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A chromosome-scale genome assembly of the grape powdery
mildew pathogen Erysiphe necator reveals its genomic
architecture and previously unknown features of its biology
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ABSTRACT Erysiphe necator is an obligate fungal pathogen that causes grape powdery
mildew, globally the most important disease on grapevines. Previous attempts to obtain
a quality genome assembly for this pathogen were hindered by its high repetitive DNA
content. Here, chromatin conformation capture (Hi-C) with long-read PacBio sequencing
was combined to obtain a chromosome-scale assembly and a high-quality annotation
for E. necator isolate EnFRAME01. The resulting 81.1 Mb genome assembly is 98%
complete and consists of 34 scaffolds, 11 of which represent complete chromosomes.
All chromosomes contain large centromeric-like regions and lack synteny to the 11
chromosomes of the cereal PM pathogen Blumeria graminis. Further analysis of their
composition showed that repeats and transposable elements (TEs) occupy 62.7% of their
content. TEs were almost evenly interspersed outside centromeric and telomeric regions
and massively overlapped with regions of annotated genes, suggesting that they could
have a significant functional impact. Abundant gene duplicates were observed as well,
particularly in genes encoding candidate secreted effector proteins. Moreover, younger
in age gene duplicates exhibited more relaxed selection pressure and were more likely
to be located physically close in the genome than older duplicates. A total of 122
genes with copy number variations among six isolates of E. necator were also identified
and were enriched in genes that were duplicated in EnFRAME01, indicating they may
reflect an adaptive variation. Taken together, our study illuminates higher-order genomic
architectural features of E. necator and provides a valuable resource for studying genomic
structural variations in this pathogen.

IMPORTANCE Grape powdery mildew caused by the ascomycete fungus Erysiphe
necator is economically the most important and recurrent disease in vineyards across
the world. The obligate biotrophic nature of E. necator hinders the use of typical genetic
methods to elucidate its pathogenicity and adaptation to adverse conditions, and thus
comparative genomics has been a major method to study its genome biology. However,
the current reference genome of E. necator isolate C-strain is highly fragmented with
many non-coding regions left unassembled. This incompleteness prohibits in-depth
comparative genomic analyses and the study of genomic structural variations (SVs) that
are known to affect several aspects of microbial life, including fitness, virulence, and
host adaptation. By obtaining a chromosome-scale genome assembly and a high-quality
gene annotation for E. necator, we reveal the organization of its chromosomal content,
unearth previously unknown features of its biology, and provide a reference for studying
genomic SVs in this pathogen.

KEYWORDS Erysiphales, genome architecture, biotrophic lifestyle, transposable
elements, gene duplications, copy number variation
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E rysiphe necator (Ascomycetes; Leotiomycetes, Erysiphaceae) is an obligate biotrophic
fungal pathogen that causes grapevine powdery mildew (GPM), one of the most

common and economically important fungal diseases in vineyards around the globe
(1). The pathogen can significantly reduce grape yield and quality, and most cultivated
varieties of grapevine (Vitis vinifera) are susceptible to it (1–3). As a consequence, GPM
is commonly managed by fungicides, which dramatically increase the overall production
costs and the risk of resistance development (4, 5).

The obligate nature of powdery mildews (PMs) prohibits the functional analysis
of their genes by means of standard genetic manipulations. Instead, comparative
and population genomics have been used as alternatives for studying the molecular
mechanisms underlying obligate biotrophy, pathogenicity, and other aspects of the
biology of these pathogens (6–12). To date, the genomes of at least 16 species or
formae speciales of PMs have been obtained, including 3 monocotyledonous-infecting
and 13 dicotyledonous-infecting species. However, the highly repetitive nature of these
genomes has posed major challenges to the construction of high-quality genome
assemblies based on short sequencing reads alone and has further hindered in-depth
comparative genome analyses. As a result, chromosome-scale genome assemblies have,
so far, only been obtained from just two monocot-infecting species of PM, namely the
wheat pathogen Blumeria graminis f.sp. tritici and the triticale pathogen B. graminis f.sp.
triticale (9, 13) but none from dicot-infecting PMs.

Despite challenges in obtaining high-quality genome assemblies and annotations for
PM fungi, analysis of their genomic content has shown that they possess some of the
largest genomes among filamentous ascomycetes, with sizes typically ranging from 120
to 180 Mb (6, 9, 14, 15). The increase is due to the extensive proliferation of transposable
elements (TEs) in their genomes, which typically comprise up to 85% of their genomic
content (6, 7, 9, 11). However, contrary to their enlarged genomes, PMs have a reduced
number of circa (ca.) 7,000 genes (11), which are considerably smaller compared with
the ca. 11,000 genes typically present in non-obligate fungal plant pathogens (16). The
reduction is due to marked losses in genes encoding key enzymes in primary and
secondary metabolism as well as in hydrolytic enzymes that cause damage to host cells
during infection, a hallmark of their obligate biotrophic lifestyle (10, 17). PMs also lack a
repeat-induced point mutation (RIP) defense mechanism against the deleterious effects
caused by TE replication in their genomes (18, 19). As a consequence, their genomes
experience higher rates of TE and gene duplication and retention, as these are more
prone to pseudogenization in species with an active RIP mechanism. An examination of
their genome architecture has further shown that PM genomes are generally deprived of
large-scale compartmentalization, AT-rich isochores, and accessory chromosomes, which
constitute signatures of “plastic” or “two-speed” genomes (6, 9). Instead, they adhere
mostly to the “one-speed” model of genome evolution, in which gene duplication is an
important mechanism of evolution and adaptation (20).

Previous efforts to sequence the genome of E. necator were constrained by its
highly repetitive nature and the limitations of the short-read sequencing technologies
used at the time. Consequently, the current reference genome of E. necator isolate
C-strain (C-strain) is estimated to be 36.5%–48.6% complete and is assembled into
5,935 scaffolds, which forbid a rigorous analysis of its architecture (7). In this study,
we present a chromosome-scale genome assembly and gene annotation for E. necator
isolate FRAME01 (EnFRAME01). The new reference genome of E. necator presented herein
is the first chromosome-scale assembly obtained for a dicot-infecting PM species and
elucidates major aspects of their biology.

MATERIALS AND METHODS

A detailed version of materials and methods is provided in Supplementary Results at
https://doi.org/10.5281/zenodo.7738565.
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Fungal isolate, nucleic acid extraction, and sequencing

E. necator isolate EnFRAME01 was isolated from greenhouse-grown grapes in Corvallis,
Oregon, USA, in 2018. EnFRAME01 was propagated by dusting from detached leaves
(21) on V. vinifera L., cv. “Chardonnay” seedlings grown hydroponically in half-strength
Hoagland’s solution (22). High-molecular weight DNA was obtained from conidia as
in Feehan et al. (23) with modifications. PacBio library construction and sequencing
were outsourced to the DNA Technologies and Expression Analysis Core Laboratory at
the UC Davis Genome Center. The constructed library was sequenced using two SMRT
(Single-Molecule Real Time sequencing) Cells 1M v2 on a Sequel Chemistry v2 platform
(Pacific Biosciences, Menlo Park, CA, USA). Extracted DNA was also used to generate an
Illumina WGS library and a Hi-C library using the Proximo Hi-C Kit (microbial) (Phase
Genomics), according to the manufacturer’s instructions. Both Illumina libraries were
sequenced on a NovaSeq 6000 instrument (PE150 format). To assist gene prediction, total
RNA was extracted from conidia of E. necator isolate EnFRAME01 held at the USDA-ARS
Horticultural Crops Disease and Pest Management Research Unit in Corvallis, Oregon,
using Trizol reagent (ThermoFisher) according to the manufacturer’s instructions. Sample
integrity analysis, cDNA library preparation, and sequencing on the Illumina NovaSeq
6000 platform using the paired-end (PE150) format were carried out at Novogene, Inc.
(Sacramento, CA, USA).

Genome assembly and annotation of repetitive DNA

PacBio reads were assembled with Canu v1.8 (24) and then used to polish the contigs
with pbmm2 and Arrow from the GenomicConsensus package v2.3.3. The assembly was
further polished with Pilon v1.23 (25) after mapping the Illumina reads with BWA-MEM
v0.7.17 (26). Hi-C reads were mapped with BWA-MEM v0.7.17, and chromatin interaction
frequencies were estimated with the 3D-DNA package (27). They were then visualized
with Juicebox v1.11.08 (28), which allowed the grouping of contigs into putative
chromosomes. Repetitive regions were identified with RepeatModeler v2.0.2a (29) and
masked with RepeatMasker v4.1.2-p1. The repeat divergence landscape was estimated
with the script parseRM.pl v5.8.2.

Gene prediction

RNA-seq reads were mapped to the genome assembly with HISAT2 v2.2.0 (30), and
transcripts were reconstructed with Stringtie v2.1.1 (31) and Trinity v2.9.1 (32). Genes
were predicted with Maker v2.31.10 (33) by integrating (i) the trained ab initio pre-
dictors GeneMark-ES v4.57 (34), SNAP v2013-11-29 (35), and Augustus v3.2.3 (36), (ii)
gene models generated with GeMoMa (37), (iii) assembled transcripts, and (iv) protein
sequences from close relative species.

Homology-based functional annotations

Conserved PFAM domains were identified with InterProScan v5.32-71.0 (38) or the
NCBI CDD database (39). Carbohydrate-active enzymes (CAZymes) were predicted with
dbCAN2 (40). Proteases and transporters were classified based on the top BLASTp hit
(E-value <1E-10) against the MEROPS database v12.1 (41) and the TCDB database version
of 2020-07-12 (42), respectively. Secreted proteins (SPs) were predicted with SignalP v5.0
(43). Membrane-bound proteins were predicted with PredGPI (44) and TMHMM v2.0 (45).
Secreted proteins were classified into CSEPs based on three lines of evidence (Fig. S21):
(i) EffectorP v2.0 (46); (ii) proteins shorter than 250 aa with at least 2% cysteines; and
(iii) proteins with no homologs in Leotiomycetes, except Erysiphales, based on a BLASTp
search (E-value <1E-3) against 93 Leotiomycetes genomes.

Identification of core genes missing in EnFRAME01

Protein sequences from E. necator, B. graminis f.sp. hordei, B. cinerea, Zymoseptoria tritici,
Aspergillus niger, Neurospora crassa, and Saccharomyces cerevisiae were organized into
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orthogroups with OrthoFinder v2.5.4 (47). Orthogroups containing proteins from all
non-PM species but not from E. necator were considered core genes missing in E. necator.

Classification and enrichment of duplicated genes

Duplicated genes were identified based on an all-vs-all BLASTp (E-value < 1E-5)
search, with minimum identity of 40% and minimum coverage of 50%. The script
duplicate_gene_classifier from MCScanX (48) was used to classify gene duplications into
dispersed, proximal, or tandem. Enrichment of gene categories within duplicated genes
was performed with hypergeometric tests using the phyper function within R v4.1.2.
Pairwise KA/KS ratios were estimated with KA/KS_calculator v3 (49). Conserved domain
enrichment was performed with the enricher function from the R package clusterProfiler
v4.2.2 (50) within R v4.1.2 with adjusted P-value <0.01.

Identification of CNVs

Whole-genome sequencing (WGS) reads of five E. necator isolates (7) were mapped to
the genome with BWA-MEM v0.7.17 (26). PCR duplicates were marked with samblaster
v0.1.24 (51) and removed with SAMtools v1.9 (52). Copy number variation (CNV) regions
were identified with CNVnator (53). Genes with at least 80% overlapping with CNV
regions were considered CNV genes.

Comparative analysis of carboxylesterases

The predicted carboxylesterase (CE) HI914_00624 was queried with BLASTp against
the NCBI nr database (2022, 08-13), and proteins from EnFRAME01 and the 400 most
similar sequences (E-value <1E-50) were obtained. The acetylcholinesterase DmAChE
from Drosophila melanogaster (1QO9) (54) was included as an outgroup and also used
as reference to identify conserved residues. The 401 amino acid sequences were aligned
with MAFFT v7.490 (55), and sites composed of more than 50% gaps were removed
with trimAl v1.4 (56). The phylogenetic tree was inferred with IQ-TREE v1.6.12 (57)
using the built-in ModelFinder (58) and 1,000 rapid bootstrap replicates (59). The tree
was visualized and edited with iTOL (60). Quantitative PCR (qPCR) and quantitative
reverse transcription PCR (RT-qPCR) were used to determine the copy number and gene
expression of the HI914_00624 gene, respectively, in six isolates of E. necator. qPCR
reactions were run in triplicate on an Applied Biosystems QuantStudio5 qPCR machine
using PerfeCTa qPCR ToughMix Low ROX (Quantabio) and the primers and probes listed
in Table S26.

RESULTS

The genome of E. necator consists of 11 chromosomes with large centro‐
meric-like regions

The genome of EnFRAME01 was assembled using a combination of PacBio reads and
Hi-C data into 34 scaffolds, totaling 81.1 Mb in size. This is a considerable improve-
ment over the previous reference genome of C-strain that was fragmented into 5,935
scaffolds (Table S1 and Supplementary Results). Of the 34 assembled scaffolds, 11
embodied distinct chromosomes (Chr1-to-Chr11) (Fig. 1; Fig. S1; Table 1), 22 were
unplaced scaffolds, and 1 scaffold represented the complete mitochondrial genome (Fig.
S2). The size of the 11 chromosomes ranged from 11.3 Mb (Chr1) to 3.3 Mb (Chr11),
and all were putatively assembled telomere-to-telomere, containing only five collapsed
regions (Fig. S3). All chromosomes had 22–31 copies of the canonical telomeric repeat
5′-TTAGGG-3′ at their ends and predicted centromeric regions with high inter-chromoso-
mal Hi-C contact frequency (Fig. S1A), as previously observed in other fungi (61, 62).
However, in contrast to other ascomycetes (61, 63–66), the predicted centromeres of
E. necator were large segments that accounted for 15.8% of the genome (Table 1 and
Table S2). Centromeric regions of similar sizes have been reported before for the wheat
PM B. graminis f.sp. tritici (9), but whole-genome alignment showed that the predicted
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centromeric regions of E. necator are poorly conserved in B. graminis f.sp. tritici. Moreover,
although both PM species have 11 chromosomes, they exhibited an overall low synteny
as no one-to-one chromosome match was observed between them (Fig. S4). These
results indicate poor conservation of centromeric regions and extensive inter-chromoso-
mal rearrangements between E. necator and B. graminis f.sp. tritici.

A reduced gene complement underlies the obligate biotrophic lifestyle of 

FIG 1 Schematic representation of the 11 chromosomes of E. necator isolate EnFRAME01. The Circos plot shows the assembled chromosomes as solid black lines

with major tick marks representing Mb. Predicted location of centromeric regions is indicated with gray rectangles. The outermost-to-innermost tracks represent

(A) density of protein-coding genes, (B) repetitive DNA content, (C) GC content from 30% to 50%, (D) location of genes encoding carbohydrate-active enzymes,

(E) location of genes encoding proteases, (F) location of genes encoding CSEPs, (G) location of dispersed gene duplicates (i.e., gene copies located in different

chromosomes or separated by more than 10 genes), and (H) location of proximal or tandem gene duplicates (i.e., gene copies located less than 10 genes apart

or next to each other). Gene locations are represented by bullet points on the perpendicular axis. Gene count, repetitive DNA, and GC content were determined

using a sliding window of 50 kb. The figure shows that the chromosomes of EnFRAME01 contain long centromeric regions, which are abundant in repeats and

nearly devoid of protein-coding genes.
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E. necator

A total of 7,146 protein-coding genes were predicted in the genome of EnFRAME01,
with a BUSCO completeness of 98.2%. This gene number is comparable with the 6,046–
8,470 genes reported in other PM fungi (6, 8, 9, 67), and a notable improvement over
the gene annotation of C-strain, for which 6,484 genes were predicted with an estima-
ted completeness of 90.1% (Table S3). Functional gene annotations showed that the
genome of EnFRAME01 contained 174 proteases (Table S4), 8 key enzymes for secondary
metabolism (Table S5), 11 cytochrome P450s (Fig. S5; Table S6), 1,238 putative transport-
ers (Fig. S6; Table S7), 160 CAZymes (Table S8), and 527 SPs (Table S9), of which 234
were candidate secreted effector proteins (CSEPs) (Table S10) (Supplementary Results).
The number of genes in these functional categories is low compared with other plant
pathogenic ascomycete fungi (8, 68) but similar to PMs (8, 15). Consistent also with an
obligate biotrophic lifestyle, 181 core genes were identified that are typically present in S.
cerevisiae and non-obligate biotrophic fungi but were missing in EnFRAME01 (Table S11).
Included in these genes were 95 of the 99 so-called “missing ascomycete pathogen core
genes,” generally reported as absent in PMs (10) (Table S12). Based on KEGG orthology
(KO) identifiers (69), the 181 genes are predicted to partake in 47 conserved pathways
(Table S13), of which 23 were significantly enriched in genes missing in EnFRAME01
(Supplementary Results). The two pathways most affected by gene losses were thiamine
and sulfur metabolism, in accordance to other obligate biotrophic fungi (10, 17, 68).
Absence of a sterol O-acyltransferase (EC:2.3.1.26) gene, and of the ERG5 (C-22 sterol
desaturase; EC:1.14.19.41) and ERG4 (EC:1.3.1.71) genes whose products catalyze the
last two steps of ergosterol biosynthesis in yeast (70), was also observed. Collectively,
these results indicate that the obligate lifestyle of E. necator is driven by losses in genes
involved in several biochemical pathways, in accordance to what has been observed in
other PMs and obligate biotrophs (10, 17).

E. necator harbors a reduced arsenal of CSEPs

The small number of 234 CSEP-encoding genes identified in the genome of EnFRAME01
is in line with reports from dicot-infecting PMs but in contrast to monocot-infecting
PMs such as different B. graminis formae speciales (6, 9). Of the 234 CSEPs, 49 (20.9%)
were species specific, and 185 (79.1%) had homologs in PMs (n = 183) and/or non-PM
fungi (n = 86) (Fig. S7). Moreover, 86 (36.7%) contained the Y/F/WxC sequence motif
that is typically found in CSEPs of B. graminis and other PMs (Fig. S8 and Table S10).
PM fungi are also known to harbor many ribonuclease-like effectors that belong to
a large family of catalytically inactive RNases, known as RALPHs (RNase-like proteins
associated with haustoria) (71–73). A genome-wide search in EnFRAME01 identified 38
genes encoding RALPH-like proteins, 24 of which could also be classified as CSEPs (Table
S14). A phylogenetic analysis grouped the 38 RALPH-like proteins into two major clades,
whose members differed in average protein size and the location in the genome of

TABLE 1 Size and content of the 11 chromosomes of Erysiphe necator isolate EnFRAME01

Chromosome Size (Mb) GC (%) Centromere size (Mb) Predicted genes Genes per Mb Median intergenic size (bp) Repeats (%)

Chr1 11.30 39.8 1.00 1,000 88 4,333 61.7
Chr2 9.87 39.6 0.85 1,060 107 3,391 55.6
Chr3 8.28 39.5 1.05 840 101 3,502 58.4
Chr4 8.27 39.6 2.00 684 83 4,000 64.4
Chr5 7.98 39.8 1.30 758 95 3,286 61.8
Chr6 7.15 39.8 1.25 608 85 4,402 64.9
Chr7 6.66 39.4 1.12 641 96 3,639 60.5
Chr8 6.21 40.2 1.20 393 63 5,218 70.0
Chr9 6.07 39.9 1.25 474 78 3,249 69.4
Chr10 4.49 39.5 0.90 387 86 3,536 63.6
Chr11 3.34 39.4 0.90 261 78 3,666 68.3
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their encoding genes (Fig. S9). An Egh16-like virulence factor domain (PF11327) was also
commonly found in the E. necator CSEPs. CSEPs with an Egh16 domain are members
of a multigene family in fungi (74, 75) and often play a role during the early stages of
host infection. A total of 11 genes encoding Egh16-like proteins that could be further
clustered into two clades (Fig. S10) were identified in EnFRAME01, but only four of
these were classified as CSEPs (Table S15). Finally, an analysis of the localization of the
234 CSEP-encoding genes of E. necator on the 11 chromosomes of the fungus showed
there was no enrichment of genes encoding CSEPs in subtelomeric regions, as has been
observed in other fungi (76, 77) (Fig. 1).

TE bursts have drastically shaped the genome of E. necator

The genome of EnFRAME01 is highly repetitive, with repeats accounting for 62.7%
(50.8 Mb) of its DNA content. Class I retrotransposons, such as long terminal repeat
(LTR) retrotransposons (26.5%, 21.5 Mb) and non-LTR retrotransposons (16.8%, 13.6 Mb),
were more abundant than class II DNA transposons (6.3%, 5.1 Mb) and unclassified
interspersed repeats (13.1%, 10.6 Mb) (Table S16). This is consistent with most fungi
(78, 79) but in contrast to cereal PMs, whose genomes are mainly dominated by
non-LTR retrotransposons (6, 9). TEs were fairly evenly dispersed outside centromeric and
subtelomeric regions, which generally contained smaller amounts of non-LTR elements
and exhibited an overall lower TE divergence. A similar pattern was also observed in
genomic islands rich in rolling-circle (RC) elements (Fig. 2A). Collectively, these observa-
tions indicate that younger TEs accumulated preferentially in centromeric and subtelo-
meric regions and that RC elements are younger than other TEs (Fig. 2A). Interestingly,
an examination of the nucleotide divergence among TE copies revealed a bimodal
distribution with two peaks of contrasting TE composition. This suggests the presence
of two TE burst events in the evolutionary history of E. necator that involved different TE
classes (Fig. 2B and Supplementary Results). A similar pattern was also observed in the
genomes of different B. graminis formae speciales, although the bimodal peaks were less
pronounced and lacked RC elements (Fig. 2B; Table S16). In addition, highly divergent
TEs were in all genomes enriched in non-LTR rather than LTR elements, whereas the
opposite was observed for TEs with low divergence. By using the E. necator repeat library
to mask the genomes of the cereal PMs, and vice versa, nearly all low-divergence TEs
were left unmasked (Fig. S11). These observations suggest that E. necator and B. graminis
underwent a similar burst of non-LTR TEs, possibly prior to their divergence, followed by
clade-specific proliferation of LTR-retrotransposons and, in the case of E. necator, of RC
elements as well.

The genome of E. necator exhibits small-scale compartmentalization

An examination of the distribution of repeats and of protein coding genes on the 11
chromosomes of EnFRAME01 revealed large differences in gene density among the
chromosomes and an inverse correlation between density of protein coding genes and
repetitive DNA content (Fig. 1; Fig. S12 and Supplementary Results). An assessment of
whether certain gene categories were associated with specific TE superfamilies showed
no major differences in TE content within the flanking regions of genes encoding
CAZymes, proteases, CSEPs, and non-CSEP secreted proteins (Fig. S13). However, the
intergenic regions of CSEP genes were significantly longer, richer in repetitive DNA, and
had a different TE composition as compared with other functional gene categories (Fig.
3A and B; Table S17). Collectively, these observations indicate the absence of large-scale
compartmentalization in gene-dense and gene-sparse regions in the genome of E.
necator (Fig. 3C and D), consistent with the “one-speed” genome hypothesis suggested
for PM species (6, 20). Instead, small-scale compartmentalization of CSEP-encoding genes
was seen, which was preferentially located in somewhat gene-sparse and repeat-rich
regions, as commonly reported in other fungal pathogens (80, 81).
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Gene duplication asymmetrically affects different functional gene categories
in E. necator and their genomic organization

A self-BLASTp search revealed a total of 941 genes (13.1%) duplicated in the genome
of EnFRAME01, with CSEP-encoding genes experiencing significantly (P-value = 1.8E-35)

FIG 2 The transposable element composition of E. necator differs from that of the cereal powdery mildew pathogens B. graminis f.sp. hordei and B. graminis f.sp.

tritici. (A) Distribution of TEs in the 11 chromosomes of E. necator isolate EnFRAME01. The figure shows the abundance of the different TE classes, represented

as stacked bar plots along the chromosomes. Overall divergence of TE families is indicated by solid black lines along the chromosomes. Predicted centromeric

regions are indicated as well. The figure shows high abundance of repeats near chromosome ends and at centromeres. Predicted centromeric regions are

enriched mainly in long terminal repeat retrotransposons with overall low sequence divergence compared with the rest of the genome. Rolling-circle elements

are also abundantly found in centromeres and have an overall low sequence divergence. TE abundance and divergence were calculated using a sliding window

of 50 kb. (B) Repetitive DNA landscape represented as bar plots showing the number of bases covered by predicted TEs from different (sub)classes. The predicted

divergence of the TEs is shown on the x-axis. The figure shows a bimodal repeat divergence landscape with peaks for E. necator at approximately 5% and 21%

divergence. The two peaks differ in their composition, with the peak at 5% divergence being dominated by LTRs, RCs, and unknown elements, and the peak at

21% divergence being dominated by LTR and long interspersed nuclear elements (LINE). The landscape of TE divergence of the cereal PM pathogens also follows

a bimodal distribution, but it is less pronounced as compared with E. necator, and the peaks are void of RCs.
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higher rates of gene duplications, as compared with genes in other functional categories
(Fig. 4A; Table S18; Supplementary Results). A conserved domain enrichment analysis
further identified 30 domains that were significantly enriched among duplicated genes
(adjusted P-value <0.01), with the two most significantly enriched being the microbial
ribonuclease (cl00212) and the Egh16-like virulence factor (PF11327) domains that are
associated with CSEPs as well (Fig. 4B; Table S19). When considering the arrangement of
the 941 gene duplicates in the genome of E. necator, the majority were dispersed gene
duplicates (DGDs; n = 712; 75.6%), as opposed to being proximal gene duplicates (PGDs;
n = 139; 14.8%) or tandem gene duplications (TGDs; n = 90; 9.5%) (Fig. 4A). However,
genes encoding CSEPs significantly deviated from this pattern as they exhibited almost
equal frequencies of dispersed (n = 38; 35.5%), proximal (n = 34; 31.8%), and tandem (n =
35; 32.7%) duplications (Fig. 4A). Indeed, several of the multicopy CSEP-encoding genes,
including the RALPH-like and Egh16-like CSEPs, were found to be tandemly arranged in
clusters (Fig. S14), suggesting that CSEPs families expand by frequent local duplications
in E. necator. A prominent example of this trend was the discovery of a 350-kb region
on Chr1 that harbored 20 copies of a CSEP-encoding gene (i.e., HI914_00480), which
were tandemly arranged in the same orientation on the same DNA strand (Fig. S15) and
with 15 consecutive copies encoding identical proteins. Our analyses also suggested that
local gene duplicates (i.e., PGDs and TGDs) are more conserved and thus more likely to
contribute to genetic redundancy than DGDs, which due to their higher divergence, are
likely to contribute more to functional diversification (Fig. 4C). Similarly, when examin-
ing the rate of synonymous (KS) and non-synonymous substitutions (KA), local gene

FIG 3 The genome of E. necator isolate EnFRAME01 exhibits small-scale compartmentalization of genes encoding candidate secreted effector proteins in

repeat-rich genomic regions. (A and B) Boxplots showing the size distribution and repetitive DNA content of upstream and downstream intergenic regions

flaking BUSCO genes, genes encoding CSEPs, genes encoding secreted proteins not classified as CSEPs, genes encoding carbohydrate-active enzymes, and genes

encoding proteases. The figure shows that intergenic regions of CSEP-encoding genes typically have higher repetitive DNA content compared with genes in the

other categories. The P-values shown in panels A and B were obtained with the Wilcoxon rank sum test. (C and D) Heatmaps of the number of protein coding

genes (panel C) and CSEPs (panel D) with certain sizes of upstream (y-axis) and downstream (x-axis) intergenic regions. The figure shows that the genome of

EnFRAME01 does not exhibit large-scale compartmentalization of CSEP-encoding genes in gene-sparse regions.
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duplicates exhibited overall lower KS and higher KA/KS values as compared with DGDs
(Fig. 4D; Fig. S16). This indicated that PGDs and TGDs were likely more recent duplicates
and were under more relaxed selection pressure as compared with DGDs. Collectively,
the above results indicate that gene duplication is a driver of genome evolution in

FIG 4 Landscape of gene duplications in the genome of E. necator isolate EnFRAME01. (A) Heatmap showing the percentage of genes in different functional

categories that are singletons, dispersed duplications, proximal duplications, and tandem duplications. The bar chart shows P-values for enrichment of

duplicated genes based on hypergeometric tests. The figure shows that ~13% of the genes are duplicated and that the percentages of duplicated genes

encoding candidate secreted effector proteins are significantly higher than genes encoding secreted proteins not classified as CSEPs, carbohydrate-active

enzymes, and proteases. (B) The dot plot shows conserved domains significantly enriched within duplicated genes. The size of the dots corresponds to the

number of duplicated genes containing the respective domain. The x-axis shows the proportion of the duplicated genes containing the respective domain that

contributes to all duplicated genes containing a conserved domain. Dots are color coded based on enrichment P-values adjusted using the Benjamini–Hochberg

method. Distributions of pairwise identity values of duplicated copies are shown on the right-hand side based on top BLASTp hit. The P-values shown in (C) and

(D) were obtained with the Wilcoxon rank sum test. (C) Boxplots showing the distribution of pairwise nucleotide identity values of dispersed gene duplicates,

proximal gene duplicates, and tandem gene duplicates. Each point represents a duplicated gene with the percent identity of its top BLASTn hit shown in the

y-axis. The figure shows that copies of DGDs share significantly less nucleotide identity (median = 65.6%) than copies of PGDs (median = 90.1%) and TGDs

(median = 93.4%). (D) Boxplots showing the distribution of KA/KS values for DGDs, PGDs, and TGDs. Each point represents a duplicated gene with the KA/KS value

of its top BLASTp hit shown in the y-axis. The figure shows that copies of PGDs and TGDs share higher conservation of KA/KS values than copies of DGDs.
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E. necator that has differentially affected different gene categories, thereby leading to
differences in their mode of evolution and organization of their paralogs in the genome.

Duplicated genes in EnFRAME01 frequently vary in copy number among E.
necator isolates

The WGS data of five E. necator isolates (7) were used to identify genomic regions in
EnFRAME01 with CNV (i.e., deleted or duplicated). A total of 1,760 distinct CNV regions
were identified, of which 1,589 (90.3% with an average size of 2.9 kb) were deletions,
and only 171 (9.7% with an average size of 5.6 kb) were duplications (Fig. S17A; Table
S20). CNV regions were dispersed throughout the 11 chromosomes of EnFRAME01 (Fig.
S18) and were more frequently located near chromosome ends rather than gene-rich
and repeat-rich regions (Fig. S17B). However, despite the lack of enrichment of CNV
regions in repeat-rich regions, 80.5% (n = 1,279) of the deleted and 70.1% (n = 120) of
the duplicated regions overlapped with predicted TEs (Fig. S17C). Moreover, 122 of the
CNV regions overlapped with protein-coding genes and could, therefore, be considered
as CNV genes (Supplementary Results). Of these, 53 genes were duplicated (average of
0.3 duplicated gene per all duplicated regions), and 69 genes were deleted (average
of 1.5E-5 deleted gene per all deleted regions) among the E. necator isolates (Table
S21), indicating that genes with CNV were most likely to be affected by duplications
rather than deletions. Most CNV regions also typically affected single genes rather than
groups of genes, and no significant over- or under-representation of CSEPs, CAZymes,
and proteases was observed among CNV genes. Instead, genes with CNV were signifi-
cantly (P-value = 1.7E-27) enriched with the 941 genes predicted to be duplicated in
EnFRAME01 (Table S22). A notable example is the CSEP-encoding gene HI914_00480,
which is present in 20 copies in EnFRAME01 and 8–12 copies in other strains (Table S23).
This indicated that rates of gain, retention, and loss of duplicated genes were asymmetric
among different isolates of E. necator.

E. necator exhibits extensive CNV of a novel and PM-specific CE

An inspection of the 122 genes with CNVs among the isolates of E. necator showed
that gene HI914_00624, encoding a predicted secreted CE, exhibited the most dynamic
changes in copy numbers, ranging from 1 in isolate EnFRAME01 to 31 in isolate Lodi
(Supplementary Results). Moreover, RT-qPCR assays showed that the relative expression
of this gene in six 2-week-old isolates of E. necator was strongly correlated (Pearson’s
linear correlation coefficient r2 = 0.998, P < 0.001) to its copy number (Fig S19 and
Table S24), indicating that increases in copy number resulted in a gene dosage effect.
In all isolates, the duplication affected the same 9.5 kb fragment that contained only
the HI914_00624 gene and was flanked by short direct repeats (Fig. 5A). A blast search
within the NCBI nr database indicated that homologs of HI914_00624 are abundantly
present both within PM and non-PM fungal species (Fig. 5B). However, a phylogenetic
tree constructed using the top 400 best BLASTp hits, representing at least 195 distinct
fungal species, showed that HI914_00624 belonged to a distinct clade that included 22
CEs, all from PM species (Fig. 5C). Moreover, a multiple sequence alignment showed that
the catalytic triad Ser-Asp/Glu-His, that is indispensable to the function of CEs (82, 83),
is poorly conserved in these 22 PM-specific CEs (Fig. S20; Table S25). This suggests that
HI914_00624 is a member of new clade of potentially non-catalytically active CEs or CEs
with a modified enzymatic activity (84).

DISCUSSION

In this study, we used deep WGS sequencing to obtain a chromosome-scale genome
for the grape PM E. necator, the first Erysiphales genome for a dicot-infecting PM.
The availability of a high-quality assembly enabled us to uncover prominent genomic
and biological features of E. necator that were previously left unexplored due to
its fragmented assembly. This highlights the importance of obtaining high-quality
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chromosome-level assemblies and further sets a solid basis for a detailed structural
genomics studies in this pathogen.

FIG 5 E. necator shows extensive copy number variation of a putative secreted carboxylesterase that is poorly conserved in non-powdery mildew fungi.

(A) Region of chromosome 1 (Chr1) in the genome of E. necator isolate EnFRAME01 containing the gene HI914_00624 encoding a putative secreted CE. Genes are

represented as blue arrows and repetitive DNA as small brown rectangles. Lines above the genes indicate estimated copy numbers of the region in five different

isolates. The figure shows that isolates Lodi, C-strain, and Branching have more than 10 predicted copies of HI914_00624. The duplicated segment is flanked by

short direct repeats of more than 90% identity. The figure also shows that genes flanking HI914_00624 are not duplicated in the isolates analyzed. (B) Percent

identity values of most similar sequences to the HI914_00624 protein sequence based on BLASTp searches. The figure shows that nearly all sequences from

non-PM species have less than 40% amino acid identity. (C) Maximum likelihood phylogenetic tree of HI914_00624 and its most similar protein sequences from

GenBank (2022, 08-13) and EnFRAME01. The protein sequence of the acetylcholinesterase DmAChE from D. melanogaster (54) was included as an outgroup. Tree

branches are color coded based on their support of 1,000 bootstrap replicates. The tree was rooted at DmAChE. Track (A) shows the distribution of taxonomy

classes of the sequences. Track (B) indicates sequences from monocot-infecting and dicot-infecting PMs. Track (C) shows the conservation of the Ser, Asp/Glu,

and His residues that comprise the catalytic triad conserved in CEs. The figure shows that homologs of HI914_00624 are conserved in other PMs but poorly

conserved in non-PM fungal species. The figure also shows that homologs of HI914_00624 in PMs lack the Ser and His residues of the catalytic triad, which are

largely conserved in predicted CEs from other fungal species.
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The 81.1 Mb genome of E. necator is organized into 11 chromosomes, which are
broadly characterized by the presence of large centromeric-like regions rich in repetitive
DNA, a high content of retrotransposons and unclassified repeats that are mostly evenly
dispersed outside their centromeric and telomeric regions, and the lack of compart-
mentalization in repeat-rich/gene-sparse regions, in agreement with the “one-speed
genome” model of evolution. Moreover, E. necator had a reduced complement of
genes encoding lytic enzymes (e.g., CAZymes and proteases) and those involved in
carbohydrate metabolism, amino acid and purine metabolism, thiamine biosynthesis,
and assimilation of inorganic nitrogen and sulfur. Loss of genes affecting these pathways
is a characteristic feature of obligate biotrophs (8, 17, 68, 85, 86) and potentially a
strategy used by such pathogens for conserving their resources, if the end products
of the impaired pathways are available through leaky metabolic processes in the host
(17, 87–89). This model of reductive genome evolution in which organisms abolish
genes needed to synthesize metabolites that can be obtained directly through the host
environment is frequently observed in nature, including obligate biotrophic fungi (68, 87,
88, 90).

The search for genes that are missing in E. necator but are commonly present in other
ascomycete fungi also revealed that the fungus lacks ERG5 and ERG4, whose products
catalyze the two last steps, respectively, of ergosterol biosynthesis in fungi (70). This
corroborates previous reports that ergosterol is essentially absent in this fungus as well
as in PMs, in general (91, 92). The deletion of ERG5 and/or ERG4 is typically not lethal
to fungi but leads to an altered ergosterol biosynthesis that may affect their physiology,
increase their sensitivity to multiple chemicals, and generally decrease their fitness under
stress conditions (93–97). For instance, both genes are required for the conidiation of A.
fumigatus (98, 99), ERG4 is crucial for vegetative differentiation and virulence in Fusarium
graminearum (100), and deletion of ERG4 increased the production of extracellular
pigments in Monascus purpureus (101). Likewise, the deletion of ERG5 increased the
susceptibility of Candida albicans, N. crassa, and F. verticillioides to azole antifungals (102,
103). Loss of ERG4 and ERG5 is unlikely to have a fitness effect on E. necator or impact
major features of its physiology, and it is thus intriguing to speculate possible biological
explanations for the loss of ergosterol biosynthesis. As ergosterol is an inducer of innate
immunity in plants (104), its absence may help E. necator avoid sterol-induced immunity
in grapes. This might be possible as the activation in V. vinifera of the type I lipid transfer
protein VvLTP1 by ergosterol treatment (105, 106) leads to the induction of the stilbene
synthase gene Vst1 (105). Vst1, in turn, regulates the biosynthesis of the phytoalexin
resveratrol that enhances resistance against Botrytis cinerea (107) and E. necator (108).

The overall genomic characteristics of E. necator conform to those reported for
other PM pathogens, including different formae speciales of the cereal PM pathogen
B. graminis (8, 10, 14). However, the 11 chromosomes of E. necator are not syntenic to
the 11 chromosomes of B. graminis, indicating rapid diversification of their genomic
architecture following speciation. Moreover, the genome of E. necator has a different
TE complement compared with B. graminis, as it contains mostly LTR retrotransposons
rather than the non-LTR retrotransposons. TEs are a major force of evolution and
adaptation to stressful environments, as their bursts and mobilization provoke chro-
mosomal reorganization and phylogenetic divergence (109, 110). Our analysis showed
that both species have experienced not one, as previously reported (6), but at least
two bursts of TEs in their evolutionary history. The first burst possibly preceded their
divergence and involved mostly non-LTR retrotransposons, and the second burst likely
took place after their speciation and involved LTR-retrotransposons but also RCs (i.e.,
Helitrons) in E. necator. Such differences in TE bursts in E. necator and B. graminis are likely
to have restructured their genomes, accelerated their speciation, and influenced their
adaptation on different hosts by, among others, affecting virulence-associated genes
such as CSEPs. Indeed, despite the lack of large-scale compartmentalization in E. necator,
its CSEP-encoding genes exhibited significantly higher duplication rates as compared
with other functional gene categories and were embedded in larger intergenic regions
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that were richer in TEs. The increase in duplication rates could have been prompted
by the presence of TEs, as the repetitive nature of transposons provides a substrate for
non-allelic homologous recombination that would typically generate tandemly arranged
gene copies in their flanking regions (111–113). TEs have also been hypothesized to
mediate the duplication and proliferation of CSEPs in B. graminis (9, 73), as CSEP-encod-
ing genes in this species are frequently duplicated and present in tandem in physical
proximity to similar repetitive DNA (9, 73). Thus, next to promoting chromosomal
reorganization, TEs seem to have had a major role in shaping the evolution of E. necator
and B. graminis as plant pathogens by providing a favorable environment for CSEP
duplication.

The inflation of the E. necator genome by TEs was further accompanied by high
rates of gene duplication, which likely contributed further to its genomic plasticity and
genetic diversity. Gene duplication is a major force of evolution as it provides material
for functional, regulatory, and transcriptional divergence through the generation of new
genes and their subsequent neo-, sub-, or hypo-functionalization (114, 115). A variety of
mechanisms can trigger gene duplications, with different mechanisms creating suites of
duplicated genes in different configurations within a genome, which in turn contribute
differentially to functional innovation and redundancy (116, 117). Our analysis indicated
that in E. necator, genes from different functional categories exhibited different rates
and modes of duplications and that different modes of gene duplication were under
different strengths of selection pressure. These features were again more prominent
with CSEP-encoding genes, as CSEP gene duplicates were more likely to be in close (i.e.,
tandem or proximal) physical location in the genome of EnFRAME01 than the copies of
other gene classes and had on average higher KA/KS values, indicating that duplicated
CSEP genes are potentially subject to higher rates of evolution. This is consistent with
the role of effectors on host adaptation and overcoming of the host immune system and
indicates an ongoing arms race between E. necator and its grapevine host (9).

Next to gene duplications, CNVs within a species population can significantly affect
its fitness (118). It has been shown, for example, that an increase in CYP51 (ERG11)
copy numbers, the gene encoding a key enzyme for ergosterol biosynthesis, creates a
gene dosage effect that reduces the sensitivity of E. necator to demethylase inhibitor
fungicides (7). In B. graminis f.sp. hordei (73, 119) and B. graminis f.sp. tritici (9), high
levels of CNV in genes encoding CSEPs are thought to be major drivers of virulence and
rapid adaptation to host genotypes. Our CNV analysis revealed that the CE-encoding
gene HI914_00624 exhibited the most dynamic changes in copy numbers, suggesting
that it is a target of natural selection. Moreover, we found that HI914_00624 is a member
of a novel family of CE-encoding genes with multiple duplications in PM species. CEs
are a large superfamily of structurally diverse, multifunctional enzymes that hydrolyze
carboxylesters in natural and synthetic molecules (83), including pharmaceutical drugs,
pesticides, environmental pollutants, and toxins. Due to their catalytic flexibility, they
may have crucial roles not only in detoxifying cells from harmful compounds and
metabolites but also in physiological processes such as lipid metabolism and energy
homeostasis (120). We speculate that the putative CE encoded by HI914_00624, and its
homologs in PM species, represents a new family of non-catalytic CEs, as they were
poorly conserved in non-PM fungi and lack the conserved Ser-Asp/Glu-His amino-acid
triad required for their proper function (83). Catalytic competence is thought to be the
ancestral state of CEs, but several non-catalytic clades that have acquired new functions
are present in higher eukaryotes (83, 121). Among fungi, vdtD from the opportunistic
human pathogen Paecilomyces variotii encodes a putative non-catalytic CE that is part
of a gene cluster mediating the biosynthesis of the antibacterial viriditoxin (122). It has
been suggested that instead of acting as a hydrolase, vdtD could bind to the compound
to protect the methyl ester from being hydrolyzed by endogenous hydrolases (123).
These examples highlight the capability of CEs to evolve new functions, and it is,
therefore, possible that the putative CE encoded by HI914_00624 and its homologs in
PMs has evolved new functions compared with ancestral CEs.
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All supplementary materials are available through Zenodo at https://doi.org/10.5281/
zenodo.7738565 and include Supplementary Results, Supplementary Materials and
Methods, Fig. S1 to S21, and Supplementary Tables S1 to S26.
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