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ABSTRACT 

Let N{~, t) be the number of cells of age less than".a in a pop-

ulation of mortal, dividing cells at time t. . If probabilities of death 

and division are given as functions of cell age, then N{a, t) is a random 

variable. The mean and variance of this random variable have the fol-

lowing asymptotic behavior as functions of time: If the population tends 

to decrease, the mean and variance tend to zero; if the population tends 

to increase, the mean and standard deviation tend to increase exponen-

tially, both with the same exponent; otherwise the mean tends to a con-

stant and the variance tends to increase in proportion to time. Similar 

conclusions apply when the probabilities of death and division depend on 

cell age and time. 
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INTRODUC TION 

In an earlier paper (Nooney, 1967), I discussed the age distri-

butions of continuous populations of ce1ls from. a determ.inistic viewpoint. 

The present note treats the stochastic case, in which the death and divi-. 

sion schedules are random. functions of cell age. In this case, the 

num.ber of cells of age less than a ina population at tim.e t is a ran-

dom. variable called the age distribution. The m.ean and variance of that 

random. variable are discus sed here. The m.ethod of the generating func-

tion used by Harris (1963) allows the extension of m.y previous results 

on the m.ean age distribution to certain discontinuous probability distri-

butions for death or division as well as to discrete populations. In addi-

tion, I obtain the asym.ptotic form. of the variance. 

As we shall see, the gross asym.ptotic behavior of the m.ean and 

variance of the age distribution depends on the gros s survival character 

of the population: If the population tends to decrease, then the m.ean 

and variance tend to zero in tim.e; if the population tends to increase, 

then the m.ean and,standard deviation tend to increase exponentially in 

tim.e, both with the sam.e exponent; otherwise the m.ean tends to a con-

stant with respect to tim.e, and the variance tends to increase in propor-

tion to tim.e. 

It is true also that only for an asym.ptotically exponentially grow-. 
ing population can the norm.alized standard deviation (standard deviation 

divided by m.ean) rem.ain bounded in tim.e. For other populations the 

actual age distribution is likely to be very different from. the m.ean, and 

the m.ean age distribution becomes a progressively worse basis for 

.. 
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analysis of the population as time increases. Unfortunately the latter 

cases include populations of bounded size, which are of major biological 

interest. 

The derivation of the foregoing results is based on an examina-

tion of the age dis tributions in populations each arising from a single 

cell. The assumed independence of cells permits the easy extension to 

arbitrary initial populations. 

These methods lead to analogous conclusions when the death and 

division schedules are random functions of both, cell age and time. 

THE PROBABILITY-GENERATING FUNCTION 

Let P(a) be the probability that a cell would divide at an age not 

exceeding a if no cell death were to occur. and let Q(a). be the prob-

ability that a cell would die at an age not exceeding a if no cell division 

were to occur. Division means replacement by two replicas of age zero; 

death means removal from the population. I assume that P is not a 

lattice distribution. that P(O) = Q(O) = 0 and that the behavior of 

each cell is described by.·.··p and' Q,:and, iso"independent 'of other. 

Consider the living descendants of a cell aged y at time zero. 

Let n(x. y. t) be the number of these descendants of age not exceeding 

x at time t. Following Harris (1963), set 

00 

F(s. x. y. t) = I. shPr {n (x.·y. t) = h} 

h=O 

and call F the probability-generating function. Note that F(1, x, y. t) = 1. 
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Defining m(x, y, t) and v(x, y, t) to be the mean and variance, respec-

tively, of the random variable n(x, y, t), we may write (Feller. 1950) 

m(x, y. t) 

v (x, y, t) 

= F (1. x, y, t), 
s 

2 
= -[m(x,y.t)] +m(x.y,t) + F (1,x,y,t). ss 

( 1) 

(2) 

Let us denote by p(y. t) the probability that a cell of age· y at 

time zero divides not later than time t. Then 

p(y, t) = P(y+t) - P(y) 
1 - P(y) 

Let us denote by q(y, t) the probability that a cell of age y at time zero 

dies not later than time t. Then 

q(y,t) = Q(y+t) - Q(y) 
1 - Q(y) 

From P(O) = Q(O) = 0 follows that p(O, t) = P(t) and q(O, t) = Q(t). 

The probability- generating function satisfies the functional equation, 

t 

F(s,x,y,t) = q(y.t)[1- p(y,t)] + S q(y.u) dp(y,u) 
u=o 

+ [1- q(y,t)][1-p(y,t)] J(y+t-x) 
... 

+ s[ 1- q(y, t)][ 1- p(y, t)][ 1-J(y+ t- x)] 

t 2-
+ S [F(s. x, 0, t-u)] [1- q(y, u)] dp(y, u), 

u=O 

. where 
{

1, t>O 
J(t) = . 

. 0, t~ 0 

(3) 
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The sum of the first two terms on the right-hand side is the probability 

that the original cell (aged y at time zero) dies before time t. The 

third and fourth terms are the probabilities that the original cell sur-

vives without dividing until time t under the respective conditions 

y + t ~ x and y + t< x. The last term accounts for the remaining possi-

bility: The cell survives and divides not later than time t. In writing 

the last term we use the fact that [F (s, x, 0, t-u)] 2 is the probability- . 

generating function for the process starting at time t - u with two cells 

of age zero. Since it was convenient in defining P and Q to proceed as 

though dead cells could divide, the second term must be included on the 

right-hand side of Eq. (3). This term is the probability that the original 

cell "dies" (is removed), then divides before time t and can contribute 

only to Pr {n (x, y, t) = O}. The corresponding probability of division 

and subsequent death is included in the last term of Eq. (3). 

By differentiating Eq. (3) with respect to s and using Eq. (1), 

we find 

m(x, y, t) = [1- q(y, t)] [1- p(y. t)] [ 1- J{y + t - x)] 

t . ' 

+ I = 0 m{x, 0, t -u}[ 1- q(y,u») dp (y, u). 

(4) 

, 

By differentiating Eq. (3) twice with respect to s and using Eq. (1), 

we obtain 
,t 

F ( 1, x, y, t) - 2 S ss 
u=O 

2 ' 
{[ m (x,O, t -u)-] -+--F ss (-1-,-x,O, t- u)} ~ ~---

(5) 

x [1- q(y, u») dp (y, u). 
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2 
Now set w(x, y, t) = F (1, x, y, t) + [m (x, y, t)] ... Then from Eq. (5) ss 

t 

w(x, y, t) = [m(x, y, t)] 2 + 2 Su = 0 w(x, 0, t-u)[ 1- q(y, u)] dp(y, l,l) (6) 

and from Eq. (2), 

2 . 
vex, y, t) = w{x. y, t) - 2[m(x, y, t)] + m(x, y, t) . (7) . 

ASYMPTOTIC BEHAVIOR 

In Eqs. (4) and (6), set y = 0 and find the renewal equations 

t: . 

m(x, 0, t) = [1-Q(t)][1-P{t)] [1- J(t-x)] + 2 (' . m(x. 0, t-u)[ 1-Q(u)]dP(u) 
Ju=O 

. (8) 

and 

i
t . 2 . 

w{x,O,t) = [m(x,O,t)] +2 w(x,O,t.,.u)[1-Q(u)JdP(u). 
u=O 

(9) 

The asymptotic behaviors of m and ware influenced by the kernel of 

these renewal equations, and we shall distinguish three cases, according 
t . 

as 2\' [1- Q(u)]dP(u) is (i) less than, (ii) equal to, or (iii) greater 
.1u =0 

than unity. For cases (ii) and (iii), we shall assume the existence of 

00 

c = 2 S u[1- Q(u)] dP(u). 
u=o 

In case (i), a result of Paley and Wiener (Bellman and Cooke, 
. ~ 

1963) shows that both m(x, 0, t) and w(x, 0, t} tend to zero as t tends 

to infinity. Equations (4) and (6) then show that m{x. y. t} and w(x.y. t) 

tend to zero fO.r each x and y. Finally, Eq. (7) shows that vex, y, t} 

also tends to zero for each x and y. 
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In case (ii), a theorem of Ikehara (Bellman and Cooke, 1963) 

applied to m(x, 0, t) e t permits the conclusion 

lim m(x, 0, t) 
t- 00 

x 

=! r [1-Q(u)][1-P(u)]du. 
Ju=O 

(10) 

We set fJ.O(x) = lim m(x, 0, t). The application of a Tauberian theorem 

of Hardy and Littlewood (Bellman and Cooke, 1963) to Eg. (9) permits 

the conclusion 

. -1 1 [ ]2 -
11m w(x, 0, t) t = ~ fJ.O(x) • 
t- 00 

00 

Now let I(a,y) =2S
u

=0 e-
au 

[1-q(y,u)]dp(y,u}. 

We then find, from Eq.(4), 

lim m(x, y, t) = fJ.O (x) 1(0, y), 
t-oo 

and from Eqs. (6) and (7), 

. ( - -1 -1 1 [ ]2 11m vx,y;t)t = lim w(x,y,t)t =c fJ.O(x) I(O,y). 
t -00 t-+ 00 

In case (iii) we again call on the theorem of Ikehara to find 

-at lim m(x, 0, t) e 
t-oo 

= 

x 
Sa e-au [1_Q(u)][1_ P(u)]du 

00 

where a > 0 is uniquely deterrnine-d by--fherequirement, I (a, 0) = 1. 

N 1 ' () l' ( ) -at ow et fJ. x = 1m m x, O. t e . a The result of Paley and Wiener 

then shows 
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Turning again to Eqs. (4) and (6), we see that 

o -at 
hm m(x, y, t) e = J.L (x) l(a, y), 

a t-+ co 

and 

110 m w(x, y, t)e 2at = [II (x)] 2 { l(2a, y) + [l( .)] 2} 
• a 1 - I (2a, 0) a, y • 

t-+co 

Equation (7) then yields 

lim 
t-+co 

ARBITRARY INITIAL POPULATION 

Let N(x, t) be the number of cells of age not exceeding x in a . 

population at time t. Then N(x,O) describes the initial population. 

Since the cells are assumed to behave independently of one another, we 

may write the mean M{x, t) and the variance Vex, t) of the random vari-

able N(x, t) as 

co 

M(x, t) = .~y=o m(x, y, t) dN(y, 0) 

and 

co 

V(x, t) =Sy=o v(x, y, t) dN(y, 0). 

Insertion into these expressions of the derived asymptotic\values for 

m and v yields the asymptotic value's for M and V: In case (i), 

M{x, t) and Vex, t) tend to zero as t tends to infinity; in case (ii), 
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lim M(x, t) and lim V(x, t)t- 1 exist and are different from zero; in 
t_oo t -00 

case (iii), lim M{x, t) e -at and lim V(x, t)e -2at exist and are different 
t_oo t- 00 

from zero for the a deterrn.ined by I( a, 0) = 1. 

THE TIME- DEPENDENT PROCESS 

If the probability distributions P and Q depend on tirn.e and 

cell age. then results sirn.ilar to the foregoing may be derived as follows. 

Let P(y. a) and Q(y. a) be the respective conditional probabilities that a 

cell born at time y divides or dies before achieving age a. Let n(x, y. t) 

be the number at time t of living cells of age less than x that are de-

scendants of a single cell born at time y. Define the probability-

generating function for the process as 

00 

F (s, x, V, t) ~ l sk Pr {;;(X, v, t) ~ kJ . 

k=O 
..., 

A funGtional equation for F is obtained as earlier for F: 

t 

F(s.x,y,yH) = Q(y,t)[1- P(y,t)] + r Q(y,u)dP(y,u) 
Ju=O 

,+ [1- Q(y, t)][1- P(y, t)] J(t-x) 

+ s[ 1-Q(y, t)] [1-P{y, t)] [1- J(t-x) J 

S
t ,.... 2 

+ . [F (s, x, y+u, yH)] [1- Q(y, u)] dP(y, u) •. 

u=O 

( 11) 

Setting y =-t yields a renewal equation for F(s, x, -t, 0). That function 

describes the process at time zero that began at tirn.e :...t with a single 

cell of age zero. The asymptotic behavior of the process starting at 
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,.., 
time zero with a cell of age zero is therefore described by F(s, x, - t, 0) 

for large t. 

Differentiating Eq. (11), we obtain renewal equations for the 
,..., ,...,,.., , 

mean, m(x,-t,O); and variance, v(x,-t,O), of n(x,-t,O), and the 

asymptotic behavior of these statistics depends on the behavior of 

K(t) = zst [1- Q(-t,u)] dP(-t,u). 
u=O 

Since ° ~ K(t) ~ Z. there exist: both. A = lim sup K(t) and 
. b~ 

A = lim inf K(t). In analogy to the three cases for the time-independent 
t-+ 00 ,.., ,.., 

process. these relations hold: if A < 1, then m(x. -t, 0) and v(x. -t;O) 
,.., 

both tend to zero; if A = A = 1. then m tends to a constant.· while v 

tends to become proportional to t; if A > 1. thenih and ;; both in-

crease without bound. Possible behavior of K(t) not enumerated in the 

foregoing is described by A ~ 1 ~ A, with A < A. The asymptotic char-

acter of the proces s is here indeterminate in general, but particular be-
,... 

havior of m e~tails particular behavior of v. For instance. if' m is 

bounded and bounded away from zero. then v increases without bound. 

(It can be shown that v is bounded from below by a monotonically in-

creasing function that does not tend to a limit. ) 

As with the time-independent process. the asymptotic behavior of 

the time-dependent process starting with an arbitrary initial population 

may be obtained from these results. 
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