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Abstract

Combinatorics of the Asymmetric Simple Exclusion Process

by

Olga Mandelshtam

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lauren Williams, Chair

The Asymmetric Simple Exclusion Process (ASEP) is a process from statistical physics
that describes the dynamics of interacting particles hopping right and left on a one-dimensional
finite lattice with open boundaries. The ASEP is a Markov chain on 2n states denoted by
words of length n in particles and holes with three hopping parameters α, β, and q. Particles
may enter at the left with rate α, they may exit at the right with rate β, and in the bulk
particles can hop to an empty location to the right with rate 1 and to the left with rate q.

A main goal in the study of the ASEP is to discover concrete formulae that compute its
steady state probabilities. One can compute these probabilities as sums over combinatorial
objects such as the alternative tableaux of Figure 1.4 (a). In Chapter 2, we give a deter-
minantal formula for the weight generating function of these tableaux at q = 0, and thus
explicitly compute the steady state probabilities for the ASEP at q = 0.
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Figure 0.1: (a) an alternative tableau, (b) a rhombic alternative tableau, and (c) a 3-rhombic
alternative tableau.

The two-species ASEP is a generalization in which there are two species of particles,
heavy and light. Only the heavy particles are able to enter and exit at the left and right
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of the lattice and with rates α and β, respectively. If particles of two different species are
adjacent, they can swap with rate 1 if the heavier particle is on the left, and rate q if it is on
the right. In Chapter 3, we give a combinatorial formula for the steady state probabilities
of the two-species ASEP at by introducing the rhombic alternative tableaux of Figure 0.1
(b). We show that the weight generating function of these tableaux gives a formula for the
steady state probabilities of the two-species ASEP. We give a second proof of this tableaux
formula by constructing a Markov Chain on the rhombic alternative tableaux that projects
to the two-species ASEP.

In Chapter 4, we introduce a k-species ASEP that generalizes the two-species ASEP. We
prove a Matrix Ansatz that expresses the steady state probabilities of states of this k-species
ASEP as a certain matrix product, which generalizes an analogous result for the two-species
ASEP. In this k-species ASEP, there are k species of particles of varying heaviness. As
with the two-species ASEP, only the heaviest particle is allowed to enter and exit at the
boundaries of the lattice, with the same respective rates α and β. Moreover, adjacent
particles of different species can swap with rate 1 if the heavier particle is on the left, and
rate q if it is on the right. Using the generalized Matrix Ansatz, we introduce tableaux
called the k-rhombic tableaux of Figure 0.1 (c), which give a combinatorial formula for the
probabilities of the k-species ASEP.
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Chapter 1

Introduction

The asymmetric simple exclusion process (ASEP) is a model from statistical physics in-
troduced in the 1960’s independently by biologists and mathematicians. It describes the
dynamics of particles hopping left and right on a one-dimensional lattice with open bound-
aries. At the boundaries of the lattice, particles can enter on the left with rate α and exit on
the right with rate β. The lattice has n sites, with at most one particle per site. Moreover,
at most one particle can hop at a time: a particle at location i can hop to the right with
rate 1 if location i + 1 is empty, and to the left with rate q if location i − 1 is empty. An
empty location can also be denoted by a hole, and in this case we describe hopping as a swap
between adjacent particles and holes.

1q βα

Figure 1.1: ASEP parameters.

A state of the ASEP of size n is denoted by a word of length n in 0’s and 1’s, or
equivalently in ’s and ’s, where a 1 or represents a particle and a 0 or represents a
hole (or absence of a particle). For the remainder of this section we will alternate between
denoting states by X ∈ {0, 1}n and X ∈ { , }n.

The ASEP is a Markov chain on 2n states denoted by words of length n in particles
and holes. A discrete Markov chain is a stochastic model with a set of states and a set
of transition probabilities between the states. Let X and Y be words in { , }. Then the
transitions of this process are:

X Y
1


q
X Y

X
α
⇀ X

X
β
⇀ X
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where by X
u
⇀ Y we mean that the transition from X to Y has probability u

n+1
, n being

the length of X (and also Y ). Figure 1.1 shows the parameters of the ASEP, with α, β,
and q denoting the rates of the hopping particles. Observe that the ASEP has a certain
particle-hole symmetry: if we were to exchange the roles of the particles and the holes, we
would obtain an equivalent process, but one where movement is directed from right to left.
In this equivalent process, the holes are “entering on the left” with rate β and “exiting on
the right” with rate α. Holes can swap with adjacent particles to their left with rate 1 and
they can swap with adjacent particles to their right with rate q. Thus exchanging the roles of
the particles and the holes is equivalent to exchanging α and β, which results in a symmetry
between α and β.

α
3

q
3

1
3

α
3

β
3

β
3

Figure 1.2: The transitions for an ASEP of size n = 2.

The ASEP is a non-equilibrium process that exhibits boundary-induced phase transi-
tions (as seen in Figure 1.3). Typically such processes are very complex, but the ASEP is
notable due to the existence of exact solutions for its stationary distribution, which makes it
a canonical example of non-equilibrium processes in statistical mechanics. In recent years,
the ASEP and related processes have attracted quite a lot of interest. On the practical side,
the ASEP arises in a variety of contexts, for instance as a model for traffic flow, transla-
tion in protein synthesis, a one-dimensional gas, and more. The popularity of the ASEP
is furthermore attributed to its surprising and rich algebraic and combinatorial structure.
There arise numerous connections of the ASEP with a wide range of areas of mathematics:
orthogonal polynomials, the XXZ model, the formation of shocks, total positivity on the
Grassmanian, and random matrix theory.

A main goal of much work on the ASEP is to understand the stationary distribution
of the ASEP. The steady state probability of a state of a Markov process in general terms
is the probability of encountering that state at time “infinity”, and in our case is given by
the unique left eigenvector of the transition matrix with eigenvalue 1. For example, for the
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α

β

0
0 1

1

Low-density

High-density

Maximal flow

Figure 1.3: The phase diagram that represents three different boundary-induced phases of
the ASEP. At α < min(β, 1

2
) the low-density phase occurs, at β < min(α, 1

2
) the high-density

phase occurs, and at α, β > 1
2
, the phase of maximal flow occurs.

ASEP of size n = 2 whose states and transitions are shown in Figure 1.2, the transition
matrix is 

1− β
3

0 β
3

0
α
3

1− α+β+q
3

q
3

β
3

0 1
3

2
3

0
0 0 α

3
1− α

3

,
and the steady state probabilities are the following:

Prob( ) =
1

Z2

α2 Prob( ) =
1

Z2

αβ

Prob( ) =
1

Z2

αβ(α + β + q) Prob( ) =
1

Z2

β2

where Z2 = α2 + β2 + αβ(α + β + q + 1).
Surprisingly, the ASEP has rich combinatorial structure, and one can compute the steady

state probabilities for the ASEP as sums over combinatorial objects. Combinatorial ap-
proaches to understanding the ASEP have been studied by many. In 2004, Duchi and
Schaeffer [9] were the first to give a combinatorial formula for the stationary distribution of
TASEP (the specialization of the ASEP at q = 0). In 2006, Corteel and Williams [7] de-
scribed the steady state of ASEP in terms of permutation tableaux, which are certain fillings
of Young diagrams with 1’s and 0’s (such tableaux are in bijection with permutations). In
2008, X. Viennot [22] improved upon the result of Corteel and Williams by reformulating
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their theorem in terms of alternative tableaux, which are certain fillings of Young diagrams
with α’s, β’s, and q’s (intended to correspond to the α, β, and q parameters of the ASEP).
The alternative tableaux are in simple bijection with the permutation tableaux, but have
symmetries that are consistent with the particle-hole symmetry of the ASEP. Finally in
2009, Corteel and Williams [5] generalized the alternative tableaux to staircase tableaux,
which give a combinatorial formula for probabilities of a more general 5-parameter ASEP,
the discussion of which we omit in this thesis.

Another reason why the ASEP has attracted significant attention is its strong connec-
tion to orthogonal polynomials, in particular the Askey-Wilson polynomials [5, 20]. The
Askey-Wilson polynomials are important because they are at the top of the hierarchy of
orthogonal polynomials in one variable, specializing to many other well-known classical or-
thogonal polynomials (Hermite, Laguerre, Jacobi, etc.). In 2011, Corteel and Williams found
that the moments of the Askey-Wilson polynomials can be expressed using the partition
function for the 5-parameter ASEP, and thus the staircase tableaux mentioned above give a
combinatorial formula for these moments [5]. The Koornwinder polynomials (also known as
Macdonald polynomials of type BC) are a multi-variate generalization of the Askey-Wilson
polynomials that specialize or limit to many important multi-variate orthogonal polynomials,
of which the Macdonald polynomials (playing an important role in algebraic geometry and
representation theory) are a notable example. In recent work, Corteel and Williams found a
surprising close connection between the Koornwinder polynomials and the two-species ASEP
[6]. This result sparked the original interest of the author in studying the combinatorics of
two-species ASEP, since such combinatorial results would also provide an interpretation for
the moments of Koornwinder polynomials.
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Figure 1.4: (a) an alternative tableau of type , (b) a rhombic
alternative tableau of type , and (c) a 3-rhombic alternative tableau of
type a2da1ea2a1eed.

In Chapter 2, we provide a determinantal formula that explicitly enumerates the alter-
native tableaux corresponding to states of the ASEP at q = 0. An example of an alternative



CHAPTER 1. INTRODUCTION 5

tableau is shown in Figure 1.4 (a), and they are described in detail in Chapter 2 Section 2.1.
The weight of such a tableau is proportional to the product of the symbols in its filling. The
beautiful result of Corteel and Williams, which is central to the work presented in this thesis,
expresses the steady state probabilities of the ASEP as sums of the weights of such tableaux.
Thus our result gives an explicit determinantal formula for the steady state probabilities of
the ASEP at q = 0.

In Chapter 3 we follow the line of research of Corteel and Williams by introducing certain
rhombic alternative tableaux that generalize the alternative tableaux, as in Figure 1.4 (b).
We show these tableaux provide an interpretation for the steady state probabilities for a
certain two-species ASEP, as an analogue to the role of the alternative tableaux with respect
to the usual ASEP. In Chapter 4 we introduce an even more general ASEP with k species
of particles and corresponding tableaux called the k-rhombic alternative tableaux, such as in
Figure 1.4 (c). We summarize these results below.

Chapter 2: A determinantal formula for TASEP probabilities

1 βα

Figure 1.5: Parameters of the TASEP (ASEP at q = 0).

The totally asymmetric simple exclusion process (TASEP) is the specialization of the
ASEP where q = 0, meaning that particles can only hop to the right, with parameters
shown in Figure 2.1. Despite its simplicity, the TASEP exhibits boundary induced phase
transitions, and so is still a rather interesting problem.

Our main result for the TASEP is an explicit determinantal formula for the steady state
probabilities of the process. Such an explicit formula is particularly useful for computa-
tions, since determinants are efficient to compute. The strategy for this result was to use
the Lingström-Gessel-Viennot determinant by constructing a weight-preserving bijection be-
tween alternative tableaux with q = 0 and non-crossing weighted lattice paths. The following
theorem states the main result (with all necessary definitions provided in Chapter 2).

Theorem 1.0.1 (M. [11]). Let X be a word in { , }n with k ’s, representing a state of
the TASEP of length n with exactly k particles. Let λ(X) = (λ1, . . . , λk) be the partition
associated with the shape of the tableau of type X. Let Aα,βλ(X) = (Aij)1≤i,j≤k with

Aij =

((
λj+1

j − i+ 1

)
+

1

β

(
λj+1

j − i

))
+

λj−λj+1∑
p=1

(
1

α

)p((
λj+1 + p− 1

j − i

)
+

1

β

(
λj+1 + p− 1

j − i− 1

))
.

The stationary probability of state X is proportional to

Prob(X) = αk+λ1βn detAα,βλ(X).
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Chapter 3: Combinatorics of the two-species ASEP

1q1 q 1q β

δ

α

γ

Figure 1.6: Two-species ASEP parameters.

The two-species ASEP is a generalization of the ASEP with two species of particles,
one heavy and one light. (We treat the hole as a third type of particle of weight 0.) In
this model, the heavy particle can enter and exit the lattice with rates α and β as shown
in Figure 4.7. Moreover, the heavy particle can swap places with both the hole and the
light particle when they are adjacent, and the light particle can swap places with the hole
when they are adjacent. Each of these possible swaps occur at rate 1 when the heavier
particle is to the left of the lighter one, and at rate q when the heavier particle is to the
right. This process has also been studied by many for its combinatorial structure [2, 9, 19].
As mentioned above, recent interest in studying this process was sparked by a surprising
connection to Koornwinder polynomials (Macdonald polynomials of type BC).

Our goal for the two-species ASEP was to find combinatorial results for the two-species
process analogous to the combinatorial formulas for the usual one-species ASEP. This work
was based on a Matrix Ansatz of Uchiyama [19] (further discussed in Chapter 3 Section 3.2).
In [13], we obtained a combinatorial formulas in terms of certain tableaux for probabilities
of the two-species ASEP for the case q = 0. In subsequent joint work with X. Viennot, we
improved this result with a tableaux formula for general q, using certain tableaux objects
called rhombic alternative tableaux. Specifically, in [15] we obtained the following theorem,
which is the main result of Chapter 3.

Theorem 1.0.2 (M., Viennot, [15]). Let X be a state of the two-species ASEP. Then

Prob(X) =
∑
T

wt(T )

is the unnormalized stationary probability of state X, where the sum is over all rhombic
alternative tableaux T of type X.

A second proof of Theorem 1.0.2 is obtained by constructing a Markov chain on the
rhombic alternative tableaux that projects to the two-species ASEP, from [12]. This result
is contained in Chapter 3, Section 3.4.

Theorem 1.0.3 (M., [12]). There is a Markov chain on the rhombic alternative tableaux
that projects to the two-species ASEP. This implies the tableaux formula of Theorem 1.0.2.
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Chapter 4: Combinatorics of the k-species ASEP

A natural extension of the two-species ASEP is a more general k-species ASEP, where instead
of two species of particles, there are now k species of particles of varying heaviness. As before,
the particles are hopping left and right on a one-dimensional lattice on n sites with open
boundaries. Again, only the heaviest particle can enter and exit at the left and right of the
lattice respectively, and just as in the two-species process, a heavier particle can swap places
with an adjacent lighter particle with rates 1 and q if the heavier particle is on the left or
right, respectively.

The Matrix Ansatz is an important algebraic tool for solving for the stationary distri-
bution of systems of interacting particles, and it has been used extensively in studies of the
original ASEP. For the k-species ASEP, we proved a generalization of the Matrix Ansatz of
Derrida, Evans, Hakim, and Pasquier given in Theorem 2.1.1. This k-species Matrix Ansatz
gives a formula in terms of a certain matrix product to compute all steady state probabilities
of the k-species ASEP [12]. In the case that k = 2, our theorem specializes to a theorem of
Uchiyama [19].

Using the k-species Matrix Ansatz, we defined the k-rhombic alternative tableaux that
generalize the rhombic alternative tableaux, and provide a combinatorial interpretation for
the probabilities of the k-species ASEP (see Figure 1.4 (c)). The following theorem states
the second main result of Chapter 4.

Theorem 1.0.4 (M., [12]). Let X be a state of the k-species ASEP. Then

Prob(X) =
∑
T

wt(T )

is the unnormalized stationary probability of state X, where the sum is over all k-rhombic
alternative tableaux T of type X.
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Chapter 2

Determinantal formula for the TASEP

1 βα

Figure 2.1: Parameters of the TASEP (ASEP at q = 0).

The totally asymmetric simple exclusion process (TASEP) is the specialization of the
ASEP where q = 0, so particles can only hop to the right, with parameters shown in Figure
2.1. Despite its simplicity, the TASEP exhibits boundary induced phase transitions, and so
is still a rather interesting problem.

Our main result for the TASEP is an explicit determinantal formula for the steady state
probabilities of the process. Such an explicit formula is particularly useful for computa-
tions, since determinants are efficient to compute. The strategy for this result was to use
the Lingström-Gessel-Viennot determinant by constructing a weight-preserving bijection be-
tween alternative tableaux with q = 0 and non-crossing weighted lattice paths. The following
Theorem states the main result (with all necessary definitions provided in Chapter 1).

Theorem 2.0.1 (M. [11]). Let X be a word in { , }n with k ’s representing a state of
the TASEP of length n with exactly k particles. Let λ(X) = (λ1, . . . , λk) be the partition
associated with the shape of the tableau of type X. Let Aα,βλ(X) = (Aij)1≤i,j≤k with

Aij =

((
λj+1

j − i+ 1

)
+

1

β

(
λj+1

j − i

))
+

λj−λj+1∑
p=1

(
1

α

)p((
λj+1 + p− 1

j − i

)
+

1

β

(
λj+1 + p− 1

j − i− 1

))
.

The stationary probability of state X is proportional to

Prob(X) = αk+λ1βn detAα,βλ(X).
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2.1 Introduction

The TASEP (totally asymmetric exclusion process) is a special case of the ASEP in which
q = 0, meaning that particles only hop to the right. One could think of the TASEP as a
primitive traffic model describing cars on a one-lane street, entering the street with some rate
α and exiting with some rate β, and moving forward whenever there’s an empty space ahead.
Even in this very simple case of the TASEP, there are boundary induced phase transitions,
which indicate it is still quite an interesting and complex problem.

Derrida, Evans, Hakim, and Pasquier [8] provided a Matrix Ansatz solution for the
stationary distribution of the ASEP, given in Theorem 2.1.1. The Matrix Ansatz is a theorem
that expresses the steady state probabilities of a process in terms of a certain matrix product.

Theorem 2.1.1 (Derrida et. al. [8]). Let X = {X1, . . . , Xn} with Xi ∈ { , } for 1 ≤ i ≤ n
represent a state of the two-species ASEP of length n. Suppose there are matrices D and E
and vectors 〈w| and |v〉 which satisfy the following conditions:

DE = D + E + qED

〈w|E =
1

α
〈w|

D|v〉 =
1

β
|v〉.

If Zn,r = 〈w|(D + E)n|v〉, then the steady state probability of state X is

Prob(X) =
1

Zn
〈w|

n∏
i=1

D 1(Xi= ) +E 1(Xi= ) |v〉. (2.1)

Note that in Equation (2.1), the matrix product that computes the steady state proba-
bility for state X is a product of matrices D and E in order corresponding to X where D is
in the place of each and E is in the place of each .

Example. For X = ,

Prob(X) =
1

Zn
〈w|EDEDEE|v〉.



CHAPTER 2. A DETERMINANTAL FORMULA FOR TASEP PROBABILITIES 10

The Matrix Ansatz does not imply existence or uniqueness of matrices D and E and
vectors 〈w| and |v〉. Derrida et. al. provided matrices corresponding to the ASEP with
the parameters α, β, and q in the form of infinite matrices whose entries are polynomials in
α, β, and q. Such matrices are not unique. Furthermore, a very similar Matrix Ansatz holds
even for a more general case of the ASEP with parameters α, β, δ, γ, and q where δ and γ
denote the rates of particles entering from the right and exiting from the right, respectively.
However, the matrices D and E that satisfy the conditions of this more general Matrix
Ansatz are extremely complicated.

Even though the Matrix Ansatz does give an exact solution for the probabilities of the
ASEP, this solution is not considered combinatorial. To explore the combinatorics of the
ASEP, we introduce the alternative tableaux, which arose from the work of X. Viennot
building upon the work of Corteel and Williams. The alternative tableaux are a vital object
for this thesis since the rhombic alternative tableaux described in Chapter 3 build upon
them.

First we give a preliminary definition of a Young diagram.

Definition 2.1.2. A Young diagram is a collection of boxes arranged in left-justified rows,
with the row lengths weakly decreasing. The shape of a Young diagram is identified with a
partition λ = (λ1, . . . , λk) with λ1 ≥ · · · ≥ λk ≥ 0 where row i has λi boxes for each i.

Our convention is to have a Young diagram of k rows and shape λ = (λ1, . . . , λk) be
contained in the top left corner of a box of size m × k, where m ≥ λ1. We identify the
southeast boundary of the Young diagram with the lattice path that coincides with this
boundary from the top-right corner to the bottom-left corner of the m× k box.

Finally we define the alternative tableaux.

Definition 2.1.3. Let X ∈ { , }n be a word denoting a state of the ASEP of size n with
k ’s. We associate to X a Young diagram Y (X) contained in a box of size n − k × k.
An alternative tableau of type X is a filling of Y (X) with α’s, β’s, and q’s according to the
following rules:

i. Every box above and in the same column as an α must be empty.

ii. Every box left and in the same row as a β must be empty.

iii. Every box without an α below it or a β to its right must contain an α, β, or q.

Definition 2.1.4. The type of an alternative tableau T is the word X in { , } that corre-
sponds to the shape of T , and is denoted by type(T ). The notation shape(T ) denotes the
partition λ that describes the shape of the Young diagram associated to T . If X has length
n and k ’s, we say the size of T is (n, k), denoted by size(T ). In some cases, we say simply
size(T ) = n.

Note that a tableau of size (n, k) is contained within a box of size n − k × k, and so it
has a total of k rows (some of which may contain 0 boxes).
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Definition 2.1.5. The weight of an alternative tableau T of size (n, k) is the product of the
symbols contained in its filling times αkβn−k. The weight is denoted by wt(T ).

Note that for a tableau of size (n, k), the factor αkβn−k is considered the weight of the
boundary. Figure 2.2 shows an example of an alternative tableau of size (12, 4) of type

and weight (α4β8)α4β2q4.

α

α

α

β

β

α

q

q q

q

Figure 2.2: An alternative tableau of type , size (12, 4), and weight
(α4β8)α4β2q4. The red arrows denote boxes that are forced to be empty by an α below, and
the blue arrows denote boxes that are forced to be empty by a β to the right. The dotted
lines indicate the dimension of the 8× 4 box that contains this tableau.

The Theorem below states the beautiful result of Corteel and Williams allows us to
interpret the probabilities of the ASEP in terms of the weight generating function of the
alternative tableaux.

Theorem 2.1.6 (Corteel, Williams [7]). Let X be a state of the ASEP of size n. Let

Zn =
∑

T : size(T )=n

wt(T )

be the sum of the weights of all tableaux of size n. The steady state probability of state X is

Prob(X) =
1

Zn

∑
T : type(T )=X

wt(T ).

In this chapter, we work with a specialization of the alternative tableaux where q = 0, that
correspond to the TASEP. Such alternative tableaux have nonzero weight if and only if they
contain 0 q’s. These tableaux are sometimes called Catalan tableaux. This is because there
are Cn+1 such tableaux corresponding to states of the TASEP of size n, where Cn =

(
2n
n

)
1

n+1

denotes the n’th Catalan number due to Steingrimsson and Williams [17].
The main result is an explicit determinantal formula for the steady state probabilities of

the states of the TASEP, which we state in the following Theorem.
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Theorem 2.1.7 (M. [11]). Let X be a word in { , }n with k ’s representing a state of
the TASEP of length n with exactly k particles. Let λ(X) = (λ1, . . . , λk) be the partition
associated with the shape of the tableau of type X. Let Aα,βλ(X) = (Aij)1≤i,j≤k with

Aij =

((
λj+1

j − i+ 1

)
+

1

β

(
λj+1

j − i

))
+

λj−λj+1∑
p=1

(
1

α

)p((
λj+1 + p− 1

j − i

)
+

1

β

(
λj+1 + p− 1

j − i− 1

))
.

(2.2)
Then the stationary probability of state X is proportional to

Prob(X) = αk+λ1βn detAα,βλ(X).

In this chapter, we present a bijective proof for Formula (2.2) of Theorem 2.1.7 using the
Lindström-Gessel-Viennot Lemma.

In Section 2.2 of this chapter, we define the bijection from Catalan tableaux to weighted
paths which is central to our main results. In Section 2.3 we describe a bijection from
weighted paths on a Young diagram to disjoint weighted paths, which gives the desired
determinantal formula in terms of α, β when combined with the Lindström-Gessel-Viennot
Lemma. Finally, Section 2.4 contains a formula for the number of Catalan tableaux of size
(n, k) for fixed n and k, and the related corollaries.

We obtain the following definition by setting q = 0 in Definition 2.1.3.

Definition 2.1.8. Let X ∈ { , }n be a word denoting a state of the TASEP of size n with
k ’s. We associate to X a Young diagram Y (X) contained in a box of size n − k × k. A
Catalan tableau of type X is a filling of Y (X) with α’s and β’s according to the following
rules:

i. Every box above and in the same column as an α must be empty.

ii. Every box left and in the same row as a β must be empty.

iii. Every box without an α below it or a β to its right must contain an α or a β.

Note that item (iii.) is the only difference from Definition 2.1.3.

Definition 2.1.9. Let T have size (n, k). We associate to T a lattice path L = L(T ) with
steps south and west, which starts at the northeast corner of the n−k×k rectangle containing
T and ends at the southwest corner, and follows the southeast border of shape λ.

The definitions of size, weight, type, and shape pertaining to a Catalan tableau T are the
same as for the alternative tableaux. Note that the type of T can also be obtained by reading
L from northeast to southwest and assigning a to a south-step and a to a west-step.

Definition 2.1.10. A row of a Catalan tableau is called β-free if it contains no β’s in the
filling of its boxes (or if it contains no boxes). A column of a Catalan tableau is called α-free
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if it contains no α’s in the filling of its boxes (or if it contains no boxes). We can also simply
call such rows and columns free rows and free columns. Conversely, if a row contains a β,
this row is called β-indexed, and if a column contains an α, this column is called α-indexed.

Lemma 2.1.11. The weight of a Catalan tableau T of size (n, k) is

wt(T ) = (αβ)n
(

1

α

)c(
1

β

)r
(2.3)

with r the number of β-free rows and c the number of α-free columns in the filling of T .

Proof. According to Definition 2.1.5 wt(T ) = αk+jβn−k+` where j is the number of α’s and
` is the number of β’s in the filling of T . Since each row of T can contain at most one β
in its filling and there are a total of k rows, we have k − ` is the number of β-free rows.
Similarly, each column of T can contain at most one α in its filling and there is a total of
n− k columns, so n− k − j is the number of α-free columns. Consequently, Equation (2.3)
gives an equivalent definition for the weight of a tableau T as given in Definition 2.1.5.

α

α

α

β

Figure 2.3: A Catalan tableau of type . The Catalan tableau has size
(9, 5), shape shape(T ) = (3, 2, 2, 0, 0), and weight wt(T ) = α8β5. The path outlined in bold
on the Catalan tableau is the lattice path L(T ).

We give some intuition for the structure of Catalan tableaux. One way to increase the
size of a Catalan tableau T from size n to size n + 1 is to add a new edge to the southwest
corner of L(T ). Suppose T is contained in a n− k × k rectangle. If the new edge is a south
edge, then one free row containing 0 boxes is added to the bottom of T , and there is no
change to the filling of T . The size of T becomes (n+ 1, k + 1) and the size of the rectangle
containing T increases to n− k× k+ 1. Figure 2.4 (a) shows the addition of a new free row
to a Catalan tableau.

If the new edge is a west edge, then one column of length k is added to the left of T .
The size of T becomes (n + 1, k) and the size of the rectangle containing T increases to
n− k + 1× k. Suppose T has r free rows. Due to (iii.) of Definition 2.1.8, the only allowed
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empty boxes in the new column are precisely those that lie above an α, left of a β, or both.
Hence this new column must be, starting from the bottom, a (possibly empty) sequence of
β’s followed by an α, or just a sequence of β’s, such that every free row is occupied by a β
until the α is reached. Figure 2.4 (b) shows two cases for the allowed fillings of a new column
added to a Catalan tableau.

α

β

α

α

β

α

α

+

β

β

α

α

β

α

α

β

α

α

+

α

α

β

α

α

β

α

α

+

β

β

β

β

(a) (b) (c)

Figure 2.4: (a) A south edge is added to the southwest corner of L(T ), which results in the
addition of a new free row to T . (b) A west edge is added to the southwest corner of L(T ),
which results in the addition of a new column to T . The new column we add can contain in
its free rows either a (possibly empty) sequence of β’s followed by an α, or a β in every free
row.

To connect back to the TASEP, let X be a word of length n in the letters { , } rep-
resenting a state of the TASEP. We draw a lattice path L with steps south and west by
reading X from left to right, and by drawing a step south for a and a step west for a .
We obtain a Young diagram Y of shape λ whose southeast border coincides with L. The
size of the rectangle containing Y is n − k × k, where k is the number of ’s in X. More
precisely, λ = (λ1, . . . , λk), where λi the number of ’s to the right of the i’th . Then any
filling with α’s and β’s of Y according to Definition 2.1.8 yields a Catalan tableau of type
X, and the steady state probability Prob(X) is proportional to

∑
wt(T ) where the sum is

over all Catalan tableaux T of type X. We can also refer to L, Y , and λ by L(X), Y (X),
and λ(X).

Remark 2.1.12. Note that when j1 of the λi’s of the Catalan tableau T of type X are equal
to 0, this means that X ends with a a string of j1 ’s. Furthermore, when (n− k)−λ1 = j2,
this means that X begins with a string of j2 ’s. Thus keeping track of the size of the
rectangle containing the Young diagram associated to T is important for preserving the
weight of the Catalan tableau. We can see an example of this in Figure 2.3, where j1 = 2
and j2 = 1.

Remark 2.1.13. Catalan tableaux are essentially the alternative tableaux studied by Vi-
ennot in [22]. See also [23] for a closely related object. Viennot [23] states a further char-
acterization of the steady state probabilities that is given by the enumeration of certain
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weighted lattice paths, which we call Catalan paths and define in the following section. A
specialization of this result for the case α = β = 1 is presented in [16].

2.2 From Catalan tableaux to weighted Catalan paths

In this section, we present a canonical bijection from a filling of the Catalan tableau with
associated Young diagram Y to a lattice path on a Young diagram of the same shape.
X. Viennot describes an analogous bijection from Catalan permutation tableaux (which are
in bijection to the Catalan tableaux) to weighted lattice paths in [23]. We reformulate this
bijection for the Catalan tableaux and assign the weights to the resulting lattice path in a
particular way.

Weighted Catalan path

Let Y be a Young diagram contained within a n− k × k rectangle.

Definition 2.2.1. A lattice path constrained by Y is a path that begins in the northeast
corner and ends at the southwest corner of rectangle, and takes the steps south and west in
such a way that it never crosses the southeast boundary of Y .

Definition 2.2.2. A Catalan path C of size (n, k) with associated Young diagram Y is a
lattice path constrained by Y with the following weights on its edges:

• A south edge that coincides with the east border of the rectangle receives a 1
β
.

• A south edge that does not coincide with the east border of the rectangle receives a 1.

• A west edge that coincides with the south boundary of Y receives a 1
α

.

• A west edge that does not coincide with the south boundary of Y receives a 1.

Definition 2.2.3. The path weight p wt(C) of the Catalan path C is the product of the
weights on its edges. We call the total weight of the Catalan path wt(C), with wt(C) =
(αβ)n p wt(C).

The following Lemma describes a natural correspondence between the Catalan tableaux
and the Catalan paths.

Lemma 2.2.4. There is a weight-preserving bijection between the set of Catalan paths of
size (n, k) constrained by the Young diagram Y to the set of Catalan tableaux of size (n, k)
of type X such that λ(X) is the same partition that describes Y .
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0 0

1 1

2 2

3 3

4 4

5 5

6 6

1 2 3 4 5 6 7 8 9 10

β

α

β

α

α

β

α

α

1

2

3 1/β

1/β

1/β

0 1 2 3 4 5 6 7 8 9 10

1/α
1/α

1/α
1/α

Figure 2.5: A Catalan tableau T and its corresponding weighted Catalan path C on a tableau
of shape λ = (8, 5, 3, 3, 1, 0) and weight wt(T ) = α12β13. On the left, the β’s are labeled
such as to generate the partition (7, 3, 3, 0, 0, 0) where the column containing the ith beta
is the length of the ith row of the partition. This partition is precisely the shape of the

path in the figure on the right. The path weight of C is p wt(C) =
(

1
β

)3 (
1
α

)4
, and so

wt(C) = (αβ)16
(

1
β

)3 (
1
α

)4
= wt(T ).

Proof. Let a Catalan path C of size (n, k) constrained by a Young diagram Y of shape
λ = (λ1, . . . , λk) be described by the partition (C1, . . . , Ck) that is weakly smaller than λ. In
other words, C1 ≥ C2 · · · ≥ Ck and 0 ≤ Ci ≤ λi, where Ci is the position of the south step
of the lattice path that occurs in row i of the n− k × k rectangle.

We map (C1, . . . , Ck) to a Catalan tableau T as follows. First we label the columns of
the n− k × k rectangle with 1 through n− k from left to right. Then, for i in {1, . . . , k}, if
Ci > 0, we place a β in column Ci of Y such that it is the south-most position possible with
the condition that there is at most one β per row. We now place an α in the lowest possible
β-free row of every column. (Consequently, a column does not receive an α if and only if it
has zero β-free rows.) It is easy to check that this construction results in a valid Catalan
tableau.

Conversely, to map a Catalan tableau T to the partition (C1, . . . , Ck), we label the β’s in
the filling of Y from left to right and top to bottom with 1, . . . , ` where ` is the number of β’s,
and we let Ci be the label of the column containing the i’th beta. We let C`+1 = · · · = Ck = 0.
In this construction, the labels on the β’s decrease as the labels on the columns decrease,
as in the left image of Figure 2.5, so Ci ≥ Ci+1. The partition (C1, . . . , Ck) is then directly
mapped to the Catalan path P .

Now we show the weight wt(C) of the Catalan path C is the same as the weight wt(T ) of
the Catalan tableau T . Let {Ci1 , . . . , Cim} be the subset of {C1, . . . , Ck} that represents the
south steps that touch the south boundary of Y . Then the contribution of the

(
1
α

)
to the

weight of the path is
∏m

j=1

(
1
α

)Cij
−λij+1 . This is because, for each j, if Cij touches the south

boundary of Y , we know that there are zero β-free rows in the column ij. In particular, no
column of the Catalan tableau between λij+1 and ij can contain an α, so every west-edge of
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the path in those columns carries a weight of 1
α

. It follows that both the Catalan tableau
and the Catalan path have the same power of 1

α
contributed to their weight.

As for the factor of 1
β
, by the construction of the path, it must be

(
1
β

)t
, where t is the

number of Cj that equal 0. But we already know that if Cj = 0, it means that row j of
the Catalan tableau is β-free, and so contributes a 1

β
to the weight of the tableau. Thus

wt(C) = wt(T ) = (αβ)n
(

1
β

)t∏m
j=1

(
1
α

)Cij
−λij+1 where t, i1, . . . , im were defined in the above

paragraphs.

2.3 Weighted lattice path bijection

In this section we present a bijection from a weighted lattice path on a Young diagram of k
rows to k disjoint weighted paths on a related shape.

Let D be a digraph where we assume finitely many paths between any two vertices. Let
e = (e1, . . . , ek) and v = (v1, . . . , vk) be k-tuples of vertices of D. Let every edge of D be
assigned a weight.

Definition 2.3.1. A k-path from e to v is a k-tuple of paths P(e,v) = (P1, . . . , Pk) where
for some fixed π ∈ Sk, Pi is a path from ei to vπ(i). The k-path P is disjoint if the paths Pi
are all vertex disjoint.

Definition 2.3.2. The weight wt(Pi) of a path Pi is the product of the weights on its
edges. The weight wt(P) of the k-path P = (P1, . . . , Pk) is the sum of the weights of its
components, in other words wt(P) =

∑k
i=1 wt(Pi).

Following the notation from these definitions, we provide the following well-known result
of [10] (see also [18]).

Theorem 2.3.3 (Lindström, Gessel-Viennot). Let D be a digraph, and let u = (u1, . . . , uk)
and y = (y1, . . . , yk) be k-tuples of vertices of D. Let Pij be the set of paths from ui to yj.
Define wij =

∑
p∈Pij

wt(p). Then∑
π∈Sk

∑
P

sgn(π) wt(P) = det (wij)1≤i,j≤k .

where P ranges over all disjoint k-paths P(u, π(y)).

In this section, we describe a bijection from a Catalan path on a Young diagram Y to
a disjoint k-path on a corresponding digraph with appropriately assigned weights on the
edges. Ignoring the weights, we obtain the canonical bijection from lattice paths constrained
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by a Young diagram to disjoint k-paths.1 This bijection allows us to enumerate the Catalan
paths as an application of the Lindström-Gessel-Viennot Lemma.

Let C be a Catalan path of size (n, k) with associated Young diagram Y of shape λ =
(λ1, . . . , λk). We label the vertical lines in the n − k × k rectangle from left to right with
{0, 1, . . . n − k}. Let C be described by the partition (C1, . . . , Ck) where Ci is the label of
the south-step of C in row i. Since C consists of only south- and west- steps, we necessarily
have C1 ≥ · · · ≥ Ck ≥ 0.

Now we define a twisted tableau Ỹ from Y as follows: for 1 ≤ i ≤ k, draw a row of
λi parallelograms consisting of east and southeast edges, and left-justify the rows as in the
middle image of Figure 2.6. In each row, we label the southeast edges of the parallelograms
with 0, 1, 2, . . . from left to right. We put weights on the edges of the parallelograms in the
following way:

• the edges with label 0 receive a 1
β
,

• otherwise if an edge in row i has label t and t > λi+1, the edge receives a
(

1
α

)t−λi+1 .

Every other edge receives a weight of 1.
We mark the left-most vertices of each row of parallelograms as the k special points

e1, . . . , ek from top to bottom. We also mark the right-most vertices of each row of parallel-
ograms as the k special points v1, . . . , vk. Finally, we convert Ỹ into a digraph by directing
all its edges from northwest to southeast. We denote by Pij the set of weighted paths from
ei to vj.

We map the partition (C1, . . . , Ck) on Y to a k-path P(C) = P(e,v) on Ỹ in the following
way. We write P(C) = (p11, . . . , pkk) where pii ∈ Pii. For each i in {1, . . . , k}, we define pii as
follows: let the single diagonal step in pii be the southeast edge in row i with label Ci. The
rest of the edges in pii must necessarily be the horizontal edges that connect that diagonal
step from ei to vi. From Figure 2.6, it is easy to see this is a one to one correspondence.

Remark 2.3.4. It is important to note that the segment of C that lies in the columns
{λ1 + 1, . . . , n − k} is ignored in the construction of P(C). This is permissible since any
Catalan path constrained by λ must necessarily have the same such segment. Thus it suffices
to simply adjust the weight of P(C) by the weight contribution of that segment, which is(

1
α

)n−k−λ1 .
Lemma 2.3.5. Based on the construction of the k-path P(C) above, we claim that (i.) P(C)

is disjoint if and only if C1 ≥ · · · ≥ Ck and (ii.) p wt(C) =
(

1
α

)n−k−λ1 wt(P(C)).

1We can treat the Catalan path and the Young diagram that contains it simply as nested lattice paths.
The duality of nested lattice paths with disjoint k-paths is known in the literature and is described as the
Kreweras-Narayana determinant. In particular, this duality is described in slides by Viennot [24], and the
case for α = β = 1 of our problem is solved therein.
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Figure 2.6: A Catalan path represented by partition (7, 3, 3, 0, 0, 0) on a Young Diagram with
rows (C1, . . . , C6) = (1, . . . , 6) and the corresponding set of paths {pii}1≤i≤6 where pii ∈ Pii
has a single diagonal step at edge labeled Ci. This Catalan path is the same one as in Figure
2.5.

Proof. [i.] It is easy to see from the construction that Ci ≥ Ci+1 if and only if the diagonal
edge in row i is strictly to the right of the diagonal edge in row i + 1. That implies pii is
strictly to the northeast of pi+1 i+1. Since the pii’s are nested paths, this implies P(C) is
disjoint.

[ii.] We prove the equality by comparing wt(pii) to the weight contribution of the segment
of C that is in row i (including the south border of the row), and showing they are equal for
each 1 ≤ i ≤ k.

• First, if Ci = 0, then wt(pii) = 1
β
, and also the weight contribution of row i in C is 1

β
.

See rows 3-6 in the example in Figure 2.6.

• When Ci > 0, there is no contribution of 1
β

to the segment of C in row i or to pii, so

we consider only the contribution of 1
α

. If 0 < Ci ≤ λi+1, the south-step of C in row
i does not touch the south boundary of Y , so there is no contribution of 1

α
from that

segment of the path, and hence the total weight contribution is 1. Similarly, pii does
not contain any edges with non-unit weight and so wt(pii) = 1. See rows 2-3 in the
example in Figure 2.6.

• If Ci > λi+1, the south-step of C in row i touches the south boundary of Y , so that
segment of the path has Ci − λi+1 west-edges that coincide with the south boundary
of Y and thus carry the weight 1

α
. Thus the total contribution to the weight of the

segment of C in row i is
(

1
α

)Ci−λi+1 . By the construction, pii has weight
(

1
α

)Ci−λi+1 on
its diagonal edge, and that also equals wt(pii). See row 1 in the example in Figure 2.6.

From the above, for each i, the contribution of the weight of the segment of C in row
i equals wt(pii). By Remark 2.3.4, we have excluded from P(C) the contribution of the
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weight of the segment of C that lies to the northeast of Y . Consequently, we have p wt(C) =(
1
α

)n−k−λi wt(P(C)) as desired.

Proof of Theorem 2.1.7

We make the simple observation that a k-path (Pi, . . . , Pk) from the e to v is disjoint if and
only if each path Pi is from ei to vi. As before, let wij =

∑
p∈Pij

wt(p) for Pij the collection
of paths from ei to vj. Then from the bijection above and from Theorem 2.3.3, we obtain

∑
C

p wt(C) =

(
1

α

)n−k−λi∑
P

wt(P) =

(
1

α

)n−k−λi
det (wij)1≤i,j≤k ,

where C ranges over the Catalan tableaux constrained by Y , and P ranges over the disjoint
k-paths from e to v on Ỹ .

It is not difficult to check that wij for i, j > 0 equals precisely the entry Aij from Theorem
2.1.7. We describe the calculations below.

Consider the paths from ei to vj that have weight generating function wij. First, if
i > j + 1, there are zero such paths since all paths can only take east and southeast steps.
Next, if i = j + 1, there is exactly one path, namely the one that takes only horizontal steps
from ei, and so the weight on that path is 1, and thus wi,i−1 = 1. Finally, assume i ≤ j.
Then any path in Pij takes j − i+ 1 southeast steps, of which at most one step could have

a weight of 1
β
, and at most one other step could have a weight of

(
1
α

)`
for some ` > 0. Thus

we count four cases for paths in Pij:

1. A path has all its steps of weight 1. The path necessarily takes the first step east and
goes to the right-most vertex of parallelogram number λi+1 in the ith row. This can
happen in

(
λi+1

j−i+1

)
ways, and every such path has weight 1.

2. A path has one step of weight 1
β

and the rest of weight 1. The path necessarily takes
the first step southeast and goes to the right-most vertex of parallelogram number λi+1

in the ith row. This can happen in
(
λi+1

j−i+1

)
ways, and every such path has weight 1

β
.

3. A path has one step of weight
(

1
α

)`
and the rest of weight 1. The path necessarily

takes the first step east and goes to the right-most vertex of parallelogram number
λi+1 + `− 1 in row i− 1. This can happen in

(
λi+1+`
j−i

)
ways, and every such path has

weight
(

1
α

)`
, where 1 ≤ ` ≤ λi − λi+1.

4. A path has one step of weight 1
β

, one step of weight
(

1
α

)`
, and the rest of weight 1.

The path necessarily takes the first step southeast and goes to the right-most vertex
of parallelogram number λi+1 + `− 1 in row i− 1. This can happen in

(
λi+1+`
j−i−1

)
ways,

and every such path has weight 1
β

(
1
α

)`
, where 1 ≤ ` ≤ λi − λi+1.
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We combine the above to obtain Aλ = (wij)1≤i,j≤k as desired.
Finally, if C is the Catalan path corresponding to the Catalan tableau T , since wt(T ) =

wt(C) = (αβ)n p wt(C) = βnαk+λ1 wt(P(C)), we obtain the desired formula.

Corollary 2.3.6. The un-normalized steady state probability that the TASEP with n sites
has particles in precisely the locations 1 ≤ x1 < · · · < xk ≤ n is

P [{x1, . . . , xk}] = detAα,βλ ,

where Aα,βλ is given by

Aij = βj−iαi−(j+1)+xj+1−xi
((

n− k + j + 1− xj+1

j − i

)
+ β

(
n− k + j + 1− xj+1

j − i+ 1

))
+ βj−iαi−j+xj−xi

xj+1−xj−1∑
`=0

α`
((

n− k + j − xj − `− 1

j − i− 1

)
+ β

(
n− k + j − xj − `− 1

j − i

))
.

Proof. We refer to Theorem 2.1.6 to connect back to the TASEP from the Catalan tableaux.
A TASEP state of length n with k particles in locations {x1, . . . , xk} corresponds to a word
W in { , }n with the ith in location xi. From Definition 2.1.8, this state corresponds
to Catalan tableaux of shape λ(τ) = (n − k + 1 − x1, n − k + 2 − x2, . . . , n − k + k − xk).
Equivalently, λ(W ) = (λ1, . . . , λk) where λj is the number of holes to the right of particle j,
meaning λj = n− k + j − xj. Thus Theorem 2.1.7 implies the desired formula.

2.4 Enumeration of Catalan tableaux of size (n, k)

In this section, we provide an explicit combinatorial formula for the weight generating func-
tion for Catalan tableaux of size (n, k). Let m = n − k, and define Nm,k(α, β) to be the
weight generating function for Catalan tableaux of size (m+k, k). In other words, the Young
diagrams associated to these tableaux are contained in an m× k rectangle.

Let N ′m′,k′(α, β) be the weight generating function for Catalan tableaux whose Young
diagrams have first row equal to m′ and which have precisely k′ rows. In other words the
Young diagram can be described by the partition λ′ = (λ′1, . . . , λ

′
k′) where 1 ≤ λ′k′ ≤ · · · ≤

λ′1 = m′. The following gives the relation between Nm,k(α, β) and N ′m′,k′(α, β):

Nm,k(α, β) = αkβm
m∑

m′=0

k∑
k′=0

1

αk′βm′
N ′m′,k′(α, β). (2.4)

Here we multiplied by a factor of αkβm to account for the weight of the lattice path L(T )
that is associated with a Catalan tableau T of size (k, k +m).

Enumerating all the Catalan tableaux of size (m + k, k) whose Young diagrams have k
nonzero rows and first row of length m is equivalent to taking the sum

N ′m,k(α, β) = αkβm
∑

1≤λk≤···≤λ2≤m
det A{m,λ2,λ3,...,λk).
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The above gives rise to the following Lemma.

Lemma 2.4.1. The weight generating function N ′m,k(α, β) equals

αkβm
k∑
`=0

m∑
j=0

αjβ`
((

m+ `− 2 + δjm
m− 1

)(
k + j − 2 + δ`k

k − 1

)
−
(
m+ `− 2 + δjm

m

)(
k + j − 2 + δ`k

k

))
(2.5)

where δrs is the Kronecker δ.

Summation of Formula (2.5) of Lemma 2.4.1 according to (2.4) yields the proof of the
following Theorem:

Theorem 2.4.2. The weight generating function for Catalan tableaux of size (n, k) with
n = m+ k is

Nm,k(α, β) = αkβm
m∑
j=0

k∑
`=0

αjβ`
((

k + j − 1

j

)(
m+ `− 1

`

)
−
(
k + j − 1

j − 1

)(
m+ `− 1

`− 1

))
.

(2.6)

Proof of Lemma 2.4.1. We prove Formula (2.5) by induction on m and k. As seen in Figure
2.7, a Young diagram with k nonzero rows and with first row of length m can be formed by
the addition of a k–m hook with a row of length m and column of length k to the top and
left edges of a Catalan tableau contained in a m− 1× k − 1 rectangle.

+

k
−
1

k

m− 1

m

Figure 2.7: Constructing a Catalan tableau with k nonzero rows and first row of length m
by adding a k–m hook to a tableau of size (m+ k − 2, k − 1).

Let Hm,k
p,q be the sum of the weights of the possible fillings of the k–m hook, when the

inside tableau has p rows that are α-indexed and q columns that are β-indexed. If the inside
tableau has weight αjβ`, then it must contain ` β’s, and so there are k− 1− ` rows that are
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α-indexed since there is always at most one β per row. By a similar argument, the inside
tableau contains j α’s, and hence then there must be m− 1− j columns that are β-indexed,
since there is always at most one α per column. Figure 2.8 shows the cases that result in
the following expression:

Hm,k
k−1−`, m−1−j = αm−j

k−`−1∑
s=0

βs + βk−`
m−j−1∑
t=0

αt +

m−j−1∑
t=1

k−`−1∑
s=1

αtβs. (2.7)

α α α α α α α

β

β

β

β

β

α

(a) weight αm−iβk−ℓ−1

k
−

ℓ
−
1

m− i− 1

α α α α α α α

β

β

β

β

β

β

(b) weight αm−i−1βk−ℓ

k
−

ℓ
−
1

m− i− 1

α α α αβ

β

β

α

(c) weight αt+1βs+1

for s = 0, 1, . . . and t = 0, 1, . . .

s

t

Figure 2.8: The weights for the three cases for fillings of a k–m hook with k−1− ` free rows
and m− 1− j free columns added to a Catalan tableau of size (m+ j − 2, k− 1) and with `
rows that are β-indexed and j columns that are α-indexed.

Recall that if f(α, β) is a polynomial in α and β, then [αjβ`]f(α, β) denotes the coefficient
of αjβ` in f(α, β).

Hence for m, k ≥ 2 we obtain the following recursion:

N ′m,k(α, β) = αkβm
m−1∑
j=0

k−1∑
`=0

Hm,k
k−1−`, m−1−jα

jβ`
[
αjβ`

] 1

αk−1βm−1
Nm−1,k−1(α, β). (2.8)

Note that the coefficient of αjβ` in 1
αk−1βm−1Nm−1,k−1(α, β) gives the number of tableaux

contained in an m− 1× k− 1 rectangle with j α-indexed columns and ` β-indexed rows. By
the induction hypothesis and from (2.4) we know that to be(

k + j − 2

j

)(
m+ `− 2

`

)
−
(
k + j − 2

j − 1

)(
m+ `− 2

`− 1

)
.
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The recursion is now straightforward to verify. On the right hand side of (2.8), we have

αkβm

[
αm

k−1∑
l=0

βl
((

m+ l − 1

m− 1

)(
k +m− 2

k − 1

)
−
(
m+ l − 1

m

)(
k +m− 2

k

))

+ βk
m−1∑
j=0

αj
((

m+ k − 2

m− 1

)(
k + j − 1

k − 1

)
−
(
m+ k − 2

m

)(
k + j − 1

k

))

+
k−1∑
l=1

m−1∑
j=1

αjβl
((

m+ l − 2

m− 1

)(
k + j − 2

k − 1

)
−
(
m+ l − 2

m

)(
k + j − 2

k

))]
,

where we have used that
∑a

i=0

(
b+i
c

)
=
(
b+a+1
c+1

)
−
(
b
c+1

)
.

This formula equals (2.5), which is the left hand side of (2.8) that we desire.
It remains to check the base cases for N ′m,k(α, β) when m = 1 or k = 1. If we plug m = 1

into (2.5), we obtain

N ′1,k(α, β) = αkβ

(
βk + α

k−1∑
`=0

β`

)
,

which is the sum of the weights of Catalan tableaux of the shape λ = (1, . . . , 1) of k rows.
Similarly, plugging k = 1 into (2.5) yields

N ′m,1(α, β) = αβm

(
αm + β

m−1∑
i=0

αi

)
,

which is the sum of the weights of Catalan tableaux of the shape λ = (m), and so the proof
is complete.

Bijective proof of Theorem 2.4.2

We can also prove Theorem 2.4.2 with a nice bijection. Our bijection is a combination of
the bijection of A. Boussicault [1] from binary trees to polyomino parallelograms and the
bijection of X. Viennot from Catalan tableaux to binary trees [23].

To get a binary tree on n+1 vertices from a Catalan tableau of size n, we do the following:

1. Add an extra row to the top border of the Young shape and put a vertex in every box
whose column does not contain an α. Add an extra column to the left border of the
Young shape and put a vertex in every box whose row does not contain a β. In the
box in the top left corner of the resulting shape, put a vertex. This will be the root of
the tree.

2. Place a vertex in each box inside the Young shape that contains α or β.

3. Connect all pairs of vertices that are in the same row with horizontal lines and all pairs
of vertices in the same column with vertical lines.
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The resulting object is a binary tree for the following reasons:

• due the structure of the Catalan tableau, the configuration •
• • is avoided. This is

precisely the property that every vertex has at most one parent

• the vertices placed in the extra row and column above and left of the Young shape
ensure that each non-root vertex has either some vertex to its left in the same row or
some vertex above in the same column, and hence that each vertex has a parent.

• the grid structure is the property that every vertex can have a child to its right, a child
below, neither, or both.

To get a binary tree on n+ 1 vertices from a polyomino parallelogram of semi-perimeter
n+ 1, we place a vertex in every box that has a west edge or a north edge on the boundary
of the polyomino. Now we connect every pair of vertices in the same row with a horizontal
line, and every pair of vertices in the same column with a vertical line.

αβ

α

αβ

β

α

α

Figure 2.9: The bijection from Catalan tableaux to binary trees illustrated by an example.
The red vertices are the ones that correspond to the α’s and β’s.

The statistics on the polyomino of semi-perimeter n+1 that we associate with the Catalan
tableau of size n with k rows, m = n − k columns, and a weight of αjβl in the interior are
the following:

• The number of rows in the polyomino is k + 1,

• The number of columns in the polyomino is m+ 1,

• The length of the first horizontal segment on the N border of the polyomino is k − j,

• The length of the first vertical segment on the W border of the polyomino is m− l.

Therefore, a Catalan tableau with k rows and m columns and weight αjβl in its filling is
precisely a polyomino with k+ 1 rows and m+ 1 columns whose first horizontal segment on
the north border has length k − j and first vertical segment on the west border has length
m − l. Such a polyomino is defined by two non-crossing lattice paths that start at the end
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Figure 2.10: The bijection from polyomino parallelograms to binary trees illustrated by an
example.

m
−

ℓ

k
+
1

e1

e2

v1

v2

k − j

m+ 1

Figure 2.11: A polyomino parallelogram with the desired statistics corresponds to a pair of
non crossing lattice paths from e1 to v1 and from e2 to v2.

of those fixed borders and end at the junction with the last box. In Figure 2.11, those are
the lattice paths joining the points (e1, v1) and the points (e2, v2).

Let p(ei→vj) be the total number of lattice paths from ei to vj. Then the number of desired
pairs of non-crossing paths is given by the Lindström-Gessel-Viennot formula, which is the
determinant of the matrix (

p(e1→v1) p(e1→v2)

p(e2→v1) p(e2→v2)

)
.

We have:

p(e1→v1) =

(
k + j − 1

j + 1

)
, p(e1→v2) =

(
k + j − 1

j

)
,

p(e2→v1) =

(
m+ l − 1

l

)
, p(e2→v2) =

(
m+ l − 1

l + 1

)
.

Combining all of the above results in the following weight generating function for the Catalan
tableaux:
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Nm,k(α, β) = αkβm
m∑
j=0

k∑
`=0

αjβ`
((

k + j − 1

j

)(
m+ `− 1

`

)
−
(
k + j − 1

j − 1

)(
m+ `− 1

`− 1

))
.

Enumerative consequences

Definition 2.4.3. Let Zn(α, β) =
∑n

k=0Nn−k,k(α, β) be the weight generating function for
the Catalan tableaux of size n, or equivalently, all Catalan tableaux that fit in a rectangle
of semi-perimeter n.

Remark 2.4.4. Derrida provides the following formula in [8]:

Zn(α, β) = αnβn
n∑
p=1

p

2n− p

(
2n− p
n

)
α−p−1 − β−p−1

α−1 − β−1
. (2.9)

This expression normalizes the previously derived stationary probabilities of the TASEP, as
we see below in Corollary 2.4.5.

Derrida’s formula can be derived from (2.4) as follows:

[αn−tβn+t−s]
n∑
k=0

Nn−k,k =
n∑
k=0

[αn−tβn+t−s]
n−k∑
j=0

k∑
`=0

αj+kβ`+n−k
((

k + j − 1

k − 1

)(
n− k + `− 1

n− k − 1

)
−
(
k + j − 1

k

)(
n− k + `− 1

n− k

))
=

n∑
k=0

((
k + (n− k − t)− 1

k − 1

)(
n− k + (n+ t− s− n+ k)− 1

n− k − 1

)
−
(
k + (n− k − t)− 1

k

)(
n− k + (n+ t− s− n+ k)− 1

n− k

))
=

s

2n− s

(
2n− s
n

)
. (2.10)

where in the third step the Vandermonde convolution is used.
Since (2.10) is independent of t, we obtain (2.9) by summing over k.

Zn(α, β) =
n∑
k=0

Nn−k,k =
n∑
s=1

s

2n− s

(
2n− s
n

) s∑
t=0

αn−tβn+t−s

=
n∑
s=1

s

2n− s

(
2n− s
n

)
αnβn

α−s−1 − β−s−1

α−1 − β−1
,

which matches (2.9), as desired.

Corollary 2.4.5. The stationary probability of a TASEP of length n and containing exactly
k particles is Nn−k,k(α, β) of (2.4), normalized by Zn(α, β) from (2.9).
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Chapter 3

Combinatorics of the 2-species ASEP

The ASEP has been generalized to allow multiple “species” of interacting particles. In these
processes, some priority rules permit adjacent particles of different species to swap with
each other. For some of these multi-species processes, interesting combinatorial structures
have been discovered. In this chapter, we consider a simple two-species ASEP with three
parameters α, β and q, which are inherited from the ordinary ASEP (see [19, 2, 9]), with
parameters shown in Figure 3.1.

1q1 q 1q βα

Figure 3.1: The parameters α, β, and q of the two-species ASEP. “Heavy” particles are
denoted by and “light” particles are denoted by .

The two-species ASEP we study has two species of particles, one heavy and one light,
hopping right and left on a one-dimensional lattice of length n with open boundaries. We
consider the hole to be a third type of “particle” of weight 0. Then the hopping of particles
to adjacent locations is equivalent to swapping two adjacent particles of different species.
We denote the heavy particle by , the light particle by , and the hole by . The heavy
particle can enter the lattice on the left with rate α,and exit the lattice on the right with rate
β. Moreover, the heavy particle can swap places with both the hole and the light particle
when they are adjacent, and similarly the light particle can swap places with the hole when
they are adjacent. Each of these possible swaps occur at rate 1 when the heavier particle is
to the left of the lighter one, and at rate q when the heavier particle is to the right. Since
only the heavy particle can enter or exit the lattice, the number of light particles must stay
fixed. Let r be the parameter representing the number of light particles. Note that when
r = 0, we recover the original ASEP.
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More precisely, the two-species ASEP of size n with r light particles is a Markov chain
on 2n−r

(
n
r

)
states, which are words in { , , } of length n and with exactly r ’s. Let X, Y

be some words in { , , }. The transitions of the two-species ASEP are:

X Y
1


q
X Y X Y

1


q
X Y X Y

1


q
X Y

X
α
⇀ X X

β
⇀ X

where by X
u
⇀ Y we mean that the transition from X to Y has probability u

n+1
, n being the

length of X (and also Y ).
Uchiyama provided an extended Matrix Ansatz to express the stationary probabilities of

the two-species ASEP as certain matrix products. Furthermore, Uchiyama provided matrices
that satisfy the conditions of the Ansatz, thus giving a formula to compute the steady state
probabilities.

Theorem 3.0.1 (Uchiyama [19]). Let W = {W1, . . . ,Wn} with Wi ∈ { , , } for 1 ≤ i ≤ n
represent a state of the two-species ASEP of length n with r ’s. Suppose there are matrices
D, E, and A and vectors 〈w| and |v〉 which satisfy the following conditions:

DE = D + E + qED DA = A+ qAD AE = A+ qEA

〈w|E =
1

α
〈w| D|v〉 =

1

β
|v〉.

Then

Prob(W ) =
1

Zn,r
〈w|

n∏
i=1

D 1(Wi= ) +A1(Wi= ) +E 1(Wi= ) |v〉

where Zn,r is the coefficient of yr in 〈w|(D+yA+E)n|v〉
〈w|Ar|v〉 .

Theorem 3.0.1 specializes to Theorem 2.1.1 at r = 0.
Inspired by Uchiyama’s Matrix Ansatz, the author of this thesis studied the case of the

two-species ASEP for q = 0 in [13], and introduced an object called the “multi-Catalan
tableaux” that gives an interpretation for the steady state probabilities of the two-species
ASEP at q = 0. In this chapter, which is based on joint work with X. Viennot, the result is
generalized for all q with a new object called the rhombic alternative tableaux (RAT). These
tableaux are defined in Section 3.1, but we state our main theorem below.

Theorem 3.0.2. Let W be a state of the two-species ASEP of size n with exactly r light
particles. Then the stationary probability of state W is

Prob(W ) =
1

Zn,r
∑
T

wt(T )

where T ranges over the rhombic alternative tableaux corresponding to W , wt(T ) is the
weight of such a tableau, and Zn,r is the weight generating function for the set of rhombic
alternative tableaux corresponding to the state space of W .
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In Section 3.1 of this chapter, we introduce the rhombic alternative tableaux, and in
Section 3.2 we prove Theorem 3.0.2. In Section 3.3 we provide some enumerative results for
the two-species ASEP. Finally, in Section 3.4, we describe a Markov chain on the rhombic
alternative tableaux that projects to the two-species ASEP, which gives an alternate proof
of Theorem 3.0.2.
Acknowledgements. I am very grateful to Lauren Williams and Sylvie Corteel for their
mentorship, many useful conversations, inspiration, and encouragement. I also thank LIAFA
at Paris Diderot for their hospitality, as well as the Chateaubriand Fellowship awarded by
the Embassy of France in the United States, the Fondation Sciences Mathématiques de Paris,
the France-Berkeley Fund, and the NSF grant DMS-1049513 that supported this work.

3.1 Rhombic alternative tableaux

The rhombic alternative tableaux (RAT) are an analog on a “triangular
lattice” of the alternative tableaux [22] that correspond to the ordinary
ASEP. By triangular lattice, we mean one which has as its vertices the
integer points (i, j), and the possible edges are the south edges with
vertices {(i, j), (i, j−1)}, west edges with vertices {(i, j), (i−1, j)}, and
southwest edges with vertices {(i, j), (i− 1, j− 1)} for integers i, j, as in
the figure on the right.

Definition of the RAT

Definition 3.1.1. Let W be a word in the letters { , , } with k ’s, ` ’s, and r ’s of
total length n := k + ` + r. Define P1 to be the path obtained by reading W from left to
right and drawing a south edge for a , a west edge for an , and a southwest edge for an .
From here on, we call any south edge a D-edge, any west edge an E-edge, and any southwest
edge an A-edge. Define P2 to be the path obtained by drawing ` west edges followed by
r southwest edges, followed by k south edges. A rhombic diagram Γ(W ) of type W is a
closed shape on the triangular lattice that is identified with the region obtained by joining
the northeast and southwest endpoints of the paths P1 and P2 as in Figure 3.2.

Definition 3.1.2. A tiling T of a rhombic diagram is a collection of open regions of the
following three parallelogram shapes as seen in Figure 3.3, the closure of which covers the
diagram:

• A parallelogram with south and west edges which we call a DE tile.

• A parallelogram with southwest and west edges which we call an AE tile.

• A parallelogram with south and southwest edges which we call a DA tile.
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ℓ

r

k

P2

P1

Figure 3.2: Γ(W ) and the two paths P1 and P2 for W = with ` = 2,
r = 3, and k = 4.

E

D D

A

A

E

Figure 3.3: The tiles DE, DA, and AE.

We define the area of a tiling to be the total number of tiles it contains.

Lemma 3.1.3. For each word W in { , , }, there exists a tiling of Γ(W ).

Proof. We prove the above by induction on the area of Γ(W ). Let W be a word with k ’s, `
’s, and r ’s of length n = k+ `+ r. First, if W contains no instances of a consecutive pair

, , or , then W = ` r k. Then the southeast boundary P1 of Γ(W ) is identical
to its northwest boundary P2, so the area of the convex region is 0. Thus a tiling trivially
exists.

Now suppose Γ(W ) has nonzero area m, and we make the hypothesis that any triangular
region with area at most m − 1 has a tiling. By the above, W necessarily contains some
instance of , , or . Let X and Y be the { , , } subwords of W that occur
respectively before and after that instance. In other words, W = X ∗1 ∗2Y for ∗1∗2 equal to

, , or . For each of these cases, we perform the following operation:
Let W = X ∗1 ∗2Y . Then we place a ∗1∗2 tile adjacent to the ∗1–∗2 edges of Γ(W ). Since

the numbers of ’s, ’s, and E’s in the word W ′ = X ∗2 ∗1Y is equal to those of W , the
northwest boundaries P2(W ) and P2(W ′) of Γ(W ) and Γ(W ′) are equal. Thus the region
remaining after placing the tile ∗1∗2 is equivalent to the rhombic diagram Γ(X ∗2 ∗1Y ). The
area of Γ(X ∗2 ∗1Y ) is m− 1, and therefore has a tiling by the inductive hypothesis.
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Thus there exists a tiling for any Γ(W ).

By convention, we label the E-edges of the southeast boundary of the rhombic diagram
with 1 through ` from right to left, and the D-edges with 1 through k from top to bottom.

Definition 3.1.4. A north-strip on a rhombic diagram with a tiling is a maximal strip of
adjacent tiles of types DE or AE, where the edge of adjacency is always an E-edge. A west-
strip is a maximal strip of adjacent tiles of types DE or DA, where the edge of adjacency is
always a D-edge. The i’th north-strip is the north-strip whose bottom-most edge is the i’th
(from right to left) E-edge on the boundary of the rhombic diagram. The j’th west-strip is the
west-strip whose right-most edge is the j’th (from top to bottom) D-edge on the boundary
of the rhombic diagram. Figure 3.4 shows an example of the west- and north-strips.

Note that the number of tiles in the i’th north-strip is the total number of ’s and ’s in
the word W preceding the i’th . Similarly, the number of tiles in the j’th west-strip is the
total number of ’s and ’s in the word W following the j’th .

Example. For the tableau of type in Figure 3.4, the ’s (from top to
bottom) have 5, 3, 3, and 2 ’s and ’s to their right, which corresponds to the west-strips
having lengths 5, 3, 3, and 2 from top to bottom. Similarly, the ’s (from right to left) have
5 and 7 ’s and ’s to their right, which corresponds to the north-strips having lengths 5
and 7 from right to left.

1

2

3

4

12

Figure 3.4: (Left) west-strips and (right) north-strips.

Finally we define the rhombic alternative tableaux, with an example of one shown in
Figure 3.5.

Definition 3.1.5. A rhombic alternative tableau (RAT) of type W is a rhombic diagram
Γ(W ) and an arbitrary tiling T with DE, DA, and AE tiles, and a filling F of T with α’s
and β’s under the following conditions:
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β

q

q

q

β

β

α

q

q

α

Figure 3.5: An example of a RAT of size (9, 3, 4) with type and weight
α6β5q4.

i. A DE tile is empty or contains an α or a β.

ii. A DA tile is empty or contains a β.

iii. An AE tile is empty or contains an α.

iv. Any tile above and in the same north-strip as an α must be empty.

v. Any tile to the left and in the same west-strip as a β must be empty.

We define fi(W, T ) to be the set of fillings of tiling T of the rhombic diagram Γ(W ). In
other words, F ∈ fi(W, T ) means F is a filling of type W of the tiling T .

Definition 3.1.6. A north line is a line drawn through each north-strip containing an α,
starting at the tile directly above that α. A west line is a line drawn through each west-strip
containing a β, starting at the tile directly left of that β. An example of the RAT with the
north- and west lines is shown in Figure 3.6.

In terms of the north- and west lines, we rewrite the conditions (iv) and (v) of Definition
3.1.5 by (equivalently) requiring that any tile that contains a north line or a west line must
be empty.

Definition 3.1.7. The size of a RAT of type W is (n, r, k), where k is the number of ’s in
W , r is the number of ’s in W , and n is the total number of letters in W . We can also call
this the size of a filling F of type W . We can also refer to the size of a tableau as simply
(n, r), where we do not keep track of the number of ’s.

Definition 3.1.8. To compute the weight wt(F ) of a filling F , first a q is placed in every
empty tile that does not contain a north line or a west line. Next, wt(F ) is the product of
all the symbols inside F times αkβ`, for F a filling of size (k + `+ r, r, k).
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Figure 3.6: A complete representation of a RAT that is equivalent to the example on the
left.

We will prove in Proposition 3.1.9 that the sum of the weights of all fillings of Γ(W ) does
not depend on the tiling T .

Independence of tilings and definition of weight(W )

Proposition 3.1.9. Let W be a word in { , , }. Let T1 and T2 represent two different
tilings of a rhombic diagram Γ(W ) with DE, DA, and AE tiles. Then∑

F∈fi(W,T1)

wt(F ) =
∑

F ′∈fi(W,T2)

wt(F ′).

Definition 3.1.10. Consider a hexagon with vertices {(i, j), (i, j − 1), (i − 1, j − 2), (i −
2, j − 2), (i− 2, j − 1), (i− 1, j)} for some integers i, j that is tiled with a DE-, a DA-, and
an AE tile. A maximal hexagon is when the tiles within the hexagon have the configuration
of Figure 3.7 (left), and a minimal hexagon is when the tiles within the hexagon have the
configuration of Figure 3.7 (right).

D

A

E

D

A

E

Figure 3.7: A flip from a maximal (left) to a minimal hexagon (right).

Definition 3.1.11. Let W be a word in { , , }. We define the minimal tiling of Γ(W )
to be the tiling that that does not contain an instance of a maximal hexagon, such as the
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example in Figure 3.8. We refer to such a tiling by Tmin. (In the remark following the proof
of Lemma 3.1.13, we show that Tmin is the unique minimal tiling.) One can construct Tmin
by placing tiles from P1 inwards, and always placing an AE tile whenever possible. In other
words, all the west strips of Tmin are, from right to left, a strip of adjacent DE boxes followed
by a strip of adjacent DA boxes, as in Figure 3.8 (left).

Similarly, a maximal tiling is one that that does not contain an instance of a minimal
hexagon, and is referred to by Tmax. The maximal tiling can be constructed by placing tiles
from P1 inwards, and always placing a DA tile whenever possible. In other words, all the
north strips of Tmax are, from bottom to top, a strip of adjacent DE boxes followed by a
strip of adjacent AE boxes, as in Figure 3.8 (right).

Figure 3.8: We see the minimal tiling Tmin (left) and the maximal tiling Tmax (right) of the
rhombic diagram Γ(X) for X = of Figure 3.2.

Definition 3.1.12. A flip is an involution that switches between a maximal hexagon and a
minimal hexagon, and is the particular rotation of tiles that is shown in Figure 3.7.

The lemma below contains a generally known result, notably in the case of a plane
partition.

Lemma 3.1.13. Let Γ(W ) be a rhombic diagram of type W . For any two tilings T and S
of Γ(W ), T can be obtained from S by some series of flips.

Remark 3.1.14. To make the paper self-contained, we will give here a proof that tilings
are in bijection with configurations of non-crossing paths. In particular, our proof defines
a classical construction in the case of a plane partition, where the bijection will give a
configuration of paths related to a binomial determinant (by the Lindström-Gessel-Viennot
Lemma). This determinant can be expressed by a simple formula giving the well-known
MacMahon formula for plane partitions (or 3D Ferrers diagrams) within a box of size (a, b, c).
We note that the case of a plane partition within a box of size (k, r, `) is equivalent to the
tilings of Γ(W ) where W = k r `.
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Definition 3.1.15. A non-crossing configuration {τ} = {τ1, τ2, . . .} is a collection of lattice
paths where no two paths τi, τj for i 6= j share a vertex (and hence are non-crossing).

Proof of Lemma 3.1.13. We prove the lemma by constructing a bijection from certain non-
crossing configurations on Γ(W ) to tilings of Γ(W ). We define a height function height({τ})
on the non-crossing configurations. We define the minimal non-crossing configuration {τ}min
to be the one with height 0. We also define a local move called a slide on {τ} which we show
corresponds to a flip from a maximal to a minimal hexagon on T . The reverse operation is
called a reverse slide, and it corresponds to a flip from a minimal to a maximal hexagon.
We show that a slide diminishes the height of a non-crossing configuration by 1, and that
any non-crossing configuration with height greater than 0 admits a slide. Thus it is possible
to obtain {τ}min from any {τ} by some set of slides, and so it is possible to obtain any {σ}
from any {τ} by some set of slides and reverse slides. This translates to the desired result
due to the bijection.

e1

v1

e2v2

e3v3

e4v4

e1

v1

e2v2

e3v3

e4v4

slide

Figure 3.9: (Left) a tiling T with west-strips indicated, bijection to the non-crossing configu-
ration {τ} with height({τ}) = 2. (Right) a slide performed at the indicated free lattice point
to obtain the non-crossing configuration {τ ′} with height({τ ′}) = 1, which is in bijection
with the tiling T ′ (which is obtained from T by performing a flip at the hexagon that is
shaded grey).

Bijection from tilings on Γ(W ) to non-crossing configurations on Γ(W ). Recall that Γ(W )
is on a lattice with integer points {(i, j)}, and a tiling on Γ(W ) consists of tiles DE, DA,
and AE whose corners are on those lattice points. We define a bijection from a tiling T to a
non-crossing configuration {τ} on the lattice contained within Γ(W ). Let {τ} = {τi, . . . , τk},
where each τi is a lattice path consisting of west and southwest steps (j, `)→ (j − 1, `) and
(j, `) → (j − 1, ` − 1) respectively, that starts at ei and ends at vi for some sets {ei} and
{vi}. We let ei be the north endpoint of the i’th D-edge on the southeast boundary of Γ(W )
(from top to bottom), and let vi be the north endpoints of the i’th D-edge on the northwest
boundary of Γ(W ) (from top to bottom).

To obtain {τ} from T , let τi be the path that coincides with the northwest boundary of
the i’th west-strip (from top to bottom). Since the west-strips do not cross each other, it is
clear that {τ} is well defined in this way (see Figure 3.9).
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Define a free lattice point to be a lattice point that is not part of any path in {τ}, and
does not lie on the southeast boundary of Γ(W ). To obtain T from {τ}, we do the following:
for each τi, place a DE tile directly below and adjacent to each west step of τi, and place a
DA tile directly below and adjacent to each southwest step, so that the northwest boundaries
of the DE and DA tiles coincide with the steps of τi. Thus τi corresponds to a west-strip.
Now, for every free lattice point that is not on the southeast boundary of Γ(W ), place an AE
tile so that its northwest corner coincides with that lattice point. We claim that we obtain in
this way a valid tiling of Γ(W ). To check this, we must simply verify that the construction
above results in no tiles overlapping, and a complete covering of the shape. This is easily
verified inductively on the number of tiles in Γ(W ) by combining Lemma 3.1.3 with this
bijection.

Height of {τ}. For each i, define the minimal path mi to be the one starting at ei and
taking a maximal possible number of west steps followed by a maximal possible number of
southwest steps to vi. Define the height of τi ∈ {τ} (i.e. height(τi)) to be the area between
τi and mi (i.e. the number of free lattice points strictly northwest of τi and weakly southeast
of mi). We define the height of {τ} to be

height({τ}) =
∑
τi∈{τ}

height(τi).

It is clear that there is a unique {τ} of height 0, by letting each τi be mi. We call this {τmin}.

A slide on {τ}. Let p be a free lattice point (i, j) such that (i + 1, j), (i, j − 1), and
(i − 1, j − 1) are all not free lattice points. Then, those lattice points must necessarily
belong to the same path in the non-crossing configuration {τ}, say τi. A slide on {τ} at
the location of p means exchanging the steps southwest and west for the steps west and
southwest in τi, and thereby passing through p and creating a new free lattice point below
τi, as in Figure 3.9. More precisely, the steps (i + 1, j) → (i, j − 1) → (i − 1, j − 1) in τi
are exchanged for (i + 1, j) → (i, j) → (i − 1, j − 1) to make τ ′i . Clearly τ ′i does not cross
{τ1, . . . , τi−1, τi+1, . . .}, and so the new collection of paths {τ ′} formed by replacing τi with
τ ′i is also a non-crossing configuration. Furthermore, since height(τ ′i) = height(τi) − 1, we
have height({τ ′}) = height({τ})− 1.

We have already established that a southwest step of τi in {τ} corresponds to a DA box
in the west-strip i, and a west step of τi corresponds to a DE box. A free lattice point
necessarily corresponds to an AE tile, since all DA and DE tiles must be part of some west-
strips. From Figure 3.9, it is easy to see how a slide corresponds to a flip from a maximal
hexagon to a minimal hexagon, and a reverse slide (the inverse operation) corresponds to
the reverse flip.

Notice that if no such free lattice point p exists such that its three neighbors east, south,
and southwest are all not free lattice points, this implies τi = mi for each i. Then {τ} is the
minimal non-crossing configuration, as in Figure 3.10. Thus {τ} admits no slides if and only
if it equals {τmin}.
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Now we complete the proof. Let {τ} be some non-crossing configuration with height({τ}) =
k > 0. Then by the above there is at least one free lattice point that admits a slide. After
performing a slide at that location, we obtain a new non-crossing configuration {τ ′} with
height({τ ′}) = height({τ}) − 1 . Recursively, this implies that by applying some series of
slides, we can get from {τ} to a non-crossing configuration with height 0. However, {τmin}
is the unique such non-crossing configuration, so we have shown that we can get from {τ} to
{τmin} with some set of slides. We can now equivalently define height({τ}) as the minimal
number of slides required to get from {τ} to {τmin}.

Let {σ} be a different set of non-crossing configurations. There is similarly a set of slides
to get from {σ} to {τmin}. Thus we can get from {τ} to {σ} by a series of slides, by first
applying the slides to get from {τ} to {τmin}, and then by applying slides in reverse to get
from {τmin} to {σ}. Let the tiling T correspond to the non-crossing configuration {τ}, and
the tiling S to the non-crossing configuration {σ}. Since the slides on the paths correspond
to flips on the tilings, we obtain that one can get from T to S with a series of flips, as
desired.

Remark 3.1.16. By the above lemma, since the minimal tiling Tmin of Γ(W ) is a tiling
that admits zero flips from a maximal hexagon to a minimal hexagon, we see that Tmin
corresponds to {τmin}, which is the non-crossing configuration admitting zero slides and
having height 0, as in Figure 3.10. Since {τmin} is the unique non-crossing configuration of
height 0, Tmin must be the unique minimal tiling according to our definition. (The maximal
tiling Tmax is also unique by a similar argument.) Furthermore, the minimal number of flips
required to get from T to Tmin is commonly referred to as the height of a tiling T .

e1

v1

e2v2

e3v3

Figure 3.10: Tmin and {τmin}.

For the proof of Proposition 3.1.9, we introduce a more explicit set of tiles, where tiles
can now contain α, β, q, a north line, a west line, or both a north line and a west line, as in
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Figure 3.11. We can now describe a complete covering of S by compatible tiles according to
the following definition.
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Figure 3.11: A more explicit set of tiles that is in simple correspondence with the RAT
fillings.

Definition 3.1.17. Two adjacent tiles are compatible if:

1. a tile has a north line through it if and only if its south E-edge is adjacent to a tile
containing an α or a north line, and

2. a tile has a west line through it if and only if its east D-edge is adjacent to a tile
containing a β or a west line.

Proof of Proposition 3.1.9. For any rhombic diagram Γ(W ), any two tilings T1 and T2 can
be obtained from each other by some series of flips by Lemma 3.1.13. Thus it is sufficient
to show that if T1 and T2 differ by a single flip, then there is a weight-preserving bijection
between fi(W, T1) and fi(W, T2). Let this flip occur at a certain “special hexagon” (h1 in T1

and h2 in T2). Without loss of generality, let h1 be of minimal type as on the left of Figure
3.7, and let h2 be of maximal type as on the right of Figure 3.7. The rest of the tiles are
identical in T1 and T2.

We define the bijection from F ∈ fi(W, T1) to some F ′ ∈ fi(W, T2) with an involution φ.
To begin, φ sends every tile including its contents in T1\h1 to its identical copy in T2\h2.
Then, φ sends the tiles and contents of h1 to a rearrangement of those tiles according to
the cases shown in Figure 3.12. It is easy to see that this map preserves the weights of the
fillings, since the quantities of β’s, α’s, and q’s are preserved for each case.

We claim that the map φ also preserves the compatibility of the tiles, as defined in
Definition 3.1.17. We confirm that in each possible case of h1, the tile adjacent to the south
E-edge contains an α or a north line if and only if the tile adjacent to the south E-edge of
φ(h1) contains an α or a north line. Similarly, the tile adjacent to the east D-edge of h1

contains a β or a west line if and only if the tile adjacent to the east D-edge of φ(h1) contains
a β or a west line.

Thus φ indeed gives a weight-preserving bijection from fi(W, T1) to fi(W, T2), and so the
proposition follows.

Thus we are able to make the following definition.
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Definition 3.1.18. Let W be a word in { , , }, and let T be an arbitrary tiling of Γ(W ).
Then the weight of a word W is

weight(W ) =
∑

F∈fi(W,T )

wt(F ).
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Figure 3.12: The involution φ from each possible filling of a minimal hexagon (left) to a
maximal hexagon (right). The dashed arrows imply compatibility requirements.

In fact, we can define equivalence classes of rhombic alternative tableaux with the fol-
lowing definitions.

Definition 3.1.19. A weight-preserving flip on a RAT with tiling T is the transformation
φ (or the inverse of the φ) given by Figure 3.12 on some hexagon h of T and the symbols
contained in it, while preserving the filling of T \h.

Definition 3.1.20. Let W be a word in { , , }, and let T1 ∈ fi(W, T1) and T2 ∈ fi(W, T2)
be rhombic alternative tableaux of type W for arbitrary tilings T1 and T2 of Γ(W ). Then T1

and T2 are equivalent if and only if T2 can be obtained from T1 by a series of weight-preserving
flips.

3.2 Steady state probabilities of the two-species

ASEP

The main theorem of this chapter is the following.
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Theorem 3.2.1. Let W be a word in { , , }n that represents a state of the two-species
ASEP with exactly r ’s. The stationary probability of state W is

Pr(W ) =
1

Zn,r
weight(W ), (3.1)

where weight(W ) is defined in Definition 3.1.18.
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Figure 3.13: All fillings for the minimal tiling of a rhombic diagram of type .

Example. All seven fillings of the minimal tiling of a rhombic diagram corresponding to the
state are shown in Figure 3.13. From the sum of the weights of these fillings, we obtain

Pr( ) =
1

Z3,1

(
q3 + αq2 + αq + βq2 + βq + αβ + αβq

)
.

To facilitate our proof, we provide a more flexible Matrix Ansatz that generalizes Theorem
3.0.1 with the same argument as in an analogous proof for the ordinary ASEP of Corteel and
Williams [5, Theorem 5.2]. For a word W ∈ { , , }n with r ’s, we define unnormalized
weights f(W ) which satisfy

Pr(W ) = f(W )/Zn,r

for Zn,r =
∑

W ′ f(W ′) where the sum is over all words W ′ of length n and with r ’s.

Theorem 3.2.2. Let λ be a constant. Let 〈w| and |v〉 be row and column vectors with
〈w||v〉 = 1. Let D, E, and A be matrices such that for any words X and Y in {D,A,E}
representing products of the matrices in the corresponding order, the following conditions are
satisfied:

(I) 〈w|X(DE − qED)Y |v〉 = λ〈w|X(D + E)Y |v〉,

(II) 〈w|X(DA− qAD)Y |v〉 = λ〈w|XAY |v〉,

(III) 〈w|X(AE − qEA)Y |v〉 = λ〈w|XAY |v〉,

(IV) β〈w|XD|v〉 = λ〈w|X|v〉,

(V) α〈w|EY |v〉 = λ〈w|Y |v〉.
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Let W = {W1, . . . ,Wn} for Wi ∈ { , , } for 1 ≤ i ≤ n. Then for any state W of the
two-species ASEP of length n with r light particles,

f(W ) =
1

〈w|Ar|v〉〈w|
n∏
i=1

D 1(Wi= ) +A1(Wi= ) +E 1(Wi= ) |v〉.

Proof. The proof of Theorem 4.3.1 follows exactly that of [5, Theorem 5.2]. Note that the
above implies that

Zn,r = [yr]
〈w|(D + yA+ E)n|v〉

〈w|Ar|v〉 .

Proof of the main theorem

Proof of 3.2.1. The Matrix Ansatz of Theorem 4.3.1 implies that the steady state prob-
abilities for the two-species ASEP satisfy certain recurrences (that in turn determine all
probabilities). The strategy of our proof is to show that the weight generating function for
RAT of fixed type satisfies the same recurrences. Specifically, we use these recurrences with
the constant λ = αβ, to show by induction that for W a word in { , , }n with r ’s,

f(W ) = weight(W ). (3.2)

We do the induction on the number of tiles M in our tableaux. For the rest of this proof,
we call the number of tiles in a rhombic diagram its area.

Definition 3.2.3. Let x(W ) be a word in {D,A,E} representing a matrix product of the ma-
trices D, A, and E, corresponding to the two-species ASEP word W in the letters { , , },
where D, A, and E correspond to , , and respectively.

Example. For W = , we have x(W ) = DEAAE.

According to this definition, for W ∈ { , , }n a word with r ’s we have

f(W ) =
1

〈w|Ar|v〉〈w|x(W )|v〉

by Theorem 4.3.1.
To start, if the area of Γ(W ) is 0, then necessarily W = ` r k for some ` and k. For

every such case, there is a single tiling of Γ(W ) and a single RAT on that tiling, and both
of these are trivial (i.e. there are zero tiles to be filled.) We obtain weight( ` r k) = β`αk.
From Theorem 4.3.1, it is clear that the base case indeed satisfies Equation (3.1).

Now suppose that any word W ′ such that Γ(W ′) has area M < m satisfies Equation
(3.1). Let W be a word of length n with r ’s, such that Γ(W ) has area m. Outside of the
base case, we assume that at least one of the following must occur:
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i. W contains an instance of .

ii. W contains an instance of .

iii. W contains an instance of .

Based on the occurrence of one of the above, we will express weight(W ) in terms of the weight
of some other words whose rhombic diagrams have areas smaller than m. Throughout the
following, we let X and Y represent some arbitrary words in { , , }, and we let T represent
a RAT of type W .

(i.) W contains an instance of . We write W = X Y . We can choose an arbitrary
tiling T of Γ(W ), since any such tiling will contain a DE tile adjacent to the chosen
edges. We call this DE corner tile the chosen corner. Let T ∈ fi(W, T ). The chosen corner
of T must contain either an α, a β, or a q, so we can decompose the possible fillings of T
into three cases.

If the chosen corner contains an α, then all the tiles above it in the same north-strip are
empty, and so its entire north-strip has no effect on the rest of the tableau. Thus such T can
be mapped to a filling of a smaller RAT on tiling T ′ with that north-strip removed, which
would have type X Y (similar to the example in Figure 3.14 (a)). It is easy to check that
this operation results in a valid tableau, since any two symbols in the same west-strip of T
remain in the same relative position in a west-strip of T ′. (And similarly for the north-strips,
save for the one that was removed). This map gives a bijection between tableaux of type
X Y on tiling T with an α in the chosen DE corner and tableaux of type X Y on tiling
T ′. The removed column with the α in its bottom-most box has total weight αβ.1

Similarly, if the chosen corner contains a β, then the tiles to its left in the same west-strip
must be empty, and so its entire west-strip has no effect on the rest of the tableau. Hence
such T can be mapped to a smaller RAT on tiling T ′′ with that west-strip removed, which
would have type X Y as in Figure 3.14 (b). This map gives a bijection between tableaux
of type X Y on tiling T with a β in the chosen DE corner and tableaux of type X Y
on tiling T ′′. The removed west-strip with the β in its right-most tile also has total weight
αβ.

Finally, if the chosen corner contains a q, then this tile has no effect on the rest of the
tableau. Hence such T can be mapped to a RAT of area m− 1 on tiling T ′′′ with that DE
corner tile removed, which would have type X Y (similar to the example in Figure 3.14
(c)). This map gives a bijection between tableaux of type X Y on tiling T with a q in
the chosen DE corner and tableaux of type X Y on tiling T ′′′. The removed tile with
the q has total weight q.

Consequently, we have the sum of the weights of the fillings:

weight(X Y ) = weight(X Y ) · αβ + weight(X Y ) · αβ + qweight(X Y ).
1In the total weight of a column, we include the weight of the bottom-most edge, which is a component

of the southeast boundary of T . When the column removed is an E-column, the weight of the boundary
component is β, so the total weight of the column with an α at the bottom is αβ. Similar reasoning is used
in the other cases.
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Figure 3.14: (a) X Y 7→ X Y , (b) X Y 7→ X Y , and (c) X Y 7→ qX Y .

By the induction hypothesis, since the areas of Γ(X Y ), Γ(X Y ), and Γ(X Y ) are all
strictly smaller than m, we have weight(X Y ) = f(X Y ), weight(X Y ) = f(X Y ),
and weight(X Y ) = f(X Y ). Thus we obtain

f(X Y ) = (αβ)〈w|x(X) (D + E) x(Y )|v〉+ q〈w|x(X) ED x(Y )|v〉
= 〈w|x(X) DE x(Y ) |v〉
= 〈w|x(W )|v〉.

Hence by Theorem 4.3.1 with λ = αβ, it follows that W satisfies Equation (3.2).
(ii.) W contains an instance of . We write W = X Y . We choose tiling T of

Γ(W ) such that there is an AE tile adjacent to the chosen edges (and we allow the rest of
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the tiling to be arbitrary). We call this AE corner tile the chosen corner. Let T ∈ fi(W, T ).
The chosen corner of T must contain either an α or a q.

If the chosen corner contains an α, then the tiles above it in the same north-strip must
be empty, and so its entire north-strip has no effect on the rest of the tableau. Hence such T
can be mapped to a smaller RAT on tiling T ′ with that north-strip removed, which would
have type X Y , as in Figure 3.14 (a). This map gives a bijection between tableaux of type
X Y on tiling T with an α in the chosen AE corner and tableaux of type X Y on tiling
T ′. The removed north-strip with the α in its bottom-most tile has total weight αβ.

On the other hand, if the chosen corner contains a q, then this tile has no effect on the
rest of the tableau. Hence such T can be mapped to a RAT of area m− 1 on tiling T ′′ with
that AE corner tile removed, which would have type X Y (similar to the example in
Figure 3.14 (c)). This map gives a bijection between tableaux of type X Y on tiling T
with a q in the chosen AE corner and tableaux of type X Y on tiling T ′′. The removed
tile with the q has total weight q. Thus we obtain the sum of the weights of the fillings:

weight(X Y ) = weight(X Y ) · αβ + qweight(X Y ).

Similar reasoning to the DE case completes the argument.
(iii.) W contains an instance of . We write W = X Y . We choose tiling T of

Γ(W ) such that there is a DA tile adjacent to the chosen edges (and we allow the rest of
the tiling to be arbitrary). We call this DA corner tile the chosen corner. Let T ∈ fi(W, T ).
The chosen corner of T must contain either a β or a q.

If the chosen corner contains a β, then the tiles to its left in the same west-strip must be
empty, and so its entire west-strip has no effect on the rest of the tableau. Hence such T can
be mapped to a smaller RAT on tiling T ′ with that west-strip removed, which would have
type X Y (similar to the example in Figure 3.14 (b)). This map gives a bijection between
tableaux of type X Y on tiling T with a β in the chosen DA corner and tableaux of type
X Y on tiling T ′. The removed west-strip with the β in its right-most tile has total weight
αβ.

On the other hand, if the chosen corner contains a q, then this tile has no effect on the
rest of the tableau. Hence such T can be mapped to a RAT of area m− 1 on tiling T ′′ with
that DA corner tile removed, which would have type X Y , as in Figure 3.14 (c). This
map gives a bijection between tableaux of type X Y on tiling T with a q in the chosen
DA corner and tableaux of type X Y on tiling T ′′. The removed tile with the q has total
weight q. Thus we obtain the sum of the weights of the fillings:

weight(X Y ) = weight(X Y ) · αβ + qweight(X Y ).

Similar reasoning to the DE case completes the argument.
From the above cases, we obtain that for any M , any word W with Γ(W ) of area M

satisfies Equation (3.2), which is the desired result.

Section 3.4 features an independent proof of Theorem 3.2.1 obtained by constructing a
Markov chain on the rhombic alternative tableaux that projects to the two-species ASEP.
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Complements: the cellular ansatz.

It is possible to give another proof of Theorem 3.2.1 in the spirit of the general theory called
cellular ansatz, introduced and developed by X. Viennot in [21].

In the simple case r = 0 of the ASEP, the Matrix Ansatz defines an algebra with genera-
tors D and E, with relation DE = qED+E +D. In this algebra, any word W with letters
D and E can be written in a unique way as a sum of monomials qtEiDj.

The proof relies on a planarization of the rewriting rules DE 7→ qED, DE 7→ E, and
DE 7→ D (see an example on slides 25-50 of Chapter 3a of [21]). In this context, alternative
tableaux appear naturally. We obtain an identity expressing the word W as

∑
T wt(T ),

where the sum is over alternative tableaux T , and wt(T ) is a certain monomial of the form
qtEiDj, where i, j, and t are defined from the tableau T (see slide 59 of Chapter 3a of [21]).
By applying the Matrix Ansatz for the ASEP, we get immediately the interpretation of the
stationary probabilities in terms of alternative tableaux (slide 60 of Chapter 3a of [21]).

The general theory of the cellular ansatz works with some family of quadratic algebras
Q, having two families of generators, with some commutations relations. Any word W in
those generators can be expressed as a sum of monomials over generalized tableaux called
complete Q-tableaux, in bijection with Q-tableaux (see Chapter 6a, slides 41-46, 54-56 of
[21]).

The Matrix Ansatz for the two-species ASEP defines an algebra with three generators
D,E,A and three commutation relations DE = qED + E + D, DA = qAD + A, and
AE = qEA + A. This quadratic algebra does not quite fit in the general cellular ansatz
theory of Chapter 6a of [21], but the theory can be extended to such an algebra, by replacing
the quadratic lattice by a tiling T of the diagram Γ(W ). The corresponding Q-tableaux are
the RAT, and in a similar way, one can prove that any word W in letters {D,A,E} can
be expressed in a unique way as a sum of monomials qtEiAmDj. Here D,A, and E are
identified with , , and respectively.

More precisely we have the identity

W =
∑

F∈fi(W,T )

qtEiAmDj,

where i is the number of north-strips of F not containing an α, j is the number of west-
strips of F not containing a β, and t is the number of cells weighted q as in the definition of
wt(F ) in Section 3.1. Note that the weight wt(F ) defined in Definition 3.1.8 is equal to the
monomial qtαn−r−iβn−r−j where n is the length of W and r is the number of ’s it contains.

Applying to the above the two-species Matrix Ansatz, we obtain immediately Theorem
3.2.1.

3.3 Enumeration of the rhombic alternative tableaux

In this section, we compute the partition function at q = 1 for the rhombic alternative
tableaux, and provide some more refined enumeration for the case q = 0.
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Definition 3.3.1. Define the partition function

Zn,r(α, β, q) =
∑
W

weight(W )

for W ranging over all words in { , , }n with r ’s. By convention, let Zn,n(α, β, q) = 1.

Proposition 3.1.9 allows us to make the following definition.

Definition 3.3.2. Let W be a state of the two-species ASEP and T and T ′ be some tilings
of Γ(W ). A RAT F ∈ fi(W, T ) is equivalent to a RAT F ′ ∈ fi(W, T ′) if F can be obtained
from F ′ by some series of weight-preserving flips.

Let Ωn
r be the set of states of the two-species ASEP of size n with exactly r light particles.

Let Ψ(n,r) be the set of equivalence classes of RAT whose type belongs to Ωn
r . More precisely,

ψ ∈ Ψ(n,r) is some set of RAT of a single type such that for any F, F ′ ∈ ψ, F and F ′ are
equivalent. Moreover, if F and F ′ are equivalent and F ∈ ψ and F ′ ∈ ψ′, then ψ = ψ′.

From [15], we also have the following theorem.

Theorem 3.3.3 ([15] Theorem 2.19).

Zn,r(α, β, 1) =

(
n

r

) n−1∏
i=r

(α + β + iαβ). (3.3)

This implies the following corollary.

Corollary 3.3.4.

|Ψ(n,r)| =
(
n

r

)
(n+ 1)!

(r + 1)!
.

Proof of Theorem 3.3.3. Let Zn,r,k(α, β, q) be the weight generating function for the RAT
(with the maximal tiling) with exactly k west-strips that do not contain a β.

We also define
Zn,r(x) =

∑
k≥0

Zn,r,k(α, β, 1)xk (3.4)

with Zn,r(α, β, 1) = Zn,r(1). We claim that

Zn,r(x) =

(
n

r

) n−1∏
i=r

(xα + β + iαβ). (3.5)

We will prove Equation (3.5) and hence Equation (3.3) by induction on n in terms of the
more refined Zn,r,k’s.

First, when n = 1, Z1,0(x) = xα + β and Z1,1 = 1.
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(a) (b) (c)

Figure 3.15: Adding a (a) , (b) , or (c) to the end of W .

Now, we suppose that Equation (3.5) holds for any N ≤ n and any r ≤ n−1. (Again, by
convention Zn,n = 1 for all n.) We will show that the formula holds as well for N = n + 1,
for all r ≤ n.

We begin by observing that Equation (3.5) satisfies

Zn+1,r(x) = (xα + β + rαβ)Zn,r(x+ β) + Zn,r−1(x+ β). (3.6)

We now construct a recursion for Zn+1,r,k in terms of the functions {Zn,r′,k′} by keeping track
of the terms after the addition of a , , or to the end of a word W ∈ { , , }n. For the
following, we denote by T ′ a tableau in fi(W, Tmax(W )) (for Tmax(W ) the maximal tiling of
Γ(W )), and by T a tableau in fi(Wx, Tmax(Wx)) for x ∈ { , , }. We consider all possible
cases for W and corresponding T ′ such that the resulting T ∈ fi(Wx, Tmax(Wx)) has size
(n+ 1, r) and exactly k west-strips that do not contain a β.

1. We add a to the end of ASEP word W of length n with r ’s. On the tableau
level, this corresponds simply to the addition of a D-edge to the southwest end of each
T ′ ∈ fi(W, Tmax(W )) as in Figure 4.1 (a). Since the filling of T is the same as that of
T ′,

Zn+1,r,k = αZn,r,k−1. (3.7)

This contributes to
∑

T∈fi(W ,Tmax(W )) wt(T )|(q=1).

2. We add a to the end of a ASEP word W of length n with r− 1 ’s. On the tableau
level, this corresponds to the addition of a vertical column of some DA tiles to the left
boundary of T ′ to form a tableau with the maximal tiling of Γ(W ) as in Figure 4.1
(b). Suppose T ′ has ` ≥ k west-strips that do not contain a β. Then to obtain T with
exactly k west-strips that do not contain β, the `− k DA tiles that do contain a β can
be chosen in

(
`
k

)
ways, with the other k DA tiles containing q. Therefore, we obtain

Zn+1,r,k(α, β, 1) =
∑
`≥k

(
`

k

)
β`−kZn,r−1,`. (3.8)

This contributes to
∑

T∈fi(W ,Tmax(W )) wt(T )|(q=1).
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3. We add a to the end of a ASEP word W of length n with r ’s. On the tableau
level, this corresponds to the addition of a vertical column of some DE tiles followed
by a strip of r AE tiles to the left boundary of T ′ to form a tableau with the maximal
tiling of Γ(W ) as in Figure 4.1 (c). Suppose T ′ has ` ≥ k west-strips that do not
contain a β. We have two cases.

(1) For the first case, there is no α in the newly added DE tiles. Then to obtain
T with exactly k west-strips that do not contain β, the ` − k DE tiles that do
contain a β can be chosen in

(
`
k

)
ways, with the other k DE tiles containing q.

Following this, the AE tiles can either contain all q’s, or some consecutive string
of q’s followed by an α.

(2) For the second case, there is an α in the newly added DE tiles, with some `−k ≤
u ≤ `−1 free DE tiles below it. (Recall that a DE tile is free if there is no β to its
right in the same west-strip, and no α below it in the same north-strip.) Then,
to obtain T with exactly k west-strips that do not contain β, the ` − k DE tiles
that do contain a β can be chosen in

(
u
`−k
)

ways, with the other u − (` − k) DE
tiles that lie below the α containing q, and the rest of the tiles empty.

Combining the above two cases, we obtain

Zn+1,r,k(α, β, 1) = β
∑
`≥k

(
`

k

)
β`−k(rα + 1)Zn,r,` +

`−1∑
u=`−k

(
u

`− k

)
αβ`−kZn,r,`. (3.9)

This contributes to
∑

T∈fi(W ,Tmax(W )) wt(T )|(q=1).

Combining Equations (4.12), (4.13), and (4.14) and summing over k, we obtain

Zn+1,r(x) =
∑
k≥0

(
xαZn,r,k−1 +

∑
`≥k

(
`

k

)
β`−kxkZn,r−1,` + β

∑
`≥k

(
`

k

)
β`−kxkZn,r,`(rα + 1)

+β
∑
`≥k

`−1∑
u=`−k

(
u

`− k

)
αβ`−kxkZn,r,`

)
= xαZn,r(x) + Zn,r−1(x+ β) + β(rα + 1)Zn,r(x+ β)

+ αβ
∑
k≥0

∑
`≥k

(
`

k − 1

)
β`−kxkZn,r,`

= xαZn,r(x) + Zn,r−1(x+ β) + (rαβ + β + xα)Zn,r(x+ β)− xα
∑
k≥0

xk−1Zn,r,k−1.

which simplifies to Equation (3.6). Since Zn+1,r satisfies the desired recursion, we thus obtain
that Equation (3.5) indeed holds for N = n+ 1, and so our proof is complete.
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Remark 3.3.5. A recent work by the author of this thesis and X. Viennot features a bijective
proof for Theorem 3.3.3 [14]. The rhombic alternative tableaux are enumerated by the Lah
numbers, which also enumerate certain assemblées of permutations. In [14] we describe a
bijection between the rhombic alternative tableaux and these assemblées, and provide an
insertion algorithm that gives a weight generating function for the assembées. Combining
these results, we obtain a bijective proof for the weight generating function for the rhombic
alternative tableaux of Equation (3.3).

Enumeration of rhombic alternative tableau with q = 0

Finally, for RAT with q = 0, there are some more refined enumerative results from [13] and
also [2, 9].

Theorem 3.3.6. The weight generating function for RAT at q = 0 of size n and whose type
has r ’s is

Z0
n,r(α, β, 0) = (αβ)n−r

n−r∑
p=1

2r + p

2n− p

(
2n− p
n+ r

)
α−p−1 − β−p−1

α−1 − β−1
.

Theorem 3.3.7. The number of RAT at q = 0 of size n and whose type has r ’s is

Z0
n,r(1, 1, 0) =

2(r + 1)

n+ r + 2

(
2n+ 1

n− r

)
.

Theorem 3.3.8. Let n := r+ k+ `. The number of RAT at q = 0 of size n and whose type
has r ’s and k ’s is

r + 1

n+ 1

(
n+ 1

k

)(
n+ 1

`

)
.

3.4 A Markov chain on the RAT

We restate here the definition of a Markov chain that projects to another, and describe
the RAT as a Markov chain that projects to the two-species ASEP. Such results exist for
the alternative tableaux which project to the regular ASEP. Those results were originally
described in terms of permutation tableaux (which are in simple bijection with the alternative
tableaux) in [4]. Our Markov chain has the same flavor as the existing Markov chain defined
by Corteel and Williams. The following definition is from [4, Definition 3.20].

Definition 3.4.1. Let M and N be Markov chains on finite sets X and Y , and let f be a
surjective map from X to Y . We say that M projects to N if the following properties hold:

• If x1, x2 ∈ X with ProbM(x1 → x2) > 0, then ProbM(x1 → x2) = ProbN(f(x1) →
f(x2)).
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• If y1 and y2 are in Y and ProbN(y1 → y2) > 0, then for each x1 ∈ X such that
f(x1) = y1, there is a unique x2 ∈ X such that f(x2) = y2 and ProbM(x1 → x2) > 0;
moreover, ProbM(x1 → x2) = ProbN(y1 → y2).

Furthermore, we have Proposition 3.4.2 below, which implies Corollary 3.4.3.
Let Probm(x0 → x; t) denote the probability that if we start at state x0 at time 0, then we

are in state x at time t. From the following proposition of [4], we obtain that if M projects
to N , then a walk on the state diagram of M is indistinguishable from a walk on the state
diagram of N .

Proposition 3.4.2. Suppose that M projects to N . Let x0 ∈ X and y0, y1 ∈ Y such that
f(x0) = y0. Then

ProbN(y0 → y1) =
∑

x1 s.t. f(x1)=y1

ProbM(x0 → x1)

Corollary 3.4.3. Suppose M projects to N via the map f . Let y ∈ Y and let

X ′ = {x ∈ X | f(x) = y}.

Then the steady state probability that N is in state y is equal to the steady state probabilities
that M is in any of the states x ∈ X ′.

In our case, N is the two-species ASEP (which we call the ASEP chain), and M is the
Markov chain on the RAT (which we call the RAT chain).

Recall that Ωn
r denotes the states of the two-species ASEP of size n with exactly r light

particles. We specify the states of the RAT chain to be Ψ(n,r), the set of the RAT equivalence
classes of size (n, r), based on the fact that different tilings can be chosen to yield equivalent
tableaux, as mentioned in Remark 3.3.2.

Now, we define the transitions on Ψ(n,r) in the RAT chain that correspond to transitions
on Ωn

r in the ASEP chain. We introduce the following terminology, as in Figure 3.16.

Definition 3.4.4. A corner is a pair of consecutive D and E, D and A, or A and E-edges on
the boundary of a RAT. If there is a DE tile, a DA tile, or an AE tile (respectively) adjacent
to the corresponding edges of the boundary, we call that tile a corner tile.

An inner corner is a pair of consecutive E and D, A and D, or E and A-edges on the
boundary of a RAT.

An empty E-strip corresponds to an E-edge on the boundary of the RAT that coincides
with its top-most boundary.

An empty D-strip corresponds to a D-edge on the boundary of the RAT that coincides
with its left-most boundary.

Lemma 3.4.5. Let ψ ∈ Ψ(n,r) be a RAT equivalence class and let F ∈ ψ. If F has a corner
of type DE, DA, or AE, then there exists an equivalent F ′ ∈ ψ that has, respectively, a DE
tile, a DA tile, or an AE tile at that corner.



CHAPTER 3. COMBINATORICS OF THE 2-SPECIES ASEP 52

EE
D

A

A

D

D

E

A

D

E
D

empty E-strips
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AE corner

DA corner
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DE corner

Figure 3.16: The features of a tableau.

j j − 1

(a) (b)

Figure 3.17: If the boundary of the tableau contains consecutively a D, A, and E-edge, and
there is no DA tile adjacent to the DA corner, then a “stack of boxes” as in (a) must occur in
the tiling, for some value of j. After performing j flips, the configuration in (b) is obtained,
with a DA tile adjacent to the DA corner, as desired.

Proof. First, it is clear that any tiling of a rhombic diagram with a DE corner must have a
DE tile at that corner, so for the DE case the lemma is obvious.

Now, for the DA and the AE cases, it suffices to prove the lemma for only one of them,
since by taking the transpose of a tableau and swapping the roles of α and β, we end up
exchanging the D-edges with the E-edges’s (and consequently the DA corners with the AE
corners), and so by symmetry, these cases will have the same properties. Thus we will prove
the DA case.

First, if the DA corner already has a DA tile adjacent to it, we are done. Thus we assume
there is not a DA tile, which means the tiling of the rhombic diagram must contain the tiles
shown in Figure 3.17 (a). More precisely, as seen in the figure, the tiles must be a row of
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j ≥ 1 DE tiles on top of j AE tiles, with one adjacent DA tile on the left. Now it is easy to
check that with j flips, we end up with the configuration in Figure 3.17 (b), and moreover,
there will a β in the corner DA tile in the tiling (b) if and only if there is a β in the right-most
DE tile in the tiling (a) (and otherwise there will be a q). Thus with j flips, we obtain an
equivalent tableau with a DA tile in the DA corner, as desired.

Based on the above lemma, we make the following definition:

Definition 3.4.6. Let F be a tableau with a corner. We call that corner a q-corner (or an
α-corner, or a β-corner) if a tableau T contains a q in the tile adjacent to that corner (or
respectively, an α, or a β) for some T that is equivalent to F and has a corner tile adjacent
to the corner.

d1

d2

T bl(T , P1) bl(T , P2)

Figure 3.18: Let d1 and d2 be the indicated D- and E-paths on T . Then T is the compression
of bl(T , d1) and bl(T , d2) at the highlighted D- and E-strips, respectively.

Definition 3.4.7. Let T be a tiling of a rhombic diagram F . A D-path on T is a path from
some point on P1(F ) to some point on P2(F ) consisting of A- and E-edges. An E-path on T
is a path from some point on P1(F ) to some point on P2(F ) consisting of D- and A-edges.
We introduce the operation of compressing a D-strip in T to obtain a new tiling T ′ with
a D-path in place of the D-strip (respectively, E-strip and E-path). We also introduce the
inverse operation of blowing up a D-path in T ′ to obtain a new tiling T ′′ with a D-strip in
place of the D-path (respectively, E-path and E-strip).

Compressing a D-strip means selecting its northern border to be the D-path, and then
gluing together the north and south E-edges and A-edges of each tile in the D-strip, thereby
replacing the D-strip by the D-path. Similarly, compressing an E-strip means selecting its
western border to be the E-path, and then gluing together the west and east D-edges and
A-edges of each tile in the E-strip, thereby replacing the E-strip with the E-path. If s is a D-
or E-strip of T , then we denote by com(T , s) the new tiling T ′ that results from compressing
at s.

For the inverse, blowing up a D-path means replacing each E-edge of the path with a
DE tile, and each A-edge with a DA tile, to obtain a D-strip from the new tiles. Similarly,
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blowing up an E-path means replacing each D-edge of the path with a DE tile, and each
A-edge with an AE tile, to obtain an E-strip from the new tiles. If p is a D- or E-path of T ,
then we denote by bl(T , p) the new tiling T ′′ that results from blowing up at p. Figure 3.18
illustrates these definitions.

By convention, if p is a path of length 0, then blowing up p results in replacing it by an
empty E-strip or an empty D-strip (depending on whether p coincides with the west boundary
or the north boundary of the rhombic diagram, respectively). Conversely, compression of an
empty E-strip or an empty D-strip results in replacing those strips with a single point.

It is easy to see that compressing is the inverse of blowing up.
Let F be a RAT of size (n, r, k) with tiling T , and let ψ(F ) ∈ Ψ(n,r) denote the equivalence

class that F belongs to. Below we describe the RAT chain transitions on F , which are also
transitions on ψ(F ).

A enters from the left.

If F has an empty E-strip e, then there is a transition in the RAT chain from F that
corresponds to a heavy particle entering from the left in the ASEP. Let the type of F be
eW .

α

α

β

β

β

q

q

q

β

α

α

β

β

β

q

q

q

(a) heavy particle hops on at the left

αα
β

β

q

q

q

α

αα
β

β

q

q

q

(b) heavy particle hops off at the right

Figure 3.19: For both examples, let the left tableau have type W and tiling T , and denote
the indicated empty (E- or D-) strip by e and the marked (E- or D-) path by p. Then (a)
shows the transition W → W and (b) shows the transition W → W . We obtain
a new diagram with tiling bl(com(T , e), p), and in (a) a β is placed in the resulting D-strip
and in (b) an α is placed in the resulting E-strip.

We define a new RAT T as follows. Let p be the south-most point on P1(F ) (the southeast
boundary of F ) such that there are exactly n− k − 1 E- and A- edges on P1(F ) southwest
of p. Let p be any D-path originating at p. Let T ′ = bl(com(T , e), p). It is easy to check
that T ′ is a valid tiling of Γ( X) which has size (n, r, k + 1).
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If n − k − 1 > 0, the new D-strip of T ′ is non-empty, so we place a β in its right-most
tile, which is valid since that tile must be either a DE tile or a DA tile. Furthermore, p was
chosen to be the south-most point such that there are n−k−1 E- and A-edges southwest of
it, so the right-most tile of the new D-strip is also the bottom-most tile of the A- or E-strip
it lies in, and thus does not interfere with the rest of the filling of the tableau. We define
ProbRAT (F → T ) = α

N+1
. The weight of F with the exception of e equals the weight of T

with the exception of the newly added D-strip. The weight of the new D-strip of T is αβ,
and the weight of e is β. Therefore, wt(T ) = αβ

β
wt(F ), and so

wt(F ) ProbRAT (F → T ) =
wt(T )

N + 1
.

For the exceptional case, if n − k − 1 = 0, then the newly added D-strip of T is empty,
and thus has total weight α. In this case, the ASEP state corresponding to F is of the form
edn−1, and the ASEP state corresponding to T is dn. Then wt(F ) = βαn−1, wt(T ) = αn−1,
and so in this case we have

wt(F ) ProbRAT (F → T ) =
β wt(T )

N + 1
.

A exits from the right.

If F has an empty D-strip e, then there is a transition in the RAT chain from F that
corresponds to a heavy particle exiting from the right in the ASEP. Let the type of F be
W .

We define a new RAT T as follows. Let p be the east-most point on P1(F ) such that
there are exactly r + k − 1 D- and A- edges on P1(F ) northeast of p. Let p be any E-path
originating at p. Let T ′ = bl(com(T , e), p). It is easy to check that T ′ is a valid tiling of
Γ(We) which has size (n, r, k − 1).

If r+ k− 1 > 0, the new E-strip of T ′ is non-empty, so we place an α in its bottom-most
tile, which is valid since that tile must be either a DE tile or an AE tile. Furthermore, p was
chosen to be the east-most point such that there are r + k − 1 D- and A-edges northeast of
it, so the bottom-most tile of the new E-strip is also the right-most tile of the A- or D-strip
it lies in, and thus does not interfere with the rest of the filling of the tableau. We define
ProbRAT (F → T ) = β

N+1
. The weight of F with the exception of e equals the weight of T

with the exception of the newly added D-strip. The weight of the new D-strip of T is αβ,
and the weight of e is α. Therefore, wt(T ) = αβ

α
wt(F ), and so

wt(F ) ProbRAT (F → T ) =
wt(T )

N + 1
.

For the exceptional case, if r + k − 1 = 0, then the newly added E-strip of T is empty,
and thus has total weight β. In this case, the ASEP state corresponding to F is of the form
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n−1 , and the ASEP state corresponding to T is n. Then wt(F ) = βαn−1, wt(T ) = αn−1,
and so in this case we have

wt(F ) ProbRAT (F → T ) =
αwt(T )

N + 1
.
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Figure 3.20: (a) A → transition and a (b) → transition at an α-corner,
and (c) a → transition and (d) a → transition at a β-corner.

A exchanges with a .

If F has a DE corner, then there is a transition in the RAT chain from F that corresponds
to a swapping places with a in the ASEP. Let the type of F be W Y , and suppose
it has tiling T . The DE corner necessarily corresponds to a DE tile. This tile contains an
α, a β, or a q. We describe these three cases below.

The DE corner tile contains a β.

We define a new RAT T as follows. Let the D-strip containing the DE corner tile have length
λ. Let p be the south-most point on P1(F ) such that there are exactly λ−1 E- and A- edges
on P1(F ) southwest of p. Let p be any D-path originating at p. Let T ′ = bl(com(T , e), p).
It is easy to check that T ′ is a valid tiling of Γ(W Y ), as in Figure 3.20 (d).
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If λ − 1 > 0, then we place a β in the right-most box of the newly inserted D-strip
s. Such a filling is valid since the right-most box (containing the new β) is necessarily the
bottom-most box of the E- (or A-) strip that contains it, and so s does not interfere with
any of the other tiles in T . We define ProbRAT (F → T ) = 1

N+1
. The weight of T equals the

weight of F . Therefore,

wt(F ) ProbRAT (F → T ) =
wt(T )

N + 1
.

If λ− 1 = 0, then necessarily F corresponds to a ASEP state W j for some j, and
T corresponds to the state W j+1. The newly added D-strip is empty, and so wt(F ) =
β wt(T ). Therefore,

wt(F ) ProbRAT (F → T ) =
β wt(T )

N + 1
.

The DE corner tile contains an α.

We define a new RAT T as follows. Let the E-strip containing the DE corner tile have length
λ. Let p be the east-most point on P1(F ) such that there are exactly λ− 1 D- and A- edges
on P1(F ) northeast of p. Let p be any E-path originating at p. Let T ′ = bl(com(T , e), p).
It is easy to check that T ′ is a valid tiling of Γ(W Y ), as in Figure 3.20 (b).

If λ − 1 > 0, then we place an α in the bottom-most box of the newly inserted E-strip
s. Such a filling is valid since the bottom-most box (containing the new α) is necessarily
the right-most box of the D- (or A-) strip that contains it, and so s does not interfere with
any of the other tiles in T . We define ProbRAT (F → T ) = 1

N+1
. The weight of T equals the

weight of F . Therefore,

wt(F ) ProbRAT (F → T ) =
wt(T )

N + 1
.

If λ − 1 = 0, then necessarily F corresponds to a ASEP state j Y for some j, and
T corresponds to the state j+1 Y . The newly added D-strip is empty, and so wt(F ) =
αwt(T ). Therefore,

wt(F ) ProbRAT (F → T ) =
αwt(T )

N + 1
.

The DE corner tile contains a q.

We define a new RAT T by simply removing the DE corner tile from F . We define
ProbRAT (F → T ) = 1

N+1
. Since a single tile of weight q was removed, wt(F ) = qwt(T ).

Therefore,

wt(F ) ProbRAT (F → T ) =
qwt(T )

N + 1
.
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A exchanges with a .

If F has a DA corner, then there is a transition in the RAT chain from F that corresponds
to a swapping places with a in the ASEP. Let the type of F be W Y . By Lemma
3.4.5, we can assume that F has a DA tile at the DA corner. This tile contains a β or a q.
We describe these two cases below.

The DA corner tile contains a β.

We perform exactly the same operation as for the DE case containing a β. Once again, we
define ProbRAT (F → T ) = 1

N+1
. In all but the exceptional case, the weight of T equals the

weight of F . Therefore,

wt(F ) ProbRAT (F → T ) =
wt(T )

N + 1
.

In the special case, if F corresponds to a ASEP state W j for some j, and T
corresponds to the state W j+1, then we have wt(F ) = β wt(T ). Therefore,

wt(F ) ProbRAT (F → T ) =
β wt(T )

N + 1
.

The DA corner tile contains a q.

We perform exactly the same operation as for the DE case containing a q. Again,

wt(F ) ProbRAT (F → T ) =
qwt(T )

N + 1
.

A exchanges with a .

If F has an AE corner, then there is a transition in the RAT chain from F that corresponds
to a swapping places with a in the ASEP. Let the type of F be W Y . By Lemma
3.4.5, we can assume that F has an AE tile at the DA corner. This tile contains an α or a
q. We describe these two cases below.

The AE corner tile contains an α.

We perform exactly the same operation as for the DE case containing an α. Once again, we
define ProbRAT (F → T ) = 1

N+1
. In all but the exceptional case, the weight of T equals the

weight of F . Therefore,

wt(F ) ProbRAT (F → T ) =
wt(T )

N + 1
.

In the special case, if F corresponds to a ASEP state j Y for some j, and T corre-
sponds to the state j+1 Y , then we have wt(F ) = αwt(T ). Therefore,

wt(F ) ProbRAT (F → T ) =
αwt(T )

N + 1
.
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The AE corner tile contains a q.

We perform exactly the same operation as for the DE case containing a q. Again,

wt(F ) ProbRAT (F → T ) =
qwt(T )

N + 1
.

A lighter particle type exchanges with a heavier particle type.

We describe only the W Y → W Y transition, but the same holds true for W Y →
W Y and W Y → W Y if the corresponding letters are used. If F has an inner ED
corner, then there is a transition in the RAT chain from F that corresponds to a swapping
places with a in the ASEP. Let the type of F be W Y . Then to form the tableau T , we
simply append a DE tile to the outside of F , adjacent to the ED inner corner. We place a q
inside the tile, and thus obtain a valid filling T of type W Y with a q in its DE corner.

We define ProbRAT (F → T ) = q
N+1

. Therefore, since qwt(F ) = wt(T ), we have

wt(F ) ProbRAT (F → T ) =
wt(T )

N + 1
.

The operator pr is clearly a surjective map from the set Ψ(n,r) to Ωn
r . It is easy to see

by our description of the transitions on the RAT chain that it indeed projects to the ASEP
chain. Figure 3.21 shows a few transitions on some states of RAT of size (4, 1).
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Figure 3.21: Some of the transitions on some of the states in Ω4
1. All the transitions involving

the circled tableaux are included.
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Stationary probabilities of the RAT chain

We carefully summarize the transitions out of a RAT F (and consequently from the equiva-
lence class of F ), depending on the chosen corner at which the transition occurs. We will be
referring to these cases further on. First we make the following definitions. Let F have size
(n, r, k) and let λ = (λ1, . . . , λk) be the partition given by the lengths of the D-strips from
top to bottom. Assume that λ has at least one non-zero part.

Definition 3.4.8. We define λR be the indicator that equals 1 if F has an empty E-strip,
and 0 otherwise. We define λL be the indicator that equals 1 if F has n empty D-strip, and
0 otherwise.

Definition 3.4.9. We call a q-corner a corner that contains a q. (Refer to Definition 3.4.6
for the precise definition.) We call a top-most corner an α- or β-corner such that the length
of the D-strip containing it equals λ1. (If the corner in the top-most position contains a q, we
do not call it a top-most corner). We define the indicator δRβ which equals 1 if the top-most
corner contains a β, and 0 if it contains an α. Analogously, we call a bottom-most corner an
α- or β-corner such that the length of the row containing it equals the length of the smallest
non-zero row of λ. (If the corner in the bottom-most position contains a q, we do not call it
a bottom-most corner). We define the indicator δLα which equals 1 if the bottom-most corner
contains an α, and 0 if it contains a β. We call a middle corner an α- or β-corner that is
neither a top-most corner or a bottom-most corner (and not a q-corner).

Summary of transitions F → T

Denote by π(F → T ) the rate of transition from tableau F to T (where by rate we mean the
unnormalized probability). We obtain the following cases for the transitions from F to T .

1. For a transition at a middle corner, a top-most corner with δRβ = 1, or a bottom-most
corner with δLα = 1, we have wt(T ) = wt(F ), and π(F → F ) = 1.

2. For a transition at a top-most corner with δRβ = 0 such that the length of the E-strip
containing it is greater than 1, we have wt(T ) = wt(F ) and π(F → T ) = 1. Then the
top-most corner of T will be an α-corner.

3. For a transition at a bottom-most corner with δLα = 0 such that the length of the row
containing it is greater than 1, we have wt(T ) = wt(F ) and π(F → T ) = 1. Then the
bottom-most corner of T will be a β-corner.

4. For a transition at a top-most corner with δRβ = 0 such that the length of the E-strip

containing it is 1, we have wt(T ) = 1
α

wt(F ) and π(F → T ) = 1.

5. For a transition at a bottom-most corner with δLα = 0 such that the length of the
D-strip containing it is 1, we have wt(T ) = 1

β
wt(F ) and π(F → T ) = 1.
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6. For a transition at an empty E-strip, we have wt(T ) = αwt(F ) and π(F → T ) = α. T
will not have an empty E-strip, and it will have a top-most corner that contains a β.

7. For a transition at an empty D-strip, we have wt(T ) = β wt(F ) and π(F → T ) = β.
T will not have an empty D-strip, and it will have a bottom-most corner that contains
an α.

8. For a transition at an inner corner, we have wt(T ) = qwt(F ) and π(F → T ) = q.

9. For a transition at a q-corner, we have wt(T ) = 1
q

wt(F ) and π(F → T ) = 1.

Our main theorem is the following.

Theorem 3.4.10. Consider the RAT chain on Ψ(n,r), the RAT equivalence classes of size
(n, r). Fix a RAT F and its equivalence class ψ. Then the steady state probability of state
ψ is proportional to wt(F ).

Proof. To prove the theorem, it suffices to show that for each RAT F , the following detailed
balance condition holds. Let R be the set of RAT such that there exists a transition from
F to T ∈ R. Let S be the set of equivalence classes of RAT such that for each ψ ∈ S, there
exists some S ∈ ψ such that there is a transition from S to F . Though we actually work
with the equivalence classes, we write for simplicity S ∈ S.

wt(F )
∑
T∈R

π(F → T ) =
∑
S∈S

wt(S)π(S → F ). (3.10)

Let the RAT F have type W . First we treat the transitions going out of F to T ∈ R. By
the construction of the RAT chain, it is clear that there is a transition with probability 1 for
every corner (including the top-most-, bottom-most-, middle-, and q-corners), a transition
with probability α for an empty E-strip, a transition with probability β for an empty D-
strip, and a transition with probability q for every inner corner. These transitions directly
correspond to all the possible transitions out of the two-species ASEP state W . Suppose F
has C0 q-corners, C α- or β-corners, and I inner corners. Thus we obtain∑

T∈R
π(F → T ) = C + C0 + qI + αδL + βδR. (3.11)

For the transitions going into F from some S ∈ S, we observe that any transition from
one tableau to another ends with a q-corner or an α- or β-corner, an empty E-strip, an
empty D-strip, or an inner corner. Thus it is sufficient to examine all such properties of F
to enumerate all the possibilities for S ∈ S. We examine the pre-image of the cases for the
possible transitions going into F to obtain the following cases for S.

1. For a middle corner, a top-most corner with δRβ = 0, or a bottom-most corner with
δLα = 0, we have wt(S) = wt(F ) and π(S → F ) = 1. This is the inverse of Case 1 of
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Section 3.4. This gives a contribution of wt(F )(C − 2 + (1 − δRβ ) + (1 − δLα)) to the
right hand side (RHS) of the detailed balance equation.2

2. For a top-most corner with δRβ = 1 and δR = 0, we have a transition involving an

empty E-strip of S, so wt(S) = 1
α

wt(F ) and π(S → F ) = α. This is the inverse of
Case 2 of Section 3.4. This gives a contribution of α 1

α
wt(F )δRβ (1− δR) to the RHS of

the detailed balance equation.

3. For a bottom-most corner with δLα = 1 and δL = 0, we have a transition involving an
empty D-strip of S, so wt(S) = 1

β
wt(F ) and π(S → F ) = β. This is the inverse of

Case 3 of Section 3.4. This gives a contribution of β 1
β

wt(F )δLα(1− δL) to the RHS of
the detailed balance equation.

4. For a top-most corner with δRβ = 1 and δR = 1, there are two possibilities. For the
first, S could fall into Case 2 of Section 3.4, meaning that the top-most corner of
S is a β-corner, which results in the usual transition with wt(S) = wt(F ). For the
second possibility, S could fall into Case 4 of Section 3.4, meaning that the top-most
corner of S is an α-corner and the column containing it has length 1. In that case,
wt(S) = αwt(F ). In both situations, π(S → F ) = 1. We obtain a contribution of
wt(F )δRβ (δR + α(1− δR)) to the RHS of the detailed balance equation.

5. For a bottom-most corner with δLα = 1 and δL = 1, there are two possibilities. For the
first, S could fall into Case 3 of Section 3.4, meaning that the bottom-most corner of
S is an α-corner, which is the usual transition with wt(S) = wt(F ). For the second
possibility, S could fall into Case 5 of Section 3.4, meaning that S has a bottom-
most corner containing a β and the row containing it has length 1. In that case,
wt(S) = β wt(F ). In both situations, π(S → F ) = 1. We obtain a contribution of
wt(F )δLα (δL + β(1− δL)) to the RHS of the detailed balance equation.

6. For a q-corner, we have wt(S) = 1
q

wt(F ) and π(S → F ) = q. This is the inverse of

Case 9 of Section 3.4. We obtain a contribution of wt(F ) to the RHS of the detailed
balance equation.

7. For an inner corner, we have wt(S) = qwt(F ) and π(S → F ) = 1. This is the inverse
of Case 8 of Section 3.4. We obtain a contribution of qwt(F ) to the RHS of the detailed
balance equation.

We sum up the contributions to the RHS of the detailed balance equation to obtain∑
S∈S

wt(S)π(S → F ) = wt(F )(C + C0 + qI − δRβ − δLα + δRβ (1− δR) + δLα(1− δL)

+ δRβ (δR + α(1− δR)) + δLα(δL + β(1− δL))). (3.12)

2Note that if C < 2, the formulas we give have some degeneracies. However, it is easy to verify that
these do not cause any problems due to cancellation of all the degenerate terms.
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We see that after simplification, Equation 3.12 equals Equation 3.11, so indeed the desired
Equation 4.3 holds for “most” F , save for the easily-verified degenerate cases.

The proof above circumvents the use of the Matrix Ansatz, and is another way to prove
our main result of Theorem 3.2.
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Chapter 4

Combinatorics of the k-species ASEP

Following the study of the two-species ASEP, it is natural to study generalizations with k
species of particles. We describe one such process in this chapter. In Section 4.1 we describe
a generalization of the two-species ASEP to a k-species ASEP. In Section 4.2, we generalize
the two-species Matrix Ansatz of Uchiyama to a k-species Matrix Ansatz. In Section 4.3, we
provide a proof for Theorem 3.2.1 of the previous chapter by explicitly defining the matrices
that both provide the weight generating function of the rhombic alternative tableaux, and
also satisfy the Matrix Ansatz hypothesis. Our proofs are analogous to the proofs for the
two-species case. In Section 4.4, we define the k-rhombic alternative tableaux, which provide
an interpretation for the stationary probabilities of the k-species ASEP, and show that these
tableaux satisfy the k-species Matrix Ansatz.

Acknowledgements. I gratefully acknowledge Lauren Williams for her mentorship, and
also Sylvie Corteel and Xavier Viennot for many fruitful conversations. Corollary 4.4.8 was
a result of a very helpful conversation with Thomas McConville. I also thank the France-
Berkeley Fund and the NSF grant DMS-1049513 that supported this work.

4.1 The k-species ASEP

We now describe a generalization of the two-species ASEP to a k-species ASEP of a similar
flavor. In our new model, we consider k particle species of varying heaviness on a one-
dimensional lattice of size n. We call the heaviest particle a d particle, followed by a1 >
a2 > · · · > ak−1. For easier notation, we also introduce another particle which we call an e
particle to represent a hole, and we allow this to be the lightest particle in our set of species.
Thus, in our model, every location on the lattice contains exactly one particle out of the
set of species {d, a1, . . . , ak−1, e}. Moreover, the d particle is allowed to “enter” on the left
at location 1 by replacing an e particle at that location (with rate α), and it is allowed to
“exit” on the right at location n by being replaced with an e particle at that location (with
rate β). The particles of type ai are not allowed to enter or exit, so we fix the numbers of
particles of those species to be ri for i = 1, . . . , k − 1.
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For two particle types A and B, we write A > B (respectively, A < B or A = B) to
mean that A is a heavier particle type than B (respectively, A is lighter than B, or they
are equal). The dynamics in the bulk are the following: a heavier particle of species A can
swap with an adjacent lighter particle of species B with rate 1 if A is to the left of B, and
with rate 0 ≤ qAB ≤ 1 if A is to the right of B. This means that heavier particles have a
tendency to move to the right of the lattice. Our notation is shown in the table below:

A B qAB
d ai 1 ≤ i ≤ k − 1 q0i

d e q0∞
ai aj 1 ≤ j < i < k − 1 qij
ai e 1 ≤ i ≤ k − 1 qi∞.

More precisely, our process is a Markov chain with states represented by words of length
n in the letters {d, a1, . . . , ak−1, e}. The transitions in the Markov chain are the following,
with X and Y representing arbitrary words in these letters.

XaieY
1


qi∞

XeaiY XdeY
1


q0∞

XedY XdaiY
1


q0i
XaidY XaiajY

1


qij
XajaiY

eX
α
⇀ dX Xd

β
⇀ Xe

for 1 ≤ i ≤ k − 1 and 1 ≤ j < i.
where by X

u
⇀ Y we mean that the transition from X to Y has probability u

n+1
, n being

the length of X (and also Y ).

Definition 4.1.1. For a given k-species ASEP, we fix n to be the size of the lattice and ri
to be the number of particles of species ai for 1 ≤ i ≤ k − 1. We define Ωn

r1,...,rk−1
to be the

set of words of length n in the letters {d, a1, . . . , ak−1, e} with ri instances of the letter ai for
each i. We also define

Ωn =
⋃

r1,...,rk−1

Ωn
r1,...,rk−1

.

Remark 4.1.2. In Section 4.2, we will provide a Matrix Ansatz solution for the model
with different parameters qi for every type of transition. However, so far we only have nice
combinatorics when all the qi’s are set to equal a single constant q. Furthermore, it is easy
to see that if k = 2, we recover the two-species ASEP that we described in the previous
section, and if k = 1, we recover the original ASEP.

4.2 The Matrix Ansatz for the k-species ASEP

Building on a Matrix Ansatz solution for the usual ASEP by Derrida at. al. [8] and a
more general solution for the two-species ASEP by Uchiyama in [19], we have the following
generalization for the k-species process.
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Theorem 4.2.1. Let W = W1 . . .Wn with Wi ∈ {d, a1, . . . , ak−1, e} for 1 ≤ i ≤ n represent
a state of the k-species ASEP in Ωn

r1,...,rk−1
. Suppose there are matrices D, A1, . . . , Ak−1, and

E and a row vector 〈w| and a column vector |v〉 (with 〈w||v〉 = 1) which satisfy the following
conditions

DE− q0∞ED = D+E, DAi− q0iAiD = Ai, AiE− qi∞EAi = Ai, AiAj− qijAjAi = 0,
(4.1)

〈w|E =
1

α
〈w|, D|v〉 =

1

β
|v〉, (4.2)

then

Prob(W ) =
1

Zn,r1,...,rk−1

〈w|
n∏
i=1

D 1(Wi=d) +E 1(Wi=e) +
k−1∑
i=1

Ai 1(Wi=ai) |v〉

where Zn,r1,...,rk−1
is the coefficient of yr11 . . . y

rk−1

k−1 in

〈w|(D + y1A1 + · · ·+ yk−1Ak−1 + E)n|v〉
〈w|Ark−1

k−1 · · ·Ar11 |v〉
.

Proof. For W a word of length n, we define the weight

fn(W ) = 〈w|
n∏
i=1

D 1(Wi=d) +E 1(Wi=e) +
k−1∑
i=1

Ai 1(Wi=ai) |v〉.

We show that fn(W ) satisfies the detailed balance conditions

fn(W )
∑
W→V

Pr(W → V ) =
∑
X→W

fn(X) Pr(X → W ) (4.3)

for each W ∈ Ωn, where by Pr(W → V ) and Pr(X → W ) we denote the probabilities of
the transitions W → V and X → W respectively. This would imply that the stationary
probability of state W is proportional to fn(W ), which would complete the proof.

We observe that for fixed W , the only terms fn(X) Pr(X → V ) for some X, V ∈ Ωn

appearing in (4.3), are precisely the terms:

i. fn(eW2 . . .Wn)α,

ii. fn(W1 . . .Wn−1d)β,

iii. and {fn(W1 . . .Wi−1BCWi+2 . . .Wn) · 1,−fn(W1 . . .Wi−1CBWi+2 . . .Wn) · qBC} where
WiWi+1 = BC for B > C over 1 ≤ i ≤ n− 1.

This is because these terms are precisely the terms out of which possible transitions can
occur to go into or out of W . Moreover, whether the terms of (iii.) appear on the left
hand side of Equation (4.3) or the right hand side is determined by whether WiWi+1 = BC
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or WiWi+1 = CB for B > C. In other words, the terms in the bulk are given a sign
of (−1)1(Wi+1>Wi) for each i, and the boundary terms of (i.) and (ii.) are given a sign of
(−1)1(W1=d) and (−1)1(Wn=e) for the left and right boundaries, respectively.

Thus Equation (4.3) can be rewritten as the following:

1(W1=d or e)(−1)1(W1=d)αfn(eW2 . . .Wn)

+ 1(Wn=d or e)(−1)1(Wn=e)βfn(W1 . . .Wn−1d)

+
n−1∑
i=1

1(Wi 6=Wi+1)(−1)1(Wi+1>Wi)

(
fn(W1 . . .Wi−1BiCiWi+2 . . .Wn)

− qBiCi
fn(W1 . . .Wi−1CiBiWi+2 . . .Wn)

)
(4.4)

where in the above we use Bi := max(Wi,Wi+1) and Ci := min(Wi,Wi+1).
The reduction rules of Equation (4.1) or (4.2) apply wheneverW1 = d or e, orWn = d or e,

or whenever Wi 6= Wi+1 for 1 ≤ i < n. We obtain the following.

fn(W ′deW ′′)− q0∞fn(W ′edW ′′) = fn−1(W ′dW ′′) + fn−1(W ′eW ′′), (4.5)

fn(W ′daiW
′′)− q0ifn(W ′aidW

′′) = fn−1(W ′aiW
′′), (4.6)

fn(W ′aieW
′′)− qi∞fn(W ′eaiW

′′) = fn−1(W ′aiW
′′), (4.7)

fn(W ′deW ′′)− qijfn(W ′edW ′′) = 0, (4.8)

αfn(eW ′′) = fn−1(W ′′), (4.9)

βfn(W ′d) = fn−1(W ′). (4.10)

For W = W1 . . .Wn, we introduce the notation f in−1(W ) = fn−1(W1 . . . Ŵi . . .Wn) to be
the weight of the word W with the letter Wi cut out. With this notation, using the reduction
rules of Equation (4.5), Equation (4.4) becomes the sum a0 + a1 + . . .+ an−1 + an, where

a0 =

{
f 1
n−1(W ) W1 = e

−f 1
n−1(W ) W1 = d

, an =

{
fnn−1(W ) Wn = d

−fnn−1(W ) Wn = e
,

and ai =



f in−1(W ) + f i+1
n−1(W ) if WiWi+1 = de or ed

f in−1(W ) if WiWi+1 = dai

−f i+1
n−1(W ) if WiWi+1 = aid

f i+1
n−1(W ) if WiWi+1 = aie

−f in−1(W ) if WiWi+1 = eai

for 1 ≤ i ≤ n− 1. (4.11)

Notice that for all i > j, the terms fn(W ′aiajW ′′)− qi,jfn(W ′ajaiW ′′) = 0.
Suppose there are a total of s transitions in the bulk. For j = 1, . . . , s, label the location

i where the j’th transition occurs (i.e. the j’th i for which Wi 6= Wi+1) by Wtj . The strategy
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of our proof is to show that all the fn−1 terms that arise from the transitions at the locations
{tj}1≤j≤s cancel with other terms Equation (4.11) with an opposite sign. We describe these
cancellations in the cases that follow.

(a.) WtjWtj+1 = de, so the contribution of terms from this transition is f
tj
n−1(W )+f

tj+1
n−1 (W ).

Then Wtj+1
Wtj+1+1 is necessarily either ed or eat for some t, in which case it contributes

the term −f tj+1

n−1 (W ). Similarly, Wtj−1
Wtj−1+1 is necessarily either de or aue for some

u, in which case it contributes the term −f tj−1+1
n−1 (W ). However, the former of these

cancels with the term f
tj
n−1(W ), and the latter cancels with f

tj+1
n−1 (W ), as desired.

There are two exceptions to the above. First, if j = 1, then there is no tj−1 term.

However, in this case, W necessarily begins with a d, and so the f
tj
n−1(W ) term cancels

with the left boundary term −f 1
n−1(W ). Second, if j = n, then there is no tj+1 term.

However, in this case, W necessarily ends with an e, and so the f
tj+1
n−1 (W ) term cancels

with the right boundary term −fnn−1(W ).

(b.) WtjWtj+1 = ed, so the contribution of terms from this transition is −f tjn−1(W ) −
f
tj+1
n−1 (W ). Then Wtj−1

Wtj−1+1 is necessarily either de or ate for some t, in which case

it contributes the term f
tj−1+1
n−1 (W ). Similarly, Wtj+1

Wtj+1+1 is necessarily either de or

dau for some u, in which case it contributes the term f
tj+1

n−1 (W ). However, the former

of these cancels with the term −f tjn−1(W ), and the latter cancels with −f tj+1
n−1 (W ), as

desired.

There are two exceptions to the above. First, if j = 1, then there is no tj−1 term.

However, in this case, W necessarily begins with an a, and so the −f tjn−1(W ) term
cancels with the left boundary term f 1

n−1(W ). Second, if j = n, then there is no tj+1

term. However, in this case, W necessarily ends with a d, and so the −f tj+1
n−1 (W ) term

cancels with the right boundary term fnn−1(W ).

The rest of the cases are similar. Below, we describe the cancellations that occur for
each transition location.

(c.) WtjWtj+1 = dat, so the contribution of terms from this transition is f
tj
n−1(W ). This term

cancels with the term −f tj−1+1
n−1 (W ) since Wtj−1

Wtj−1+1 must equal ed or aud for some
u.

(d.) WtjWtj+1 = atd, so the contribution of terms from this transition is −f tj+1
n−1 (W ). This

term cancels with the term f
tj+1

n−1 (W ) since Wtj+1
Wtj+1+1 must equal de or dau for some

u.

(e.) WtjWtj+1 = ate, so the contribution of terms from this transition is f
tj+1
n−1 (W ). This term

cancels with the term −f tj+1

n−1 (W ) since Wtj+1
Wtj+1+1 must equal ed or eau for some u.
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(f.) WtjWtj+1 = eat, so the contribution of terms from this transition is −f tjn−1(W ). This

term cancels with the term f
tj−1+1
n−1 (W ) since Wtj−1

Wtj−1+1 must equal de or aue for some
u.

The cancellations of the boundary terms are treated as the exceptions in cases of (a) and
(b).

It is easy to check from the above that every term cancels with another term in Equation
(4.4), so indeed, it equals zero. Thus the function fn satisfies the detailed balance in Equation
(4.3), as desired.

4.3 Matrix Ansatz proof of Theorem 3.2

In this section we return to the two-species ASEP and give a new proof of Theorem 3.2, the
main result of Chapter 3, by explicitly defining matrices D, A, and E and row vector 〈v|
and column vector |w〉 that satisfy the hypotheses of a slightly more general Matrix Ansatz,
and also have a combinatorial interpretation in terms of the rhombic alternative tableaux.
This construction will serve as a warm-up for the proof of the more general analogue of the
theorem for the k-species ASEP, which we provide in Section 4.4.

Definition of our matrices

Our matrices are infinite and indexed by a pair of non-negative integers in both row and
column, so D = [D(i,j)(u,v)]i,j,u,v≥0, A = [A(i,j)(u,v)]i,j,u,v≥0, and E = [E(i,j)(u,v)]i,j,u,v≥0. Our
vectors are also indexed by a pair of integers, so 〈v| = [v(i,j)]i,j≥0 and |w〉 = [w(u,v)]

T
u,v≥0.

We define v(i,j) = 1 for i = 0, j = 0, and 0 for all other indices. We define w(u,v) = 1 for
all indices. Also, let

D(i,j)(i+1,j) =
1

β
(4.12)

and D(i,j)(k,`) = 0 for all other indices i, j, k, `. Let

A(i,j)(u,j+1) =

(
i

u

)
quβi−u (4.13)

for 0 ≤ u ≤ i and A(i,j)(k,`) = 0 for all other indices i, j, k, `. Finally, let

E(i,j)(u,j) =
βi−u

α

[(
i

u

)
qu(qj + α[j]q) + α

u−1∑
w=0

(
i− u+ w

i− u

)
qw

]
(4.14)

for 0 ≤ u ≤ i and E(i,j)(k,`) = 0 for all other indices i, j, k, `. (Here [j]q = qj−1 + . . .+ 1.)
Since (i, j) specify the row of the matrices, and (u, v) specify the columns, multiplication

is defined as
(MN)(i,j),(k,`) =

∑
u,v

M(i,j),(u,v)N(u,v),(k,`).
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Note that in the case of the matrices D, A, and E of Equations (4.12), (4.13), and (4.14), all
products are given by finite sums, since the matrix entries are 0 for u ≥ i+ 1 or v ≥ j + 1.

To facilitate our proof, we provide a more flexible Matrix Ansatz that generalizes Theorem
3.0.1 with the same argument as in an analogous proof for the ordinary ASEP of Corteel
and Williams [5, Theorem 5.2]. For consistency with the k-species ASEP notation, in this
section we denote by a d particle, by an a particle, and by an e particle. For a word
W ∈ {d, a, e}n with r a’s, as before we define unnormalized weights f(W ) which satisfy

Pr(W ) = f(W )/Zn,r

where Zn,r =
∑

W ′ f(W ′) where the sum is over all words W ′ ∈ {d, a, e} of length n and
with r a’s.

Theorem 4.3.1. Let λ be a constant. Let 〈w| and |v〉 be row and column vectors with
〈w||v〉 = 1. Let D̃, Ẽ, and Ã be matrices such that for any words X and Y in {D̃, Ã, Ẽ}
representing a product of those matrices in the corresponding order, the following conditions
are satisfied:

I. 〈w|X(D̃Ẽ − qẼD̃)Y |v〉 = λ〈w|X(D̃ + Ẽ)Y |v〉,

II. 〈w|X(D̃Ã− qÃD̃)Y |v〉 = λ〈w|XÃY |v〉,

III. 〈w|X(ÃẼ − qẼÃ)Y |v〉 = λ〈w|XÃY |v〉,

IV. β〈w|XD̃|v〉 = λ〈w|X|v〉,

V. α〈w|ẼY |v〉 = λ〈w|Y |v〉.

Let W = W1 . . .Wn with Wi ∈ {d, a, e} for 1 ≤ i ≤ n represent a state of the two-species
ASEP of length n with r a’s. Then

f(W ) =
1

〈w|Ãr|v〉
〈w|

n∏
i=1

D̃ 1(Wi=d) +Ã1(Wi=a) +Ẽ 1(Wi=e) |v〉.

Proof. The proof of Theorem 4.3.1 follows exactly that of [5, Theorem 5.2]. Note that the
above implies that

Zn,r = [yr]
〈w|(D̃ + yÃ+ Ẽ)n|v〉

〈w|Ãr|v〉
.
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Combinatorial interpretation of the matrices in terms of tableaux

Let W be an arbitrary word in {d, a, e} with rhombic diagram Γ(W ) with the maximal tiling
Tmax, and let weight(W ) be the weight generating function for fi(W, Tmax).

Definition 4.3.2. We call a D-strip the section of a west-strip to the left of one of the
D-edges in the strip. A free D-strip is a D-strip that does not contain a β.

Similarly, we call an E-strip the section of a north-strip to above one of the E-edges in
the strip. A free E-strip is an E-strip that does not contain an α.

A free DA tile is one that is contained in a free D-strip. A free AE tile is one that is
contained in a free E-strip. A free DE tile is one that is contained in a free D-strip and a
free E-strip.

For a word W ∈ {d, a, e}, we fix the maximal tiling Tmax of Γ(W ). We will show that
the matrices D, A, and E of Equations (4.12), (4.13), and (4.14) represent the addition of
a D-edge, an A-edge, and an E-edge to the bottom of Γ(W ) to form the rhombic diagram
Γ(Wd), Γ(Wa), and Γ(We) respectively. Recall that these matrices have rows indexed by
the pair (i, j) and columns indexed by the pair (u, v). We let i represent the number of free
D-strips in a tableau F ∈ fi(W, Tmax(W )), and j the number of a’s in W . For the columns,
we let u represent the number of free D-strips in a tableau F ′ ∈ fi(Wd, Tmax(Wd)) (and
respectively, Γ(Wa) and Γ(We)), and v the number of a’s in Wd (and respectively, Wa and
We).

Recall from Definition 3.2.3 that x(W ) is a word in {D,A,E} representing a matrix
product corresponding to the two-species ASEP word W in the letters {d, a, e}, where D,
A, and E correspond to d, a, and e respectively.

Theorem 4.3.3. Let W be a word in {d, a, e}, and let X = x(W ). Then:

• X(i,j)(u,v) is the generating function for all ways of adding |W | new edges of type W
to the southwest boundary of a rhombic alternative tableau with i free D-strips and
j A-strips, to obtain a new rhombic alternative tableau with u free D-strips and v
A-strips.

• (〈w|X)(u,v) is the generating function for rhombic alternative tableaux of type W , which
have u free D-strips and v A-strips.

• 〈w|X|v〉 is the generating function for all rhombic alternative tableaux of type W .

We prove Theorem 4.3.3 with the following lemma, which says that the matrices D, A,
and E of Equations (4.12), (4.13), and (4.14) are “transfer matrices” for building rhombic
alternative tableaux with the maximal tiling.

Lemma 4.3.4. For the matrices D, A, and E of Equations (4.12), (4.13), and (4.14),

• D(i,j)(u,v) is the generating function that represents the addition of a D-edge,
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Figure 4.1: Adding a (a) d, (b) a, or (c) e to the end of W .

• A(i,j)(u,v) is the generating function that represents the addition of an A-edge, and

• E(i,j)(u,v) is the generating function that represents the addition of an E-edge

to the southwest corner of a rhombic alternative tableau with the maximal tiling with i free
D-strips and j A-strips, resulting in a rhombic alternative tableau with the maximal tiling
with u free D-strips and j A-strips.

Proof. We describe the possible rhombic alternative tableaux that arise from the addition
of a D-edge, an A-edge, and an E-edge respectively to the southwest corner of an existing
RAT of shape W with the maximal tiling, and i free D-strips and j A-strips.

The addition of the D-edge to Γ(W ) does not affect the interior of the tableau, as in the
example of Figure 3.5 (a), and the tiling of the new tableau is clearly still a maximal one.
Thus for any F ∈ fi(W, Tmax(W )), we obtain F ′ ∈ fi(Wd, Tmax(Wd)) whose weight simply
increases by α, the weight of the new D-edge. We have thus wt(F ′) = αwt(F ). Moreover,
the addition of the D-edge adds exactly one free D-strip to F . Recall

D(i,j)(i+1,j) =
1

β

and 0 for all other indices, so we obtain the desired entry in the matrix D.

The addition of the A-edge and a vertical strip of adjacent DA tiles to the left boundary
of Tmax(W ) results in a maximal tiling of Γ(Wa), as in the example of Figure 3.5 (b). Let
us consider the entry (i, j), (u, j + 1) of A for 0 ≤ u ≤ i. Each free DA tile contains either a
q or a β with no restrictions on their positions, for a total of i− u β’s and u q’s. Thus there
are precisely

(
i
u

)
ways to choose such a filling of the new tiles. Every such filling contributes
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a weight of quβi−u. Wa now has j + 1 a’s, and it is clear that all other entries of A are zero.
Recall

A(i,j)(u,j+1) =

(
i

u

)
quβi−u

for 0 ≤ u ≤ i and 0 for all other indices, so we obtain the desired entry in the matrix A.

The addition of the E-edge and a vertical strip of adjacent DE tiles followed by j adjacent
AE tiles to the left boundary of Tmax(W ) results in a maximal tiling of Γ(We), as in the
example of Figure 3.5 (c). Let us call this strip of new tiles the new E-strip. There are three
possible cases for this new E-strip. For the following, let us consider the entry (i, j), (u, j) of
E for 0 ≤ u ≤ i.

Case 1: the new E-strip does not contain an α. Then each of the j AE tiles must
contain a q, and each of the i free DE tiles contains either a q or a β, with no restrictions
on their positions, with exactly i− u β’s and u q’s. This gives a total weight contribution of(
i
u

)
βi−uqu+j.
Case 2: the new E-strip contains an α in one of the AE tiles. Then each of the AE tiles

below that α must contain a q, and each of the free i DE tiles contains either a q or a β,
with no restrictions on their positions, with exactly i − u β’s and u q’s. This gives a total
weight contribution of

(
i
u

)
αβi−uqu[j]q.

Case 3: the new E-strip contains an α in one of the free DE tiles. Then exactly i − u
of the free DE tiles below the α must contain a β, and u of them contain a q. This gives a
total weight contribution of βi−uα

∑u−1
w=0

(
i−u+w
i−u

)
qw.

Recall

E(i,j)(u,j) =
βi−u

α

[(
i

u

)
qu(qj + α[j]q) + α

u−1∑
w=0

(
i− u+ w

i− u

)
qw

]
for 0 ≤ u ≤ i and 0 for all other indices, so we obtain the desired entry in the matrix E.

Proof of 4.3.3. The first point is immediate from Lemma 4.3.4.
The second point is due to the following: 〈w| is a row vector for which the entry with

index (0, 0) is 1, and the rest are 0. By the first point, (〈w|X)(0,0),(u,v) is, in particular, the
generating function for adding |W | new edges of type W to the southwest boundary of a
trivial RAT of size 0, to result in a RAT of type W with the maximal tiling with u free
D-strips and v A-strips.

The third point is due to the following: |v〉 is a column vector with every entry equal to
1. By the second point, the generating function for all possible RAT in fi(W, Tmax(W )) is
the sum of RAT of type W over all choices for the number of A-strips and free D-strips in
the fillings. In other words, it is the sum over all (u, v) of (〈w|X)(0,0),(u,v). It follows that
〈w|X|v〉 is the desired generating function.
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Combinatorial proof that our matrices satisfy the Matrix Ansatz

Using Theorem 4.3.3, we provide simple combinatorial proofs that our matrices satisfy the
equations of Theorem 4.3.1. Let W be a word in {d, a, e} with Γ(W ) its rhombic diagram.
In this subsection, when we say “addition of a d (or a or e) to W”, we mean adding a D-edge
(or A- or E-edge) to the southwest point of Γ(W ), as described in the preceding subsection.

I. For D,E of Equations (4.12), (4.14), we have DE − qED = αβ(D + E).
By our construction, consecutive addition of a d and a e to W results in a DE corner

with a DE corner tile as the bottom-most tile of the E-strip that contains it (as well as the
right-most tile of the D-strip that contains it). This DE corner tile contains an α, β, or q.

• If the DE corner tile contains an α, then the rest of the E-strip containing this tile
must be empty. Thus the entire E-strip has weight αβ, and the rest of the tableau has
the same weight as if the DE were replaced by a D-edge (with the same filling in the
corresponding tiles).

• If the DE corner tile contains a β, then the rest of the D-strip containing this tile must
be empty. Thus the entire D-strip has weight αβ, and the rest of the tableau has the
same weight as if the DE were replaced by an E-edge (with the same filling in the
corresponding tiles).

• If the DE corner tile contains a q, then this tile has no effect on the rest of the tableau
which has the same weight as if the D- and E-edges were replaced by E- and D-edges
(with the same tiling and filling), and the tile itself has weight q.

Combining the above cases, we obtain that DE = qED + αβ(D + E), as desired.

II. For D,A of Equations (4.12), (4.13), we have DA− qAD = αβA.
By our construction, consecutive addition of a D-edge and an A-edge results in a DA

corner with a DA corner tile as the right-most tile of the D-strip that contains it. This DE
corner tile contains a β or q.

• If the DA corner tile contains a β, then the rest of the D-strip containing this tile must
be empty. Thus the entire D-strip has weight αβ, and the rest of the tableau has the
same weight as if the DA were replaced by an A-edge (with the same filling in the
corresponding tiles).

• If the DA corner tile contains a q, then this tile has no effect on the rest of the tableau
which has the same weight as if the DA were replaced by an AD (with the same tiling
and filling), and the tile itself has weight q.

Combining the above cases, we obtain that DA = qAD + αβA, as desired.

III. For A,E of Equations (4.13), (4.14), we have AE − qEA = αβA.
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Definition 4.3.5. We call an AE strip the region of the rhombic diagram that corresponds
to a maximal A-strip together with an adjacent maximal E-strip. (By maximal A- and
E-strips, we mean A- and E-strips as they would appear in a maximal tiling of a rhombic
diagram, i.e. a strip of adjacent DA tiles for the A-strip as in Figure 4.1 (b), and a vertical
strip of adjacent DE tiles followed by a strip of adjacent AE tiles for the E-strip as in Figure
4.1 (c).) We allow any valid tiling for the AE strip, and we call an AE strip maximal if
it has the maximal tiling, and we call it minimal if it has the minimal tiling. Note that a
minimal AE strip has an AE corner tile in the AE corner.

By our construction, consecutive addition of an A-edge and an E-edge results in a max-
imal AE strip. For our proof, we consider the corresponding minimal AE strip. We apply
a series of flips to convert the maximal AE strip to a minimal AE strip, and we consider
the contents of its AE corner tile. This AE corner can contain an α or q. If the AE corner
tile contains an α, then the rest of the E-strip containing this tile must be empty. Thus
the entire E-strip has weight αβ, and the rest of the tableau has the same weight as if the
E-strip were removed entirely. This operation is the same as if in the original tableau, the
AE were replaced by an A-edge (with the same filling in the corresponding tiles).

For the other case, if the AE corner tile contains a q, then this tile has no effect on the
rest of the tableau. Thus the weight of the tableau with the exception of the AE corner tile
is the same as the weight of a tableau with the same tiling and filling with the AE replaced
by an EA. Moreover, this new tableau (with the AE corner tile removed from the minimal
AE strip) is in fact the maximal tableau that corresponds to replacing the AE by an EA.
Thus we have as desired, AE = qEA+ αβA from these two cases.

Remark 4.3.6. It is also possible to directly compute the (i, j), (u, v) entry of each term of
the equations of Theorem 4.3.1, and show that equality holds in each case.

4.4 k-rhombic alternative tableaux

In this section, we introduce a combinatorial object that generalizes the RAT to provide an
interpretation for the probabilities of the k-species ASEP. This object, called the k-rhombic
alternative tableau (or k-RAT) is of the same flavor as the RAT, and is similarly defined as
follows.

Definition of the k-rhombic alternative tableaux

To a word W ∈ Ωn
r1,...,rk−1

, we associate a k-rhombic diagram Γ(W ) as follows.

Definition 4.4.1. Let W ∈ Ωn
r1,...,rk−1

, and let r0 be the number of e’s and rk the number
of d’s in W . Let an E-edge be a unit edge oriented in the direction −π. Let a D-edge be
a unit edge oriented in the direction −π/2. Let an Ai-edge be a unit edge oriented in the

direction − (k+i)π
2k

(see Figure 4.2). Define P1(W ) to be the lattice path composed of the



CHAPTER 4. COMBINATORICS OF THE k-SPECIES ASEP 76

e ak−1 a1 d

Figure 4.2: E-edge, Ak−1-edge, . . ., A1-edge, D-edge

E-, A1-, . . . , Ak−1-, and D-edges, placed end to end in the order the corresponding letters
appear in the word W . Define P2(W ) to be the path obtained by placing in the following
order: r0 E-edges, r1 A1-edges, r2 A2 edges, and so on, up to rk−1 Ak−1-edges, and then
rk D-edges. The k-rhombic diagram Γ(W ) is the closed shape that is identified with the
region obtained by joining the northwest and southwest endpoints of P1(W ) and P2(W ) (see
Figure 4.3).

Define a lattice path given by W to be composed of the edges in the order they appear
in the word X, and let us associate this lattice path with the southeast boundary of our
rhombic diagram. We complete the path to form the diagram by drawing in the following
order: to connect the top-most corner of the lattice path to its bottom-most corner.

a2
d

a1
e

a2
a1

ee
d

P2

P1

Figure 4.3: Γ(a2da1ea2a1eed) defined by southeast boundary P1 and northeast boundary P2,
with a maximal tiling.

Definition 4.4.2. A DE tile is a rhombus with D and E edges. A DAi tile is a rhombus
with D and Ai edges. An AiE tile is a rhombus with Ai and E edges. An AiAj tile is
a rhombus with Ai and Aj edges for i > j (see Figure 4.4). We impose on the tiles the
following partial ordering: AjX < AiX

′ < DX ′′, and XE < XAj < XAi < XD for i > j
and for any edges X,X ′, X ′′. If tile C ¡ tile D according to our ordering, we say D is heavier
than C.

Definition 4.4.3. A maximal tiling on a k-rhombic diagram is one in which tiles are always
placed from southeast to northwest, and priority is always given to the “heaviest” tiles.
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d
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Figure 4.4: A DE-tile, DAi-tile, AiE-tile, and AiAj-tile (with i < j)
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Figure 4.5: (a) E-strips and (b) D-strips.

Define a maximal corner to be a corner on P1(W ) whose edges A and B are such that for
any other corner on that diagram with edges C and D, AB ≥ CD. The canonical way to tile
the rhombic diagram with a maximal tiling would be to pick a maximal corner with some
edges A and B, and place an AB tile adjacent to that corner. The rest of the surface would
then itself be a rhombic diagram with the same P2. We proceed to tile that surface in the
same manner until the untiled region has area zero. It is easy to see that such a construction
results in a maximal rhombic tiling of the k-rhombic diagram. Let us call this tiling T (W ).

Definition 4.4.4. An E-strip is a maximal strip of adjacent tiles whose edge of adjacency
is an E-edge, as in Figure 4.5 (a). A D-strip is a maximal strip of adjacent tiles whose edge
of adjacency is a D-edge, as in Figure 4.5 (b). (This definition is the same for the k-RAT as
it is for the RAT).

We now define a filling of T (W ) with α’s and β’s as follows.

Definition 4.4.5. A filling of a k-rhombic alternative tableau (k-RAT) is defined by the
following rules.

• A DE-tile is allowed to be empty or contain α or β.

• A DAi tile is allowed to be empty or contain β, for each i.

• An AiE tile is allowed to be empty or contain α, for each i.

• An AiAj tile must be empty, for each i > j.

• Any tile in the same E-strip and above an α must be empty.
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• Any tile in the same D-strip and left of a β must be empty.

a2
d

a1
e

a2
a1

ee
d

q

q
q

α

β

q
q

α

q

q

q

Figure 4.6: A 3-RAT of type a2da1ea2a1eed of weight α4β4q8.

Denote the set of fillings of T (W ) by fi(W ). We assign weights to a filling F ∈ fi(W )
from the rules above by placing a q in each tile that is not forced to be empty by some α
below it in the same E-strip, or some β to the right in the same D-strip. Figure 4.6 shows
an example of a 3-rhombic alternative tableau.1

Definition 4.4.6. Let W ∈ Ωn, and t be the number of d’s and ` the number of e’s in W .
For F ∈ fi(W ), define the weight wt(F ) to be the product of the symbols in the filling of F
times αtβ`.

Define
Zn,r1,...,rk−1

=
∑
W

∑
F∈fi(W )

wt(F )

to be the sum of the weights over all k-RAT corresponding to states in Ωn
r1,...,rk−1

. Our main
result for the k-RAT is the following, which we will prove in the next section.

Theorem 4.4.7. Let fi(W ) denote the set of fillings of the rhombic diagram Γ(W ) with the
maximal tiling, and let wt(F ) denote the weight of a filling in fi(W ).Then the stationary
probability of state W of the k-species ASEP is

1

Zn,r1,...,rk−1

∑
F∈fi(W )

wt(F ).

Corollary 4.4.8. Let T ′ be any tiling of the rhombic diagram Γ(W ) associated to a state
W of the k-species ASEP. Let fi(W, T ′) denote the set of fillings of tiling T ′. Then the
stationary probability of state W of the k-species ASEP is

1

Zn,r1,...,rk−1

∑
F∈fi(W,T ′)

wt(F ).

1We allow the parameters qBC that represent swapping rates between B-type and C-type particles to
vary in Section 4.2. However, to keep the combinatorics “nice”, we fix all these parameters to equal a single
constant q.
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Remark 4.4.9. For k = 2, the corollary follows from a special case of Proposition 3.1.9 of
Chapter 3.

Proof of Corollary 4.4.8. We extend the proof of Proposition 3.1.9 for k ≥ 3. Our proof is
structured as follows. Let the notion of a flip on a k-RAT be precisely the same as for a
2-RAT, and let W be a word representing a state of the k-species ASEP. First we show that
if two tilings T and T ′ of Γ(W ) differ by a single flip, then∑

F∈fi(W,T )

wt(F ) =
∑

F∈fi(W,T ′)
wt(F ).

Next, we show that any tiling T can be obtained from Tmax by some series of flips. The
corollary follows from Theorem 4.4.7.

The proof of the first point is in fact precisely the same as the proof of Lemma 3.1.9. We
define the transformation φ on some hexagon h of T and the symbols contained in its filling.
There are four cases for φ on a k-RAT, depending on the type of h on which the flip occurs.
These cases are:

i. h is composed of a D-edge, an Ai-edge, and an E-edge.

ii. h is composed of a D-edge, an Ai-edge, and an Aj-edge with j > i.

iii. h is composed of an Ai-edge, an Aj-edge, and an E-edge with j > i.

iv. h is composed of an Ai-edge, an Aj-edge, and an Ak-edge with k > j > i.

Case (i.) is a special case of a weight-preserving flip on a 2-RAT of Definition 3.1.19,
whose construction is also given in Figure 3.12. (This applies to our case by replacing the
A-edge in the 2-RAT by the Ai-edge.)

In Case (iv.), there is a single filling of h, where each tile must contain a q. The flip from
h to φ(h) preserves this filling, and so is trivially weight-preserving.

Cases (ii.) and (iii.) are symmetric, so we only do the proof for Case (ii.). Since the AiAj
tile must contain a q, there are four possible fillings for h: the D-strip is empty since there is
a β in the same D-strip to the right, the D-strip contains a single β, the D-strip contains a
q followed by a β, and the D-strip contains two q’s. It is easy to check that in each of these
four cases, the involution φ is indeed weight-preserving.

Thus for a single flip, φ indeed gives a weight-preserving involution on the fillings of a
k-RAT.

Now we show that any tiling T can be obtained by some series of flips from Tmax. We
obtain this by referring to the classical bijection of rhombic tilings of a convex shape with
permutations of multi-words.

Therefore, for any tiling T , the weight generating function of the fillings of T is well-
defined as weight(W ).



CHAPTER 4. COMBINATORICS OF THE k-SPECIES ASEP 80

Matrix Ansatz proof for the k-RAT

We will prove Theorem 4.4.7 using the same strategy as in Section 4.3 for the RAT.
We provide matrices D,E,A1, . . . , Ak−1 that correspond to the addition of a D-edge, E-

edge, or ai-edge for 1 ≤ i ≤ k − 1 to the bottom of the path corresponding to a word W of
length n to form a new rhombic diagram with a maximal tiling of size n+1 that corresponds
to the word Wd (or We, or Wai for 1 ≤ i ≤ k − 1 respectively). For λ = αβ, we show that
these matrices satisfy the Matrix Ansatz relations

DE − qED = λ(D + E),

DAi − qAiD = λAi,

AiE − qEAi = λAi,

AiAj = qAjAi for i > j. (4.15)

The k-species Matrix Ansatz of Theorem 4.2.1 would then imply that the steady state proba-
bility of k-species ASEP state W is proportional to a certain matrix product 〈w|x(W )|v〉 with
the matrices {D,E,A1, . . . , Ak−1}. (As in Section 4.2, we let x(W ) be the word in the matri-
ces {D,E,A1, . . . , Ak−1} that corresponds to the word W in the letters {d, e, a1, . . . , ak−1}.)2

Similarly to Section 4.3, we show that these matrices give a combinatorial interpretation to
the construction of the k-RAT. Therefore, the fillings with α’s, β’s, and q’s of the maximal
tilings of the k-rhombic diagrams provide the steady state probabilities for the k-species
ASEP.

In these matrices, the rows are indexed by the tuple (i, j1, . . . , jk−1) where i is the number
of free D-strips in a tableau F of the maximal tiling of Γ(W ) and ji is the number of ai’s
in W . The columns of the matrices are indexed by the pair (i′, j′1, . . . , jk−1), where k is the
number of free D-strips in a tableau F ′ of the maximal tiling of Γ(Wd) (and respectively,
Γ(We) and Γ(Was) for each s) and j′i is the number of ai’s in Wd (and respectively, We
and Was for each s).

Analogously to the construction of the matrices in the two-species ASEP case, we have
now

D(i,j1,...,jk−1)(i+1,j1,...,jk−1) =
1

β

and 0 for all other indices.

A(i,j1,...,ji,...,jk−1)(u,j1,...,ji+1,...,jk−1) =

(
i

u

)
quβi−u

k−1∏
s=i+1

qjs

for 0 ≤ u ≤ i and 0 for all other indices.

2In Equation (4.15), the constant λ = αβ is used to slightly generalize the Matrix Ansatz of Theorem
4.2.1 in the same manner that Theorem 4.3.1 generalizes Theorem 3.0.1. The statement of the theorem and
the proof are very similar to that of Theorem 4.3.1, so we do not provide them here.
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E(i,j1,...,jk−1)(u,j1,...,jk−1) =
βi−u

α

[(
i

u

)
qu(qj + α[j]q) + α

u−1∑
w=0

(
i− u+ w

i− u

)
qw

]
for 0 ≤ u ≤ i and 0 for all other indices, where we define j =

∑k−1
s=1 js, and [j]q = qj−1+. . .+1.

The relations

DE − qED = D + E

DAi − qAiD = Ai

AiE − qEAi = Ai

are satisfied by the same arguments as in the two-species ASEP case, except with some
additional powers of q in the equations. It remains to show that AtAs = qAsAt for t > s.

First we compute the (i, j1, . . . , js, . . . , jt, . . . , jk−1)(u, j1, . . . , js + 1, . . . , jt + 1, . . . , jk−1)
entry of AtAs. (The entries of all other indices are automatically zero).

(AtAs)(i,j1,...,js,...,jt,...,jk−1)(u,j1,...,js+1,...,jt+1,...,jk−1)

=
i∑

w=u

(At)(i,j1,...,js,...,jt,...,jk−1)(w,j1,...,js,...,jt+1,...,jk−1)(As)(w,j1,...,js,...,jt+1,...,jk−1)(u,j1,...,js+1,...,jt+1,...,jk−1)

=
i∑

w=u

(
i

w

)
qwβi−w

k−1∏
r=t+1

qjr ·
(
w

u

)
quβw−u · q

k−1∏
r=s+1

qjr

= q
i∑

w=u

(
i

w

)
qw+uβi−u

k−1∏
r=t+1

qjr ·
k−1∏
r=s+1

qjr (4.16)

Similarly for AsAt,

(AsAt)(i,j1,...,js,...,jt,...,jk−1)(u,j1,...,js+1,...,jt+1,...,jk−1)

=
i∑

w=u

(As)(i,j1,...,js,...,jt,...,jk−1)(w,j1,...,js+1,...,jt,...,jk−1)(At)(w,j1,...,js+1,...,jt,...,jk−1)(u,j1,...,js+1,...,jt+1,...,jk−1)

=
i∑

w=u

(
i

w

)
qwβi−w

k−1∏
r=s+1

qjr ·
(
w

u

)
quβw−u ·

k−1∏
r=t+1

qjr

=
i∑

w=u

(
i

w

)
qw+uβi−u

k−1∏
r=t+1

qjr ·
k−1∏
r=s+1

qjr . (4.17)

It is clear that AtAs = qAsAt, as desired.
Thus we obtain that the k-rhombic alternative tableaux indeed satisfy the k-species ASEP

Matrix Ansatz of Theorem 4.2.1.
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4.5 Additional results

We have other work that was done during graduate school that was not included in this
thesis. We give a brief synopsis here.

There is a fascinating connection between the ASEP and orthogonal polynomials. Recall
that the partition function of a Markov chain is the sum of the unnormalized probabilities
over all the states. The moments of orthogonal polynomials are weight functions, which
in one variable are generally integrals of xn with respect to the measure. For the single-
species ASEP with 5 parameters α, β, γ, δ, q, the partition function Zn(α, β, γ, δ, q) is closely
connected to the moments of the Askey-Wilson polynomials.

One can generalize the two-species ASEP to a 5-parameter model with α, β, γ, δ, q by
allowing the heavy particles to enter and exit on both sides of the lattice, with parameters
as shown in Figure 4.7. This model is significantly more difficult than the γ = δ = 0 case
– even for the single species process, solutions to the Matrix Ansatz for general γ, δ were
not obtained until 20 years after the original Matrix Ansatz proof [20]. In the multi-variate
case, the Koornwinder moments can be defined as integrals of the homogeneous symmetric
polynomials with respect to the measure. For the two-species process, it turns out that the
partition function Zn,r(α, β, γ, δ, q) (corresponding to a two-species 5 parameter ASEP of
size n with exactly r light particles) corresponds precisely to these kinds of moments.

1q1 q 1q β

δ

α

γ

Figure 4.7: Two-species 5-parameter ASEP.

The connection of the single species ASEP to the Askey-Wilson polynomials, and of the
two-species ASEP to Koornwinder polynomials, is only realized when all 5 parameters are
general. This motivates the problem of finding tableaux formulae for probabilities of the
two-species 5-parameter ASEP. In recent work with S. Corteel and L. Williams, we have
defined “rhombic staircase tableaux”, which provides a combinatorial interpretation for the
stationary probabilities of the two-species ASEP with the 5 parameters α, β, γ, δ, q. We show
an example of these tableaux in Figure 4.8.

Theorem 4.5.1 (Corteel, M., Williams [3]). Let X be a state of the two-species 5-parameter
ASEP. Then the unnormalized stationary probability of state X is Prob(X) =

∑
T wt(T ),

where the sum is over the rhombic staircase tableaux T .

One can define more general Koornwinder moments Kλ as integrals of Schur polynomials.
A long-term goal would be to find an explicit combinatorial formula for these Kλ.
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Figure 4.8: An example of a rhombic staircase tableau of type .
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