
Lawrence Berkeley National Laboratory
LBL Publications

Title

Unnamed Pt(Cu0.67Sn0.33) from the Bolshoy Khailyk River, Western Sayans, Russia, and a 
Review of Related Compounds and Solid Solutions

Permalink

https://escholarship.org/uc/item/49p6w2dx

Journal

Minerals, 11(11)

ISSN

2075-163X

Authors

Barkov, Andrei Y
Bindi, Luca
Juárez-Arellano, Erick A
et al.

Publication Date

2021

DOI

10.3390/min11111240
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49p6w2dx
https://escholarship.org/uc/item/49p6w2dx#author
https://escholarship.org
http://www.cdlib.org/


Article

Unnamed Pt(Cu0.67Sn0.33) from the River Bolshoy Khailyk, Western 
Sayans, Russia, and A Review of Related Compounds and Solid 
Solutions
Andrei Y. Barkov1*, Luca Bindi2, Erick A. Juarez-Arellano3, Nobumichi Tamura4, Gennadiy I. Shvedov5, Chi Ma6 and 
Robert F. Martin7

1 Research Laboratory of Industrial and Ore mineralogy, Cherepovets State University, 5 Lunacharsky Avenue, 162600 
Cherepovets, Russia; ore-minerals@mail.ru 

2 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy; luca.bindi@unifi.it
3 Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca, México; eajuarez@unpa.edu.mx

4 Advanced Light Source, 1 Cyclotron Road, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229, USA;
ntamura@lbl.gov

5 Institute of Mining, Geology and Geotechnology, Siberian Federal University, 95 Prospekt im. gazety “Krasnoyarskiy 
Rabochiy”, 660025 Krasnoyarsk, Russia; g.shvedov@mail.ru

6 Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Blvd., 
Pasadena, CA 91125, USA; chima@caltech.edu

7 Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, 
Quebec H3A 0E8, Canada; robert.martin@mcgill.ca

Abstract:  We  describe  a  potentially  new  species  of  a  platinum  cupride–stannide  mineral  (PCSM)  of
composition  Pt(Cu0.67Sn0.33).  It  occurs  in  a  placer  deposit  in  the  River  Bolshoy  Khailyk,  southern
Krasnoyarskiy kray, Russia. A synthetic equivalent of PCSM was obtained and characterized. The PCSM
occurs  as  anhedral  or  subhedral  grains  up  to  15  ×  30  μm in  association  with  various  platinum-group
minerals,  Rh–Co-rich  pentlandite  and  magnetite,  all  hosted  by  a  placer  grain  of  Cu–Au–Pt  alloy.
Synchrotron micro-Laue diffraction studies indicate that the PCSM mineral is tetragonal, and belongs to the
inferred space-group P4/mmm (#123). Its unit-cell parameters are a = 2.838 (3) Å, c= 3.650 (4) Å, and V =
29.40  (10)  Å3,  and  Z  =  1.  The  c:a ratio  calculated from  the  unit-cell  parameters  is  1.286.  These
characteristics  are  in  good agreement  with those obtained for  specimens of  synthetic  Pt(Cu0.67Sn0.33).  A
review on related minerals and unnamed phases is provided to outline compositional variations and extents
of solid solutions in the relevant systems PtNi – PtFe – PtCu, PdCu – PdHg – PdAu, PdHg – PtHg and AuCu
– PtCu. The PCSM-bearing mineralization appears to be related genetically with an ophiolitic source-rock of
the  Aktovrakskiy  complex  of  the  western  Sayans.  The  unnamed  phase  likely  crystallized  from
microvolumes of a highly fractionated melt rich in Cu and Sn. 

Keywords: ternary Pt–Cu–Sn phase; intermetallic compounds and alloys; platinum-group minerals; PGE–
Cu–Au mineralization; ophiolite complexes; placer deposits; Bolshoy Khailyk; western Sayans; Russia

1. Introduction
The placer  deposits of the River  Bolshoy Khailyk,  western Sayans,  in the Ermakovskiy

district, southern Krasnoyarskiy kray of Russia [1] are known for assemblages of platinum-group
minerals (PGM) and associated PGE–Au phases. The river drains the Aktovrakskiy ophiolitic
complex,  part  of  the  Kurtushibinskiy  belt.  Bodies  of  serpentinite  are  fairly  abundant  in  the
drainage area. We focus here on a potentially new species of a platinum cupride–stannide mineral
(PCSM)  of  composition  Pt(Cu0.67Sn0.33);  we  describe  its  properties  and  characteristics.  This
mineral is closely related to synthetic Pt(Cu0.67Sn0.33), a phase recognized recently in the ternary
system Pt–Cu–Sn [2]. Tatyanaite, Pt9Cu3Sn4, is another compound in that system [3]. As a second
objective,  we provide a comprehensive  review of structurally  related  alloys and intermetallic
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compounds in the systems PtNi – PtFe – PtCu, PdCu – PdHg – PdAu, PdHg – PtHg and AuCu –
PtCu. These include tetraferroplatinum, PtFe, and tulameenite,  Pt2CuFe [4, 5], both important
sources of Pt in various parageneses  of Pt–Fe alloy minerals,  e.g. [6].  We explore how these
minerals and phases can be grouped on the basis of the degree of order of constituent metals in
the relevant structures.

2. Materials and Methods
Our materials involve natural  specimens of PCSM as well as the synthetic equivalent in

terms  of  compositional  and  structural  characteristics.  Compositions  of  the  mineral  were
investigated  with  wavelength-dispersive  analysis  (WDS)  using  a  Camebax-micro  electron
microprobe  (Cameca  Inc.  Gennevilliers,  France)  at  the  Sobolev  Institute  of  Geology  and
Mineralogy, Russian Academy of Sciences, Novosibirsk, Russia, operated at 20 kV and 20 nA,
with a beam diameter of ~1 μm. The following X-ray lines were used: PtLα, PdLα, SnLα, CuKα,
NiKα, FeKα and AuMα. Pure platinum, pure palladium, pure gold, synthetic FeNiCo, CuFeS2,
and SnO2 were used as standards. The estimated values of minimum-detection levels (MDL) are
≤0.1 wt.%.

Quantitative analyses of the synthetic PCSM were conducted at the R&D center of Norilsk
Nickel at the Institute of Mining, Geology and Geotechnology of the Siberian Federal University,
Krasnoyarsk, by means of scanning electron microscopy and energy-dispersive analysis (SEM–
EDS) done on a Tescan Vega III SBH system (Tescan Orsay Holding, Brno, Czech Republic)
equipped  with  an  Oxford  X-Act  spectrometer  (Oxford  Instruments  Nanoanalysis,  Wycombe,
UK). The operating conditions were held at an accelerating voltage of 20 kV and a beam current
of 1.2 nA. The following X-ray lines (and standards) were used: the  K line for Cu (synthetic
chalcopyrite), the L line for Sn (pure Sn) and Pt (pure Pt).

Reflectance  measurements  of  the  synthetic  PCSM  specimen  were  performed  using  a
LomoMSFU-KYu-30.54.072  microspectrophotometer  (OOO  “Lomo”,  St.  Petersburg,  Russia),
using a single-crystal silicon standard (KEF 4.5/0.3) provided by the S.I. Vavilov State Optical
Institute, an All-Russian Research Center in St. Petersburg, Russia. The micro-indentation values
of hardness were measured using a PMT–3 equipment (OOO “Lomo”, St. Petersburg, Russia),
also on the synthetic analogue.

Synchrotron micro-Laue diffraction studies of the natural specimen of PCSM were carried
out at beam line 12.3.2 of the Advanced Light Source (ALS), Berkeley, California, USA. The
Laue diffraction patterns were collected using a PILATUS 1M area detector operated in reflection
geometry.  The patterns  were  indexed and  analyzed  using XMAS v.6  [7].  A monochromator
energy scan was performed to determine the lattice parameters.

Single-crystal  electron-backscatter  diffraction  (EBSD)  analyses  were  performed  on  the
natural  specimen of PCSM using an HKL EBSD system on a ZEISS 1550VP Field-Emission
SEM, operated at 20 kV and 6 nA in focused-beam mode, with a 70° tilted stage and in a variable
pressure mode (25 Pa). The focused electron beam is several nanometers in diameter. The spatial
resolution for diffracted backscatter electrons is ~30 nm. The EBSD system was calibrated using
a single-crystal silicon standard.

X-ray diffraction patterns of synthetic Pt(Cu0.67Sn0.33) were collected at ambient temperature
with a Panalytical  Philips  X'Pert  diffractometer  used with CuKα1 radiation from a Cu anode
operating at 40 kV and 30 mA; a focusing Johansson Ge monochromator was used. The patterns
were measured with a PIXcel3D 2 × 2 detector. The indexing was performed using the DICVOL
program  [8];  Le  Bail  and  Rietveld  refinements  have  been  performed  using  the  program
FULLPROF [9].  A linear  interpolation of  approximately 30 manually selected  points for  the
background and a pseudo-Voigt profile function were used.

3. Results and Observations
3.1. Occurrence and Associated Minerals

The  potentially  new  platinum  cupride–stannide  mineral  was  found  in  a  placer  deposit
located at a remote locality (ca. N 51° 51' 19.51", E 92° 33' 42.82") along River Bolshoy Khailyk
[1]. Osmium-, Ir-, and Ru-dominant alloys (i.e. the minerals osmium, iridium, and ruthenium,
respectively)  are  the  main  PGM in the  Bolshoy Khailyk placer.  Isoferroplatinum-type Pt–Fe
alloys are subordinate, whereas alloy grains of the series (Pt,Ir)(Ni,Fe,Cu)3–x–(Ir,Pt)(Ni,Fe,Cu)3–x

are uncommon.
Inclusions in the PGE alloy minerals include clinopyroxene, i.e. diopside: Wo48.3–48.6En48.4–

48.5Fs2.6Aeg0.4–0.7;  Mg# 96.9–97.9,  chromian spinel,  i.e.,  magnesiochromite:  Mg# up to 71, and
serpentine,  which all are highly magnesian, consistent with a primitive ultrabasic source-rock.
The amphibole inclusions correspond to actinolite, magnesio-hornblende and barroisite. Along
with cobaltian pentlandite and magnetite, PCSM forms small domains up to 15 × 30 μm in size,
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typically irregular in shape (Figure 1); these are hosted by a placer grain of Cu–Au–Pt alloy ~1
mm across.  In  addition,  the  host  grain  contains  inclusions  of  members  of  the  tulameenite–
ferronickelplatinum series and a member of the tolovkite–irarsite–hollingworthite solid solution.

Figure 1. One of five domains of Pt(Cu0.67Sn0.33) encountered in a placer grain of Cu–Au–Pt alloy from the
Bolshoy Khailyk placer. It is slightly darker than its host. The location of the EBSD spot is marked with a
green cross symbol.

The sulfide species observed in the placer are members of the laurite–erlichmanite series,
cooperite, bowieite (Cu-rich), a monosulfide-type phase, (Fe0.40Ni0.39Cu0.19)Σ0.98S1.02, a bornite-like
phase, (Cu4.06Fe1.47)Σ5.53S4.5, and a godlevskite-like phase, Ni9.5S7.5. Less common and rare minerals
include sperrylite,  a  zoned oxide  Ru6Fe3+

2O15,  and  an  uncommon variety  of  seleniferous  and
rhodiferous sperrylite (Pt,Rh)(As,Se,S)2 [1, 10].

3.2. PCSM: Appearance, Physical and Optical Properties
Grains of PCSM are opaque, with a metallic luster. It is metallic. The micro-indentation

values  of  hardness  measured  on the synthetic  analogue are  in the range 94.8–100.8 kg/mm2,
which  corresponds  to  a  Mohs  hardness  of  ~2½.  Cleavage,  parting  and  fractures  were  not
observed.  The density  could  not  be  measured  owing to  the  small  grain-size.  The  calculated
density, 14.75 (5) g·cm–3, is based on the empirical formula and unit-cell volume refined from the
synchrotron microdiffraction data.

In reflected  light,  the colour is  yellowish cream; bireflectance,  pleochroism and internal
reflections were not observed. The mineral is weakly anisotropic. The reflectance values obtained
in air for the synthetic analogue, (Pt0.97Cu0.03)Σ1.00(Cu0.67Sn0.33)Σ1.00,  are presented in Table 1 and
Figure 2.

Figure 2. Reflectance spectra for synthetic Pt(Cu0.67Sn0.33), measured in air.
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Table 1. Reflectance values of synthetic Pt(Cu0.67Sn0.33) measured in air.

λ (nm) R1 (%) R2 (%) λ (nm) R1 (%) R2 (%)
440 49.5 48.0 589 (COM) 54.7 51.9
460 50.1 48.3 600 55.1 52.2

470 (COM) 50.5 48.6 620 55.9 53.1
480 50.8 48.8 640 56.5 53.6
500 51.4 49.2 650 (COM) 56.8 53.9
520 52.2 49.7 660 57.1 54.3
540 52.9 50.4 680 57.9 55.2

546 (COM) 53.2 50.6 700 58.8 56.2
560 53.6 51.0 720 59.4 56.9
580 54.3 51.6

Note. These values pertain to synthetic (Pt0.97Cu0.03)Σ1.00(Cu0.67Sn0.33)Σ1.00, measured on a representative 
specimen. COM: wafelengths recommended by the Commission on Ore Mineralogy, IMA.

3.3. Compositional Data
Electron-microprobe  analysis  (Table  2)  of  the  mineral  yields  the  formula

(Pt0.80Pd0.17Au0.02)Σ0.99(Cu0.61Sn0.34Fe0.05Ni0.02)Σ1.02,  calculated  on  the  basis  of a  total  of  2 a.p.f.u.
(atoms per formula unit). An alternative formula, (Pt,Pd)3Cu2Sn, with a distinct site for Sn, is not
confirmed by structural results. The formula Pt(Cu0.67Sn0.33) requires Pt 70.47, Cu 15.38, and Sn
14.15, total 100 wt.%. Tin is an essential constituent, but Pd is not. On the basis of the inferred
composition, a synthetic equivalent of the PCSM was successfully obtained and characterized by
[2].

Table 2. Composition of unnamed Pt(Cu0.67Sn0.33) from the Bolshoy Khailyk placer, western Sayans, Russia.

Constituent Mean (wt.%) Range (wt.%)
Pt 59.90 57.17-64.22
Pd 6.92 3.28-8.30
Cu 14.71 14.49-14.94
Sn 15.33 14.19-16.14
Au 1.47 0.55-2.67
Fe 1.01 0.82-1.32
Ni 0.36 0.31-0.43

Total 99.70 98.80-100.39
Note. Results of a total of five data-points (n = 5), listed in weight %, were acquired by means of WDS 
analysis.

3.4. Characterization of the Synthetic Analogue
The synthetic analogue Pt(Cu0.67Sn0.33) was obtained [2] by heating stoichiometric mixtures

of analytical grade powders of platinum (ChemPUR 99.95%), copper (ChemPUR 99.99%) and
tin  (MERCK  99%)  in  a  molar  proportion  3:2:1  (as  inferred  from  Pt:Cu:Sn  =  3:2:1  in  the
specimens  from Bolshoy Khailyk).  The mixtures  were  homogenized  in  an  agate  mortar  and
pressed into pellets. On the basis of differential  scanning calorimetry (DSC) measurements,  a
heating rate of 6 K/min was selected for all syntheses. In one set of experiments, the furnace was
switched off after holding the charge at the maximum temperature, and the pellets were cooled
down. In a second set of experiments, the pellets were quenched to ambient temperature in less
than one minute using compressed air. A total of 12 analyses (quantitative SEM/EDS) of different
portions of the synthetic phase gave the following mean (and ranges): Pt 70.01 (69.2–70.8), Cu
16.35  (16.0–16.6),  and  Sn  14.53  (14.0–14.9),  for  a  total  of  100.9  wt.%,  corresponding  to
(Pt0.97Cu0.03)Σ1.0(Cu0.67Sn0.33)Σ1.0 (on the basis of Σatoms = 2 a.p.f.u.).

In addition, the phase Pt(Cu0.67Sn0.33) was synthesized in an arc-melter (MAM-1, E. Bühler,
GmbH, Hechingen) by melting the mixture of elements.  Temperatures in the arc melter were
above 2000 K. After the synthesis, the pellet rapidly reached ambient temperature [2].

3.5. Crystallography and Crystal Structure
The grains of PCSM are polycrystalline, as are those of the synthetic phase. Our attempts to

extract a single crystal were unsuccessful, and even ~15 micrometer-sized fragments turned out to
be polycrystalline. Thus a single-crystal study could not be carried out.
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The X-ray diffraction pattern of PCSM is reported in Table 3. The mineral is tetragonal, and
the inferred space group is  P4/mmm (#123). The unit-cell parameters are  a = 2.838(3) Å,  c =
3.650(4) Å, V = 29.40(10) Å3, and Z = 1. The c:a ratio calculated from the unit-cell parameters is
1.286.

Table 3.  X-ray powder-diffraction data (d in Å) for  unnamed Pt(Cu0.67Sn0.33) from the Bolshoy Khailyk placer, western Sayans,
Russia.

 dobs. dcalc. Imeas. Icalc. h k l dobs. dcalc. Imeas. Icalc. h k l
3.6500 3.6364 13.0 11.6 0 0 1 0.9236 0.9195 1.1 1.0 2 0 3
2.8380 2.8221 14.2 12.6 1 0 0 0.9157 0.9107 5.5 5.5 3 0 1
2.2405 2.2295 100.0 100.0 1 0 1 0.9125 0.9091 1.4 1.4 0 0 4
2.0068 1.9955 36.4 36.3 1 1 0 0.8975 0.8924 5.2 5.2 3 1 0
1.8250 1.8182 13.7 13.7 0 0 2 0.8793 0.8747 4.9 5.0 2 2 2
1.7585 1.7494 7.9 7.0 1 1 1 0.8783 0.8742 9.9 9.9 2 1 3
1.5350 1.5285 5.3 4.8 1 0 2 0.8715 0.8667 2.0 1.8 3 1 1
1.4190 1.4111 12.2 12.1 2 0 0 0.8687 0.8653 1.0 0.9 1 0 4
1.3502 1.3440 20.5 20.5 1 1 2 0.8399 0.8355 1.0 0.9 3 0 2
1.3226 1.3155 3.4 3.0 2 0 1 0.8307 0.8273 4.4 4.4 1 1 4
1.2692 1.2621 3.0 2.6 2 1 0 0.8054 0.8011 8.5 8.5 3 1 2
1.2167 1.2121 0.6 0.6 0 0 3 0.7871 0.7827 0.9 0.8 3 2 0
1.1988 1.1923 27.0 26.9 2 1 1 0.7741 0.7704 0.9 0.8 2 2 3
1.1202 1.1147 10.6 10.6 2 0 2 0.7694 0.7652 8.2 8.3 3 2 1
1.1182 1.1138 10.6 10.5 1 0 3 0.7675 0.7642 4.1 4.2 2 0 4
1.0420 1.0368 3.2 2.9 2 1 2 0.7468 0.7432 4.1 4.2 3 0 3
1.0404 1.0360 1.6 1.4 1 1 3 0.7409 0.7377 1.8 1.7 2 1 4
1.0034 0.9978 3.6 3.6 2 2 0 0.7300 0.7273 0.2 0.2 0 0 5
0.9675 0.9622 1.3 1.2 2 2 1 0.7228 0.7189 1.9 1.8 3 2 2
0.9460 0.9407 0.6 0.6 3 0 0 0.7222 0.7187 1.9 1.8 3 1 3

Note. Results of synchrotron micro-Laue diffraction studies were indexed and analyzed using the software package XMAS v.6 [6].
The calculated values were obtained for the synthetic counterpart.

The EBSD patterns of the PCSM (Figs. 3a–d) are indexed satisfactorily on the basis of the
P4/mmm structure  obtained  via  micro-Laue  synchrotron  diffraction,  with  a  mean  angular
deviation of 0.38°–0.45°.
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Figure 3. EBSD patterns (a, c) of two grains of the Pt(Cu0.67Sn0.33) mineral with different orientations, and (b,
d) these patterns indexed with the P4/mmm structure.

The structure of synthetic Pt(Cu0.67Sn0.33) was determined on the basis of powder-diffraction
data  [2].  The observed  lattice  parameters,  the crystal  structure  and  the  reliability  factors  are
presented in Tables 4 and 5. Refinements of the site occupancies gave Pt(Cu0.59(5)Sn0.41(5)) as an
approximate composition, which is in fairly good agreement with the Pt(Cu0.67Sn0.33) composition
of the natural specimen. The crystal structure of the PCSM is shown in Figure 4. It is a tetragonal
CuAu-type  or  L10-type  structure,  in  which  Pt  occupies  the  Wyckoff  position  1a (0,0,0)  and
disordered Cu and Sn occupy the Wyckoff position 1d (½, ½, ½) in the space group P4/mmm (as
obtained  from  the  refined  site-occupancy  via Rietveld  refinement  of  the  synthetic  analogue
Pt(Cu0.67Sn0.33) [2].

The cell  parameters  of the synthetic analogue of the PCSM are:  a = 2.82205(1) Å,  c =
3.63637(2) Å, and V = 28.9599(2) Å3; the space group is P4/mmm (Tables 4, 5) [2]. These values
are close to the parameters obtained for the PCSM specimen from Bolshoy Khailyk.

Figure 4. The crystal structure of the Pt(Cu0.67Sn0.33) compound along the ab plane. Atoms of Pt are shown
by the gray spheres, and Cu,Sn are the red spheres.

Table  4.  Lattice  parameters  of  synthetic  Pt(Cu0.67Sn0.33)  from  Rietveld  refinement  and  from  density  functional  theory  (DFT)
calculations*.

Lattice
parameters [a] S4 S5 DFT [b]

a  (Å) 2.82205(1) 2.82101(3) 2.8762
c  (Å) 3.63637(2) 3.64874(6) 3.6984
V  (Å3) 28.960(1) 29.037(1) 30.56

[a] Density = 15.976 g/cm3, from X-ray diffraction.[b] The DFT values are  of the supercell used in all the calculations. The angles⅓
of the supercell deviated by <0.1° from 90° after the optimisation of the geometry.* After Juarez-Arellano et al., 2020 [2]. Syntheses
S4 and S5 involved a first step at 523 K for five hours and a second step at 1023 K for ten hours.

Table 5. Crystal structure of synthetic Pt(Cu0.67Sn0.33) on the basis of results of Rietveld refinement and reliability factors*.

Atom Wyckoff
position x/a y/b z/c B (Å2) Occupancy

S4 Pt 1a 0 0 0 0.10(2) 1.0
Cu, Sn 1d 0.5 0.5 0.5 0.29(3) 0.638(3), 0.362(3)

S5 Pt 1a 0 0 0 0.22(6) 1.0
Cu, Sn 1d 0.5 0.5 0.5 1.01(9) 0.544(12), 0.456(12)

χ2 Rp Rwp Rexp Rf data points independent parameters
S4 4.64 7.91 11.9 5.53 3.06 13708 14
S5 11.9 9.58 13.6 3.95 8.93 6855 14

* After Juarez-Arellano et al. , 2020 [2]. Products of synthsis S4 and S5 are as defined in Table 4.
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4. Discussion
4.1. Genetic Implications

The PCSM grains are hosted by a composite grain of (Au,Pt)Cu alloy recovered in a remote
placer deposit along the Bolshoy Khailyk river. Previously, a similar grain of (Au,Pt)Cu alloy
was reported from a placer along River Zolotaya in the same area [11]. Similar grains of the
(Au,Pt)Cu alloy have been documented at other localities: the Tulameen complex, Canada [12],
the Sotajarvi area, Finland [13] and, in situ, in the Kondyor complex, Russian Far East [14]. As
noted, the detrital grain hosting the PCSM grains also hosts several grains of various PGM, Co-
(Rh)-rich pentlandite, and Cr–Mg–Mn-rich magnetite, among others. The observed system thus
involves at least 17 elements (Cu, Au, Pt, Rh, Pd, Ir, Fe, Co, Ni, S, Sb, As, Sn, O, Cr, Mn, Mg),
which occur, as major or minor constituents, in minerals of the PCSM-bearing grain. The large
variety of participating elements clearly points to a natural origin of this specimen.

The Aktovrakskiy ophiolitic  complex is  considered  to  represent  the  lode source  for  the
PCSM-bearing association. The notable extent of Ru enrichment in the associated Os–Ir–Ru alloy
minerals is consistent with an ophiolitic source [1]. The PCSM-bearing assemblages presumably
formed after the crystallization of chromian spinel (magnesiochromite) and Fo-enriched olivine.
During the crystallization of the Os–Ir–Ru alloy phases, a local buildup of the incompatible Cu +
Au,  along  with  subordinate  Pt,  likely  led  to  the  crystallization  of  PCSM  from  globules  of
remaining melt. 

4.2. Compositional Variations and Solid Solutions in Related Minerals and Compounds
Members of a potentially large family of natural alloys and intermetallic compounds, mostly

isotypic with AuCu(I) [15], are related to mineral PCSM and like it, crystallize in space group P4/
mmm. They include: 1) natural solid-solutions pertaining to the system PtNi – PtFe – PtCu and
the synthetic analogues of PtFe and PtNi (e.g., [4, 5, 16-18]; 2) potarite, PdHg, and its synthetic
equivalent [19-22],  as well as an auriferous variety of potarite,  Pd(Hg,Au) [23]; and 3) tetra-
auricupride, AuCu [24, cf. 18] and its variants having platiniferous compositions: (Au,Pt)Cu, e.g.
[10].

Mineral PCSM corresponds to the Cu-dominant analogue of tetraferroplatinum (PtFe; a  =
2.7235(10),  c  = 3.720(3) Å: IMA1974-012b: [4, 5, 25]; it consists of disordered metals in the
‘tP2’ structure of space group P4/mmm. It is also related to tulameenite (Pt2FeCu; a = 3.891(2), c
= 3.577(2) Å: IMA1972-016: [4]  and ferronickelplatinum (Pt2FeNi; a = 3.871,  c  = 3.635 Å:
IMA1982-071: Rudashevsky  et al.,  1983 [26]),  which exhibit the ‘tP4’ structure with ordered
metal atoms in a larger unit cell but the same space group P4/mmm as the ‘tP2’ structure. The
“(Cu,Fe)Pt” formula of tulameenite listed by P. Bayliss in [18] is not correct; his proposal is not
accepted by the authors of the description of tulameenite (L.J. Cabri, pers. commun.). The type
tulameenite  displays  a  Fe:Cu ratio  of  1:1,  and  Cu is  not  dominant.  As  tulameenite  was  not
redefined,  the  proposal  of  Cabri  et  al.,  1973  [4],  including  the  unit-cell  parameters  and  the
Pt2FeCu formula with a Fe:Cu ratio of about 1:1, is still valid.

Mineral PCSM differs from hongshiite, PtCu [27, 28], see also [29], from synthetic PtCu
that crystallizes in space group Fm3̅m (with a = 3.796 Å: ICDD-00-048-1549 or a = 3.799 Å [2],
and from tatyanaite (Pt,Pd)9Cu3Sn4, which is orthorhombic [3].

4.3. Solid Solutions in the Ternary System PtNi – PtFe – PtCu
Natural series of solid solutions pertaining to this system were examined on the basis of 510

data-points collected in the literature (Table 6; Figs. 5, 6). Nine sets of compositional data were
evaluated,  which  are  judged  to  be  representative  of  various  complexes  located  in  different
geological settings worldwide, including the Alaskan–Uralian–(Aldan)-type complexes (sets 1-3),
layered intrusions (set 4), ophiolite-related deposits (set 5), an uncategorized chromitite (set 6),
massive  sulfide  Cu–Ni  ores  (set  7),  Ti-rich  mineralization  developed  in  alkaline  ultramafic
complexes (set 8), and different suites of placer deposits (set 9).

Table 6. Worldwide occurrences and reviewed sets of compositions of solid solutions belonging to the system PtNi–PtFe–PtCu.

Type Localities and occurrences References
Set #1
(n=33)

Alaskan-Uralian–type
complexes and related

placers in northern America

Tulameen complex and placers in R.
Tulameen and R. Similkameen areas,

British Columbia, Canada. 
Salmon river placer deposit, Goodnews

Cabri et al., 1973, 1996 [3, 30]
Nixon et al., 1990 [17]

Tolstykh et al., 2002 [31] 
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Bay, Alaska, USA.

Set #2
(n=256)

Uralian-Alaskan–type
clinopyroxenite-dunite and

related complexes and
derived placers, Ural
Platinum Belt, Urals,

Russia

Nizhny Tagil; Kachkanar; Svetly Bor
(Svetloborsky); Kamenushinsky;

Veresoborsky; Solovyova Gora; Kytlym;
Iovsky; Uktus (chromitites and Chr-rich

zones); Nevyansk and Kushvinskiy
placers.

Cabri & Genkin, 1991 [32]
Cabri et al., 1996 [30]

Garuti et al., 2002, 2003 [33, 34]   
Augé et al., 2005 [35]

Tolstykh et al., 2011, 2015 [36, 37] 
Volchenko, 2011 [38]

Zaccarini et al., 2013 [39]
Barannikov & Osovetskiy, 2014 [40]

Stepanov, 2015 [41] 
Malitch & Badanina, 2015 [42] 
Palamarchuk et al., 2017 [43]  

Set #3 
(n=98)

Alaskan-Uralian (Aldan)–
type and related complexes
(and associated placers) in
Russian Far East and Polar

Siberia

Gal’moenan (Koryak region); Mount
Filippa and R. Pustaya placer

(Kamchatka); Kondyor (northern
Khabarovskiy kray); Guli (Maymecha-

Katui region, Polar Siberia).

Tolstykh et al., 2000 [44] 
Malitch & Thalhammer, 2002 [45] 
Sidorov et al., 2004, 2012 [46, 47] 

Set #4
(n=37)

Layered intrusions and
associated deposits

Onverwacht and Mooihoek pipes; LG and
MG chromitites; detrital occurrences,

Bushveld complex, South Africa.
Great Dyke, Zimbabwe (detrital grains). 

Zones of sulfide mineralization in
Lukkulaisvaara and Burakovsky

intrusions, Karelia, Russia.
Sisim Placer Zone (Lysanskiy layered

complex), Eastern Sayans, Russia.

Cabri & Feather, 1975 [4]
Cabri et al., 1977 [25] 

Yakovlev et al., 1991 [48]
Rudashevsky et al., 1992 [49] 
Barkov & Lednev, 1993 [50]

Grokhovskaya et al., 2005 [51]
Melcher et al., 2005 [52]

Oberthür et al., 2013, 2016 [53, 54]  
Barkov et al., 2018 [55] 

Set #5
(n=27) Ophiolite-related deposits

R. Northern Pekul’ney, Pekul’ney Ridge,
Chukotskiy (Chukotka) Autonomous

Okrug, northeastern Russia; Olkhovaya-1
placers (Karaginsky ophiolite complex),
Kamchatka, Russia. Placer of R. Bolshoy

Khailyk, western Sayans, Russia.

Rudashevskiy et al., 1983 [26]
Tolstykh et al., 2009 [56] 

Barkov et al., 2018 [9]  

Set #6
(n=3)

Other chromitite deposits in
ultramafic rocks

Soldzhersky Ultrabasic-basic complex of
Tuva (Tyva), southern Siberia, Russia. Agafonov et al., 1993 [57]

Set #7
(n=2) Massive sulfide deposits

Massive talnakhite ore, Noril'sk orefield
(northern Krasnoyarskiy kray, Russia). Cook et al., 2002 [58] 

Set #8
(n=7)

Ti–rich oxide
mineralization in Alkaline

Ultramafic complexes 

Lesnaya Varaka complex;
Por'yerechensky deposit, Kola Peninsula,

Russia.

Barkov et al., 1998 [59]  
Neradovsky et al., 2017 [60]

Set #9
(n=47)

Various placer deposits 

Rio Condoto, Choco, Colombia;
Chindwin River area, Burma; 

Joubdo, Ethiopia;
Placers in British Columbia, Canada. 

Cabri et al., 1996 [30]
Laflamme, 2002 [61]

Barkov et al., 2005, 2008 [62, 63]  

Note. A total of 510 data-points (n = 510), collected in these sets, are evaluated in Figures 5 and 6.
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Figure 5. Compositional variations of alloy minerals from various complexes and deposits, shown in PtNi –
PtFe – PtCu compositional space (molar proportions are based on nine sets of data points provided in the
sources listed in Table 6).

Figure 6. Compositional variations of alloy minerals from various complexes and deposits, shown in PtNi –
PtFe – PtCu compositional space (molar proportions are based on nine sets of data points provided in the
sources listed in Table 6).

Values Pt + PGE and Σ(Fe+Cu+Ni+Sb+Hg) are in the ranges 0.7–1.2 and 0.8–1.3 a.p.f.u.
for Σatoms = 2 a.p.f.u., respectively. The mean composition is notably stoichiometric, yielding
the 1:1 proportion calculated for  n = 510 data-points. The observed variations imply that  the
excess atoms could enter both the Pt and base-metal sites.

The Alaskan–Uralian–(Aldan)-type complexes are most important sources of these alloy
minerals  (Figures  5,  6).  The  major  trend  extends  along  the  PtFe–PtCu  join;  numerous
compositions are  Cu-dominant.  In  contrast,  the  PtFe–PtNi  series  is  much more  limited,  with
relatively few alloy samples having a Ni-dominant compositions (#1, 12, 13, Table 7), reported
from the Soldzhersky complex, Tuva, Russia, the Bushveld layered complex, South Africa, and
from the Butyrinskoye deposit, Kytlym complex, Urals, Russia [57, 52, 38]. Interestingly,  the
PtNi–PtFe join is totally free of data points in spite of a large number of compositions examined
from these complexes (Fig. 5). Thus, the Cu-for-Fe type of substitution is more common, whereas
the Ni-for-Fe scheme likely requires special conditions of crystallization.

The maximum extent of Cu enrichment occurs in the phase Pt1.10(Cu0.65Fe0.26)Σ0.91 analyzed in
the  River  Pustaya  placer,  Kamchatka,  Russia  [44].  The  same level  of  Cu is  attained  in  the
unnamed Pt(Cu0.67Sn0.33) at Bolshoy Khailyk.

A pure “PtCu” component is not an end member in these series. As noted, it corresponds to

hongshiite,  PtCu,  which  is  trigonal  (space  group:  R32,  R3m or  R
–
3m),  with  the  unit-cell

parameters:  a  = 10.713 Å,  c = 13.192 Å, and  Z  = 48 [28], and to synthetic PtCu of trigonal
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structure [29]. Synthetic PtCu is also known to crystallize in space group Fm3̅m (with a = 3.796
Å: ICDD-00-048-1549 or  a = 3.799 Å [2]. Thus, the presence of Sn, Cu, Sb or Hg, or other
components is, indeed, significant to stabilize the P4/mmm structure of the mineral PCSM. 

4.4. Solid Solutions in the Ternary System PtNi – PtFe – PtCu
Elevated amounts of Pd and Ir are typical of PtFe alloys (Figs. 7, 8), as they are in other

species of Pt–Fe minerals,  i.e., Fe-bearing platinum and isoferroplatinum,  cf. [6]. Levels of Pd
attain 0.3 Pd a.p.f.u. (#1, 4 in Table 7) [38, 55]. A value greater than 0.35 Ir a.p.f.u. (Fig. 8), if it
corresponds to a single phase, may imply the existence of an Ir-dominant member in this series.
Examples of other members of the ternary system are poorer in Ir (Table 7).

Figure 7. A plot of Pt versus Pd in alloy minerals from various complexes and deposits, on the basis of the
literature sources quoted in Table 6, and expressed in terms of atoms per formula unit.

Figure 8. A plot of Pt versus Ir in alloy minerals from various complexes and deposits, on the basis of the
literature sources quoted in Table 6, and expressed in terms of atoms per formula unit.

Table 7. Selected examples of compositions of alloy minerals belonging to the system PtNi–PtFe–PtCu.

#. Locality Formulae Comments References

1
Butyrinskoye deposit,

Kytlym complex, Urals,
Russia

(Pt0.70Pd0.32Ir0.03)Σ1.06(Ni0.57Cu0.13Hg0.13 Fe0.11)Σ0.94

Pd-rich
Ni-dominant,
Hg-bearing

Volchenko, 2011 [38]

2 Kytlym complex, Urals (Pt0.72Pd0.21)Σ0.93(Fe0.48Cu0.39Ni0.13Hg0.05)Σ1.07
Pd-rich Volchenko, 2011 [38]

3 Bushveld complex, South (Pt 0.73Pd0.23)Σ0.96(Cu0.53Fe0.49Ni0.01)Σ1.04 Pd-rich Melcher et al., 2005 [52] 
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Africa

4
Sisim placer (Lysanskiy

complex), eastern Sayans,
Russia

(Pt0.80Pd0.28)Σ1.08(Fe0.47Cu0.42Ni0.03)Σ0.92 Pd-rich Barkov et al., 2018 [55]

5 Ural Platinum Belt, Urals,
Russia (Pt0.96Ir0.10Rh0.02)Σ1.08(Fe0.72Ni0.15Cu0.04)Σ0.92 Ir-bearing

Cabri & Genkin 1991
[32] 

6 Nizhniy Tagil complex,
Urals, Russia (Pt0.93Ir0.11Rh0.01)Σ1.06(Fe0.79Cu0.08Ni0.08)Σ0.94 Ir-bearing Tolstykh et al., 2015 [37]

7

Ol’khovaya-1 placer
(Karaginsky ophiolite

complex), Kamchatskiy
kray, Russia

(Pt0.80Ir0.17Rh0.01)Σ0.98(Fe0.72Ni0.24Cu0.06)Σ1.02 Ir-bearing Tolstykh et al., 2009 [56]

8 Gal’moenan complex,
Koryak region, Russia Pt0.98(Cu0.60Fe0.43)Σ1.03 Cu-dominant Sidorov et al., 2012 [47]

9 R. Pustaya placer,
Kamchatka, Russia Pt1.10(Cu0.65Fe0.26)Σ0.91 Cu-dominant Tolstykh et al., 2000 [44]

10
Ol’khovaya-1 placer

Kamchatskiy kray, Russia (Pt0.96Rh0.03Os0.01)Σ1.00(Cu 0.61Fe0.39Ni0.01)Σ1.01 Cu-dominant Tolstykh et al., 2009 [56]

11 Placer deposit, British
Columbia, Canada (Pt0.96Rh0.01Os0.01)Σ0.98(Cu0.58Fe0.43Ni0.02)Σ1.03 Cu-dominant Barkov et al., 2005 [62]

12 Bushveld complex, South
Africa (Pt0.87Rh0.06Pd0.02Ru0.01)Σ0.96(Ni0.64Fe0.39Cu0.02)Σ1.04 Ni-dominant Melcher et al., 2005 [52] 

13
Soldzhersky complex,
Tuva, southern central

Siberia, Russia
(Pt0.72Rh0.03)Σ0.75(Ni0.87Fe0.37Cu0.01)Σ1.25 Ni-dominant Agafonov et al., 1993 [57] 

14 Tulameen complex,
British Columbia, Canada (Pt0.96Pd0.02)Σ0.98(Cu0.53Fe0.26Sb0.15Ni0.09)Σ1.03

Sb-bearing,
Cu-dominant Nixon et al., 1990 [17]

15 Butyrinskoye deposit,
Urals, Russia (Pt0.85Pd0.16Ir0.01)Σ1.03(Cu0.49Fe0.20Hg0.17Ni0.11)Σ0.97

Hg-bearing,
Cu-dominant Volchenko, 2011 [38]

Note. The formulae are based on a total of two atoms per formula unit (a.p.f.u.).
The maximum levels of Sb and Hg (#14, 15, Table 7) are similar: 0.15 and 0.17 a.p.f.u.,

respectively [17, 38]. The incorporation of Hg is unusual for a Pt–Fe alloy mineral, though it is
consistent  with the compositions of  potarite,  PdHg, synthetic  PtHg or  NiHg,  also having the
AuCu-type structure [64, 65].

4.5. The Systems Involving PdCu, PdHg and PdAu
Potarite,  PdHg, is  involved in two solid-solution series  (Fig.  9):  the PdHg–PdCu series,

which is present in the Kytlym complex, Urals [38, 66], and the PdHg–PdAu series, reported in
association with Pd–Pt alloys [67] from Córrego Bom Sucesso, Minas Gerais, Brazil [23, 68].
Note that pure “PdCu” presumably does not represent the end-member component in those series
because it corresponds to skaergaardite, PdCu, a cubic species crystallizing in space group Pm3m,
with a = 3.0014(2) Å [69]. Representative members of the two series are listed in Table 8 (#12–
20). Note that a Cu-dominant member (#12), if isostructural with potarite (P4/mmm: #15, Table
9), may correspond to a potentially new species, Pd(Cu,Hg).

As noted by Fleet  et al. (2002) [23], the auriferous variety of potarite displays a notable
deviation from the ideal atomic proportions toward Pd3Hg2. A similar departure also is reported
for  the  tulameenite  series,  members  of  which  can  be  somewhat  nonstoichiometric:
(Pt,PGE)1+x(Fe,Cu,Ni)1–x, where 0 < x < 0.1 [62].
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Figure  9.  Compositional  series  of  cupriferous  and  auriferous  potarite,  shown  in  PdCu–PdHg–PdAu
compositional space (molar proportions). The two series are inferred on the basis of compositional data
reported from the Kytlym complex, Urals, Russia by Volchenko, 2011 [38] and Zaccarini et al., 2011 [66],
and from Córrego Bom Sucesso, Minas Gerais, Brazil by Fleet et al., 2002 [23] and Cabral et al., 2009 [68],
respectively.

Table 8. Representative compositions of intermetallic compounds in the platiniferous tetra-auricupride and auriferous–(cupriferous
or platiniferous) potarite series.

# Locality Formulae Comments References

1

Tulameen Alaskan-type
complex, British

Columbia, Canada (Au0.79Pt0.22)Σ1.01Cu0.99 - Cabri & Laflamme,
1981 [12]

2 Detrital grain, Sotajoki
area, Finland (Au0.66Pt0.27Pd0.13)Σ1.06(Cu0.89Fe0.03Ni 0.03)Σ0.95 Pd-rich

Törnroos &
Vuorelainen, 1987

[13]

3 Zolotaya River placer,
western Sayans, Russia (Au0.75Pt0.20Pd0.04Ir0.03Rh0.01)Σ1.03Cu0.97 - Tolstykh et al., 1997

[11]

4

Kondyor concentrically
zoned complex, northern

Khabarovskiy kray,
Russia

(Au0.86Pt0.16)Σ1.02Cu0.98 - Nekrasov et al.,
2005 [14]

5 - (Au0.96Pt0.04)Σ1.00Cu1.00 - -

6

Kondyor PGE placer
deposit, Khabarovskiy

kray, Russia (Au0.80Pt0.18Pd0.02)Σ1.00(Cu1.00Fe0.01)Σ1.01 - Shcheka et al. , 2004
[70]

7
Noril’sk and Talnakh ore
fields, Noril’sk complex,

Russia 

(Au0.82Pt0.09Pd0.06Ag0.02)Σ0.99Cu1.00 - Spiridonov, 2010
[71]

8 - (Au0.80Pt0.16Pd0.03Ag0.01)Σ1.00Cu1.00 - -

9 - (Au0.81Pd0.18Pt0.01)Σ1.00Cu1.00 Pd-rich -

10
R. Bolshoy Khailyk

placer, western Sayans,
Russia

(Au0.73Pt0.28)Σ1.01(Cu0.96Fe0.03)Σ0.99 - Barkov et al., 2019
[10]

11 - (Au0.83Pt0.18)Σ1.01Cu0.99 - -

12

Pegmatite subtype ore,
Butyrinskoye (Butyrin)

deposit, Kytlym complex,
Ural Platinum Belt, Urals

(Pd0.73Pt0.07Ir0.01)Σ0.81(Cu0.74Hg0.37Fe0.08Ni0.01)Σ1.20

Cu-dominant,
Hg-rich

Volchenko, 2011
[38]
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13 - (Pd0.76Ir0.08Pt0.04)Σ0.88(Hg0.56Cu0.42Fe0.10Ni0.05)Σ1.13 - -
14 - Pd0.88(Hg0.88Cu0.21Fe0.03)Σ1.12 - -
15 - (Pd0.82Pt0.10)Σ0.92(Hg0.76Fe0.19Cu0.13)Σ1.08 Pt-bearing -

16 - (Pd0.56Pt0.49Rh0.01)Σ1.06(Hg0.54Cu0.23Fe0.13Ni0.03)Σ0.93 Pt-rich Zaccarini et al.,
2011 [66]

17 - (Pd0.62Pt0.30Rh0.01)Σ 0.93(Hg0.65Cu0.19Fe0.18Ni0.02Te0.01)Σ1.05 Pt-rich -
18 - (Pd0.81Pt0.14Rh0.01)Σ 0.96(Hg0.68Fe0.22Cu0.12Ni0.01)Σ1.03 Pt-bearing -
19 - (Pd0.94Pt0.07Rh0.01)Σ1.02(Hg0.85Cu0.06Fe0.06Ni0.01)Σ0.98 - -
20 - Pd1.01(Hg0.80Cu0.12Fe0.05Te0.01)Σ0.98 - -

21

Botryoidal and other
alluvial grains, Córrego
Bom Sucesso streams,
Minas Gerais, Brazil

(Pd1.11Pt0.01)Σ1.12(Hg0.79Au0.09)Σ0.88 - Fleet et al., 2002
[23]

22 - Pd1.06(Hg0.67Au0.28)Σ0.95 - -
23 - Pd1.18(Hg0.65Au0.17)Σ0.82 - -

24 - Pd1.03(Hg0.78Au0.19)Σ0.97 - Cabral et al., 2009
[68]

25 - Pd1.09(Hg0.84Au0.07)Σ0.91 - -
Note. The formulae are based on a total of two atoms per formula unit (a.p.f.u.).

Table  9.  Comparison  of  unit-cell  parameters  reported  for  various  minerals  and  synthetic  compounds  related  to  unnamed
Pt(Cu0.67Sn0.33), all in space group P4/mmm.

# Mineral or synthetic compound Formula Unit-cell parameters References

1 Tulameenite; Pt2CuFe 
a = 3.891(2),

c = 3.577(2) Å
 

Cabri et al., 1973 [3]
IMA1972-016

2 Tulameenite revised; Pt(Cu0.5Fe0.5) 
a = 2.7477(4),

c = 3.5870(8) Å Bayliss, 1990 [18]

3 Tetraferroplatinum; PtFe
a = 3.850(5),

c = 3.693(6) Å Cabri & Feather, 1975 [4]  IMA1974-
012b

4 Tetraferroplatinum revised; PtFe a = 2.7235(10), 
c= 3.720(3) Å Bayliss, 1990 [18]

5 Ferronickelplatinum; Pt2FeNi a = 3.871(4),
c = 3.635(5) Å Rudashevskiy et al. , 1983 [26]

IMA1982-071

6 Ferronickelplatinum revised; Pt(Ni0.5Fe0.5)
a = 2.731(3), 

c = 3.641(8) Å Bayliss, 1990 [18]

7 Synthetic PtNi a = 2.711, 
c = 3.602 Å Leroux et al., 1988 [16]

8 Synthetic PtCo a = 2.698, 
c = 3.71 Å Leroux et al., 1988 [16]

9 Unnamed Pt(Cu0.67Sn0.33)
a = 2.838(3), 

c = 3.650(4) Å This study

10
Synthetic  Pt(Cu0.67Sn0.33) a = 2.82205(1), 

c = 3.63637(2) Å Juarez-Arellano et al., 2020 [1]

11 Tetra-auricupride; Au1.01Cu0.99
a = 2.81, 

c = 3.72 Å Chen et al., 1982 [24]

12 Tetra-auricupride revised; AuCu a = 2.800,
c = 3.670 Å Bayliss, 1990 [18]

13 Tetra-auricupride (platiniferous);
(Au0.80Pt0.21)Σ1.01Cu1.00

a = 2.790(1), 
c = 3.641(4) Å Barkov et al., 2019 [10]

14 Synthetic AuCu(I) a = 2.785–2.810, 
c = 3.671–3.712 Å Okamoto et al., 1987 [15]

15 Potarite; PdHg a = 3.02, 
c = 3.706 Å Spencer, 1928 [19]
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4.6. The PdHg – PtHg series
In addition, potarite displays a considerable extent of solid solution with PtHg, also having a

AuCu-type  structure  [65,  and  references  therein].  The  existence  of  a  new  and  Pt-dominant
member is implied by compositions reported from vein-like pegmatitic ores of the Butyrinskoye
(Butyrin)  deposit,  Kytlym complex,  Urals,  Russia [66].  Indeed,  one of  these compositions is
notably Pt-rich, with a Pt/Pd ratio of 0.9 (#16, Table 8). Nineteen data-points provided by the
authors gave values of the atomic ratio (Pd+Pt)/(Hg+Cu+Fe+Ni+Sb) ranging 0.9 to 1.2 , with a
mean of 1.0.

4.7. The AuCu – PtCu Series
Tetra-auricupride,  AuCu, forms a well-established series toward “PtCu” (Fig. 10) on the

basis of compositions reported from the Tulameen complex, British Columbia, Canada [12], the
Sotajoki area,  Finland [13], the Zolotaya River placer,  western Sayans, Russia [11],  lode and
placer occurrences associated with the Kondyor complex, Khabarovskiy kray, Russia [70, 14], the
Noril’sk complex [71] and the River Bolshoy Khailyk placer, western Sayans, Russia [10]. In the
latter occurrence,  a platiniferous variant of tetra-auricupride contains up to ~30 mol.% of the
“PtCu”  component  without  significant  modification  of  the  unit  cell.  Its  parameters  are:  a =
2.790(1), c = 3.641(4) Å, with c/a = 1.305 [10], which are close to those reported for PtFe-type
species [18] or parameters established for ordered AuCu(I) (#2, 14, Table 9).

The grains reported from Sotajoki and Noril’sk are substantially enriched in Pd (0.13–0.18
a.p.f.u.; #2, 9, Table 8). The total content of Pt + Pd attains 0.4 a.p.f.u. in the compound from
Sotajoki (Fig. 10).

Figure  10.  A plot  of  Au  versus (Pt  +  Pd)  in  terms  of  atoms per  formula  unit  (a.p.f.u.)  showing the
compositional series of platiniferous tetra-auricupride, which is documented on the basis of compositions
reported  from the  Tulameen  complex,  British  Columbia,  Canada  (Cabri  &  Laflamme,  1981  [12]),  the
Sotajoki area, Finland (Törnroos & Vuorelainen, 1987 [13]), the Zolotaya River placer, western Sayans,
Russia (Tolstykh  et al.,  1997 [11]),  lode and placer occurrences associated with the Kondyor complex,
Khabarovskiy kray, Russia (Shcheka  et al., 2004 [70], Nekrasov  et al., 2005 [14]), the Noril’sk complex
(Spiridonov, 2010 [71]) and from the River Bolshoy Khailyk placer, western Sayans, Russia (Barkov et al.,
2019 [10]).

4.8. A comparison of Unit-Cell Parameters
The various members of the group display a notable similarity in their unit-cell parameters,

values of which were reported or revised as follows: tulameenite, Pt(Cu0.5Fe0.5), a = 2.7477(4) and
c = 3.5870(8) Å (#2, Table 9); tetraferroplatinum, PtFe, a = 2.7235(10) and c = 3.720(3) Å (#4,
Table 4); ferronickelplatinum, Pt(Ni0.5Fe0.5), a  = 2.731(3) and  c  = 3.641(8) Å (#6, Table 9) (cf.
synthetic PtNi: a = 2.711 and c = 3.602 Å; #7, Table 9); tetra-auricupride, AuCu, a = 2.800 and c
= 3.670 Å (#12, Table 9) (cf. platiniferous tetra-auricupride: a = 2.790(1) and  c = 3.641(4) Å
(#13,  Table 9);  unnamed Pt(Cu0.67Sn0.33), a = 2.838(3) and  c = 3.650(4) Å (#9, Table 9) (cf.
synthetic analogue of the latter with  a = 2.82205(1) and  c = 3.63637(2) Å; [1]; and potarite,
PdHg, a = 3.02 and c = 3.706 Å (#15, Table 9).
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The revision proposed by [18] involves a different setting of the cell (e.g., 3.891 ≈ √2 *
2.7477; #1, 2, Table 9). The powder XRD pattern simulated on the basis of the structure data of
[18] is identical to the powder data reported by [4]. The different setting is also provided for tetra-
auricupride, AuCu, with a revision of space group to P4/mmm; the C4/mmm symmetry proposed
previously is  a  multiple cell  of  P4/mmm (#11,  12, Table 9).  This revision is consistent with
characteristics of the AuCu(I) phase, P4/mmm, a = 2.785–2.810 Å and c = 3.671–3.712 Å [15].

5. Concluding Comments and Principles of Future Classification
The  unnamed  species  of  PGM  investigated  at  Bolshoy  Khailyk  is  analogous,  both

compositionally  and  structurally,  to  synthetic  Pt(Cu0.67Sn0.33)  obtained  and  characterized  by
Juarez-Arellano et al. [2]. It represents a member of a large family of isostructural members that
have similar unit-cell parameters and conform to the space group  P4/mmm. These species and
their variants are composed of several participating elements (Pt, Pd, Ir, Au) vs. (Fe, Cu, Ni, Sn,
Sb,  Hg,  Au),  some of  which (e.g.,  Au)  can  probably  occupy more  than  a  single  site  in  the
structure. Considerable extents of mutual solid-solution exist among the inferred end-members in
these series. Consequently, new members can reasonably be expected in accordance with the 50%
rule.

Five members of the group are presently recognized: Tetraferroplatinum, PtFe [5]; cf. [18],
is  most  abundant  as  the  Fe-dominant  representative  of  the  extensive  field  of  complex  solid-
solutions occurring in the system PtNi–PtFe–PtCu (cf. Figs. 5, 6). Tulameenite, Pt2CuFe [4] and
its  synthetic  analogue  appear  to  have an  ordered  face-centered  tetragonal  structure  stabilized
below  a  temperature  of  ~1178°C  as  a  result  of  an  ordering  transformation  [72].  Similarly,
ferronickelplatinum Pt2NiFe [26] forms as a result of a phase transformation implied for synthetic
PtNi in the system Pt–Ni,  cf. [73].  This mode of origin is consistent with the transformation
AuCu(II) → (AuCuI) in the system Au–Cu [15]. On the other hand, according to the suggestion of
[18], these species may represent intermediate members, i.e., Pt(Cu0.5Fe0.5) and Pt(Ni0.5Fe0.5) (#2,
6, Table 7). In addition, the Ni-dominant phases reported (#1, 12, 13, Table 7; [57, 52, 38] are
likely  related  to  synthetic  PtNi  (#7,  Table  9;  [16]).  The  unnamed  mineral  [Pt(Cu0.67Sn0.33)]
described  here  may  represent  the  Cu-dominant  member  of  the  group;  by  analogy,  different
compositional variants could occur in the systems PtCu–PtSn and PtNi–PtFe–PtCu (cf. Fig. 5),
among others. Tetra-auricupride, the next member, is ideally AuCu [24], cf. [18], though it can
display considerable extents of Pt-for-Au and Pd-for-Au substitutions (Fig. 10). Potarite, ideally
PdHg [19], forms three series of compositions: platiniferous, auriferous and cupriferous (#12-20,
Table 8, Fig. 9).There is no doubt that several other members of the group will be documented in
future.

Figure 11. A general scheme proposed for ABC2-type compounds on the basis of an ordered distribution of
metal atoms in the ‘tP4’ structure.
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Figure 12. Schemes for AB-type compounds involving a disordered distribution of metal atoms in the ‘tP4’ (a; left) and ‘tP2’ (b;
right) structures.

The intermetallic compounds or alloys related to tetraferroplatinum and tulameenite can be
better grouped (R. Miyawaki, written commun.; Figs. 11, 12) on the basis of the degree of order

of metals in terms of Fm
–
3m (#225), Pm

–
3m (#221), P4/mmm (#123) ‘tP4’, C4/mmm (a multiple

cell of the smaller  P4/mmm), ‘tP2’, among other possibilities. It is thus necessary to clarify the
degree of order of the metal atoms in these minerals in order to establish in each case the true
space-group of the unit cell. If the crystal structures of the polymorphs have essentially the same
topology, differing only in terms of a structural distortion or in the degree of order of some of the
atoms comprising the structure, such polymorphs are not regarded as separate species [74]. Thus,
on the basis of the literature data on valid mineral species making up the potential group(s), the
species can be classified into two types.  (1)  ABC2 type, with an ordered distribution of metal
atoms  in  the  tetragonal  system,  space  group  P4/mmm,  ‘tP4’.  The  members  are  tulameenite
Pt2CuFe, P4/mmm, a = 3.89, and c = 3.58 Å [3], and ferronickelplatinum Pt2FeNi, P4/mmm, a =
3.871, and  c  = 3.635 Å [26]. (2)  AB type, with a disordered distribution of metal atoms in the
tetragonal  system (P4/mmm),  ‘tP2’.  The members  are  tetraferroplatinum PtFe,  P4/mmm, a =
2.724,  c  = 3.702 Å [25],  tetra-auricupride  CuAu,  P4/mmm, a =  2.81,  c  = 3.72 Å [24],  and
unnamed Pt(Cu0.67Sn0.33), P4/mmm, a = 2.838, and c = 3.650 Å (this study), among others.
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