL tool to capture a log of shared memory dependen-

cies that occur during the execution of the program. By capturing the order of

shared memory updates and enforcing that order, runs of a multi-threaded pro-

gram across different configurations are completely reproducible, such that the

same execution paths will be repeated when running the programs on different

hardware configurations. These checkpoints are used to guide the execution-

driven simulation of multi-threaded programs on multi-core architectures. Using

the checkpoints to guide simulation enables direct comparison of one simula-

tion run in one configuration with another run in a different configuration. The

determinism comes from the fact that threads are stalled to ensure that a pre-

determined order for shared memory accesses is obeyed. These stalls would not

occur naturally during the execution of the program. For that reason, we also

presented a technique to account for these stalls and to calculate an error mea-

sure in the performance estimates from simulations. The artificial stalls are used

as an error measure to estimate the loss of fidelity in the simulation. It enables

the calculation of a range of speed-ups expected from the experiments, which can

then be used to make a design decision.

V.C Future Challenges

This dissertation introduced techniques that take steps toward simpli-

fying and improving the ways designers build and use simulators. However, there

are still challenges that need to be overcome to further improve the way simula-

tors are used. In particular, one challenge concerns representative sampling for

multi-threaded programs. The technique for deterministic simulation presented

in this dissertation provides a solution to enable designers to compare samples

simulated in different architectures. It does not provide a solution to pick repre-

145

sentative samples for simulation. Even though statistical sampling could be used

to represent the execution of a program, the large number of checkpoint samples

that need to be simulated can be an inconvenience. Furthermore, because the

samples are usually small, warm-up issues have to be addressed very carefully.

For these reasons, we believe that representative sampling, which picks a small

number of larger, but very representative samples for simulation, is an attrac-

tive solution. In representative sampling, the program is profiled once, samples

for simulation are chosen using machine learning techniques, and a checkpoint is

generated for each sample. For representative sampling to work, a few challenges

need to be overcome. First, the behavior that is profiled needs to be the same as

the behavior checkpointed. Therefore an efficient technique to guarantee the same

execution paths for the profiling and the checkpointing is needed. Efficiency is

important because standard multi-threaded benchmark applications can be very

long (trillions of instructions). Second, a technique to choose representative sam-

ples for multi-threaded programs must be studied. Perelman et al [56] proposed

a scheme where samples are chosen from threads without considering the paral-

lel behavior among them. The approach works well for programs in which each

thread is executing the exact same code and the behavior of the threads are highly

synchronized. If that is not the case, an approach that considers the parallel be-

havior of threads is needed. Such an approach would collect profiles considering

the parallel behavior of the threads, instead of collecting profiles for each thread

individually, and choose simulation samples from these profiles. When collect-

ing profiles for each thread individually, the profiles are collected for intervals

of execution specified as a number of dynamic instructions (e.g. 10 million in-

structions). For combined profiles, the profiles could be collected using intervals

of execution considering a global dynamic instruction counts (e.g. 50 million in-

structions executed across all the threads). The samples would then be selected

146

using these combined profiles. Third, during simulation, one needs to guarantee

that the same execution paths which were profiled and used to choose the sample

as representative, need to be simulated, for better accuracy. This dissertation

provides solutions that can be used to address the first and the third challenges

described above. Improving the method for selecting samples on multi-threaded

programs is one topic for future investigation. The end result would be the de-

velopment of an entire methodology to: 1) profile the execution; 2) select the

samples; 3) generate and simulate the checkpoints.

The results presented in chapter IV used checkpoints for four threaded

benchmark runs. The checkpoints were collected on a four core machine and

simulated on a four core target. However, tying the number of cores in the

target model to the number of cores in the machine where the checkpoints are

collected restricts the number of cores to be simulated. Therefore another topic

for future investigation is characterization of the efficacy of our technique for

deterministic simulation when the number of cores in the target is higher than

the number of cores used to collect the checkpoints. This means that the number

of application threads used when collecting the checkpoints is higher than the

number of processor cores in the checkpointing machine. As the difference in

the number of cores in the checkpointing machine and the number of cores in the

target increases, the behavior of threads during simulation can potentially deviate

more from the behavior of the checkpointing run, as this difference increases. In

addition, as the number of cores in the target increases, there is a potential

for more shared-memory dependencies across the threads. These could lead to

more synchronization stalls using our approach. Hence a study to quantify these

aspects and determine the utility of the approach is a natural next step.

Bibliography

[1] http://www.linux.org/.

[2] http://www.simplescalar.com/.

[3] http://www.spec.org/cpu/.

[4] http://www.spec.org/cpu2006/.

[5] IA-32 Intel Architecture Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1, March, 2006.

[6] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operat-
ing system and multiprogramming workloads. ACM Trans. Comput. Syst.,
6(4):393–431, 1988.

[7] A. R. Alameldeen and D. A. Wood. Variability in architectural simulations of
multi-threaded commercial workloads. In Annual International Symposium
on High Performance Computer Architecture (HPCA-9), 2003.

[8] Arvind, K. Asanovic, C. Kozyrakis, S.-L. Lu, and M. Oskin. Ramp: Re-
search accelerator for multiple processors - a community vision for a shared
experimental parallel hw/sw platform, 2005.

[9] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and
B. Parady. Specomp: A new benchmark suite for measuring parallel com-
puter performance. In WOMPAT ’01: Proceedings of the International
Workshop on OpenMP Applications and Tools, pages 1–10, London, UK,
2001. Springer-Verlag.

[10] K. Barr, C. Weaver, T. Juan, and J. Emer. Simulating a chip multiprocessor
with a symmetric multiprocessor. In Boston Area Architecture Workshop,
2005.

[11] K. C. Barr. Summarizing Multiprocessor Program Execution with Versa-
tile, Microarchitecture-Independent Snapshots. PhD thesis, MIT, September
2006.

147

148

[12] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drinić,
D. Mihočka, and J. Chau. Framework for instruction-level tracing and analy-
sis of program executions. In VEE ’06: Proceedings of the 2nd international
conference on Virtual execution environments, pages 154–163, New York,
NY, USA, 2006. ACM Press.

[13] R. Bhargava, J. Rubio, S. Kannan, L. K. John, D. Christie, and L. Klaes.
Understanding the iimpact of x86/nt computing on microarchitecture. In
Chapter 10. Workload characterization of emerging computer applications.
Kluwer Academic Publishers, 2001.

[14] M. V. Biesbrouck, L. Eeckhout, and B. Calder. Efficient sampling startup
for sampled processor simulation. In International Conference on High Per-
formance Embedded Architectures and Compilers, Nov. 2005.

[15] M. V. Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to guide
simultaneous multithreading simulation. In Proceedings of the 2004 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS’04), Mar. 2004.

[16] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz.
Application-level checkpointing for shared memory programs. In Proceed-
ings of the Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 235–247, 2004.

[17] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison, June
1997.

[18] H. Cain, K. Lepak, B. Schwartz, and M. Lipasti. Precise and accurate pro-
cessor simulation. In In Proceedings of the Fifth Workshop on Computer
Architecture Evaluation Using Commercial Workloads (CAECW), 2002.

[19] D. Chiou, H. Sanjeliwala, D. Sunwoo, Z. Xu, and N. Patil. Fpga-based fast,
cycle-accurate, full-system simulators. In Proceedings of the second Workshop
on Architectural Research using FPGA Platforms (WARFP), February 2006.

[20] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for
effective trace sampling of superscalar processors. In ICCD’96, Oct. 1996.

[21] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for
effective trace sampling of superscalar processors. In ICCD’96, pages 468–
477, Oct. 1996.

[22] T. T. P. P. Council. Tpc benchmark c: Standard specification.
http://www.tpc.org/tpcc/spec/tpcc current.pdf, Dec 2003.

149

[23] J. Devore and R. Peck. Statistics: The Exploration and Analysis of Data.
Brooks/Cole Publishing Company, 1997.

[24] P. Dubey. Recognition, mining and synthesis moves computers to the era of
tera. Technology@Intel Magazine, 9(2), 2005.

[25] M. Dubois, F. Briggs, I. Patil, and M. Balagrishnan. Trace-driven simula-
tions of parallel and distributed algorithms in multiprocessors. In Proceed-
ings 1986 International Conference on Parallel Processing, pages 909–916,
August 1986.

[26] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. D. Bosschere. Statistical
simulation: Adding efficiency to the computer designer’s toolbox. IEEE
Micro, 23(5):26–38, 2003.

[27] M. Ekman and P. Stenstrom. Enhancing multiprocessor architecture simu-
lation speed using matched-pair comparison. In Proceedings of the Interna-
tional Symposium on Performance Analysis of Systems and Software, 2005.

[28] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. Luk, S. Manne, S. S. Mukher-
jee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim: A
performance model framework. Computer, 35(2):68–76, 2002.

[29] D. Geer. Industry trends: Chip makers turn to multicore processors. Com-
puter, 38(5):11–13, 2005.

[30] S. R. Goldschmidt and J. L. Hennessy. The accuracy of trace-driven sim-
ulations of multiprocessors. In SIGMETRICS ’93: Proceedings of the 1993
ACM SIGMETRICS conference on Measurement and modeling of computer
systems, pages 146–157, New York, NY, USA, 1993. ACM Press.

[31] J. Haskins and K. Skadron. Memory reference reuse latency: Accelerated
sampled microarchitecture simulation. In ISPASS’03, Mar. 2003.

[32] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[33] L. K. John and L. Eeckhout. Performance Evaluation and Benchmarking.
CRC Press, 2005.

[34] A. J. KleinOsowski and D. J. Lilja. Minnespec: A new spec benchmark
workload for simulation-based computer architecture research. IEEE Com-
put. Archit. Lett., 1(1):7, 2006.

150

[35] E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the validity of trace-
driven simulation for multiprocessors. SIGARCH Comput. Archit. News,
19(3):244–253, 1991.

[36] T. Lafage and A. Seznec. Choosing representative slices of program execution
for microarchitecture simulations: A preliminary application to the data
stream. In WWC-3, Sept. 2000.

[37] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong
correlation between code signatures and performance. In ISPASS, Mar. 2005.

[38] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classification,
March 2004.

[39] G. Lauterbach. Accelerating architectural simulation by parallel execution
of trace samples. Technical Report SMLI TR-93-22, Sun Microsystems Lab-
oratories Inc., Dec. 1993.

[40] S. Lee, S. Das, V. Bertacco, T. Austin, D. Blaauw, and T. Mudge. Circuit-
aware architectural simulation. In DAC ’04: Proceedings of the 41st annual
conference on Design automation, pages 305–310, New York, NY, USA, 2004.
ACM Press.

[41] K. M. Lepak, H. W. Cain, and M. H. Lipasti. Redeeming ipc as a per-
formance metric for multithreaded programs. In PACT ’03: Proceedings of
the 12th International Conference on Parallel Architectures and Compilation
Techniques, page 232, Washington, DC, USA, 2003. IEEE Computer Society.

[42] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Programming Language Design and
Implementation, Chicago, IL, June 2005.

[43] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hllberg,
J. Hgberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, 2002.

[44] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system timing-first simulation.
SIGMETRICS Perform. Eval. Rev., 30(1):108–116, 2002.

[45] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system timing-first simula-
tion. In SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
pages 108–116, New York, NY, USA, 2002. ACM Press.

[46] D. Model. Alpha axp workstation family performance brief - dec osf/1 axp.

151

[47] W. Mong and J. Zhu. Dynamosim: A trace-based dynamic compiled in-
struction set simulator. In Proceedings of the International Conference on
Computer Aided Design, pages 131–136, November 2004.

[48] S. S. Mukherjee, S. K. Reinhardt, M. L. B. Falsafi, S. Huss-Lederman, M. D.
Hill, J. R. Larus, and D. A. Wood. Wisconsin wind tunnel II: A fast and
portable parallel architecture simulator. In PAID’97, June 1997.

[49] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Automatic
logging of operating system effects to guide application-level architecture
simulation. In SIGMETRICS ’06/Performance ’06: Proceedings of the joint
international conference on Measurement and modeling of computer systems,
pages 216–227, New York, NY, USA, 2006. ACM Press.

[50] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously recording
program execution for deterministic replay debugging. In ISCA, June 2005.

[51] R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory
parallel programs. In Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 1–11, 1993.

[52] S. Nussbaum and J. E. Smith. Modeling superscalar processors via statis-
tical simulation. In International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2001.

[53] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation. In MICRO-37, Dec. 2004.

[54] M. Pellauer, J. Emer, and Arvind. Hasim: Implementing a partitioned per-
formance model on an fpga, 2006.

[55] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and early
simulation points. In PACT’03, pages 244–256, Sept. 2003.

[56] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Du-
long. Detecting phases in parallel applications on shared memory architec-
tures. In IEEE International Parallel and Distributed Processing Symposium,
pages 25–29, 2006.

[57] A. D. Pimentel and L. O. Hertzberger. Distributed simulation of multi-
computer architectures with mermaid. In SCS Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS ’98),
July 1998.

152

[58] J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge. Intrinsic checkpointing:
A methodology for decreasing simulation time through binary modification.
In ISPASS’05, Mar. 2005.

[59] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the simos
machine simulator to study complex computer systems. Modeling and Com-
puter Simulation, 7(1):78–103, 1997.

[60] D. Seal. ARM Architecture Reference Manual. Addison-Wesley, 2001.

[61] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In PACT’01,
Sept. 2001.

[62] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char-
acterizing large scale program behavior. In ASPLOS-X, Oct. 2002.

[63] R. Singhal, K. Venkatraman, E. Cohn, J. Holm, D. Koufaty, M. Lin, M. Mad-
hav, M. Mattwandel, N. Nidhi, J. Pearce, and M. Seshadri. Performance
analysis and validation of the intel pentium 4 processor on 90nm technology.
In Intel Technology Journal, Feb. 2004.

[64] R. L. Sites. Alpha axp architecture. Commun. ACM, 36(2):33–44, 1993.

[65] A. Srivastava and A. Eustace. ATOM: A system for building customized
program analysis tools. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 196–205. ACM, 1994.

[66] P. Szwed, D. Marques, R. Buels, S. McKee, and M. Schulz. Simsnap: Fast-
forwarding via native execution and application-level checkpointing. In Proc.
HPCA 2004 Interact-8: Workshop on the Interaction between Compilers and
Computer Architectures, Feb. 2004.

[67] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simultane-
ous multithreading processor. In MICRO 34: Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, pages 318–327,
Washington, DC, USA, 2001. IEEE Computer Society.

[68] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L.
Stamm. Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In ISCA, pages 191–202, 1996.

[69] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic prediction of the
critical dependence path. In Proceeedings of the 7th International Symposium
On High Performance Computer Architecture, 2001.

153

[70] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang. Softsdv: A pre-
silicon software development environment for the ia-64 architecture. In Intel
Technology Journal, Dec. 1999.

[71] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a survey.
ACM Comput. Surv., 29(2):128–170, 1997.

[72] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge, C. Kozyrakis, and
K. Olukotun. A practical fpga-based framework for novel cmp research. In
FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th international sym-
posium on Field programmable gate arrays, pages 116–125, New York, NY,
USA, 2007. ACM Press.

[73] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe. Statistical sampling of
microarchitecture simulation. In 20th International Parallel and Distributed
Processing Symposium (IPDPS), April 2006.

[74] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and
J. C. Hoe. Simflex: Statistical sampling of computer system simulation.
IEEE Micro, 26(4):18–31, 2006.

[75] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation.
In SIGMETRICS’96, pages 68–79, May 1996.

[76] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sampling.
In ISCA-30, June 2003.

[77] M. Xu, R. Bodik, and M. Hill. A flight data recorder for enabling full-
system multiprocessor deterministic replay. In 30th Annual International
Symposium on Computer Architecture, San Diego, CA, 2003.

[78] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman. Re-
trace: Collecting execution trace with virtual machine deterministic replay.
In Third Annual Workshop on Modeling, Benchmarking and Simulation, held
in conjunction with the 34th Annual International Symposium on Computer
Architecture, June 2007.

[79] J. J. Yi, L. Eeckhout, D. J. Lilja, B. Calder, L. K. John, and J. E. Smith.
The future of simulation: A field of dreams. Computer, 39(11):22–29, 2006.

[80] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins. Charac-
terizing and comparing prevailing simulation techniques. In HPCA-11, Feb.
2005.

	Signature Page
	Dedication Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita and Publications
	Abstract
	Introduction
	How computer architects use simulation
	Motivation
	Contributions
	Organization

	Simulation Background
	Level of simulation detail
	Functional simulation
	Cycle-accurate (detailed) simulation
	Detailed simulation methodologies

	Full-system and user-level simulation
	Reducing the amount of simulation through sampling
	Reaching the simulation samples
	Choosing the simulation samples

	Accelerating simulation
	Using parallel hosts
	Direct-execution
	FPGA-based simulation

	Binary instrumentation
	Summary

	Efficient Checkpointing for Uni-Processor User-Level Simulation
	Application-Level Simulation
	pinLIT
	SimpleScalar

	Existing Logging Approach
	Emulating System Calls
	Benefit of Automated Logging

	Automatic Logging
	Overview
	Introducing pinSEL
	Dynamic Instrumentation
	Timestamps
	System Effects Log Files
	Simulating Multi-threaded Programs on Uniprocessor Systems
	Atomic Analysis
	Architecture Simulation

	Logging Results
	Benchmarks
	Avoiding Software Complexity of System Effects Emulation
	Log Sizes and Logging Overhead
	Log Sizes Per Simulation Point
	Log Sizes for Non SPEC Programs

	Other Uses of pinSEL Checkpoints
	Related Work
	Handling system effects for User-Level Simulation
	Full system simulation
	Checkpoint Mechanisms

	Summary

	Deterministic Simulation for Multi-Threaded Workloads on Multi-Processors
	Checkpoints for Reproducible Multi-Threaded Execution
	Logging Shared Memory Dependencies for Multi-Processors
	Memory Model and Deterministic Simulation
	Picking Samples for Simulation

	Deterministic Simulation
	Deterministic Simulation Implementation

	Comparing Samples across Architecture Configurations
	Differences Between Checkpointed Behavior and Baseline Configuration
	Classifying the Synchronization Stalls
	Matching Synchronization Stalls Across Configurations
	Calculating Sample Speed-ups

	Methodology
	Evaluation
	Estimating the speed-ups across simulation runs
	Understanding the synchronization stalls
	Limitations of Deterministic Simulation

	Related Work
	Dealing with Non-Determinism

	Summary

	Summary and Future Challenges
	Capturing operating system side effects automatically
	Deterministic simulation of multi-threaded programs
	Future Challenges

	Bibliography

