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Abstract

The spatial and temporal domain of a gene’s expression can range from ubiquitous to highly specific. Quantifying the degree to which
this expression is unique to a specific tissue or developmental timepoint can provide insight into the etiology of genetic diseases.
However, quantifying specificity remains challenging as measures of specificity are sensitive to similarity between samples in the
sample set. For example, in the Gene-Tissue Expression project (GTEx), brain subregions are overrepresented at 13 of 54 (24%) unique
tissues sampled. In this dataset, existing specificity measures have a decreased ability to identify genes specific to the brain relative to
other organs. To solve this problem, we leverage sample similarity information to weight samples such that overrepresented tissues
do not have an outsized effect on specificity estimates. We test this reweighting procedure on 4 measures of specificity, Z-score, Tau,
Tsi and Gini, in the GTEx data and in single cell datasets for zebrafish and mouse. For all of these measures, incorporating sample
similarity information to weight samples results in greater stability of sets of genes called as specific and decreases the overall variance
in the change of specificity estimates as sample sets become more unbalanced. Furthermore, the genes with the largest improvement
in their specificity estimate’s stability are those with functions related to the overrepresented sample types. Our results demonstrate
that incorporating similarity information improves specificity estimates’ stability to the choice of the sample set used to define the
transcriptome, providing more robust and reproducible measures of specificity for downstream analyses.

Keywords: gene specificity, similarity, weighting, transcriptomics, GTEx

Introduction
The transcriptome is the set of potential or realized states
of gene expression in a cell, tissue or organism. In human
adults, there are estimated to be over 400 distinct cell-
types that each develop along a unique developmental
trajectory [1]. Add to this the diversity of progenitor
cells and intermediate transition cell-states that occur
earlier in development, and one begins to appreciate
the complexity of information relayed through the tran-
scriptome. To guide development through this diversity
of cell-types and states requires the ubiquitous expres-
sion of genes with global functions for cell prolifera-
tion and survival as well as the precise expression of
genes that control specialized developmental programs.
The full extent of a gene’s functions is not known a
priori, so investigating spatial and developmental pat-
terns of gene expression, i.e. the context of expression,
can provide insight into the gene’s function. This con-
text of gene expression can partially explain the pheno-
type that results when a given gene is mutated ([2–5])
or be used to investigate whether the gene is involved
in the specialized functions of a given cell, tissue or

developmental event and what those specialized func-
tions might be [6–9]. A useful summary of the degree
to which a gene’s expression leans toward ubiquity or
specialization is the aim of gene expression specificity
measurements.

While methods for quantifying gene expression are
well established [10], measuring the specificity of gene
expression requires addressing additional challenges (for
a review of current methods of measuring specificity of
gene expression see [11]). We address here one emergent
challenge associated with the choice of a transcriptomic
data sample set on which to measure specificity. Often,
tissues and organs can be subdivided in numerous
ways, such as dividing the brain into distinct functional
domains or along different developmental axes, which
often include gradients of expression changes rather
than discrete transition points. In the brain, the tran-
scription profiles of these subregions tend to be highly
correlated with one another, reflecting the common
functions and developmental origins of these subregions
[12]. This leads to a problem, however, as measures of
specificity are sensitive to the sampling depth into any
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particular organ system or timepoint [11]. A consequence
of this sensitivity is that the ability of measures of
gene specificity to detect genes specific to regions or
timepoints is diminished if they are highly similar to
other regions or timepoints that are overrepresented
in the sample set. In the case of the brain, this means
that sampling multiple brain subregions decreases a
specificity measure’s ability to detect brain-specific
genes.

One potential means of alleviating the problems asso-
ciated with adding sampling depth to a particular organ
system when building a representative sample set is by
using sample similarity information to weight samples
to adjust each sample’s contribution to the measure of
specificity. To establish the intuition for this, consider a
sample set that includes biological replicates. Biological
replicates of the same sample type tend to have very high
similarity, and therefore, the weight of any given replicate
should be inversely proportional to the number of repli-
cates coming from the same sample type. By extension,
the weight of individual samples from different regions
of a common organ should be inversely related to the
number of regions sampled from that organ. Collectively,
these examples point to the intuition that the weight
assigned to a sample should be inversely related to its
similarity to the other samples in the sample set, sug-
gesting that sample similarity is a natural metric on
which to assign sample weight for measures such as
specificity.

Presently, no existing methods for measuring gene
specificity take into account the similarity between sam-
ples in the sample set used to define the transcriptome.
This leads to instability in existing measures of speci-
ficity when called on datasets that vary in the depth
of sampling of particular biological contexts. Here, we
propose a generalizable procedure for integrating sample
similarity information with measures of gene specificity
and demonstrate how this natural integration of sample
similarity information stabilizes specificity measures.

Results
Description of problem and proposed solution
The similarity between cells and tissues can distort mea-
sures of specificity for gene expression. A balanced sam-
ple set where all sampled tissues share nearly the same
level of similarity with one another facilitates specificity
measures that match intuition (Figure 1A). However, bal-
ancing the sample set by considering only tissues that
are at approximately the same level of similarity occurs
at the expense of deeper sampling of individual tissue
subregions. Adding depth to one sample type (e.g. brain),
without an equivalent addition of sample types for other
organs, can substantially change the measured degree of
specificity of gene expression. This problem is demon-
strated in the toy example in Figure 1A, where the brain
marker OLIG1 has specificity comparable to other marker
genes, such as PRSS2 in the pancreas and MYH6 in the

heart, when the sample set is relatively balanced, but
when the sample set is expanded to include samples
from additional brain subregions, OLIG1 ceases to appear
specific to any brain tissues.

For the present study, we compare several measures
of gene specificity that are amenable to incorporation
of sample weights. These measures are Z-score [13], Tau
[14], Tsi [15] and Gini [16, 17] which were previously
compared in a benchmarking study of measures of gene
specificity [11] (see Methods for details). We chose to look
at these several measures of specificity to test whether
incorporation of sample similarity information to mea-
sures of gene specificity could improve a variety of dif-
ferent measures. Throughout the manuscript, we refer to
raw specificity measures that do not incorporate sample
similarity information as f lat measures and measures
that do incorporate sample similarity information via
weights as weighted measures.

To test the effect of incorporating sample similarity
derived weights on measures of specificity, we used three
RNA-seq datasets including a human tissue sample set
from the Gene-Tissue Expression (GTEx) project [18] and
single cell datasets from zebrafish [19] and mouse [20].
From GTEx, the matrix of the median gene expression
values across all individuals for each of 54 unique tis-
sue types was used. Brain-region samples are overrep-
resented in the GTEX dataset, making up 24% (13/54) of
the different available tissue samples. This enabled us to
explore how specificity values varied when measured on
balanced sample sets where only one tissue from each
organ system was included compared with unbalanced
sample sets where there is an overrepresentation of brain
regions. The zebrafish single cell dataset comes from
[19] and includes 220 unique cell clusters from four
developmental time points, subsets of which are used
for our analyses. The mouse single cell dataset comes
from [20] and includes cells from 98 major cell clusters
representing over 50 mouse tissues and cultures: subsets
of these clusters were used for our analyses. As a note,
we use the term sample throughout to refer to either
unique tissues or cell clusters as opposed to biological
or technical replicates.

To test the effects of measuring specificity on an
unbalanced sample set, we looked first at the correlation
of specificity values measured on sample sets that were
either balanced or unbalanced with respect to the set
of tissues or cell clusters included. In the balanced
GTEx subsets, we include only one brain subregion in
the sample set compared with the unbalanced GTEx
subset that includes all brain-region samples in the
sample set. The correlation between balanced and
unbalanced sample sets was repeated for each choice
of brain subregion for the balanced sample set. All
nonbrain samples were included in both the balanced
and unbalanced sample sets. Genes with Z-score greater
than 2 were considered specific with higher values
indicating greater specificity. Tau, Tsi and Gini measures
are all on the scale between 0 and 1, where 0 indicates
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Figure 1. Problem with unbalanced sample sets for measuring gene specificity and the proposed solution. (A) Toy diagram of problem addressed. Global
(dis)similarity of tissues is represented as a dendrogram for the balanced sample set (left) and the unbalanced sample set (right) that has an excess of
brain subregions included. The color of each dot represents the relative expression of the gene in the given tissue sample. Fitted normal curve is shown
to the right with sample mean (x̄) and sample SD (s) for log expression values. Bars plotted with the fitted normal curves each represent an individual
tissue sample’s expression and the bar’s relative height represents that sample’s relative weight. Specificity, as measured by the Z-score, is the number
of SD of the bar from the sample mean for the given gene-sample pair and is represented by the color of the bar. (B) Change in specificity measures with
deeper brain sampling. On x- and y-axes are specificity values measured on the unbalanced and balanced sample sets, respectively, for each gene (or
gene-tissue pair for Z-score). The unbalanced sample set includes all nonbrain samples and all brain subregion samples, while the balanced sample set
includes all nonbrain and one randomly selected brain subregion sample from the GTEx dataset. (C) SSI Algorithm or workflow proposed for integrating
sample similarity information into specificity measures.

nonspecific expression and 1 indicates the maximum
specificity in the tissue or cell type with the highest
overall level of expression for that gene. Overall, we
observe a strong correlation (R > 0.9) between specificity
values calculated using the balanced sample set and
those calculated using the unbalanced sample set for
all measures of gene specificity with the highest average

correlation observed for Gini R = 0.991 (95% CI: 0.991–
0.991, one sample t-test) and lowest for Tsi R = 0.939
(95% CI: 0.938–0.940, one sample t-test). For Z-score, the
average correlation was R = 0.962 (95% CI: 0.961–0.963,
one sample t-test), and for Tau, R = 0.989 (95% CI: 0.989–
0.989, one sample t-test). A representative example of
the specificity scores measured on the balanced and
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unbalanced sample sets is shown for each measure in
Figure 1B. Relatively strong correlations were similarly
found in the single cell datasets.

However, the genes with the largest difference in
specificity scores measured between the balanced
and unbalanced sample sets are not a random sub-
set of genes. For example, in the GTEx dataset, the
top 1% of genes with the greatest positive differ-
ences in each specificity score between the balanced
and unbalanced sample sets (i.e. where specificity in
the balanced sample set is greater than specificity
in the unbalanced sample set) are highlighted in
Supplementary Figure S1 (see Supplementary Data
available online at http://bib.oxfordjournals.org/) in
red and represent genes that are the most variable
as the sample set becomes unbalanced. Gene ontol-
ogy enrichment analysis performed on these genes
showed substantial enrichment in genes that function
in brain-related processes (Supplementary Figure S1,
see Supplementary Data available online at http://bib.
oxfordjournals.org/). There was less consistency in
terms associated with the genes where specificity
in the balanced sample set was set less than speci-
ficity in the unbalanced sample set across measures
(Supplemental Figure S2). The enrichment of brain-
related terms in the top 1% of genes with the greatest
positive difference between the balanced and unbal-
anced sample sets highlights how overrepresentation
of particular sample types can introduce systematic
biases into measures of specificity reducing the power
of these measures to identify genes specific to the
overrepresented sample type.

To address this problem, we decided to leverage
sample similarity information to reweight samples in
the sample set defining the transcriptome such that
similar samples tend to share their weight while more
distinct samples tend to retain more of their full weight.
The general workflow proposed, which we call the
Specificity-Similarity Integration (SSI) procedure, is given
in Figure 1C and discussed in detail in Methods. In
the GTEx dataset, we measured tissue–tissue similarity
using each tissue’s respective gene expression profile
and found brain samples clustered together with a
high degree of intragroup similarity, though cerebellar
samples had a lesser degree of similarity than other brain
regions (Supplementary Figure S3, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Following the SSI procedure proposed in Figure 1C, this
sample similarity information was used to generate
a sample similarity (or dissimilarity) tree on which
Equation 1 (adapted from [21]) was applied to assign
a weight to each sample. After incorporating sample
similarity information into weights, brain subregions
were found to have lower weights compared with
more distinctive tissues, such as testis and pituitary
(Supplementary Figure S4, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

We proceeded to incorporate these weights to each of
the specificity measures and compared the correlation
of specificity values measured on the balanced and
unbalanced sample sets to the correlations obtained
before weights were applied. For this, each choice of a
single brain subregion was used to generate a distinct
balanced sample set (n = 13) that included a single brain
subregion and all nonbrain samples; using these 13
replicates, we tested whether using the weighted speci-
ficity measure resulted in a stronger correlation between
balanced and unbalanced sample sets. For all of the
specificity measures tested, the correlation between the
balanced and unbalanced sample sets increased when
the weighting approach was applied compared with
when weights were not applied. P(R Z-scoreweighted ≤ R Z-
scoreflat) = 2.2e−16; P(R Tauweighted ≤ R Tauflat) = 2.2e−16;
P(R Tsiweighted ≤ R Tsiflat) = 3.4e−10; P(R Giniweighted ≤ R
Giniflat) = 2.2e−16; using the paired samples t-test for
each test (Supplementary Figure S5, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Additionally, the improved correlation for the weighted
measure held as the sample size varied while hold-
ing the proportion of the sample set composed of
brain samples constant, except for Tsi which has
previously been shown to be sensitive to sample size
[11] (Supplemental Figure S6, see Supplementary Data
available online at http://bib.oxfordjournals.org/). This
trend of improved correlation between the balanced
and unbalanced sample set was further replicated in
the zebrafish and mouse single cell datasets. For the
zebrafish dataset, the test results are as follows: P(R Z-
scoreweighted ≤ R Z-scoreflat) = 2.9e−9; P(R Tauweighted ≤ R
Tauflat) = 5.2e−8; P(R Tsiweighted ≤ R Tsiflat) = 3.3e−7; P(R
Giniweighted ≤ R Giniflat) = 2.6e−8, using the paired sam-
ples t-test for each test. For the mouse dataset, the
test results are as follows: P(R Z-scoreweighted ≤ R Z-
scoreflat) = 3.7e−8; P(R Tauweighted ≤ R Tauflat) = 5.7e−8;
P(R Tsiweighted ≤ R Tsiflat) = 8.2e−9; P(R Giniweighted ≤ R
Giniflat) = 1.4e−8, using the paired samples t-test for each
test (Supplemental Figures S7 and S8, see Supplemen-
tary Data available online at http://bib.oxfordjournals.
org/).

When gene ontology enrichment analysis was per-
formed on the weighted measures, the enrichment of
brain related terms in the top 1% of genes with the largest
positive difference in specificity measured between the
balanced and unbalanced sample sets decreased for all
measures, except for Tsi which did not change sub-
stantially (Supplemental Figure S9, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
As was the case for the flat measures, for the weighted
specificity measures, there was less consistency in
terms associated with the genes where specificity in
the balanced sample set was less than specificity in
the unbalanced sample set across measures. However,
for Tau, there was enrichment of brain related terms,
possibly representing brain subregion specific genes

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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being called as more specific as the sample set size
increases with the inclusion of more brain subregions
(Supplemental Figure S10, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

These results suggest that incorporating sample sim-
ilarity information via weights allows one to include
additional samples enriching the transcriptomic diver-
sity within the sample set without necessarily sacrificing
the ability to identify particular tissue- and cell-type-
specific genes.

Validation of similarity-weighted
specificity scores
To further test whether integration of similarity informa-
tion improves the stability of gene specificity measures
across variable sample sets, we used the GTEx dataset to
quantify the degree of change in specificity scores as the
proportion of the sample set composed of brain subre-
gions increased for both the weighted and flat measures.
The procedure to calculate the change in specificity is
outlined in Figure 2A and B and a more detailed descrip-
tion of the procedure is included in Methods section.

Following the procedure outlined in Figure 2A and B,
we observed that the weighted measures exhibited
a marked reduction in the variance of the change
in specificity measures as additional brain samples
were added to the sample set (Figure 2C). When the
similarity-weighting procedure was applied, specificity
measurements were more stable as sampling depth into
brain regions increased than when the procedure was
not applied. For the nonbrain samples, assigning weights
based on similarity to each tissue resulted in 73.1% (95%
CI: 71.9–74.3%, paired samples t-test) lower variance in
the change in specificity scores across all genes between
the baseline with 1 brain sample included and the full
set of 13 brain samples included than when weights were
not used. For the brain samples, assigning weights based
on similarity to each tissue resulted in 31.6% (95% CI:
25.4–37.3%, paired samples t-test) lower variance in the
change in specificity scores across all genes between the
baseline with 1 brain sample included and the full set
of 13 brain samples included than when weights were
not used (Figure 2C). A similar reduction in variance of
specificity values between the baseline of 1 brain sample
and inclusion of the full sample set was observed for
Tau, Tsi and Gini as well (Figure 2C); however, for Tsi,
this trend was not consistent at smaller sample sizes
(Figure 2C, Supplemental Figure S6, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
In contrast, when a similar procedure was used, substi-
tuting the brain partitioning with a random partitioning,
we observed a much less dramatic difference in the
change in variance between the weighted and flat
measures. For the random partition, the nonbrain
sample set was replaced by a random sample set
of the same size, called P1, and the brain sample
set was replaced with a random sample generated
following the same incrementing procedure described

in Figures 2A, called P2. We observed a <20% difference
in the variance in specificity values in P1 and ∼0%
difference in the variance in specificity values in P2
between weighted and flat measures in the random
partition compared with the 73.1% difference in P1
and the 31.6% difference in P2 between the weighted
and flat measures in the brain partitioned sample set
when the number of samples in P2 increased from 1
to 13 (Supplementary Figure S11, see Supplementary
Data available online at http://bib.oxfordjournals.org/,
Figure 2C).

As cut-off values are often used to binarize genes
as either specific or nonspecific, we wanted to test
whether incorporating sample similarity information
would also improve the stability of gene sets called as
specific as the sample set becomes more unbalanced.
To do this, we compared the sets of genes that would
be called as specific using different cutoff values as
the number of brain subregions included in the sample
set increased (Figure 2D). The Jaccard index, which is
the ratio of the intersection and the union of two sets,
was used to measure similarity of the gene sets. The
Jaccard index ranges from 0, with no elements common
to both sets, to 1, with all elements being shared between
both sets. We observed that the set of genes specific
to brain samples changed substantially over typical Z-
score cutoff values between 2 and 3 SD. For example,
at a Z-score cutoff of 2 SD, the Jaccard index dropped
to 0.24 (95% CI: 0.14–0.34, t-test) for the flat measure,
compared with a Jaccard index of 0.59 (95% CI: 0.54–0.63,
t-test) at the same cutoff for the weighted measure as the
number of brain samples included increased from 1 to 13
(Figure 2D). The change in the Jaccard index for the set
of nonbrain sample specific genes was also substantial.
At a Z-score cutoff of 2 SD, the Jaccard index dropped
to 0.65 (95% CI: 0.64–0.67, t-test) for the flat measure,
compared with a Jaccard index of 0.78 (95% CI: 0.77–0.79,
t-test) at the same cutoff for the weighted measures as
the number of brain samples included increased from 1
to 13 (Figure 2D). Similar but less dramatic trends were
observed for Tau, Tsi and Gini measures (Figure 2D).
In contrast, when the partition was random such that
expanding the sample set included adding samples
without high similarity to those already in the set, there
was no significant difference in the change in Jaccard
statistics between the weighted and flat measures
(Supplementary Figure S12, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

Effect of integrating weights on patterns
of specificity
We next wanted to explore the factors which influenced
how a gene’s specificity score changed in response to
integration of weighted similarity information. We first
looked at the GTEx dataset. The most striking change
in specificity scores that occurred as the sampling
depth of brain subregions increased were in genes with
brain-related functions (Supplementary Figure S1, see

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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Figure 2. Quantification of robustness of specificity measures as sampling depth into brain subregions increases. (A) Workflow for generating each
specificity matrix with the validation sampling procedure. P0 is the full dataset. G is the number of genes and S is the number of samples. P1 is the set of
nonbrain origin tissue samples. P1 is the set of all brain origin tissue samples. P2 is a random selection of n brain samples. (B) Z-score is illustrated but
a similar procedure was used for each specificity measure. Each specificity matrix (Zg,s,n) where n > 1 is compared with a baseline where n = 1, where
1 brain sample was included in P2. Plotted on the x-axis is the density of the change in Z-scores (�Z) for all genes in all samples in either P1 or the
brain sample initially selected as baseline from P2, with darker color indicating increased density. These data are finally summarized in the change
in variance of the �Z values as the sample set increases to include more brain samples. Note: for P2, only the change in specificity scores associated
with the brain sample selected for the baseline (darker red in figure) is recorded for C and D for each of 8 permutations of the procedure where each
permutation involves selection of a different brain tissue sample for the baseline and a different ordering of the addition of the remaining brain samples
to the sample set. (C) On the y-axis is the variance of change in specificity measure compared with a baseline dataset using 1 brain sample when n
additional brain samples are added. The number of additional brain samples in P2 is given on the x-axis. For Z-score, specificity values associated with
samples in P1 and P2 are plotted separately since Z-score can be associated with each tissue individually; other specificity measures aggregate across all
samples so resolution of specificity between samples in P1 and P2 is not possible for these measures. Points are values from each of the 8 permutations
of the procedure, lines are the mean values for each value of n and the shaded area is the 95% confidence interval (D). The x-axis is the cutoff above
which a gene is called as specific. The y-axis is the jaccard index comparing overlap of the set of genes called as specific at the cutoff given on the x-axis
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Supplementary Data available online at http://bib.
oxfordjournals.org/). If incorporating sample similarity
information reduced the bias introduced by increasing
sampling depth in the brain, then we would expect
that most of the differences between the weighted and
flat specificity scores would occur in genes primarily
expressed in the brain and with brain-related functions.
Indeed, when we looked at the top 10 genes with the
largest positive difference between the weighted and flat
Z-score in each tissue (i.e., where the weighted specificity
score was greater than the flat score), the genes with the
largest change in specificity value were genes specific to
brain samples (Figure 3A). Even in nonbrain tissues, the
largest changes in gene specificity were in genes where
expression was shared with brain samples (Figure 3A,
Supplementary Figure S13, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

For the top 10 genes with the largest negative
difference in specificity value between the weighted
and flat Z-score in each tissue (i.e., where the weighted
specificity score was less than the flat score), the largest
effects were in nonbrain samples (Figure 3B). These
changes in nonbrain samples tended to be in genes
with high values of specificity from the flat measure
being measured as slightly less specific by the weighted
measure (Supplementary Figure S13, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
This effect is likely due to the decrease in the effective
sample size caused by downweighting individual brain
samples. In the brain samples, while the effect size
of the negative difference between the weighted and
flat Z-score was modest (Figure 3B), this difference
was associated with genes specifically depleted in
brain samples becoming more specifically depleted,
suggesting an increase in the power of the weighted
Z-score to detect genes specifically depleted in brain
tissues (Supplementary Figure S13, see Supplementary
Data available online at http://bib.oxfordjournals.org/).

While we focused on protein coding genes for most
of our analyses, we also looked at the specificity of
lincRNA which have been observed to have strong
patterns of tissue and cell-type specificity [22, 23].
As previously observed, we found that the proportion
of lincRNAs with a high degree of tissue specificity
was substantially greater than that for protein coding
genes (Supplemental Figure S14, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
The largest differences between the flat and weighted
specificity values measured for lincRNAs were
primarily in genes specific to brain samples
(Supplemental Figures S14 and S15, see Supplementary
Data available online at http://bib.oxfordjournals.org/),
similar to what was observed for protein coding genes

(Figure 3A, B, Supplemental Figures S13 and S14, see
Supplementary Data available online at http://bib.
oxfordjournals.org/).

We next looked at the behavior of the flat and weighted
specificity scores for genes known to have tissue-specific
expression patterns. Brain-specific genes OLIG1 and
OLIG2 are markers for oligodendrocytes, cells which are
restricted to the spinal cord and brain [24] and which
are somewhat less abundant in the cerebellum than
other brain regions [25]. With the flat Z-score, OLIG1 had
specificity values in brain samples between 1.02–1.06
SDs in the cerebellar subregions and 1.56–2.03 SDs in
the other brain regions, and OLIG2 had specificity values
between 0.91–0.97 SDs in the cerebellar subregions and
1.56–2.11 SDs in the other brain regions. When measured
using the weighted Z-score, OLIG1 had specificity values
between 1.54–1.60 in cerebellar subregions and 2.22–2.75
SDs in other brain regions, and OLIG2 had specificity
values between 1.49–1.57 SDs in cerebellar subregions
and 2.33–3.03 SDs in other brain regions for the weighted
Z-score. Specificity estimates for the more specific basal
ganglia marker, DRD1 [26], also increased when weights
were applied, up to 4.77–5.00 SDs in brain basal ganglia
subregions from the 3.22–3.30 SDs by the flat Z-score
(Figure 2D, Supplemental Table S1, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
The specificity scores between the flat and weighted
measures were similar for genes specific to uniquely
represented tissue types. For example, PRSS2, a pancreas-
specific protease, had a flat Z-score of 6.38 SDs and a
weighted Z-score of 5.40 SDs in the pancreas, and MYH6,
a heart-specific myosin heavy chain, had a flat Z-score
of 5.16 SDs and a weighted Z-score of 4.77 in the atrial
appendage of the heart (Figure 3C). Similar trends for
these marker genes were observed for Tau, Tsi and Gini
coefficients (Supplemental Table S1, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Further quantification of the differences in genes called
as specific between the flat and weighted measure
showed a general increase in the number of genes
called as specific to brain tissues when weights were
applied and modest differences in the set of genes called
as specific between the flat and weighted measures
(Supplemental Figure S16, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

We next performed gene ontology enrichment analysis
on the genes that changed from nonspecific to specific in
either direction using a Z-score cutoff for classification
as specific of 2 SDs. The top 10 terms were those related
to synaptic and neurotransmitter function (e.g. synapse
organization, neurotransmitter secretion, signal release
from synapse) (Figure 3D). This is consistent with the
expectation that weighting based on sample similarity

relative to the baseline set where P2 includes only 1 randomly selected brain region sample. For Z-score, the jaccard index is the average over all samples
in the sample set (P1 or P2), for all other measures which aggregate across all samples the jaccard index is obtained directly. Line color corresponds to the
value of n. Note: at n = 1, the sample set used is the same as the sample set used in the baseline resulting in the line at jaccard index = 1 for n = 1 in all cases.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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Figure 3. Biological context of differences between flat and weighted measures of specificity. (A) Top 10 genes with greatest difference between weighted
and flat Z-score for each tissue. Rows correspond to individual genes, columns to tissues. Note: diagonal produced by having top 10 genes from leftmost
tissue on x-axis as first 10 rows, top 10 from next leftmost tissue as next 10 rows, etc. (B) Bottom 10 genes with greatest difference between weighted
and flat Z-score for each tissue (C) genes known to be specific to brain regions, OLIG1, OLIG2 and DRD1, pancreas, PRSS1 and CTRB2, and heart MYH6 and
MYL4. For each gene, top row is flat (F) Z-score, bottom row is weighted (W) Z-score. Dendrogram at top shows the dissimilarity tree used to generate
sample weights which are shown as the area of the leaf nodes of the dendrogram. (D) Gene ontology results highlighting top 10 terms in the set of genes
that have specificity values <2 SD by the flat Z-score, and >2 SD by the weighted Z-score. On the left is the Gene Ratio, i.e. the proportion of the gene
set with the given GO term. On the right is the network plot, where the edge width indicates the number of shared genes between a connected pair of
terms.

would increase power to detect genes that are specific
to tissues that are more deeply sampled and overrepre-
sented in the sample set.

We next repeated these analyses for the zebrafish and
mouse single cell datasets. In zebrafish, there was an
overrepresentation of cell clusters from brain-related
cell types as well as a secondary overrepresentation
of cell clusters from skeletal muscle cell types. When
looking at the top 5 genes from each cell cluster with the

greatest positive difference in specificity value measure
between the weighted and flat specificity scores, the
genes specific to brain and skeletal muscle clusters had
the largest absolute change in specificity values mea-
sures (Supplemental Figure S17A, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Those genes with the largest change in other cell
clusters tended to be those with expression shared with
brain or skeletal muscle (Supplemental Figure S17A,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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see Supplementary Data available online at http://bib.
oxfordjournals.org/). For the bottom 5 genes with the
largest negative difference in specificity between the
weighted and flat specificity scores, the genes with the
largest absolute change in specificity value measures
were those with high specificity to nonbrain and
nonskeletal muscle cell clusters being measured as
slightly less specific (Supplemental Figures S17B and S18,
see Supplementary Data available online at http://bib.
oxfordjournals.org/), likely due to a decrease in the
effective sample size between the flat and weighted
measures. In the brain and skeletal muscle cell clusters,
the largest negative change in specificity values occurred
in genes depleted in brain and skeletal muscle cell
clusters being measured as more specifically depleted
(Supplemental Figures S17B and S18, see Supplementary
Data available online at http://bib.oxfordjournals.org/)
suggesting an increase in the power to detect specifically
depleted genes in these overrepresented cell types when
using the weighted specificity measure. In the mouse,
the same patterns were observed where genes specific
to the overrepresented myeloid lineage cell clusters and
the kidney cell clusters were those that had the greatest
positive difference between the weighted and flat mea-
sures (Supplemental Figure S19A, see Supplementary
Data available online at http://bib.oxfordjournals.org/),
and those with the more modest negative difference
overlapped more with genes specifically depleted in
the myeloid and kidney cell types being measured as
more specifically depleted (Supplemental Figures S19B
and S20, see Supplementary Data available online at
http://bib.oxfordjournals.org/).

As observed in the GTEx dataset, when we looked at
markers genes in the zebrafish and mouse cell types that
were either uniquely represented or overrepresented,
we found similar levels of specificity between the
weighted and flat specificity measures for those cell
types that were uniquely represented and an increase
in specificity for markers for overrepresented cell types
(Supplemental Figures S17C and S19C, see Supplemen-
tary Data available online at http://bib.oxfordjournals.
org/). In the zebrafish dataset, gene ontology enrichment
analysis of the terms associated with genes that
were called as nonspecific with the flat measure and
specific with the weighted measure found enrichment in
terms related to the overrepresented brain and skeletal
muscle cell types (e.g., muscle cell development, muscle
contraction, brain development, head development)
(Supplemental Figure S17D, see Supplementary Data
available online at http://bib.oxfordjournals.org/). In
the mouse datasets, a similar trend was observed
with the top terms being those related to the over-
represented myeloid cell types; however, no terms
related to the other overrepresented cell type, kidney
cells, were observed in the top 15 enriched terms
(Supplemental Figure S19D, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

Overall, these results demonstrate that the use of
our sample similarity weighting procedure improves the
stability of gene specificity measures across a variety of
sample sets that are balanced or unbalanced with partic-
ular tissue or cell types overrepresented. This enables the
identification of genes specific to more deeply sampled
biological contexts and reduces bias that is otherwise
introduced by variation in sampling depth. Implement-
ing this weighting procedure can give researchers more
flexibility in building a sample set, allowing greater sam-
pling depth into a cell type, tissue or organ of interest
without sacrificing the ability to detect genes specific to
that same cell type, tissue or organ.

Discussion
Previous work developing and implementing measures
of specificity have had a variety of aims including
imputation of expression levels for cell and tissue
precursors [14], investigating mechanisms of dosage
compensation [15] and characterizing conservation of
gene expression patterns across evolutionary time [27,
28]. While existing measures have been used success-
fully, we identified a limitation in that these measures
lack a mechanism to account for the similarities
that exist between cells or tissues. The absence of a
mechanism to account for sample similarity makes
existing specificity measures sensitive to the choice of
sample set used and can introduce bias into analyses, an
issue that has been previously noted [11, 29]. A feature
of this sensitivity to the sample set composition is a
loss of measure robustness as the sampling depth of
particular developmental lineages increases, particularly
for the features that are specific to the more deeply
sampled lineage. Greater depth of sampling is necessary
for a more complete view of transcriptome diversity,
and therefore, the antagonistic relationship between
sampling depth and the stability of specificity measures
is problematic.

To address this, we utilized sample similarity infor-
mation to weight each sample’s contribution to mea-
sures of gene specificity. In this work, we have shown
that accounting for similarity between biological sam-
ples in the manner proposed makes measures of speci-
ficity more robust to sample set variation and improves
the ability of these measures to detect features specific
to different cell and tissue types, even when the cell
or tissue type is overrepresented within the larger sam-
ple set.

One component of the procedure proposed here for
integrating sample similarity information into measures
of gene specificity is the use of a similarity (or dissimilar-
ity) tree structure to partition weight across the sample
set, analogous to the method for assigning sequence
weight used by the multiple sequence alignment algo-
rithm ClustalW [21]. This mechanism is a natural choice
when samples can be defined along a natural hierarchy,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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such as when the developmental relation between a set
of cells is known; however, for tissues, which are often
composites of cells from distinct lineages, this model is
imprecise. While we have demonstrated that using this
model to weight samples improves existing measures of
gene specificity for tissues, more general graph-based
methods that can account for heterogeneous tissue com-
position may be able to improve upon the method pro-
posed here by refining the weighting of samples for
heterogeneous samples.

Applying this workflow on single-cell data avoids
the issue of dealing with heterogeneous composites
and also provides a higher resolution view of patterns
of specificity for gene expression. However, single-cell
analysis requires dealing with problems of low read
depth and accurate transcript estimation among others
[30]. Furthermore, as the method proposed here involves
calculating a similarity matrix between samples which
requires O(n2) time, performing the calculation on a large
dataset of tens of thousands or more cells becomes,
though feasible, somewhat resource intensive without
additional optimizations. Clustering cells is a common
part of most workflows for single cell analysis and
provides a convenient work around for these issues
[31]. Here, we have shown that the SSI procedure
can be used on clusters of single cells to achieve
improvements to specificity estimates within single cell
analyses.

As additional RNA-seq datasets come online, particu-
larly those spanning various stages of development, our
method for calculating specificity that is robust to expan-
sion of the sample set will be invaluable. The Devel-
opmental Genotype-Tissue Expression (dGTEx) project
has recently been announced and will expand on the
GTEx project to include samples from neonatal, pediatric
and adolescent individuals. dGTEx will add depth to a
large range of developmental stages for many cells, tis-
sues and organs and will provide a unique opportunity
to broadly investigate transcriptomic changes through
development [32]. The method for calculating gene speci-
ficity proposed here is a natural model for hierarchical
developmental relationships that will be captured in this
dataset and that currently exist in datasets for model
organisms [19, 20, 33–35]. We expect that our method
can be used to facilitate improved investigations into the
dynamics of gene expression across development in a
transcriptome-wide context.

Here, we have demonstrated that integrating sample
similarity information into measures of gene expression
specificity in cells and tissues improves the robustness
of these measures to variation in the underlying sample
set. By improving the stability of specificity measures to
deeper sampling of particular biological contexts of inter-
est, the proposed procedure can facilitate the analysis
of patterns of gene expression that captures both the
broad, by including a diverse set of cell or tissue types, as
well as the focused perspective, by allowing greater depth
of sampling of highly similar cell or tissue types. This

procedure for integrating sample similarity can easily be
extended to measure the specificity of other functional
measures of the genome and epigenome such as histone
modification or DNA methylation features.

Methods
Data availability
The GTEx data used for the analyses described in this
manuscript were obtained from the Genotype-Tissue
Expression (GTEx) Project which was supported by the
Common Fund of the Office of the Director of the
National Institutes of Health and by NCI, NHGRI, NHLBI,
NIDA, NIMH and NINDS [18].

website: https://www.gtexportal.org/home/datasets.
access date: 1 March 2022.
file: GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_

gene_median_tpm.gct.gz.
The zebrafish single cell dataset comes from [19].
website: https://cells.ucsc.edu/zebrafish-dev.
access date: 1 March 2022.
cell annotation file: meta.tsv.
cell expression file: exprMatrix.tsv.gz.
The mouse single cell dataset comes from [20].
website: https://figshare.com/articles/dataset/HCL_

DGE_Data/7235471.
access date: 1 March 2022.
cell annotation file: annotation_rmbatch_data_

revised417.zip.
cell expression file: dge_rmbatch_data.tar.gz.

Data preprocessing
For the data from GTEx, transcripts per million (TPM) val-
ues were recalculated after removing mitochondrial gene
reads, to prevent signal driven by relative mitochondrial
abundance in tissues, and after removing nonprotein
coding genes. Expression values in TPM were then log
transformed as log10(TPM + 1). The addition of 1 to TPM
value before taking the log was done to avoid the issue of
taking log of 0, and also because very low TPM estimates
are unstable across replicates at standard sequencing
depths in the tens of millions of reads. Following this
transformation, log10(TPM +1) values for gene expres-
sion were scaled with median normalization across all
samples [36].

For the single cell data from the zebrafish and mouse
datasets, cell cluster annotations were obtained from
their respective source studies. These cluster annota-
tions can be found in their respective ‘cell annotation
file’ linked in Data availability section above. RNA read
counts were obtained from their respective ‘cell expres-
sion file’ and reads were aggregated across all cells within
each cluster. Reads from mitochondrial and noncoding
RNAs were filtered out. Clusters with less than 100 k
total reads after this filtering were then removed from
further analysis. Genes with read counts <10 for each
cluster were set to 0 to reduce noise caused by low

https://www.gtexportal.org/home/datasets
https://cells.ucsc.edu/zebrafish-dev
https://figshare.com/articles/dataset/HCL_DGE_Data/7235471
https://figshare.com/articles/dataset/HCL_DGE_Data/7235471
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read counts. Read counts for each gene were then trans-
formed to TPM values by multiplying read counts by 1e6
and dividing by the sum of read counts for each clus-
ter. These TPM values were then log10(TPM + 1) trans-
formed. These transformed log10(TPM + 1) values were
scaled with median normalization across all samples
[36].

General algorithm for incorporating sample
similarity information into measures of gene
specificity
The SSI Algorithm in Figure 1C outlines the general
workflow for integrating sample similarity information
with an arbitrary measure of specificity. Beginning with
a matrix of log transformed gene expression values for
a set of samples (genes as rows, samples as columns)
sample similarity is measured (SSI step a.). The use
of the gene expression matrix for measuring sample
similarity is suggested as the gene expression matrix
is already required for measuring gene specificity;
however, other feature sets could be used to assign
sample similarity. The important component is to have
a mechanism for generating a meaningful sample
similarity matrix. Several measures of similarity (cosine,
canberra, euclidean, manhattan) were tested and each of
the similarity measures tested produced similar intuitive
sample similarity structure. For example, each measure
found brain samples to have a high degree of similarity
with one another. The major difference in measures of
similarity was the average similarity across all pairs of
samples (Supplemental Figure S21, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
For downstream analyses, cosine similarity was used
as it has previously been shown to be robust in high-
dimensional datasets in benchmarking studies [37,
38]. The next step is to apply a hierarchical cluster-
ing algorithm on the sample similarity matrix (SSI
step b.). Single, average and complete clustering were
tested and each produced similar intuitive clusters
of samples (e.g., brain samples clustered together;
tibial, aortic and coronary arteries clustering together;
etc.) (Supplemental Figure S22, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Average linkage clustering was used as it has previously
been shown to be robust when the size of cluster
groups varies substantially [39]. Other methods could
be substituted so long as a suitable tree structure is
generated for sample representation, where suitability
can be determined, for example, on metrics such
known developmental relations between tissues or
cells. The dissimilarity tree is then used to determine
the sample weights (SSI step c.) with the recursive
function given in Eq. 1 and described in the section
below. The final step is to use a specificity function
that allows sample weights with the initial log trans-
formed expression value matrix (SSI step d.). The
specificity functions used in this paper are discussed
below.

Assignment of sample weights
Sample weights are assigned using the recursive function

wi = di,p(i)

ni
+ wp(i) (1)

,where wi is the weight of node i in the dissimilarity tree
(where dissimilarity = 1 − similarity). p(i) is the parent of
node i. di,p(i) is the distance between node i and its parent
node p(i). ni is the number of descendant leaf nodes for
node i, where a leaf node is considered a descendant of
itself. Weight of the root node is set to zero. Weighting
method is based on that introduced for the guide tree
implemented in the ClustalW sequence alignment algo-
rithm [21]. Supplemental Figure S23 (see Supplementary
Data available online at http://bib.oxfordjournals.org/)
provides an example calculation.

Specificity measures tested
Four different specificity scores were used to measure
how changes in the depth of sampling of certain regions
affected the variance in specificity scores assigned to
genes. For each equation, n is the number of tissues and
xi is the expression of a gene of interest in tissue i.

The first measure is Z-score [13], which determines
specificity by calculating how many SD away gene
expression in a given tissue is from the mean expression
value across all tissues for that gene. It is calculated as

Zi = xi − x
s

, (2)

where

x =

n∑
i=1

xi

n
(2.1)

s =
√√√√ 1

n − 1

n∑
i=1

(
xi − x

)2, (2.2)

where Zi is the Z-score in tissue i, xi is the gene expression
value in tissue i, x is mean expression of the gene of
interest across all tissues and s is the SD in expression of
the gene of interest across tissues. The more positive the
Z-score, the more specific a certain gene is to a certain
tissue.

The weighted version of this equation is given by

Zwi = xi − xw

sw
, (3)

where, from [40],

xw =

n∑
i=1

wixi

n∑
i=1

wi

(3.1)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac158#supplementary-data
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sw =

√√√√√√√√
n∑

i=1
wi

(
xi − xw

)2

n∑
i=1

wi

(3.2)

and wi is the weight of a given tissue, and other variables
are the same as in Eqs 2, 2.1–2.2.

The second measure is tau (τ ) [14], which is a tis-
sue specificity measure ranging from 0 to 1, with genes
with tau near 0 being more ubiquitously expressed and
scores near 1 being more specifically expressed. At the
extremes, a score of 0 corresponds to a gene with equal
expression across all tissues, while a score of 1 represents
a gene only expressed in one tissue. In a benchmark
of measures for gene specificity, tau was found to be
consistently the most robust measure of gene specificity
on several metrics [11]. Tau is calculated as

τ =

n∑
i=1

(
1 − x̂i

)
n − 1

, (4)

where

x̂i = xi

max
j∈{1,...,n}

xj
(4.1)

with the weighted version of the equation being

τweighted =

n∑
i=1

(
wi − wix̂i

)
(

n∑
i=1

wi

)
− wk

(5)

with

k such that xk = max
j∈{1,...,n}

xj, (5.1)

where x̂i is the same as that for Eq. 4 given in Eq.
4.1. The range, which we define as the set of possible
output values, of the weighted tau is the same as the
unweighted tau.

The third measure is tissue specificity index (Tsi) [15],
which measures specificity on a scale of 1/n to 1. For any
given gene, 1/n represents equal gene expression across
tissues, while 1 represents expression only in one tissue.
Tsi is calculated as

tsi =
max

j∈{1,...,n}
xj

n∑
i=1

xi

(6)

with the weighted version of the equation being

tsiweighted =
warg maxj∈{1,..,n}xj

max
j∈{1,...,n}

xj

n∑
i=1

wixi

(7)

.The weighted Tsi has a similar range as the unweighted

version, except that the lower bound is wk/
n∑

i=1
wi with

k such that xk = max
j∈{1,...,n}

xj, instead of 1/n.

The fourth specificity measure was the Gini coefficient
[16, 17], a measure of inequality commonly used in eco-
nomics. Existing on a 0 to (n − 1)/n scale, for any gene of
interest, a score of 0 represents uniform distribution of
gene expression across tissues, while a score of (n − 1)/n
would indicate that a gene is only expressed in one tissue.
The Gini coefficient is calculated as

Gini = n + 1
n

−
2

n∑
i=1

(
n + 1 − i

)
xi

n
n∑

i=1
xi

, (8)

where xi are ordered from least to greatest.
The weighted version from [41] is given by

Giniweighted = 2
n∑

i=1

wi
(
xi − x

) (
F̂i − F

)
/x, (9p)

where

F̂i(x) =
i−1∑
j=0

wj + wi/2 (9.1)

with w0 = 0 and again with xi ordered from least to
greatest F is the mean of F̂i. The range of the weighted
Gini index is similar to the unweighted version except

that the upper bound is
(( n∑

i=1
wi

)
− 1

)
/

n∑
i=1

wi instead of

(n − 1)/n.

Specificity measure robustness testing
The GTEx dataset was used for the specificity measure
robustness testing. To test the robustness of measures
of specificity, the change in specificity estimates as the
dataset came to contain an increasing proportion of brain
samples was followed. For this, the GTEx dataset was
used, which consists of 54 tissue types in total, of which
13 (25%) are from different brain subregions. The GTEx
dataset was partitioned into 41 nonbrain tissues, P1, and
13 brain tissues, ¬P1. The following procedure was then
repeated 8 times using a unique brain subregion sample
for the baseline and a unique order of addition for the
remaining brain subregion samples.

To begin, one brain sample was selected at random
and placed in P2, this is P2baseline. The union of P1 and
P2baseline, P1 U P2baseline, was then taken as the sample set.
Specificity was then measured using the P1 U P2baseline

sample set with each of the flat and weighted specificity
measures. The results generated using a single randomly
selected brain sample serve as the baseline to compare
estimates of specificity as additional brain samples were
added to the sample set.

Next brain samples were added successively to
P2baseline and specificity recalculated on P1 U P2n = i, where
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i is the number of brain samples in P2 in the current
iteration. The variance in the change in specificity
between specificity measured on P1 U P2n = i and P1
U P2baseline across all genes was recorded and used in
generating Figure 2C. The sets of genes called as specific
at various cutoff values from the specificity values
measured on P1 U P2n = i and on P1 U P2baseline were
compared using the Jaccard index. The Jaccard index
was recorded and used in generating Figure 2D. This
was repeated until the sample set included all 13 brain
tissues.

Gene ontology analysis
The clusterProfiler package [42] in R was used to perform
enrichment analyses and generate gene ontology [43]
plots. Sets of genes were defined as specified in relevant
sections of text or figure captions and enrichment was
tested against the set of all genes in the GTEx, mouse
or zebrafish expression matrix after filtering nonprotein
coding and mitochondrial genes. Benjamini–Hochberg
procedure [44] was used to adjust P-values for signifi-
cance. The Biological Process set of GO terms was used
throughout.

Key Points

• Existing measures of gene specificity exhibit bias against
genes specific to biological contexts that are overrepre-
sented in the sample set.

• Adjusting sample weight based on sample similarity
improves the stability of specificity measures even in
sample sets where a specific biological context is over-
represented.

• The proposed workflow enables greater flexibility in the
choice of the sample sets used for measuring specificity
of gene expression.

Supplementary data
Supplementary data are available online at http://bib.
oxfordjournals.org/.

Code availability
All code used for analyses in this manuscript are
available at: https://github.com/leroybondhus/gene_
specificity.
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