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ABSTRACT OF THE DISSERTATION 
 
 

Ecological and evolutionary consequences of microbial community  
responses to environmental change 

 
by 
 

Sarai S. Finks 
 

Doctor of Philosophy in Biological Sciences 
 

University of California, Irvine, 2022 
 

Professor Jennifer B.H. Martiny, Chair 
 

Global changes such as increased frequency of fire, drought, and nitrogen deposition, perturb 

microorganisms and the higher trophic life forms they support. Microorganisms play key roles in 

carbon and nutrient cycling, which are important to agriculture and ecosystem health. Although 

microorganisms are pivotal in an ecosystem's response to environmental changes, little is known 

about how abundant and diverse microbial communities adapt to such changes. The overarching 

aim of my thesis is to investigate how bacterial communities respond to global change and in 

particular, their ability to quickly adapt to environmental perturbations.  

I first investigated how microbial responses to global changes are influenced by 

interactions with plant communities using the Loma Ridge Global Change Experiment, a decade-

long experiment that manipulates rainfall and nitrogen levels across two adjacent ecosystems 

(Chapter 1). My findings underscore the importance of plant–microbe interactions when 

considering the transferability of the results of global change experiments across ecosystems. 

Next, I investigated traits found on plasmids, a type of mobile genetic element (MGE) that can 

facilitate rapid evolution in bacteria. I asked what are the ecologically-relevant plasmid genes 

that may serve as reservoirs of environmental-adaptive traits in bacteria (Chapter 2). The 



 xiv 

findings of this chapter suggest that plasmid traits may contribute to host adaptation in 

environmental microbiomes. Lastly, I extended this work to a cosmopolitan soil taxon, 

Curtobacterium, an abundant genus of bacteria in southern California ecosystems. This taxon 

shows marked shifts in relative abundance in response to simulated drought and is amenable to 

culturing, providing a tractable system for investigating both genotypic and phenotypic 

characteristics of this organism. Previous experiments have shown Curtobacterium rapidly 

evolve via de novo mutations in response to environmental changes. I asked what MGE and 

associated traits are found in Curtobacterium, and determined whether MGE and traits showed 

any environment- versus clade- specific genomic signatures (Chapter 3). The findings of this 

chapter highlight the potential of traits found on plasmids to be mobilized within the bacterial 

communities where these Curtobacterium were isolated. Overall, my thesis work highlights the 

importance for considering the intersection of evolution and ecology in understanding how 

microbial communities adapt to environmental changes. 
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INTRODUCTION 
 

“The first step toward genetic novelty is the origination or acquisition of genomic variation” 
- Kirchberger, Schmidt, and Ochman1 

 

The total number of microorganisms in terrestrial environments is estimated to be approximately 

1029 (Flemming and Wuertz, 2019), and soil microbial communities are among the most diverse. 

These communities influence ecosystem processes through resource assimilation into biomass 

and regulating carbon inputs via decomposition of senescent plant matter (Schimel and 

Schaeffer, 2012; Gleixner, 2013; Kuypers et al., 2018). Global changes such as drought and 

increased atmospheric nitrogen impact soil microbiome diversity, abundance, and ecosystem 

functioning like decomposition of plant material (Alster et al., 2013; Matulich and Martiny, 

2015; Martiny et al., 2017; Glassman et al., 2018). Since soil carbon and nitrogen stocks reflect a 

dynamic balance between microbial decomposition of organic carbon and assimilated nitrogen 

(Mooshammer et al., 2014), understanding the mechanisms underlying how microorganisms 

respond and adapt to environmental disturbances is key in determining the long-term ecological 

and biogeochemical consequences of anthropogenic activities and climate change (Cavicchioli et 

al., 2019). 

Bacteria can adapt quickly to perturbations due to their relatively fast growth rates, high 

mutation rates, and horizontal gene transfer (HGT) (Thomas and Nielsen, 2005). Thus, it is often 

assumed that microbial functioning in natural ecosystems will be highly resistant to changes. 

Indeed, rapid adaptation in bacteria is showcased by the global spread of antibiotic resistance in 

healthcare-associated communities where HGT of resistance genes is facilitated by MGE such as 

 
1 Kirchberger PC, Schmidt ML, Ochman H. 2020. The Ingenuity of Bacterial Genomes. Annu 

Rev Microbiol 74(1): 815–834. Annual Reviews. doi: 10.1146/annurev-micro-020518-
115822 
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plasmids (Johnson et al., 2007; Carattoli, 2009; Nordmann et al., 2011; Carattoli, 2013; Hu et al., 

2014; Li et al., 2015). Mechanisms of HGT (e.g., conjugation, transduction, and transformation) 

have been well studied in laboratory settings using single bacterial strains, and much of the trait 

variation in bacteria is thought to be attributed to HGT (Wollman and Jacob, 1956; Curtiss III, 

1969; Johnsborg et al., 2007; Johnston et al., 2014; Kirchberger et al., 2020; Schneider, 2021). 

However, there is a surprising disconnect between what is known about HGT in the lab and our 

understanding of these processes in natural environments (Brito, 2021). This contributes 

significant uncertainty in our ability to predict how bacteria living in complex natural 

communities will respond to environmental change. 

Since microbes often live amongst other microbes, and macroorganisms such as plants, 

species niches in these complex communities are constantly adjusting in response to changing 

environmental conditions (Dolph et al., 1985; Rainey and Travisano, 1998; Hairston Jr et al., 

2005; Lawrence et al., 2012; WM J. et al., 2013; Stuart et al., 2014). For example, in southern 

California, wildfires and severe drought not only impact soil microorganisms but plant 

communities as well, which in turn can indirectly impact microbes. At the microbial level, 

physical stressors like osmotic and heat-shock may create the ideal conditions for HGT between 

interacting microbes, which may result in fitness advantages on members of the soil microbiome. 

Since climate change responses will likely depend on the traits involved (Allison, 2012; Krause 

et al., 2014; H. et al., 2015; Ashish A Malik et al., 2020), the exchange of traits in 

microorganisms under environmental pressure may contribute to the resilience of ecosystem 

functioning and soil biogeochemical processes as these ecosystems are increasingly perturbed by 

climate change (Dai, 2011; Sheik et al., 2011; Gao et al., 2011; Kinugasa et al., 2012; Schmidt et 

al., 2018; Griffin‐Nolan et al., 2019; I. et al., 2022). Understanding which biotic interactions 
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impact microbial responses whether through macroscale interactions or microbial interactions via 

the horizontal exchange of traits will help inform predictions about how microbial communities 

change and ecosystems function with projected hotter, drier climates. 
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CHAPTER 1 
 

Microbial community response to a decade of simulated global changes 
depends on the plant community 

 
 

ABSTRACT 
Global changes such as increased drought and atmospheric nitrogen deposition perturb 

both the microbial and plant communities that mediate terrestrial ecosystem functioning. 

However, few studies consider how microbial responses to global changes may be influenced by 

interactions with plant communities. To begin to address the role of microbial-plant interactions, 

we tested the hypothesis that the response of microbial communities to global change depends on 

the plant community. We characterized bacterial and fungal communities from 395 plant litter 

samples taken from the Loma Ridge Global Change Experiment, a decade-long global change 

experiment in southern California that manipulates rainfall and nitrogen levels across two 

adjacent ecosystems, a grassland and a coastal sage scrubland. The differences in bacterial and 

fungal composition between ecosystems paralleled distinctions in plant community composition. 

In addition to the direct main effects, the global change treatments altered microbial composition 

in an ecosystem-dependent manner, in support of our hypothesis. The interaction between the 

drought treatment and ecosystem explained nearly 5% of the variation in bacterial community 

composition, similar to the variation explained by the ecosystem-independent effects of drought. 

Unexpectedly, we found that the main effect of drought was approximately four times as strong 

on bacterial composition as that of nitrogen addition, which did not alter fungal or plant 

composition. Overall, the findings underscore the importance of considering plant-microbe 

interactions when considering the transferability of the results of global change experiments 

across ecosystems.  

INTRODUCTION 
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Ongoing human-driven global changes are altering species distributions and interspecific 

interactions (Parmesan, 2006; Rosenzweig et al., 2008). Many field experiments have considered 

the responses of plant and/or microbial communities to simulated global changes (Stylinski and 

Allen, 1999; Vilà et al., 2003; Allison et al., 2013; Martiny et al., 2017). These studies aim to 

predict how global changes such as altered precipitation, nitrogen availability, CO2 

concentration, and temperature affect community composition and ecosystem processes 

(Stylinski and Allen, 1999; Cione et al., 2002; Vilà et al., 2003; Allison and Martiny, 2008; 

Cruz-Martinez et al., 2009; Gaertner et al., 2009; Castro et al., 2010; Gutknecht et al., 2012). 

However, fewer studies consider how the impact of a global change treatment on microbial 

composition is influenced by interactions with the plant community (Classen et al., 2015; Sayer 

et al., 2017). Such interactions will influence the transferability of the results of global change 

experiments as plant community composition, among other factors, vary across ecosystems. 

Here, we focus on one half of plant-microbe interactions – specifically, the ways in which 

plants may influence microorganisms. One way in which plants influence microorganisms is 

through decomposition. Bacteria and fungi are the primary decomposers of dead plant biomass, 

and this process regulates the amount of soil carbon exchanged with the atmosphere (Swift et al., 

1979; Adair et al., 2008; Schimel and Schaeffer, 2012). More broadly, plant communities can 

influence microorganisms through plant species and tissue composition (influencing nutrients 

and secondary compounds), changes in the abiotic environment (plant architecture influencing 

canopy and moisture of the soil), and relationships with other organisms such as endophytes and 

herbivores (Wardle et al., 2006; Tintjer and Rudgers, 2006; Kara et al., 2008; Kominoski et al., 

2009; Rodriguez et al., 2009; Chapman and Newman, 2010; Santonja et al., 2017; Graff et al., 

2020). Through such associations, the impact of a global change treatment on plant-litter 
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microbial communities may depend on the plant community in at least three ways. First, initial 

differences in plant communities across ecosystems will select for different microbial 

communities. Thus, the microbial response to global change may be driven by taxa that are 

uniquely prominent in an ecosystem (Ashish A. Malik et al., 2020). Second, some microbial taxa 

may be more sensitive to global change depending on the plant resources available to them in an 

ecosystem (Wood et al., 2018; Ashish A Malik et al., 2020). Specifically, litter substrate quality 

may impact the ability of litter microbes to respond to stressful conditions (Ashish A. Malik et 

al., 2020). Finally, the extent to which the plant litter substrates and resources are altered by 

global change, and thereby indirectly influence litter microbial communities, will depend on the 

plant community (Aerts, 1997; Rouifed et al., 2010; Fernández-Alonso et al., 2018). For 

instance, drought typically reduces the germination of annual plants, ground cover, and primary 

productivity of arid grasslands, whereas plants with deeper root systems are less impacted (Le 

Houérou, 1996; Shinoda et al., 2010; Kinugasa et al., 2012).  

The Loma Ridge Global Change Experiment (LRGCE) simulates the increased frequency 

of drought and the increased availability of nitrogen. Drought is an extreme climatic event that 

occurs in most climatic zones, and its frequency and severity are projected to increase, along 

with atmospheric nitrogen deposition (Mishra and Singh, 2010; Dai, 2011; IPCC, 2014). A 

unique feature of the LRGCE is that treatments are applied to two adjacent ecosystems (Figure 

S1A), a grassland and a coastal sage scrubland (CSS). Much is known about the plant and litter 

microbial communities at the LRGCE. Within the first five years of the experiment, both the 

grassland and CSS plant communities responded to drought and nitrogen addition (Potts et al., 

2012; Kimball et al., 2014; Kimball et al., 2016). In the grassland, drought reduced non-native 

annual grass cover, while nitrogen addition reduced native grasses and increased non-native 
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annual grasses (Kimball et al., 2014; Kimball et al., 2016). In the CSS, drought reduced shrub 

cover and increased grass cover, and added nitrogen further reduced shrub cover and native 

grasses (Kimball et al., 2014). Bacterial and fungal community composition on surface plant 

litter also responded to these treatments in the grassland (Allison et al., 2013; Berlemont et al., 

2014). Moreover, reciprocal transplant experiments within LRGCE revealed shifts in microbial 

community composition due to direct, abiotic effects of the global change treatments, and as 

indirect effects of drought on the grassland plant litter (Martiny et al., 2017). However, the 

response of the microbial communities within the CSS treatment plots at the Loma Ridge 

research site have not yet been investigated. Additionally, drought and added nitrogen treatments 

have been ongoing for more than a decade, thus it is important to assess the long-term effects of 

simulated drought and added nitrogen.  

Here, we tested the hypothesis that the response of microbial communities to global 

change depends on the plant community using a decade-long global change experiment in 

southern California. To address our hypothesis, we ask: does the response of microbial 

communities to global change depend on the ecosystem (grassland versus CSS)? The two 

ecosystems are immediately adjacent to each other at our study site, without major differences in 

slope, aspect, soil type, or climate, and subtle bulk soil differences seem unlikely to affect the 

plant litter microorganisms on the soil surface. Thus, we presume that any differences in the 

treatment responses across ecosystems are likely due to differences in the plant communities, 

rather than other abiotic factors. As observed in the grassland within the first five years of 

treatments, we expect a treatment response would occur in both ecosystems, resulting in a 

significant main effect of the treatments. However, we also predict that the microbial community 

response will result in ecosystem-specific compositional shifts, as reflected in significant 
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treatment-by-ecosystem effects. Given that the surrounding abiotic conditions are similar in these 

adjacent ecosystems, such interactive effects provide evidence that microbial responses are 

dependent on the plant community. 

MATERIALS AND METHODS 

Field site, sample collection, and experimental design. The LRGCE was established in 

February 2007 and is located 5 km north of Irvine, California, USA (117.704°W, 33.742°N; 365 

m elevation), on a sloping (< 10%) deep colluvial deposit from layers of sedimentary rock and 

soil mapped as Myford Sandy Loam (Potts et al., 2012; Kimball et al., 2014). The grassland plots 

are dominated by the native perennial grass Stipa pulchra, the annual grass genera Avena, 

Bromus and Festuca, and the annual forb genera Erodium and Lupinus. The CSS plots are 

dominated by Artemisia californica, Salvia mellifera, Eriogonum fasciculatum, and Acmispon 

glaber (Kimball et al., 2014). The climate is Mediterranean with an annual precipitation of 30 

cm. The ‘wet’ season is typically from November to April while the ‘dry’ season is from May 

through October (Figure 1.1). Air temperatures are moderate in the wet season with an average 

high and low of 21.1°C and 7.1°C, respectively, and increase in the dry season with an average 

high and low of 27.6°C and 14.4°C, respectively (Tustin Irvine Ranch weather 1981 to 2010; 

Western Regional Climate Center2. 

Surface litter samples were collected at seven time points (approximately every three 

months) from August 2016 through March 2018, and from four replicate plots receiving four 

different treatments: control, drought, added nitrogen, and drought plus added nitrogen. Thus, up 

to 16 samples in each ecosystem were collected at each time point; however, after quality checks 

some samples were excluded for a total of 108 grassland and 111 CSS samples. The LRGCE 

 
2 https://wrcc.dri.edu/ 
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implements a randomized split-plot design in both grassland (6.1 x 12.2 m) and CSS (18.29 x 

12.19 m) sites, where the nitrogen treatment is nested within drought treatment plots. Drought 

control plots received ambient rainfall while drought plots were exposed to approximately a 50% 

reduction in rainfall, and either ambient or added nitrogen. Drought was simulated by covering 

rain shelters with manually retractable, clear, 6-mil polyethylene roofs before predicted large rain 

events and removed promptly afterwards (Figure 1.2B and C). Added nitrogen was applied at 60 

kg N ha-1 year-1 as fast release calcium nitrate, CaNO3,  and in two amounts per year, 20 kg prior 

to the first rains of the wet season and 40 kg in December coinciding with the start of the plant 

growing season (Potts et al., 2012; Kimball et al., 2014). 

DNA isolation, PCR, and microbial community sequencing. DNA was extracted from 

~ 0.05 g of senescent leaf material from treatment plots in grassland and CSS sites using 

ZymoBiomics DNA isolations kits (Zymo Research, Irvine, California, USA) and processed for 

5 min of bead beating at maximum speed (6.0 m/s, FastPrep-24 High Speed Homogenizer, MP 

Biomedicals, Irvine, California, USA). To avoid batch effects, the plant litter samples were 

randomized prior to DNA extraction. 

To characterize bacterial composition of the leaf litter communities, PCR amplification of 

the V4 and partial V5 region of the bacterial 16S rDNA (~ 411 bp) was carried out following the 

Earth Microbiome protocol (Lane et al., 1985; Caporaso et al., 2012; Parada et al., 2016). The 

barcoded forward primers contain the 5' Illumina adapter 

(AATGATACGGCGACCACCGAGATCTACACGCT), a unique 12-base error correcting 

Golay barcode, a pad (TATGGTAATT), a linker sequence (GT), and the 515fb primer 

(GTGYCAGCMGCCGCGGTAA); and reverse primers that contain the reverse complement of 
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the 3' Illumina adapter (CAAGCAGAAGACGGCATACGAGAT), a pad (AGTCAGCCAG), a 

linker sequence (GG), and the 926r primer (CCGTCAATTCCTTTRAGTTT).  

Each 16S PCR reaction contained: 9.5 µL PCR grade water (Fisher Scientific, Hampton, 

New Hampshire, USA), 12.5 µL of 2x concentrated AccuStart II PCR ToughMix (Quanta bio, 

Beverly, Massachusetts, USA) for a final 1x concentration, 0.5 µL of 10 µM 926r primer (final 

concentration of 0.2 µM), 1 µL of 10 mg/mL bovine serum albumin (final concentration of 1 

µg/mL; New England BioLabs, Ipswich, Massachusetts, USA), 0.5 µL of 10 µM barcoded 515f 

primers (final concentration of 0.2 µM), and 1 µL of genomic DNA. Reactions were held at 94 

℃ for 3 minutes to denature DNA, with amplification proceeding for 30 cycles at 94 ℃ for 45 

seconds, 55 ℃ for 30 seconds, and 72 ℃ for 1 minute; followed by a final extension for 10 

minutes at 72 ℃ to ensure complete amplification. 

To determine fungal community composition, and improved accuracy of amplicon cluster 

detection and resolution during sequencing, a staggered primer design was used to amplify the 

internal transcribed spacer (ITS) region (~ 340 bp) of the 5.8S rRNA gene. The ITS primers used 

are as follows: ITS9f primer (AATGATACGGCGA 

CCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGAACGCA

GCRAAIIGYG), along with a barcoded reverse ITS4 primer 

(CAAGCAGAAGACGGCATACGAGAT 

************AGTCAGTCAGCCTCCTCCGCTTATTGATATGC), which contained the 

reverse complement of the 3' Illumina adapter, a unique 12-base barcode, and a pad with a linker 

sequence (Tremblay et al., 2015; Looby et al., 2016). 

Each ITS PCR reaction contained: 9 µL PCR grade water (Fisher Scientific, Hampton, 

New Hampshire, USA), 12.5 µL of 2x concentrated AccuStart II PCR ToughMix (Quanta bio, 
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Beverly, Massachusetts, USA) for a final 1x concentration, 0.75 µL of 10 µM ITS9f primer 

(final concentration of 0.3 µM), 1 µL of 10 mg/mL bovine serum albumin (final concentration of 

1 µg/mL; New England BioLabs, Ipswich, Massachusetts, USA), 0.75 µL of 10 µM barcoded 

ITS4 primers (final concentration of 0.3 µM), and 1 µL of genomic DNA. Reactions were held at 

94 ℃ for 5 minutes to denature DNA, with amplification proceeding for 34 cycles at 95 ℃ for 

45 seconds, 50 ℃ for 1 minute, and 72 ℃ for 1 minute and 30 seconds, followed by a final 

extension for 10 minutes at 72 ℃. 

Sequencing libraries were prepared with pooled 16S or ITS amplicons from each sample 

after purification using Speed Bead Magnetic Carboxylate (GE Healthcare UK Limited, 

Buckinghamshire, UK) to remove primers. A composite library with equimolar ratios of the 

purified pooled 16S and ITS amplicons was prepared, and DNA size and quality for sequencing 

was determined by Qubit and Bioanalyzer (450 ng/ml and average amplicon size of 532 bp, 

respectively). Custom sequencing primers for 16S and ITS libraries were used as described in 

((Caporaso et al., 2012; Looby et al., 2016). The libraries were sequenced by the UCI Genomics 

High Throughput Sequencing Facility using an Illumina MiSeq platform with paired end reads at 

300 bp. 

Analysis of 16S and ITS sequencing. The forward reads of amplicon sequences were 

demultiplexed using QIIME2 version 2018.11 toolkit (Caporaso et al., 2010; Bolyen et al., 

2018). Five samples were excluded from the bacterial analysis because of poor sequencing 

quality, and five samples were removed from the fungal analysis because of duplicated barcodes 

(Table 1.1 and 1.2). Demultiplexed sequences were denoised using DADA2, with operational 

taxonomic units, OTUs, picked at 100% identity level (amplicon sequence variants, ASVs) using 

UCLUST within the QIIME2 pipeline (Caporaso et al., 2010; Edgar, 2010; Callahan et al., 2016; 
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Bolyen et al., 2018). Resulting OTU tables were rarefied via randomized sampling of sequences 

without replacement over 300 iterations at a depth of 1,090 and 1,064 sequences per sample for 

bacteria and fungi, respectively, and using the ‘EcolUtils’ package in R version 3.6.3 (R., 2018; 

Salazar, 2020). Taxonomy was assigned to OTUs using bacterial representative sequences and 

the q2-feature-classifier, classify‐sklearn naïve Bayes taxonomy classifier against the 

Greengenes 13_8 99% OTUs reference sequences (McDonald et al., 2012; Bokulich et al., 

2018). Taxonomy for fungal representative sequences were assigned using a dynamic threshold 

(97 % – 99 % identity to reference), which is based on the most accurate assignment for a given 

lineage, and determined manually by experts in the field from the UNITE v7.2 database, release 

date 12-01-2017 (Nilsson et al., 2018; UNITE Community, 2019). Unassigned OTUs at the 

Kingdom level, or assigned as chloroplasts, mitochondria, and Archaea were excluded from 

analysis. 

Plant community. Species composition and fractional cover was determined in all plots 

by point intercept during mid-April of 2015, coinciding with late flowering and maximum seed 

set. Briefly, two 160 × 60 cm2 polyvinyl chloride frames with 10-cm interval grids were 

positioned within each plot. A wire was dropped from each grid point, and the first-intercepted 

species was recorded. The point was recorded as plant litter or bare soil if live plant material was 

not encountered. The number of interceptions for each plant species was summed within a plot to 

calculate fractional cover. Fractional cover data of all species observed (32 in total) were used to 

generate a Bray-Curtis dissimilarity matrix. Fractional cover data for all species was further 

categorized into five functional groups including; native grasses, non-native grasses, native forb, 

non-native forb, and native shrub (Kimball et al., 2014; Matulich et al., 2015). 
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Statistical analysis. To determine the effects of ecosystem, drought, added nitrogen, 

sample collection date, and all interactions on microbial composition, PERMANOVAs using 

Bray-Curtis dissimilarity matrices generated with rarefied OTU tables were performed using 

PRIMER-e version 6 (Clarke and Gorley, 2006a; Anderson et al., 2008a). Microbial and plant 

mixed models included plot treatment (ambient rainfall or nitrogen, drought, added nitrogen, and 

drought with added nitrogen), ecosystem, and sample collection date as fixed factors. The block 

factor was nested within ecosystem as a random effect to account for the split-plot design of the 

experiment. The estimated percentage of variance explained was determined by dividing terms 

with significant p-values by the sum of the estimates of components of variation given as output 

from PRIMER-e. Post-hoc comparisons of PERMANOVAs for drought and collection dates 

given community dissimilarities were performed using PRIMER-e. Multivariate homogeneity of 

variances for drought and nitrogen treatments by ecosystem were tested in R using the 

‘betadisper’ function of the ‘vegan’ package, calculating distance to group centroid and 

accounting for sampling bias (Anderson, 2006; Anderson et al., 2006; R., 2018; Oksanen et al., 

2019). To determine which taxa associated with OTU identifiers were key contributors to 

compositional differences in bacterial and fungal communities, SIMPER tests were conducted in 

PRIMER-e. To visualize factors influencing bacterial, fungal, and plant communities, 

ordinations of rarefied Bray-Curtis matrices were performed using non-metric multidimensional 

scaling (NMDS) using the ‘vegan’ and ‘ggplot2’ packages in R (Wickham, 2009).  

RESULTS 

We investigated the response of microbial communities on plant litter to drought and 

nitrogen addition in a decade long global change experiment carried out in adjacent grassland 

and CSS ecosystems. From samples taken over three years (beginning near the end of year nine 
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of the LRGCE) and across 32 treatment plots, 2.48 million bacterial sequences were clustered 

into 1,197 OTUs (defined at 100% sequence similarity; Table 1.1). The majority of bacterial 

OTUs were associated with four phyla: Proteobacteria (40.2%), Bacteroidetes (29.6%), 

Actinobacteria (17.9%), and Firmicutes (2.9%). Correspondingly, 5.69 million fungal sequences 

clustered into 4,190 OTUs from two main phyla: Ascomycetes (71.4%) and Basidiomycetes 

(28.2%). 

Main effects of ecosystems and time. The composition of both bacterial and fungal 

communities varied significantly between the grassland and CSS. Ecosystem, including its 

interactive effects with collection date (encompassing annual and seasonal variation), explained 

the largest amount of compositional variation, approximately 15% and 10% of the variation for 

bacterial and fungal communities, respectively (Figure 1.2A and B; Table 1.3; PERMANOVA: 

P £ 0.001). These compositional differences were apparent at the genus-level. Within bacteria, 

Sphingomonas, Hymenobacter, and Curtobacterium tended to be relatively more abundant in the 

grassland, whereas Janthinobacterium, Methylobacterium, and Agrobacterium were relatively 

more abundant in CSS (Figure 1.3A). Within the fungi, Alternaria, and Vishniacozyma tended to 

be relatively more abundant in the grassland, whereas Cylindroseptoria and Coleophoma were 

more abundant in CSS (Figure 1.3B). The differences in microbial composition between 

ecosystems paralleled distinctions in plant community composition, with ecosystem accounting 

for 38% of the variation in plant composition (Figure 1.4C and D; Table 1.3; P £ 0.01). The 

grassland was dominated by non-native grasses, whereas CSS was predominantly comprised of 

native grasses, shrubs and forbs (Figure 1.3C).  

Microbial composition also varied temporally over the three sampling years, as expected 

from previous studies in the grassland at LRGCE (Matulich and Martiny, 2015). After 
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ecosystem, collection date explained the most variation in both bacterial and fungal community 

composition, approximately 8% and 2%, respectively (P < 0.001; Table 1.3; Figure 1.4D). 

Indeed, microbial communities from sample collection dates coinciding with the peak wet season 

(e.g., January and March typically have the highest amounts of rainfall) differed in composition 

from that of collection dates in June and September months coinciding with the peak of the dry 

season (post-hoc pairwise comparisons: P < 0.01; Figures 1.1, 1.2, and 1.5).  

Main effects of drought and added nitrogen. Drought significantly altered both 

bacterial and fungal communities (Figure 1.4A and B; Table 1.3; main effects: P £ 0.01), 

whereas nitrogen only altered the bacterial community. The main effect of drought, including its 

interactive effects with collection date, explained 5.6% and 3.6% of total variation in bacterial 

and fungal community composition, respectively (Figure 1.4D). In contrast, added nitrogen 

accounted for less than 1% the variation in bacterial composition. Main effects of drought also 

explained 20% of variation in plant community composition across both ecosystems (Figure 

1.4C and D). Overall, the main effects of drought were apparent across bacterial, fungal, and 

plant communities, while the nitrogen treatment only seemed to effect bacterial communities. 

Ecosystem-dependent responses to drought and nitrogen addition. In addition to the 

main effects, the global change treatment altered microbial composition in an ecosystem-

dependent manner, in support of our hypothesis. The interaction between the drought treatment 

and ecosystem explained nearly 5% of the variation in bacterial community composition, similar 

to the variation explained by the ecosystem-independent effects of drought (main effect plus 

drought-by-collection date effect = 5.54%; P = 0.001; Table 1.3). This interactive effect was 

apparent at the genus level; for instance, Curtobacterium decreased in abundance under drought 

conditions in the grassland, whereas it increased under drought in CSS (Figure 1.3A). Similarly, 
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at the OTU level, a number of relatively abundant taxa contributed differentially to 

compositional shifts under the treatments, responding in opposite directions (positively or 

negatively) depending on whether they were in the grassland or CSS. Further, some bacterial 

OTUs were observed exclusively in one ecosystem, where they contributed a large effect to the 

global change response. For example, OTUs belonging to Xanthomonadaceae and Nesterenkonia 

were only detected in grassland plots and increased in response to drought (SIMPER analysis; 

Table 1.4). These trends illustrate the ways in which bacterial responses to drought can 

contribute to a significant drought-by-ecosystem interaction.  

The response of fungal communities to drought also depended on the ecosystem 

(drought-by-ecosystem effect: P = 0.04; Table 1.3). Like for the bacteria, this ecosystem-

dependent response was apparent at the OTU level among the taxa that most contributed to the 

drought response; for instance, five fungal Alternaria OTUs responded to drought in opposite 

directions for grassland compared to CSS (Table 1.4). Notably, it is unclear if these OTUs also 

varied significantly among ecosystems (Beta-dispersion analysis: P < 0.001; (Warton et al., 

2012). However, the fungal response to drought appeared to be less dependent on the ecosystem 

than the bacterial response; the interactive effect only explained 1% of variation in fungal 

composition, lower than the variation explained by the ecosystem-independent effects of drought 

(main effect plus drought-by-collection date effect = 3.58%; Table 1.3). 

Like drought, nitrogen addition altered the bacterial community in an ecosystem 

dependent manner. A nitrogen-by-ecosystem interaction explained a similar amount of bacterial 

compositional variation (1.1%) as the main nitrogen effect (0.9%). In contrast, the fungal 

communities did not respond to added nitrogen, either overall or in an ecosystem-dependent 

manner (P > 0.05; Table 1.3).  
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Finally, parallel to the bacterial and fungal communities, plant community composition 

shifted in unique ways in the grassland and CSS in response to drought. For example, native and 

non-native forb cover under drought decreased relative to ambient conditions in grassland plots 

by approximately 13% and 1%, respectively (Figure 1.3C). Whereas, native forb cover under 

drought in CSS plots increased by approximately 24% relative to ambient plots. Additionally, 

ground covered by plant litter in CSS drought plots was nearly three times that of ambient CSS 

plots, a trend that was not observed in grassland plots (Figure 1.3C). However, drought 

noticeably increased bare soil cover relative to ambient plots in both ecosystems. Finally, a 

drought-by-ecosystem interaction explained nearly 16% of variation in plant community 

composition (P = 0.001; Table 1.3), while there was no significant nitrogen-by-ecosystem effect 

(P = 0.713; Table 1.3).  

DISCUSSION 

After a decade of global change perturbations, microbial communities on decomposing 

plant litter responded to both drought and nitrogen addition in adjacent ecosystems dominated by 

different plant communities. When the microbial community responded to the treatments (in all 

cases but the fungi to nitrogen addition), this response depended in large part on the ecosystem 

(as indicated by a significant treatment-by-ecosystem interaction), supporting our hypothesis that 

such responses depend on plant-microbial interactions. Although we cannot separate their 

contributions here, we suspect that this dependence is due to a combination of the plant 

community selecting for initially divergent microbial communities, microbial taxa responding 

differently when situated in different plant communities, and microbial communities indirectly 

tracking the plant community responses. 
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After ten years, extreme drought (imposed as a ~50% reduction of annual rainfall) 

continues to impact both microbial and plant community composition in the LRGCE, as was 

observed after the first five years of treatment (Potts et al., 2012; Allison et al., 2013; Kimball et 

al., 2014; Matulich et al., 2015; Kimball et al., 2016; Martiny et al., 2017), and is consistent with 

drought experiments from other locations (Sheik et al., 2011; Gao et al., 2011; Kinugasa et al., 

2012; Schmidt et al., 2018; Griffin‐Nolan et al., 2019). Fewer studies consider how the plant 

communities might alter these drought impacts on microorganisms, but our study contributes to 

growing evidence suggesting that plant-microbe interactions might be common and play a larger 

role in microbial drought response than previously thought. For example, the response of 

bacterial and fungal communities to drought depended on plants, where plant community 

structure varied by allowing for the “invasion” of grasses (Imperata cylindrica) into a longleaf 

pine (Pinus palustris) common garden (Fahey et al., 2020). Evidence further suggests that bulk 

soil microorganisms influence plant growth under drought conditions. For instance, soil 

communities selected under drought conditions altered the growth of Arabidopsis (Lau and 

Lennon, 2012), and plant-microbe interactions prior to drought modified the stress response of 

the grass Bouteloua gracilis during drought (Ulrich et al., 2019).  

Unexpectedly, we found that the main effect of drought was approximately four times as 

strong on bacterial composition as that of nitrogen addition, which did not alter fungal or plant 

composition. Indeed, the differences in plant and microbial community composition in the 

control and added nitrogen plots appear to be narrowing since the first five years of the 

treatment. In particular, after five years plant communities in both the grassland and CSS 

responded to nitrogen addition, albeit not as strongly as drought; nitrogen addition reduced the 

cover of native grasses and shrubs and increased cover of non-native annual grasses (Kimball et 
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al., 2014; Kimball et al., 2016). Now after a decade, only the bacterial communities were 

sensitive to nitrogen and even then, the treatment explained < 1% of the compositional variation, 

as compared to 2% for both bacteria and fungi at five years (Matulich et al., 2015). However, it 

is important to note some differences in methodology from earlier studies that preclude more 

direct comparisons. For instance, previously we characterized fungal diversity using a more 

conserved gene region, 28S rDNA. The minimal effect of nitrogen fertilization is surprising as it 

often has large impacts on both plant and soil microbial communities (Elser et al., 2007; Allison 

and Martiny, 2008; LeBauer and Treseder, 2008; Kinugasa et al., 2012; Legay et al., 2016). We 

suspect that the attenuated effects of added nitrogen are due to much larger changes in the 

ambient conditions at the site. Plant composition at the LRGCE is not only shifting in response 

to the treatments, but also in the ambient plots over time. For instance, native grasses were not 

detected in any of the grassland plots and have become rare in the CSS plots regardless of their 

nitrogen status. Indeed, southern California has been subject to a severe long-term drought from 

2012 to 2015 (Griffin and Anchukaitis, 2014; Yoon et al., 2015). Hence, the relatively minor 

effects of added nitrogen may be overshadowed by the larger impacts imposed by prolonged 

regional drought. 

CONCLUSIONS 

Global changes such as drought and increased atmospheric nitrogen deposition are likely 

to alter the composition of both plant and microbial communities (Ciais et al., 2005; Kinugasa et 

al., 2012; Fuchslueger et al., 2014; Preece et al., 2019; Zhao et al., 2019). A remaining 

uncertainty, however, is whether microbial responses influenced by changes in plant 

communities will affect plant community responses, and the predictability of these responses in 

the long term. Our results add to growing evidence that microbial communities responses to long 
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term global change such as drought is dependent on biotic factors such as plant communities 

(Sayer et al., 2017). It is important to note, although we focused here on changes in microbial 

composition, such changes are often associated with process rates such as decomposition 

(Strickland et al., 2009; Allison et al., 2013; Cleveland et al., 2014; Martiny et al., 2017; 

Glassman et al., 2018). Thus, our ability to predict how microbially-driven terrestrial processes 

will change in the future will require an integrated understanding of both microbial and plant 

communities (Ostle et al., 2009; Berg et al., 2010; Fischer et al., 2014).  
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Bacteriala Fungalb Plant
Survey/Sample collection dates Grassland CSS Grassland CSS Grassland CSS
April 2015 - - - - 16 16
August 2016 10 16 12 14 - -
December 2016 15 16 15 16 - -
March 2017 16 16 15 15 - -
June 2017 9 13 15 13 - -
September 2017 12 14 16 14 - -
December 2017 14 9 15 13 - -

March 2018 16 16 14 16 - -
Totals 92 100 102 101 16 16

Table S2. Number of microbial and plant samples included in the study after rarefaction.

a  Bacterial samples rarefied to a depth of 1,090 sequences.
b Fungal samples rarefied to a depth of 1,064 sequences.

Table 1.2 Number of microbial and plant samples included in the study after rarefaction. 
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Table 1. Results of mixed-model PERMANOVAs of bacterial, fungal, and plant community composition. 

Community and Variable df SS MS Pseudo-F P a
% Variance 
Explained

Bacteria
Block 6 4.29 0.72 2.66 0.001 4.21
Ecosystem 1 5.53 5.53 7.98 0.001 11.97

Ecosystem x collection date 6 2.60 0.43 1.61 0.001 2.88
Collection date 6 6.98 1.16 4.33 0.001 7.54
Drought 1 1.91 1.91 7.11 0.001 3.99

Drought x ecosystem 1 1.26 1.26 4.70 0.001 4.88
Drought x collection date 6 2.19 0.36 1.36 0.001 1.55
Drought x nitrogen 1 0.52 0.52 1.94 0.001 1.12

Nitrogen 1 0.64 0.64 2.39 0.001 0.89
Nitrogen x ecosystem 1 0.49 0.49 1.83 0.001 1.11
Nitrogen x collection date 6 1.67 0.28 1.04 0.346 -

Fungi
Block 6 1.80 0.30 1.32 0.029 1.02
Ecosystem 1 2.12 2.12 7.13 0.001 6.63

Ecosystem x collection date 6 2.26 0.38 1.65 0.002 3.74
Collection date 6 2.41 0.40 1.76 0.001 2.17
Drought 1 0.62 0.62 2.72 0.003 1.42

Drought x ecosystem 1 0.37 0.37 1.63 0.042 1.04
Drought x collection date 6 1.88 0.31 1.38 0.015 2.16
Drought x nitrogen 1 0.36 0.36 1.57 0.067 -

Nitrogen 1 0.22 0.22 0.95 0.472 -
Nitrogen x ecosystem 1 0.22 0.22 0.97 0.404 -
Nitrogen x collection date 6 1.39 0.23 1.01 0.411 -

Plant
Block 7 1.19 0.17 1.50 0.046 3.74
Ecosystem 1 2.70 2.70 15.96 0.006 38.19
Drought 1 1.31 1.31 11.56 0.001 19.90

Drought x ecosystem 1 0.59 0.59 5.19 0.001 15.78
Drought x nitrogen 1 0.06 0.06 0.50 0.838 -

Nitrogen 1 0.08 0.08 0.68 0.654 -
Nitrogen x ecosystem 1 0.07 0.07 0.59 0.713 -

a Significant P-values ( P ≤ 0.05) are in bold.

Table 1.3 Results of mixed-model PERMANOVAs of bacterial, fungal, and plant community composition. 
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Class Nearest Taxonomic ID OTU ID a Drought Experiment Nitrogen Experiment
Grassland % CSS % Grassland % CSS %

Bacteria
Actinobacteria Couchioplanes bcdf38b56057dd4477e60b11509a7d19 np c na d − 2.25 np na − 2.29

Curtobacterium 1785730613a3462cd513729e4d2105e7 + 5.45 + 2.64 − 5.15 + 2.57
Frigoribacterium aaa8848ae680ad429b3ade29166522a1 − 2.31 np na + 2.40 np na
Frigoribacterium dc82a6aa614466526b5d0890d10b7d79 − 2.15 + 1.17 + 2.10 + 1.18
Modestobacter 17cfcd002419bc363616675a2e67a78d − 0.34 − 1.93 + 0.35 + 1.95
Modestobacter 9d6d3c667c0ad15eb28de140a3354be1 − 1.44 + 1.66 + 0.46 − 1.64
Nesterenkonia 95311b9c82dd720c6a03c577a1105598 + 2.98 np na + 2.99 np na

Alphaproteobacteria Agrobacterium 2552d771c4db90b397fb0a8ce11f3f34 − 2.28 np na − 2.33 np na
Agrobacterium 08395ab1649653023ded96fbdd3c91b4 np na − 1.94 np na + 2.01
Methylobacterium 873cdc8f3395a02624e67011ae657a30 np na − 4.28 np na − 4.35
Sphingomonas ff7ac192e37d82ff023e1463105337ce − 0.34 − 1.64 − 0.35 − 1.65

Bacilli Planococcaceae 579d772237ba3080d015da5a119db073 − 2.67 + 0.52 + 2.39 + 0.53
Betaproteobacteria Janthinobacterium f76dfc32fd3d75d7e479377c9d12c1c5 − 3.70 + 2.84 + 3.60 + 2.88

Janthinobacterium 5116c15e3dc5952bc191ed035eb26257 − 2.20 − 4.07 − 2.30 + 4.08
Janthinobacterium adaf8937f969e1670c9c0608c3f27a88 np na − 2.64 np na − 2.48
Oxalobacteraceae e54f3924474f1a89a6b227aabedfac19 − 2.13 np na + 2.21 np na

Gammaproteobacteria Xanthomonadaceae 522e67fd09279346ab8fd40defea55fd + 4.99 np na + 4.67 np na

Cumulative contribution 32.98 27.58 31.30 27.61

Fungi b

Ascomycota Alternaria e5524ff4bd7d57a6ab6c132e61398402 − 4.36 + 3.00 + 4.40 − 2.99
Alternaria bdb1a3b0cc3fff98f06c3af08ef35ea2 − 2.80 + 2.05 + 2.83 − 2.06
Alternaria 435ec9717b244052bad4ab7904a45f16 − 2.29 + 1.41 + 2.28 − 1.42
Alternaria 7ca55426aea755263314ec9c4b12084b − 2.22 + 1.57 + 2.24 − 1.56
Alternaria fb7eb06fab9a17ea90b2985feaf2d5bc − 1.39 + 1.34 + 1.42 + 1.35
Alternaria 20e03f1ee27c78fd042e9581d27e7f04 + 0.90 + 0.92 + 0.92 − 0.93
Capnodiales 679f67dc9e1d5ab0f3243e11e77afb9a − 3.72 + 2.41 − 3.75 − 2.44
Capnodiales 8f240034c2693d103fc05dac2e10892b − 2.45 + 1.56 + 2.46 − 1.57
Capnodiales 52353670278f3f501acd8310a74bcad8 − 1.94 + 1.27 − 1.94 − 1.27
Cladosporium 0d23c7fb8ec8117dc8553a90e8277d0e + 2.42 + 3.06 + 2.39 − 3.06
Cladosporium 866aa412223e98069307981be90829e6 + 1.41 + 1.43 + 1.39 + 1.39
Cladosporium 910c92d447c4bd4ea4521601b69dfab6 + 1.09 + 1.22 − 1.07 + 1.17
Coleophoma fd2020165a09f3df92cddd761d327f0a + 0.33 − 0.97 + 0.33 − 1.01
Cylindroseptoria b54d4643c14f7cdd66f352e4b782ff72 + 0.31 + 2.41 − 0.32 + 1.73
Leptosphaeria 092401bdba7dffe1659418112f0566be − 1.21 − 0.47 + 1.22 − 0.45
Stemphylium c3397bad751d54869c069fa612505ccd + 1.29 + 0.84 + 1.28 + 0.83

Basidiomycota Vishniacozyma 0d7bea009c8bd62f8c5b0e9e8fd14907 − 1.01 + 0.43 − 1.00 − 0.43

Cumulative contribution 31.14 26.36 31.24 25.66
a  Taxa (OTUs, operational taxonomic units) identified using a one-way SIMPER analysis for significant factors identified by the PERMANOVA tests (Table S2). For each factor, the  

average abundance of the OTUs increases (+) or decreases (−) in the treatment relative to the ambient plots and the OTUs percent contribution (%) to the compositional differences   
between reduced water or added nitrogen inputs and ambient conditions.

b   Nitrogen treatments were not significant for fungal communities however trends in fungal taxa are reported.
c   np, not present in sample.
d na, not applicable.

Table S3. Bacterial and fungal taxa that each contribute to at least 1% of the compositional differences between the treatments by ecosystem. Table 1.4 Bacterial and fungal taxa that each contribute to at least 1% of the compositional differences between the treatments by ecosystem. 
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Figure 1.1 Precipitation in the Loma Ridge plots over 4.5 years of a decade long experiment. 
The green lines denote precipitation that fell only in the ambient (control) plots as it was blocked 
from the drought (reduced rainfall) plots. Plant survey and litter sample collection dates are 
marked by red arrows.  
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Figure 1.2 Aerial view of Loma Ridge research site and close up of rain shelters atop drought 
plots. (A) Satellite image of the LRGCE site in the Santa Ana Mountains, within the Irvine 
Ranch National Landmark in Orange County, California, USA, showing the smaller plots in the 
annual grassland and the larger, adjacent plots in the CSS, bar scale in bottom left for reference. 
Crosshatching indicates the area of a February 2007 control burn. Plots are color coded by water 
treatment, with red indicating reduced rainfall (drought), green for ambient rainfall, and blue for 
added water (not included in this study). Thick dashed lines indicate water collection pipelines, 
and solid black lines indicate water distribution pipelines. The black-outlined polygons indicate 
blocks containing all treatment combinations. Each plot (rectangle) was divided in half 
lengthwise, and nitrogen treatments (ambient or added) were randomly assigned. (B and C) 
Image of rain shelters in grassland plots uncovered and covered, respectively.  
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Figure 1.3 Microbial taxonomy and plant function groups differ across ecosystem and drought 
treatment. Proportional abundances of bacterial (A) and fungal (B) genera and fractional cover of 
plant functional groups (C) in grassland and CSS ambient rainfall and drought plots (nitrogen not 
shown because of the minor effects; see text). Microbial taxonomy assigned in QIIME2 using the 
Greengenes and UNITE databases for bacterial and fungal representative sequences, 
respectively. All genera under 1% relative abundance or unidentified at the genus level were 
categorized as “Other Genera”. 
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Figure 1.4 Microbial and plant communities vary by drought and ecosystem. Non-metric 
multidimensional scaling (NMDS) ordination depicting (A) bacterial (B) fungal (C) plant 
community composition. Symbols are defined in the legend in panel C. Nitrogen treatment and 
collection date are not plotted here because their effects were not significant or applicable for all 
communities, see Table 1 and Figure S3. (D) The percentage of variance explained for 
significant (P £ 0.05; Table 1) factors in a mixed-effects PERMANOVA for bacterial, fungal, 
and plant community composition.  
 
 
 
 
 
 

A. B.

C.

0

25

50

75

100

Bacteria Fungi Plant

D.

Bacteria

3D Stress = 0.15

Fungi

3D Stress = 0.10

Plant

3D Stress = 0.10

Factor(s)

Va
ria

nc
e 

Ex
pl

ai
ne

d 
(%

)

Coastal Sage Scrubland
Grassland

Ambient rainfall
Drought

Residuals

Block

Ecosystem

Ecosystem•collection date

Collection date

Drought

Drought•ecosystem

Drought•collection date

Drought•nitrogen

Nitrogen

Nitrogen•ecosystem

N
M

D
S 

1

N
M

D
S 

1

N
M

D
S 

1

NMDS 2 NMDS 2

NMDS 2



 29 

 
Figure 1.5 Microbial communities are impacted by seasonal variation. Non-metric 
multidimensional scaling (NMDS) ordination depicting (A) bacterial (B) fungal community 
composition. Symbols are defined in the legend in panel (A). Centroids are twice the size of 
sample points. Pairwise PERMANOVAs between microbial communities from sample collection 
dates coinciding with peak wet (January-March) and dry (June-September) seasons were 
significantly different P < 0.01. 
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CHAPTER 2 
 

Plasmid-encoded traits vary across environments 
 
ABSTRACT 

Plasmids are key mobile genetic elements in bacterial evolution and ecology as they 

allow for the rapid adaptation of bacteria under selective environmental changes. However, the 

genetic information associated with plasmids is usually considered separately from information 

about their environmental origin. To broadly understand what kinds of traits may become 

mobilized by plasmids in different environments, we analyzed the properties and accessory traits 

of 9,725 unique plasmid sequences from a publicly available database with known bacterial hosts 

and isolation sources. Although most plasmid research focuses on resistance traits, such genes 

made up less than 1% of the total genetic information carried by plasmids. Similar to traits 

encoded on the bacterial chromosome, plasmid accessory trait composition (including general 

COG functions, resistance genes, and carbon and nitrogen genes) varied across seven broadly 

defined environments (human, animal, wastewater, plant, soil, marine, and freshwater). Despite 

their potential for horizontal gene transfer, plasmid traits were strongly influenced by their host’s 

taxonomic assignment. However, the trait differences across environments of broad COG 

categories could not be entirely explained by the plasmid host phylum, suggesting that 

environmental selection may be acting on the plasmid traits themselves. Lastly, some plasmid 

traits and environments (e.g., resistance genes in human-related environments) were more often 

associated with mobilizable plasmids than others. Overall, these findings underscore the high 

diversity of encoded traits by plasmids and provide a baseline for understanding the potential of 

plasmids to serve as reservoirs of a wide variety of adaptive traits for microbial communities. 
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IMPORTANCE 

Plasmids are well known for their role in the transmission of antibiotic resistance-

conferring genes. Beyond human and clinical settings, however, they disseminate many other 

types of genes, including those that contribute to microbially-driven ecosystem processes. In this 

study, we identified the distribution of traits genetically encoded by plasmids isolated from seven 

broadly categorized environments. We find that plasmid trait content was influenced by bacterial 

host phylum and environment, where on average, half of the plasmids were potentially 

mobilizable. This analysis greatly enhances our understanding of the types of traits that are 

mobilized, and the types of host bacteria that may share these plasmid-bound traits. As 

anthropogenic activities continue to impact ecosystems and the climate, investigating and 

identifying key mechanisms for how microbial communities will adapt will be imperative for 

predicting the impacts on ecosystem functioning. 

INTRODUCTION 

The acquisition of new traits from mobile genetic elements such as plasmids is broadly 

thought to be important to bacterial diversification and adaptation (Wollman and Jacob, 1956; 

Kirchberger et al., 2020). Plasmids carry genes that encode a diversity of traits involved in 

plasmid-specific functions as well as those related to the physiology of their host (Garcillán-

Barcia et al., 2009; Rankin et al., 2011; Pinto et al., 2012; Stasiak et al., 2014). However, 

analyses of bacterial traits and their corresponding ecological roles typically focus on 

chromosomal genetic content (Smalla et al., 2015). Furthermore, in non-clinical microbial 

genomics studies, plasmids are often not distinguished from chromosomal sequences or 

inadvertently removed, potentially obscuring our understanding of trait variation in 

environmental communities (Brito, 2021). Indeed, understanding what kinds of traits are carried 
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by plasmids and why, remains an open question in plasmid ecology (Brito, 2021; Brockhurst and 

Harrison, 2021). Some evidence suggests ecology (or the local biotic and abiotic environment), 

rather than geographic isolation and host phylogeny, drives plasmid-mediated gene exchange in 

bacteria (Smillie et al., 2011; Stecher et al., 2012; Bruto et al., 2017). To begin to understand the 

extent to which some traits may be limited by ecological opportunity and occupancy of shared 

habitats, a first step is to characterize trait variation on plasmids across different environments. 

Many studies have focused on the intrinsic properties of plasmids, including their structure 

(linear or circular forms), size, copy number, mechanism of replication and segregation, GC 

content, coding density, host-range, and mobility (Smillie et al., 2010; Shintani et al., 2015; Hall 

et al., 2022), but this information is usually considered separately from their environmental 

origin. Indeed, much of our understanding of the diversity and ecological significance of plasmid 

properties is derived from a limited number of bacterial phyla and environments, particularly 

those of Proteobacteria and Firmicutes that were isolated from human and other host-associated 

environments. Finally, these studies generally do not address the full diversity of accessory traits 

(Hall et al., 2017), or traits encoded by plasmids that are generally associated with bacterial 

chromosomes and thus, may provide their host with a selective advantage.  

Perhaps the best-studied plasmid accessory traits are those for antibiotic resistance and 

virulence (M. et al., 1999; Li et al., 2015; Hu et al., 2016; San Millan, 2018). For instance, 

plasmids carrying and transferring genes encoding extended spectrum beta-lactamases are 

responsible for multidrug resistance in pathogenic bacterial hosts (Jacoby and Sutton, 1991; 

Philippon et al., 1994; Nordmann et al., 2011; Carattoli, 2013). Plasmid virulence genes, such as 

those encoding fimbriae (important for bacterial attachment to the human reticuloendothelial 

system), underlie the ability of bacterial pathogens to establish infections (Rotger and Casadesús, 
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1999; Farshad et al., 2012). More broadly, resistance genes – involved in resistance to heavy 

metals, biocides, and antibiotics – are commonly reported from plasmids in human-impacted 

environments. For example, plasmids from wastewater treatment plants are considered reservoirs 

of resistance traits (Stalder et al., 2019). Similarly, plasmids from environments contaminated 

with petroleum and other pollutants encode resistance to antibiotics, heavy metals, and 

herbicides, as well as pathways to degrade xenobiotics and protect against ultraviolet radiation 

and exogenous DNA (Sayler et al., 1990; Fulthorpe and Wyndham, 1991; Collard et al., 1994; 

Nakatsu et al., 1995; Sen et al., 2011; Heuer and Smalla, 2012; Romaniuk et al., 2018; Moretto et 

al., 2019; Dunivin et al., 2019).  

Even in less-heavily human-impacted environments, plasmid accessory traits reveal a 

connection between plasmid genetic content and their ecological roles. The bovine-rumen 

plasmidome (the overall plasmid population of microbial ecosystems using culture-independent 

methods) includes genes enriched for amino-acid, cell-wall and capsule, vitamin, and protein 

metabolism functions, suggesting their importance in conferring nutritional advantages to their 

bacterial hosts (Brown Kav et al., 2012). In rhizosphere bacteria, plasmid genes for nitrogen 

fixation aid in establishing symbiotic relationships between plant and host-bacteria (Long, 1996; 

Davison, 1999; Masson-Boivin et al., 2009). Plasmids from aquatic environments are generally 

less studied (Davison, 1999), but those from marine Lentimonas sp. encode putative 

carbohydrate active enzymes (CAZymes), including fucoidanases, glycoside hydrolases, 

sulfatases and carbohydrate esterases, are important for degrading recalcitrant polysaccharides 

(Sichert et al., 2020).  Yet despite these individual examples, it remains unclear how plasmid 

traits contribute to the overall genetic diversity of bacterial communities across environments. 



 34 

To begin to address this knowledge gap, we analyzed a publicly available database 

having over 23,000 plasmid sequences (Galata et al., 2019). The PLSDB, is a resource 

containing plasmid records collected from the NCBI nucleotide database and allows for gene 

searches, comparing plasmids and containment analysis. However, we note that such resources 

are depended on cultured strains and thus, represent a subsample of the diversity of bacteria and 

their plasmids across environments. We also note that some similar plasmids may be sampled 

multiple times from particular species or environments, as part of a targeted research project into 

those taxa and environments, or as a side effect of the locations of research investigating these 

plasmids. Nevertheless, analysis of databases such as this can help further our understanding of 

the genetic diversity that is encoded by plasmids and the insight into how plasmid accessory 

genes vary by environment.  Given the potential for plasmids to influence the ecological roles of 

bacterial communities, we first asked: do plasmid properties and accessory traits vary by 

environment? We characterized plasmid accessory traits generally, assigning clusters of 

orthologous genes (COG functions) to all gene calls, but also focused on three specific gene 

functions of interest: resistance genes, carbon degradation genes (CAZymes), and 

inorganic/organic nitrogen processing genes. While the latter two functions are not often 

considered as plasmid-associated, they are central to biogeochemical processes and ecosystem 

functioning. We hypothesized that plasmid accessory traits are subject to similar selection 

pressures experienced by the host microbiomes for these traits (Berlemont and Martiny, 2013; 

Nelson et al., 2016) and would therefore vary by environment. 

Secondly, we asked: to what extent does host taxonomy influence plasmid accessory 

traits across environments? Because the taxonomic composition of bacterial communities varies 

dramatically across environments, it is difficult to fully separate the influence of the environment 
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versus bacterial host taxonomy on plasmid traits.  However, to start to disentangle factors 

influencing plasmid accessory trait content, we compared the effect of bacterial environment 

versus plasmid environment (host bacterial phylum) on plasmid trait composition. Bacterial host 

taxonomy is represented by phylogenetic relationships between bacterial hosts, which may also 

influence the relatedness of plasmids resulting in non-independence between samples (Dewar et 

al., 2021).  However, previous analysis of over 10,000 reference plasmids has revealed that more 

than 60% of the plasmids group by host ranges beyond the species barrier (Redondo-Salvo et al., 

2020), here we assume the majority of plasmids follow independent evolutionary trajectories 

from bacterial species. Simply put, plasmids, like their hosts, form coherent genomic groups 

similar to molecular species. Whether or not plasmid phylogeny tracks with host species 

phylogeny is not addressed in this paper. Instead, we focus on addressing the impact host phylum 

might have on plasmid accessory trait content. Thus, we hypothesized that plasmid accessory 

genes, would be more strongly influenced by the environment a bacterial host was isolated from 

which may be subject to various environmental selection pressures (Rizzo et al., 2013; 

Berendonk et al., 2015), rather than host taxonomy. Recent analysis of some plasmid properties 

have revealed host taxonomic influence on these traits (Redondo-Salvo et al., 2020), whereas the 

environment may influence plasmid accessory trait content (Perez et al., 2020). Alternatively, 

Redondo-Salvo et al., 2020 examined the homologous protein clusters (HPC) found on plasmids 

at different bacterial-host taxonomic levels and found the fraction of HPC decreased with 

phylogenetic distance, especially above the order rank (Redondo-Salvo et al., 2020). This 

analysis suggested that host similarity acts as a constraint for the propagation of plasmid genetic 

information. We also note that plasmid mobility may also be influenced by co-evolutionary 

dynamics with their host which may have some impact on accessory gene content (Harrison and 
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Brockhurst, 2012; Hall et al., 2021). Thus, it is likely that both environmental and host 

phylogeny act together to shape the plasmid accessory content, it is our aim to begin to quantify 

the extent of these forces on plasmid traits. 

Finally, we asked: are certain accessory traits and/or environments more often associated 

with mobilizable plasmids? We anticipated that some accessory traits would be more often 

associated with mobilizable plasmids (those carrying the genes necessary to hitchhike with self-

transmissible/conjugative plasmids during transfer to other bacteria). For instance, some 

environments are known reservoirs of antibiotic resistance traits such as humans and wastewater 

(Rahube et al., 2014; Craig et al., 2022), and in such environments, the capture of resistance-

conferring genes by plasmids may be facilitated by interactions with other mobile genetic 

elements and host bacteria (Sentchilo et al., 2013; Ghaly et al., 2017).  

MATERIALS AND METHODS 

Retrieval of plasmids from different environments. Plasmid sequences and metadata 

were retrieved from the curated plasmid database PLSDB v.2020_06_29 containing 23,227 on 

2020-10-14 (Galata et al., 2019). Plasmid sequences from seven environment types (human, 

animal/non-human, wastewater, plant, soil, marine, and freshwater) were obtained by using the 

PLSDB provided metadata: IsolationSource_BIOSAMPLE, Host_BIOSAMPLE, and 

SampleType_BIOSAMPLE. Plasmids from human environments were identified by search terms: 

human, OR Homo sapiens, OR child, OR patient. Plasmids from animal and plant environments 

were identified by both common and/or scientific names (e.g., mouse, OR mice, OR Mus 

musculus). Plasmids from wastewater were identified by the search terms: wastewater, OR 

sewage, OR sludge. While plasmids from soil, marine, and freshwater environments were 

identified by the terms: soil(s), OR mud, OR permafrost, and marine, OR ocean, OR sea, OR 
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seawater, OR beach, and freshwater, OR lake, OR river, OR creek, OR stream, respectively. 

Plasmids from rhizosphere, OR root, OR root nodule were assigned as plant environment, while 

sequences identified as ‘rhizosphere soil’ were assigned to the soil environment. Duplicate 

plasmid sequences were removed using the unique plasmid record identifier: UID_NUCCORE. 

If BIOSAMPLE categories resulted in the same accessions being binned into different 

environments, the plasmid environment assignment was determined first by sample type, then by 

host (e.g., human or animal), and lastly by isolation source. Plasmid sequences were retrieved 

from PLSDB database files using the UID_NUCCORE identifier and the blastcmd feature of 

BLAST+ v2.10.0 (Camacho et al., 2009). 

Plasmid properties and accessory trait identification. To identify plasmid sizes 

(nucleotide length), the Length_NUCCORE of PLSDB metadata was used3. Depending on the 

sequence format of the databases used for trait identification, different search tools were 

employed. Plasmid sequences were searched for MOB family relaxases, which are essential for 

conjugative DNA processing (Garcillán-Barcia et al., 2009) using MobScan4 (Garcillán-Barcia et 

al., 2020), after assigning gene calls using Prodigal v2.6.3 (Hyatt et al., 2010). MOB hits with 

per-domain thresholds (i-Evalues) £  1e-5 and > 60 % query coverages were included in the 

analysis.  

To identify pathway and functional systems encompassing a diversity of traits, the 

Clusters of Orthologous Genes database, release 2020 (Galperin et al., 2021) was searched using 

plasmid gene calls (excluding partial gene calls) and DIAMOND v0.9.14 in sensitive mode 

(Buchfink et al., 2015). All COG hits with E-values £ 0 were included in the analysis, and in 

 
3 https://ccb-microbe.cs.uni-saarland.de/plsdb/plasmids/download/ 
4 https://castillo.dicom.unican.es/mobscan_about/ 
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cases where multiple domains for a given gene call resulted in more than one COG function and 

category assignment, only annotations for the first domain hit were included in the downstream 

analyses. For identifying traits involved in biogeochemical processes (carbon and nitrogen 

cycling pathways), heavy metal and resistance determinants, similarity searches of plasmid gene 

calls against the following databases were used: the standalone version of dbCAN2, release 

2019-07-31 (Zhang et al., 2018), the NCycDB – with curated nitrogen (N) gene family 

sequences (encompassing seven N-cycling pathways) at 100 % sequence identity, release 2019 

(Tu et al., 2019), and MEGARes version 2.0.0, a database for classification of heavy metals, 

biocides, antimicrobials, and antibiotic resistance determinants (Doster et al., 2020). For 

carbohydrate utilization trait analyses, CAZymes hits in the dbCAN2 database were included if 

two or more of the three search tools (HMMER, DIAMOND, Hotpep) matched in their 

identification of the same CAZyme family. For instances where a single gene call returned 

multiple matches to CAZyme families, only the annotations from the first domain hit were 

included in downstream analyses. For N-gene family hits, BLASTp searches of plasmid gene 

calls having E-values £ 10-5 and > 50 % query coverages were included in the analyses. Since N-

gene families encode for a single N-cycling pathway in the NCycDB, these terms were used 

interchangeably throughout the paper. For resistance determinant identification, BLASTn 

searches of plasmid gene calls having E-values £ 10-5, and > 85 % query coverage per subject 

and high-scoring pairs, were included in the analyses. 

To determine the extent to which accessory traits are mobilized via plasmids, we first 

designated plasmids into two mobility categories (mobilizable and nontransmissible) based on 

previous assessments of plasmid mobility (Smillie et al., 2010). However, here we do not 

distinguish self- transmissible/conjugative plasmids from mobilizable. Since known plasmid 
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DNA relaxases (MOB genes) with or without genes encoding type IV coupling proteins are 

presumed mobilizable, while conjugative plasmids require the major components of a type IV 

secretion system (T4SS) in addition to MOB genes to be self-transmissible, we broadly define 

the potential of plasmids to move to other bacteria based on the presence or absence of known 

MOB genes and focus on the associated accessory trait distributions by environment. We refer 

the reader to previous studies for an in depth review on the quantification and diversity of T4SS 

and plasmid mobility (Alvarez-Martinez and Christie, 2009; Smillie et al., 2010). 

Plasmid accessory trait and clustering analysis. To standardize for uneven plasmid 

sequences across environments, trait counts were first converted into proportional abundances 

within an environment after removal of rare traits (traits counts < 6 across all environments). 

Trait abundance across environments were then normalized using Z-scores in R v3.6.3 (R Core 

Team (2020), 2020). This procedure served to weigh each trait similarly, rather than proportional 

to its abundance. To compare the similarity of traits across environments, we then calculated the 

Euclidean distance of the standardized and normalized trait count data using the vegdist function 

of the ‘vegan’ package in R (Oksanen et al., 2019). To determine trait clustering by environment 

and trait category, agglomerative hierarchical clustering of the distance matrices was performed 

using the hclust function (clustering method = “average” for UPGMA) of the ‘stats’ package in 

R. To visualize trait clustering results, heatmaps using trait distance matrices were passed to 

heatmap.2 function of the ‘gplots’5 package in R. To determine the extent to which total plasmid 

trait diversity is characterized across plasmid environments, cumulative COG richness was 

assessed for unique COG function accessions grouped into broader category designations, which 

 
5 https://github.com/talgalili/gplots 
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were subsampled across each environment using the rarecurve function (step size = 1,000) of the 

‘vegan’ package in R.  

Statistical analysis. To assess the differences in how plasmid size and coding density 

may vary by environment and host taxonomy (hereafter “host" refers to the bacteria from which 

plasmids were isolated and is distinct from host-associated environments, e.g., human and 

animal), we used Kruskal-Wallis tests on log10 transformed nucleotide length (bp) of plasmid 

sequences grouped by environment or host phyla and using the ‘stats’ package of R. Post-hoc 

Wilcoxon tests (with Bonferroni-adjusted P-values for multiple comparisons) of plasmid sizes by 

environment, phyla, and environment given a particular phylum were performed using the 

pairwise.wilcox.test function of the ‘stats’ package in R. Plasmid coding density, was calculated 

as the ratio of gene calls per nucleotide length in kilobases (Land et al., 2014). To assess the 

relationship between plasmid size and coding density, a Kendall rank correlation coefficient (t) 

were obtained using cor.test function of the ‘stats’ package in R. To disentangle the influence 

environment and/or host-taxonomy had a plasmid trait composition, permutational multivariate 

analysis of variance PERMANOVA (permutations n = 999 under a reduced model) on Euclidean 

distance matrices of standardized and normalized trait counts as previously mentioned, were 

performed in PRIMER-e v6 (Anderson, 2001; Clarke and Gorley, 2006a; Anderson et al., 

2008a). We used a plasmid accessory-traits in fixed-effects model which included environment 

and host-phylum, with no interaction term, partial sums of squares, and fixed effects sum to zero 

to test for the effect (significance and variance explained) of host taxonomy versus environment 

on the composition of each trait type. Since plasmids from some host taxa were represented 

across few environments (e.g., plasmids of Chlamydiae were present in human and animal 

environments only), we tested the influence host-phylum has on accessory trait content for 
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plasmid host taxa with at least 50 representatives in the dataset. The percentage of estimated 

variance explained for significant factors were determined by dividing terms by the sum of the 

estimates of components of variation and multiplying by one hundred. To determine that the 

assumptions of PERMANOVA tests were met, PERMDISP, distance-based test for homogeneity 

of multivariate dispersion, in PRIMER-e were performed (permutations n = 999) measuring 

deviations from group centroids (Clarke and Gorley, 2006b; Anderson et al., 2008a). To 

determine whether the proportions of traits were different among environments, Log-Likelihood-

Ratio (G-test) test of independence using the GTest function (with no correction) of the 

‘DescTools’6 v0.99.44 package in R were performed. G-tests were performed on contingency 

tables of non-standardize trait counts with rare traits (traits counts < 6 across all environments) 

removed. Stacked bar plots of standardized MOB gene counts by environment and linear plots of 

plasmid coding densities by environment were constructed using ‘ggplot2’7. 

Sensitivity analyses. To test the sensitivity of our results (that accessory gene content 

differed by environment) to sampling biases of the plasmid database, we repeated our main 

analyses on subsets of the data. To do this, we calculated the taxonomic distribution of bacterial 

hosts in the dataset (Figure 2.1) using the r package ‘ggsankey’8. First, we investigated patterns 

within the most abundant phyla, as explained above. Then, we examined trends within E. coli, 

the most abundant species represented. Finally, we removed the three most abundant genera: 

Acinetobacter, Escherichia, and Klebsiella, from Proteobacteria and Staphylococcus from 

Firmicutes and tested that the results held within these phyla.   

RESULTS 

 
6 https://andrisignorell.github.io/DescTools/ 
7 https://ggplot2.tidyverse.org 
8 https://github.com/davidsjoberg/ggsankey 
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After filtering the PLSDB by our criteria, we analyzed 9,725 unique plasmid sequences 

from human, animal, wastewater, plant, soil, marine, and freshwater environments. As expected, 

the environmental and taxonomic representation of the plasmid sequences was highly skewed 

(Figure 2.1 – 2.2). The majority (52.6 %) of plasmid sequences were from human environments, 

whereas 11% and 2% of plasmids were from plant and marine environments, respectively (Table 

2.1). Moreover, the bulk of the plasmid sequences were associated with three bacterial host 

phyla, namely Proteobacteria (n = 7,319), Firmicutes (n = 1,565), and Actinobacteria (n = 304). 

Plasmid properties vary by environment. Plasmid properties including size, coding 

density, and mobility differed by environment. Overall, plasmid sizes varied by environment 

(Kruskal-Wallis: H (6) = 762.23, P < 0.001; Figure 2.3), and particularly between some 

environments such as human-plant, and wastewater-marine (Wilcoxon with Bonferroni 

adjustments: P < 0.01). Plasmid size also varied by phylum (H (12) = 521.9, P < 0.001; Figure 

2.4A); where the mean size of Proteobacteria plasmids were significantly larger (146 kb) than 

Bacteroidetes (73.1 kb), Firmicutes (68 kb), and Chlamydiae (7.5 kb) plasmids (Wilcoxon tests: 

P < 0.001). However, size differences between environments were not entirely attributable to 

phylum differences as plasmid sizes differed across environments within phyla. For instance, 

plasmid sizes within Proteobacteria (the most abundant host phylum in the dataset) also differed 

by environment (H (6) = 717.99, P < 0.001; Figure 2.4B).  

Across all plasmids, we identified over 1 million gene calls with an average coding 

density of 1.07 genes per kb. Furthermore, the mean coding density varied significantly by 

environment (H (6) = 360.74, P < 0.001; Figure 2.5) with slightly higher coding densities in 

humans, animals, and wastewater, compared to other environments. Notably, smaller sized 



 43 

plasmids tended to have greater coding densities than larger ones (Spearman’s r = - 0.11; P < 

0.001), contrary to previous findings (Smillie et al., 2010). 

The most abundant genes encoding for plasmid mobility (specifically, the MOB family of 

relaxases) were MOBP, MOBB, and MOBF (Figure 2.6). Moreover, the percentage of 

mobilizable plasmids (those having at least one MOB identified) ranged from 41 – 60 % across 

environments, with the lowest percentage found in the marine and the highest in wastewater 

environments (Table 2.1). MOB composition also varied by host-phylum (PERMANOVA, P = 

0.001), but not by environment (Figure 2.6; Table 2.2). Indeed, ~ 44 % of the variation in MOB 

composition was explained by bacterial host phylum, however, we note that this could be due to 

differences in average composition and/or within-phylum variance (PERMDISP: P = 0.004; ref. 

70). 

Plasmid accessory traits vary by environment. Overall, ~ 56 % of the plasmid gene 

calls were assigned to known COG functions, excluding gene calls assigned to general or 

hypothetical functions (Table 2.1). Most gene calls were classified into 25 broader COG 

categories, with thousands of functions observed in plasmids from all environments, with soil 

plasmids having the greatest (> 3500) functional diversity (Figure 2.8). However, despite the 

large number of COG functions identified, the diversity of COG functions remained 

undersampled for some environments. In particular, the identification of new COG functions 

continued to increase with each plasmid gene observed, with steeper rates in aquatic 

environments than in plant and human environments (Figure 2.8). Noticeably, ~ 38 % of gene 

calls did not match any known COG functions, suggesting that plasmid gene content captures 

novel gene products and functions (Table 2.1). 
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  To investigate how these functions varied by environment, we first considered broad 

COG categories (assigned A through X) of the plasmid genes. Indeed, the prevalence of COG 

categories differed significantly by environment (G-test: G (138) = 140,898, P < 0.001; Figure 

2.9). Most COG categories were detected on plasmids across all environments and revealed 

distinct trends in their relative abundance. For example, COG categories of replication (L), 

defense mechanisms (V), recombination and repair (L), and mobilome (X), were more prevalent 

in plasmids from wastewater, animal, and human environments. In contrast, COG categories for 

carbohydrate/amino acid/nucleotide transport and metabolism (G/E/F) and transcription (K) were 

more prevalent in plasmids from plant, marine, freshwater, and soil environments. Plasmids from 

plant, marine, freshwater, and soil had a higher prevalence of genes assigned to general and 

hypothetical functions relative to those in wastewater, animal, and human environments. 

More than 4,800 genes encoding resistance were identified, accounting for 0.72 % of the 

plasmid accessory traits across all environments (Table 2.1). Of these genes, the majority 

conferred resistance to antibiotics (58 %), followed by resistance to heavy metals and biocides 

(38 %) and antimicrobials (4 %). As with overall COG categories, the composition of plasmid 

resistance genes also differed significantly by environment (G-test: G (138) = 1058.9, P < 0.001; 

Figure 2.10A). Not surprisingly, resistance genes associated with commonly prescribed classes 

of antibiotics (trimethoprim, fluoroquinolones, tetracyclines, and phenicol) were relatively more 

prevalent in plasmids from animal and human environments, and some classes (beta-lactams and 

aminoglycosides) of resistance were found throughout all environments. In contrast, plasmid 

resistance genes for heavy metals and biocides (metal, nickel, arsenic, and copper) were 

generally more prevalent in plasmids from plant, soil, freshwater, and marine environments. One 
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exception to this trend, however, was that resistance genes for lead were relatively more 

abundant in plasmids from human, animal, and wastewater environments.  

Genes encoding CAZymes represented 2.6 % of plasmid accessory traits identified. 

Glycoside hydrolases (GHs) and glycosyltransferases (GTs) were the most common, accounting 

for 53 % and 20 % of the CAZymes identified (n = 133), respectively. The least prevalent 

plasmid CAZymes (< 9% across environments) were those of polysaccharide oxidases (AA), 

carbohydrate binding modules (CBM) and pectate lyases (PL).  As with the other accessory 

traits, all types of CAZymes (not just GHs) were present in all environments but varied distinctly 

in prevalence by environment (G (786) = 10335, P < 0.001; Figure 2.10B). For instance, GT2, 

GH1, and GH3, were present across most plasmid environments, with GT2 more prevalent in 

plasmids from freshwater, soil, and marine environments, while GH1 and GH3 was more 

prevalent in freshwater environments. Some CAZyme types were present almost entirely in one 

plasmid environment. For example, GH91, AA7, GT23, and PL3_2 were highly prevalent in 

plasmids from plant environments, while GH5 and GH32 were highly prevalent in plasmids from 

human environments. Although, some GH5 subfamilies, such as GH5_48 were highly prevalent 

in plasmids from marine environments. 

Nitrogen gene families represented 0.59 % of plasmid accessory traits identified (Table 

2.1).  The majority of plasmid N-gene families were assigned to two main N-cycling pathways: 

organic degradation and synthesis (~ 59 %) and denitrification (21.5 %; Figure 2.10C). In 

general, N-gene families and their corresponding N-cycling pathways were present across most 

plasmid environments, with distinct trends in prevalence by environment (G (192) = 1,049, P < 

0.001). For instance, napC and nirK, encoding denitrification functions were present across most 

environments, and highly prevalent in freshwater and marine environments, respectively. In 
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contrast, a few N-gene families were identified in plasmids from only one environment; for 

instance, the nitrogenase, nifH and gdh_K00260, glutamate dehydrogenase were identified only 

in plant environments. Of note, some plasmid N-gene families encoding for nitrification and 

anaerobic ammonium oxidation were rarely identified or not detected in this dataset. 

Plasmid accessory traits vary by host phyla. Given that bacterial community 

composition varies tremendously across environments, the distribution of plasmid accessory 

traits could be largely driven by changes in host composition rather than direct selection on the 

plasmid traits themselves. Indeed, plasmid accessory trait composition varied significantly by 

host phylum for all trait types; however, the percent variance explained by host taxonomy ranged 

widely depending on the trait type (Table 2.2). In particular, host phylum explained 40 % of 

compositional variation in COG category traits, whereas it explained much less for resistance (13 

%), carbon (1 %) and nitrogen cycling (10 %) trait composition. When controlling for host 

phylum, 9 % of the variance in COG composition was explained by environment 

(PERMANOVA: P = 0.04), and similar trends by environment were apparent for the COG 

categories amongst the three most abundant phyla (Figure 2.11). However, the trait composition 

of resistance genes, CAZyme, and N-gene families did not vary significantly across 

environments, although we suspect this may be due to poor sampling of particular traits in some 

phyla (Figures 2.12 – 2.14).  

Mobility potential of plasmid accessory traits. We next asked if some traits or 

environments were more often associated with potentially mobilizable plasmids and identified 

which accessory traits were on plasmids having at least one gene encoding a MOB relaxase 

(required for both conjugative and mobilizable plasmids). Approximately half of all accessory 

traits were identified in plasmids having at least one MOB gene (Table 2.3). The highest average 
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percentage of potentially mobilizable genes were identified in resistance (64.4 %) traits 

compared to COG (46.4 %), carbon (45.5 %) and nitrogen (44.9 %) cycling, respectively. 

Further, plasmids from human, animal, and wastewater environments had relatively higher 

average percentages (e.g., 58.8 % of plasmid COGs from human vs. 31.6 % in soil, G (6) = 

26,449, P < 0.001) of mobilizable traits compared to the other environments, except for N-

cycling traits. In that case, plasmids from plant environments had the highest percentage (53.6 

%) of mobilizable N-gene families.  

The distribution of potentially mobilizable traits also varied widely and significantly 

among specific traits within trait types (Tables 2.4 – 2.6). For instance, over 65 % of plasmid 

genes encoding resistance to beta-lactams, naphthoquinone, and sulfonamides drug classes were 

associated with mobilizable plasmids compared to those encoding resistance to rifampin and 

tetracycline classes with < 50 %, respectively (G (27) = 124.3, P < 0.001; Table 2.4). Similarly, 

GH23 and PL3_1 CAZymes (80 % and 90 %, respectively) were more often associated with 

mobilizable plasmids compared to GH1 or PL9_2 (39 % and 5 % mobilizable, respectively; G 

(281) = 4593.7, P < 0.001, Table 2.5). Amongst the N-gene families - nitrogen fixing genes: 

nifD, nifH, nifK, and nifW were associated with the highest percentage (93%, 89%, 85%, and 

100%, respectively) of mobilizable plasmids compared to genes encoding denitrification 

pathways, such as napA and napC with approximately 33% and 44% associated with mobilizable 

plasmids, respectively (G (39) = 296.6, P < 0.001, Table 2.6). 

Trait variation is not entirely explained by taxonomic biases. The distribution of host 

taxonomy across the PLSDB dataset is highly biased (Figure 2.1).  A handful of genera are 

heavily overrepresented, with the top three genera of Escherichia, Klebsiella, and Acinetobacter 

accounting for 41% of the plasmids we analyzed. The biases are similarly problematic at broader 
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taxonomic categories; for instance, the family Enterobacteriaceae makes up 44 % of the 

plasmids and the phylum Proteobacteria, 75 %.  

The above results demonstrate that accessory gene content varied across environments 

even within the most abundant phyla in the dataset. To further test the sensitivity of the results, 

we also tested patterns within the most abundant host species (E. coli, 19 % of all plasmids). The 

bulk of E. coli plasmids were from animal and human environments (36 % and 61 %, 

respectively) and no representatives were detected from soil. However, COG composition varied 

significantly between human- and non-human animal environments (G-test: G (22) = 58.817, P < 

0.001). Likewise, E. coli plasmids significantly differed in antibiotic resistance classes, 

carbohydrate and nitrogen cycling traits, and plasmid mobility gene content across human and 

animal plasmid environments of (P < 0.001 for all tests).  

We next removed the three most abundant genera (Acinetobacter, Escherichia, and 

Klebsiella) from Proteobacteria and the most abundant genus Staphylococcus from Firmicutes 

and tested that the results held within these phyla.  Amongst the 3,330 remaining Proteobacteria 

plasmids, overall COG composition, resistance genes, carbon and nitrogen utilization traits, and 

plasmid mobility genes still varied across the seven environments (P < 0.001 for all tests). 

Similarly, the same differences held across environments amongst the 1,028 remaining Firmicute 

plasmids.  

DISCUSSION 

Plasmids may confer traits that allow a bacterial host to adapt to its local environment. In 

support of this hypothesis, we identified a high diversity of accessory genes on plasmids from a 

large public database and found that the prevalence of these genes varied significantly by 
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environment. These cross-environment differences held for a variety of taxonomic subsets of the 

data, suggesting that these patterns are not entirely driven by database biases. 

While previous studies have revealed differences in plasmid traits within an environment or 

among similar habitat types (Sentchilo et al., 2013; Luo et al., 2016; Brown Kav et al., 2020; 

Perez et al., 2020; Dewar et al., 2021), our analyses across seven broad environments provides a 

baseline of plasmid accessory trait distribution for future studies. Similar to traits encoded on the 

bacterial chromosome, we show that plasmid accessory trait distributions reflect their 

environment. For instance, the composition of CAZymes on plasmids varied across 

environments, just as patterns of CAZymes from whole genomes also vary. In particular, GH1 

and GH3 – two of the most abundant GH families in bacterial genomes (Berlemont and Martiny, 

2013) – were found relatively evenly on plasmids from all environments. In contrast, CAZymes 

that are highly abundant in human environments, e.g., GH5 and GH32 (Berlemont and Martiny, 

2016)  – are also more prevalent in plasmids from human environments.  

Notably, plasmid accessory traits seem to form two larger groupings by environment, that 

is, accessory traits from human/animal/wastewater and those from plant/soil/marine/freshwater 

environments. This could be due to higher bacterial dispersal across some environments relative 

to others. For instance, microbial communities of wastewater environments reflect the 

microbiomes of human populations, through sewer systems and surface runoff (J. et al., 2015). 

Plasmids encoding clinically-relevant resistance genes and human pathogenic bacteria have 

previously been identified in wastewater environments, which have been suggested as hotspots 

for plasmid mediated horizontal gene transfer of resistance genes (Shannon et al., 2007; Rahube 

and Yost, 2010; Yang et al., 2013). 



 50 

We also identified a high diversity of COG functions on plasmids that are typically 

associated with the bacterial chromosome as they are conserved genes found across diverse 

groups of bacteria (Galperin et al., 2021). These plasmid sequences may offer a “snapshots” of 

the HGT event between bacteria in time but how this connects with core versus 

flexible/accessory genome, and open versus closed state of pangenomes (all the genes present in 

a given species, across all isolates), is unclear (Brockhurst et al., 2019). However, by quantifying 

the diversity of plasmid accessory genes across different environments from publicly available 

data, we offer a glimpse of the possible selective pressures that may contribute to the 

maintenance of these genes on mobile genetic elements in bacterial communities. 

It was previously thought that many environmental plasmids do not generally encode any 

obvious accessory genes, and for some of the environments, such as freshwater, this may be the 

case. For instance, 10 broad host range plasmids isolated from freshwater bacteria did not encode 

any accessory genes (BC J. et al., 2013). Here, the 101 freshwater plasmids also carried 

relatively few accessory genes (COG). Future studies of freshwater and other non-human 

associated environments would help to reveal whether this is a true biological pattern. 

Differences in plasmid traits across environments will also be driven by differences in host 

taxonomic composition if plasmids are at least partially conserved with their host phylogeny. 

Indeed, taxonomy at the phylum level appears to be a large factor in influencing trait 

distributions than the environment, at least for the five phyla with plasmids represented in all 

seven environments. Contrary to our hypothesis, this pattern held for both plasmid mobility and 

accessory traits. Thus, despite high levels of horizontal gene transfer of plasmids within phyla 

(Bonham et al., 2017; Redondo-Salvo et al., 2020), plasmid traits seem to be strongly influenced 

by their host’s evolutionary history; only the composition of COG functions were significantly 
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affected by the environment after controlling for host phylum. This result is in alignment with 

recent work indicating that plasmids and their mobility traits are constrained by the evolutionary 

history of their hosts, even as some hosts are permissive to gene exchange beyond species/genus 

borders (Harrison and Brockhurst, 2012; Redondo-Salvo et al., 2020; Hall et al., 2021). We 

caution, however, that the analysis here gives an approximation; our ability to test the role of 

host taxonomy is limited by the uneven data available across phyla and environments. In the 

future, it would be useful to investigate the changing influence of taxonomy versus environment 

on plasmid traits as one moves from broader to finer taxonomic scales, where HGT may be more 

prevalent (Cohan, 2001; Doolittle and Papke, 2006). 

Finally, in support of our last hypothesis, plasmid accessory traits varied in their 

association with the presence of MOB genes. Not surprisingly, resistance traits were most often 

found on potentially mobilizable plasmids (Partridge et al., 2018). The connection between 

plasmid traits and mobility also varied by environment; plasmid accessory traits appear more 

mobilizable in human environments relative to other environments (with the exception of N-

genes in plant plasmids). This pattern may be due to culturing biases; however, stable 

temperatures and resources, along with high concentrations of bacteria cells, may make human 

environments especially favorable for HGT (Lerner et al., 2017). A caveat of our analysis is that 

the presence of MOB genes does not indicate the potential for plasmid transmissibility or actual 

HGT frequency (Sheppard et al., 2020). For instance, there may be unrecognized (non-MOB 

gene related) mechanisms of plasmid transfer, particularly in less well-studied environments. 

Indeed, nontransmissible plasmids appeared to be widely disseminated among members of a 

Vibrionaceae population, despite the lack of a clear mechanism for transmission (Xue et al., 

2015).  
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CONCLUSION 

A key aspect of plasmid diversity and evolution is the connection between plasmids, their 

bacterial hosts, and the environment. Our results suggest that plasmid-bound traits offer a 

substantial source of genetic diversity for bacterial adaptation to their environment, but more 

work is needed to directly link these mobile genetic elements to host adaptation in natural 

communities. While we focused on plasmid sequences from cultured microbes, this approach 

limited the data available, but links plasmid traits directly with its host, an advantage that 

culture-independent plasmidome studies do not have. Thus, implementing sequencing 

approaches like Hi-C (Lieberman-Aiden et al., 2009) into future plasmidome studies could also 

help address this disconnect between plasmids and their host, and has shown promise in some 

studies connecting the resistome and plasmidome to wastewater microbiomes (Stalder et al., 

2019). Additionally, by combining current methods in novel ways such as cell enumeration and 

sorting with amplicon sequencing of microbial communities, plasmids fitness effects can be 

studied within microbial communities (Li et al., 2020), thereby helping to understand the 

adaptive role of plasmids. Further, efforts to culture and sequence plasmids from 

underrepresented clades and environments, such as Cyanobacteria and Actinobacteria and 

aquatic environments, would be enormously valuable as 75% of the plasmid sequences analyzed 

here were from Proteobacteria. Finally, an outstanding question is the role that plasmids have in 

microbial functioning at the community scale. Recent experiments demonstrate that 

manipulation of mobile genetic elements in communities may influence biogeochemical 

processes such as nitrogen cycling (Quistad et al., 2020), pointing to exciting directions for 

investigating how plasmid evolution influences the ecology of microbial communities. 
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TABLES AND FIGURES 
 
Table 2.1 Summary of plasmid genetic content across environments. 
 Human Animal Wastewater Plant Soil Marine Freshwater Totals 

Plasmid 
sequences 5,122 2,316 227 1,089 657 213 101 9,725 

Gene 
calls* 439,164 201,694 21,017 422,909 136,619 27,715 14,567 1,263,685 

Mean 
plasmid 
size (kb) 

76.3 79.3 88.4 426.9 215.5 130.1 146.6 - 

No. of 
MOBs 2,686 1,077 154 633 325 96 54 5,025 

% 
mobile** 50.5 43.7 59.5 52.5 45.7 41.3 47.5 - 

No. of 
assigned 
COGs 

227,768 104,664 11,742 319,138 89,239 17,062 9,548 779,161 

No. of 
resistance 
genes 

3,628 839 109 159 70 21 15 4,841 

No. of 
CAZymes 3,740 1,716 158 9,107 2,217 339 263 17,540 

No. of  
N-genes 354 210 46 2,601 556 141 42 3,950 

*Excludes partial gene calls 
** Percent of plasmids that contain at least one MOB gene 
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Table 2.2 PERMANOVA* testing the effects of environment and host phylum (taxonomy) by 
trait type. 
Trait/factors DF SS MS Pseudo-F P-value ECV (%) 
COG       
   Environment 6 123.38 20.56 1.58 0.044 9.29 
   Host Phyla 3 203.98 67.99 5.23 0.001 40.12 
   Residuals 13 169.04 13.00   50.59 
Resistance       
   Environment 6 124.93 20.82 0.92 0.710 - 
   Host Phyla 3 113.40 37.80 1.67 0.008 13.45 
   Residuals 10 225.90 22.59   86.55 
Carbon cycling       
   Environment 6 763.41 127.23 1.05 0.295 - 
   Host Phyla 4 755.32 188.83 1.56 0.001 9.65 
   Residuals 17 2056.50 120.97   90.35 
Nitrogen cycling       
   Environment 6 174.59 29.10 0.94 0.733 - 
   Host Phyla 4 187.90 46.97 1.52 0.002 9.83 
   Residuals 15 464.23 30.95   90.17 
 Mobility       
   Environment 6 35.14 5.86 0.85 0.780 - 
   Host Phyla 4 136.75 34.19 4.97 0.001 44.23 
   Residuals 16 110.18 6.89   55.77 
*Significant P-values are boldface, indicates statistical significance with P < 0.05; P-values 
based on 999 permutations (lowest P-value possible 0.001); DF – degrees of freedom; SS – sum 
of squares; Pseudo-F – F value by permutation; ECV – estimated components of variation; 
Formula – Trait distance matrices ~ Environment + Host Phyla. 
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Table 2.3 Summary of traits associated with mobilizable* plasmids by environment. 
Trait by plasmid 
MOB counts 

Average 
(%) Human Animal Wastewater Plant Soil Marine Freshwater 

COGs         
Mobile  134195 48646 6652 133049 28232 6077 4821 
Nontransmissible  93917 56133 5102 186109 61022 10993 4728 
% Mobile 46.4 58.8 46.4 56.6 41.7 31.6 35.6 50.5 
Resistance         
Mobile  2380 563 58 68 24 15 11 
Nontransmissible  1248 276 51 91 46 6 4 
% Mobile 64.4 65.6 67.1 53.2 42.8 34.3 71.4 73.3 
CAZymes         
Mobile  3563 1227 181 3770 745 145 128 
Nontransmissible  3127 1862 135 5643 1774 291 179 
% Mobile 45.5 53.3 39.7 57.3 40.1 29.6 33.3 41.7 
N-gene families         
Mobile  114 66 11 1394 137 37 14 
Nontransmissible  240 144 35 1207 419 104 28 
% Mobile 44.9 32.2 31.4 23.9 53.6 24.6 26.2 33.3 
*Mobilizable = plasmids having at least one MOB gene identified. 
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Table 2.4 Summary of COG categories associated with mobilizable plasmids (the presence of 
MOB genes). 
COG 
category 

Mobilizable 
plasmid 

Nontransmissible 
plasmid 

% COG on mobilizable 
plasmids 

A 6 18 25.00 
B 2 6 25.00 
C 12,634 17,886 41.40 
D 12,758 10,936 53.84 
E 21,187 31,014 40.59 
F 3,052 5,024 37.79 
G 24,115 31,102 43.67 
H 11,021 15,003 42.35 
I 11,726 19,011 38.15 
J 7,553 8,972 45.71 
K 30,081 36,726 45.03 
L 34,257 23,976 58.83 
M 15,628 21,040 42.62 
N 4,311 8,295 34.20 
O 12,555 11,226 52.79 
P 16,794 21,650 43.68 
Q 4,483 7,820 36.44 
T 15,596 24,192 39.20 
U 18,453 10,947 62.77 
V 20,377 18,773 52.05 
W 367 623 37.07 
X 54,582 55,283 49.68 
Z 22 11 66.67 
R+S 29,990 38,077 44.06 
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Table 2.5 Summary of resistance genes associated with mobilizable plasmids (presence of MOB 
genes). 

Resistance class Mobilizable  Nontransmissible  

% Class associated 
with mobilizable 

plasmids 
Aminoglycosides 61 53 53.51 
Arsenic 43 57 43.00 
Beta-lactams 1587 852 65.07 
Biocide and metal 12 29 29.27 
Cadmium 1 2 33.33 
Cationic antimicrobial peptides 8 6 57.14 
Copper 19 12 61.29 
Drug and biocide 96 67 58.90 
Fluoroquinolones 27 9 75.00 
Fosfomycin 8 3 72.73 
Glycopeptides 6 9 40.00 
Iron 0 1 0 
Lead 96 43 69.06 
Lipopeptides 2 1 66.67 
Mercury 659 302 68.57 
Metal 256 136 65.31 
Metronidazole 1 7 12.50 
MLS 37 26 58.73 
Multi-biocide 1 6 14.29 
Multi-drug 5 5 50.00 
Naphthoquinone 136 41 76.84 
Nickel 9 11 45.00 
Phenicol 6 9 40.00 
Rifampin 2 11 15.38 
Sulfonamides 25 8 75.76 
Tellurium 1 0 100.00 
Tetracyclines 8 9 47.06 
Trimethoprim 7 7 50.00 
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Table 2.6 Summary of CAZymes by family associated with mobilizable plasmids (presence of 
MOB genes). 

CAZyme ID Mobilizable Nontransmissible 

% CAZymes 
associated with 

mobilizable 
plasmids 

AA10 2 35 5.41 
AA3 82 92 47.13 
AA3_2 78 64 54.93 
AA4 4 7 36.36 
AA5_2 0 5 0.00 
AA6 1 8 11.11 
AA7 15 1 93.75 
CBM0 1 0 100.00 
CBM12 1 9 10.00 
CBM13 24 55 30.38 
CBM16 2 1 66.67 
CBM2 5 88 5.38 
CBM20 2 12 14.29 
CBM21 0 1 0.00 
CBM22 1 3 25.00 
CBM23 0 2 0.00 
CBM26 1 1 50.00 
CBM27 0 1 0.00 
CBM3 0 4 0.00 
CBM32 14 108 11.48 
CBM34 3 3 50.00 
CBM35 5 1 83.33 
CBM4 1 3 25.00 
CBM40 0 1 0.00 
CBM41 0 3 0.00 
CBM42 0 2 0.00 
CBM48 157 411 27.64 
CBM5 49 227 17.75 
CBM50 10 41 19.61 
CBM51 2 6 25.00 
CBM54 0 1 0.00 
CBM56 0 1 0.00 
CBM57 3 0 100.00 
CBM6 1 2 33.33 
CBM61 0 3 0.00 
CBM63 0 1 0.00 
CBM66 1 1 50.00 
CBM67 3 1 75.00 
CBM85 0 1 0.00 
CBM9 0 2 0.00 
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CAZyme ID Mobilizable Nontransmissible 

% CAZymes 
associated with 

mobilizable 
plasmids 

CE0 10 6 62.50 
CE1 56 29 65.88 
CE11 3 3 50.00 
CE12 0 4 0.00 
CE14 29 15 65.91 
CE15 7 1 87.50 
CE16 0 3 0.00 
CE2 0 1 0.00 
CE3 0 3 0.00 
CE4 133 201 39.82 
CE5 17 18 48.57 
CE6 0 2 0.00 
CE7 5 8 38.46 
CE8 7 86 7.53 
CE9 10 23 30.30 
GH0 183 344 34.72 
GH1 72 112 39.13 
GH10 2 18 10.00 
GH102 0 7 0.00 
GH103 49 102 32.45 
GH104 4 6 40.00 
GH105 43 42 50.59 
GH106 8 4 66.67 
GH108 11 19 36.67 
GH109 158 42 79.00 
GH110 0 1 0.00 
GH112 1 0 100.00 
GH113 1 1 50.00 
GH114 1 2 33.33 
GH115 1 2 33.33 
GH117 2 0 100.00 
GH12 6 15 28.57 
GH123 0 1 0.00 
GH125 1 2 33.33 
GH126 1 0 100.00 
GH127 29 33 46.77 
GH128 0 1 0.00 
GH13 5 6 45.45 
GH13_10 0 1 0.00 
GH13_11 0 2 0.00 
GH13_14 0 1 0.00 
GH13_16 49 124 28.32 
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CAZyme ID Mobilizable Nontransmissible 

% CAZymes 
associated with 

mobilizable 
plasmids 

GH13_18 20 8 71.43 
GH13_19 0 2 0.00 
GH13_20 2 1 66.67 
GH13_21 1 0 100.00 
GH13_23 7 21 25.00 
GH13_26 38 145 20.77 
GH13_27 0 1 0.00 
GH13_28 1 0 100.00 
GH13_29 1 5 16.67 
GH13_3 1 7 12.50 
GH13_30 0 2 0.00 
GH13_31 30 16 65.22 
GH13_32 0 1 0.00 
GH13_33 1 0 100.00 
GH13_36 0 1 0.00 
GH13_4 0 2 0.00 
GH13_5 1 3 25.00 
GH13_8 1 0 100.00 
GH130 11 5 68.75 
GH133 1 3 25.00 
GH135 2 80 2.44 
GH136 4 1 80.00 
GH137 1 1 50.00 
GH139 1 0 100.00 
GH140 6 0 100.00 
GH141 0 1 0.00 
GH142 1 0 100.00 
GH143 1 0 100.00 
GH144 11 3 78.57 
GH145 2 0 100.00 
GH146 0 1 0.00 
GH148 24 0 100.00 
GH15 47 55 46.08 
GH151 0 5 0.00 
GH154 51 22 69.86 
GH159 0 1 0.00 
GH16 80 42 65.57 
GH17 0 3 0.00 
GH18 2 25 7.41 
GH19 27 15 64.29 
GH2 176 102 63.31 
GH20 50 51 49.50 
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CAZyme ID Mobilizable Nontransmissible 

% CAZymes 
associated with 

mobilizable 
plasmids 

GH23 2640 676 79.61 
GH24 20 135 12.90 
GH25 45 40 52.94 
GH26 26 12 68.42 
GH27 1 2 33.33 
GH28 54 223 19.49 
GH29 45 60 42.86 
GH3 124 120 50.82 
GH30 0 1 0.00 
GH30_1 0 1 0.00 
GH30_2 0 1 0.00 
GH30_5 0 2 0.00 
GH31 11 24 31.43 
GH32 147 188 43.88 
GH33 49 54 47.57 
GH35 6 8 42.86 
GH36 64 33 65.98 
GH37 2 87 2.25 
GH38 35 38 47.95 
GH39 9 35 20.45 
GH4 119 134 47.04 
GH42 22 41 34.92 
GH43 0 1 0.00 
GH43_1 2 1 66.67 
GH43_10 1 2 33.33 
GH43_11 1 3 25.00 
GH43_12 6 2 75.00 
GH43_17 1 1 50.00 
GH43_18 2 0 100.00 
GH43_22 0 3 0.00 
GH43_24 1 0 100.00 
GH43_26 4 2 66.67 
GH43_27 0 1 0.00 
GH43_29 3 0 100.00 
GH43_30 0 1 0.00 
GH43_32 0 1 0.00 
GH43_5 1 0 100.00 
GH43_8 1 0 100.00 
GH43_9 2 0 100.00 
GH44 0 1 0.00 
GH46 1 1 50.00 
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CAZyme ID Mobilizable Nontransmissible 

% CAZymes 
associated with 

mobilizable 
plasmids 

    
GH5 3 4 42.86 
GH5_1 2 21 8.70 
GH5_12 0 1 0.00 
GH5_13 3 0 100.00 
GH5_2 0 1 0.00 
GH5_28 1 0 100.00 
GH5_39 0 1 0.00 
GH5_4 0 1 0.00 
GH5_44 0 1 0.00 
GH5_46 1 3 25.00 
GH5_48 7 7 50.00 
GH5_5 2 80 2.44 
GH5_7 2 0 100.00 
GH5_8 2 0 100.00 
GH50 1 1 50.00 
GH51 38 49 43.68 
GH52 0 1 0.00 
GH53 0 21 0.00 
GH55 0 1 0.00 
GH57 1 0 100.00 
GH6 0 3 0.00 
GH63 40 22 64.52 
GH65 13 7 65.00 
GH66 0 1 0.00 
GH67 2 1 66.67 
GH68 14 5 73.68 
GH70 2 2 50.00 
GH73 163 174 48.37 
GH74 0 2 0.00 
GH75 0 1 0.00 
GH76 1 2 33.33 
GH77 32 120 21.05 
GH78 22 48 31.43 
GH79 3 0 100.00 
GH8 12 23 34.29 
GH81 0 1 0.00 
GH84 7 8 46.67 
GH85 8 0 100.00 
GH86 1 0 100.00 
GH88 38 52 42.22 
GH89 2 0 100.00 
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CAZyme ID Mobilizable Nontransmissible 

% CAZymes 
associated with 

mobilizable 
plasmids 

GH9 3 1 75.00 
GH91 9 25 26.47 
GH92 7 3 70.00 
GH93 0 1 0.00 
GH94 27 56 32.53 
GH95 3 13 18.75 
GH97 2 1 66.67 
GT0 125 309 28.80 
GT1 167 211 44.18 
GT10 0 6 0.00 
GT102 1 5 16.67 
GT103 0 4 0.00 
GT107 52 4 92.86 
GT11 1 18 5.26 
GT14 0 3 0.00 
GT17 0 9 0.00 
GT19 1 2 33.33 
GT2 606 1014 37.41 
GT20 31 187 14.22 
GT21 8 4 66.67 
GT23 17 2 89.47 
GT25 6 15 28.57 
GT26 19 58 24.68 
GT28 2 12 14.29 
GT3 1 1 50.00 
GT30 1 3 25.00 
GT32 2 88 2.22 
GT35 25 36 40.98 
GT38 1 0 100.00 
GT39 0 1 0.00 
GT4 626 883 41.48 
GT41 19 109 14.84 
GT42 1 0 100.00 
GT44 30 121 19.87 
GT45 1 0 100.00 
GT5 39 96 28.89 
GT51 94 82 53.41 
GT53 3 0 100.00 
GT56 0 1 0.00 
GT6 1 0 100.00 
GT60 0 3 0.00 
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CAZyme ID Mobilizable Nontransmissible 

% CAZymes 
associated with 

mobilizable 
plasmids 

GT7 0 6 0.00 
GT70 0 1 0.00 
GT73 15 2 88.24 
GT75 0 1 0.00 
GT8 11 13 45.83 
GT81 1 2 33.33 
GT83 24 116 17.14 
GT87 2 1 66.67 
GT89 0 2 0.00 
GT9 5 126 3.82 
GT99 0 2 0.00 
PL0 3 92 3.16 
PL1 9 6 60.00 
PL1_2 25 0 100.00 
PL1_4 0 1 0.00 
PL1_6 2 1 66.67 
PL10_1 2 1 66.67 
PL11 0 1 0.00 
PL12 1 3 25.00 
PL15_1 0 3 0.00 
PL22_1 0 3 0.00 
PL22_2 1 0 100.00 
PL26 0 1 0.00 
PL3 0 3 0.00 
PL3_1 26 1 96.30 
PL3_2 9 2 81.82 
PL33_1 31 21 59.62 
PL4_1 0 2 0.00 
PL5 0 4 0.00 
PL7 0 1 0.00 
PL8 2 4 33.33 
PL9 0 5 0.00 
PL9_1 30 3 90.91 
PL9_2 1 20 4.76 
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Table 2.7 Summary of N-gene families associated with mobilizable plasmids (presence of MOB 
genes). 

N-gene family ID Mobilizable  Nontransmissible  

% N-genes associated 
with mobilizable 

plasmids 
amoC_B 0 1 0.00 
ansB 7 17 29.17 
asnB 1 1 50.00 
gdh_K00260 4 3 57.14 
gdh_K00261 11 9 55.00 
gdh_K00262 120 143 45.63 
gdh_K15371 5 6 45.45 
glnA 597 770 43.67 
glsA 16 13 55.17 
gs_K00264 10 1 90.91 
gs_K00265 16 28 36.36 
gs_K00266 115 192 37.46 
napA 9 18 33.33 
napC 12 15 44.44 
narB 23 10 69.70 
narC 1 7 12.50 
narG 1 6 14.29 
narI 5 18 21.74 
narJ 2 22 8.33 
narY 0 1 0.00 
narZ 5 6 45.45 
nasA 7 28 20.00 
nifD 55 4 93.22 
nifH 8 1 88.89 
nifK 95 17 84.82 
nifW 3 0 100.00 
nirA 18 53 25.35 
nirB 8 7 53.33 
nirD 109 97 52.91 
nirK 55 106 34.16 
nirS 110 162 40.44 
nmo 87 135 39.19 
norB 0 1 0.00 
norC 6 14 30.00 
nosZ 118 167 41.40 
NR 121 67 64.36 
nrfC 8 15 34.78 
ureA 0 1 0.00 
ureB 1 2 33.33 
ureC 4 13 23.53 
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Figure 2.1 Representation of plasmid host bacteria in the PLSDB dataset across different 
taxonomic classifications. The more frequent the plasmid host bacterial taxa is represented in the 
dataset, the thicker the line weight. Note – the line color is by Phylum level taxonomic 
classification for simplicity. 
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Figure 2.2 Taxonomic representation of plasmid host by environment in the PLSDB dataset. 
Note: plasmid host-phyla with < 1 % relative abundance are not shown, e.g., plasmids from 
Elusimicrobia (n=3). 
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Figure 2.3 Plasmid size distributions vary significantly by environment. The density plots of 
plasmid nucleotide lengths by environment. The mean plasmid sizes are indicated by vertical 
black lines. Untransformed mean plasmid sizes are: human (76.3 kb), animal (79.3 kb), 
wastewater (88.4 kb), plant (426.9 kb), soil (215.5 kb), marine (130.1 kb), and freshwater (146.6 
kb). 
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Figure 2.4 Plasmid size distributions vary significantly by host taxonomy and environment. The 
density plots of log10 transformed plasmid nucleotide lengths across 10 phyla (A) and across 
environments within Proteobacteria (B). The mean plasmid sizes are represented by vertical 
black lines at the center of respective density distributions. Plasmid size distributions for phyla 
having < 10 representatives are not shown. Untransformed mean plasmid sizes are as follows: 
Actinobacteria (140.1 kb), Bacteroidetes (73.1 kb), Chlamydiae (7.5 kb), Cyanobacteria (128 
kb), Deinococcus-Thermus (225 kb), Firmicutes (68 kb), Fusobacteria (21.2 kb), Proteobacteria 
(146 kb), Spirochaetes (33.9 kb), Tenericutes (32.7 kb). Likewise, mean Proteobacteria 
plasmids by environment sizes are as follows: human (85.3 kb), animal (85.4 kb), wastewater 
(81.5 kb), plant (492.4 kb), soil (284.1 kb), marine (139.6 kb), and freshwater (190.4 kb). 



 71 

 
Figure 2.5 Plasmid coding density by environment. The dashed line represents the grand mean 
coding density (1.07) across environments. Symbols above each boxplot represent significant P-
values for coding density for each environment compared to the grand mean as determined by 
Kruskal-Wallis tests. 
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Figure 2.6 Proportion of MOB family of relaxases by environment. The values under each 
plasmid environment reflect the number of MOB relaxases identified, followed by the number of 
plasmids within an environment. MOB families represented by < 1% relative abundance within 
an environment are shaded in gray. 
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Figure 2.7 The proportion of MOB family relaxases by plasmid host-taxonomy. The values 
under each plasmid host phylum (n) reflect the number of MOB relaxases identified, followed by 
the total number of plasmids within a phylum. MOB families representing < 1 % relative 
abundance within an environment are shaded in gray. 
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Figure 2.8 Cumulative COG richness of plasmids by environment. Unique COG function 
accessions were iteratively and randomly subsampled (n = 1,000 times) across each environment. 
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Figure 2.9 Plasmid COG functions by environment. The normalized frequencies of COG 
functions by environment at broader COG category designations. To standardize for uneven 
plasmid sequences across environments, COG function counts were first converted into 
proportional abundances within an environment after removal of COG functions < 6 identified 
across all environments. COG abundance across environments were then normalized using Z-
scores. COG categories with above mean (white tiles) values are represented by tiles shaded in 
red, while those with lower than mean values are shaded in blues.  
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Figure 2.10 Plasmid resistance, carbon-degradation and nitrogen cycling traits by environment. 
Normalized frequencies of resistance genes by classes (A), CAZyme family types (B) and N-
gene families (C) by environment. The resistance, CAZyme and N-gene families with above 
mean (white tiles) values are represented by tiles shaded in red, while those with lower than 
mean values are shaded in blues. Symbols next to N-gene family names represent corresponding 
N-cycling pathways: asterisks = assimilatory nitrate reduction pathways, plus = denitrification, 
stars = dissimilatory nitrate reduction, squares = nitrogen fixation, circles = organic degradation 
and synthesis. 
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Figure 2.11 Plasmid COG categories by host phylum and environment. The standardized and 
normalized COG functions by environment at broader COG category designations are shown for 
the top three most abundant plasmid host phyla. 
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Figure 2.12 Plasmid resistance traits by host phylum and environment. The resistance genes are 
grouped by resistance class for plasmids of Proteobacteria and Firmicutes host. Resistance genes 
with above mean (white tiles) values are represented by tiles shaded in red, while those with 
lower than mean values are shaded in blues. Note: resistance genes of Firmicutes from 
freshwater environments are not shown due to low frequencies (< 15 genes). Gray tiles represent 
undetected resistance classes where no corresponding genes were identified. 
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Figure 2.13 Plasmid carbon degrading 
traits by host phylum and environment. 
CAZymes are ordered alphabetically 
for plasmids of Proteobacteria, 
Firmicutes, and Actinobacteria. 
CAZymes with above mean (white 
tiles) values are represented by tiles 
shaded in red, while those with lower 
than mean values are shaded in blues. 
Gray tiles represent undetected 
instances where no corresponding 
CAZymes were identified within that 
host phylum. 



 80 

 

 
Figure 2.14 Plasmid nitrogen cycling traits by host phylum and environment. The N-gene 
families are ordered alphabetically for plasmids of Proteobacteria, Firmicutes, and 
Actinobacteria. Symbols at the right of the N-gene family names correspond to N-Cycling 
pathways. N-gene families with above mean (white tiles) values are represented by tiles shaded 
in red, while those with lower than mean values are shaded in blues. Gray tiles represent 
undetected instances where no corresponding N-gene families were identified within that host 
phylum. 
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CHAPTER 3 
 

Plasmids contribute to trait variation within the soil taxon Curtobacterium 
 
ABSTRACT 

Our knowledge of the diversity and distribution of most bacteria has focused on core 

genomic signatures. Much less is known about how accessory genes encoded on mobile genetic 

elements (MGE), contribute to bacterial genetic diversity (with the exception of antibiotic 

resistance and virulence genes). Here, we investigated the role of MGE and their associated traits 

in Curtobacterium, an abundant bacterium found on decaying plant litter in southern California. 

Using both short and long-read sequencing data, we performed hybrid assemblies to produce 22 

completely assembled genomes of Curtobacterium isolated across a climate gradient. We 

quantified the trait variation attributed to MGEs, and particularly to plasmids, identified in 

Curtobacterium genomes from our study and those deposited in public databases, and then 

determined whether the plasmid traits were habitat- versus ecotype- specific. More than half of 

the Curtobacterium genomes contained at least one complete plasmid, which were 

predominantly found within the genomes of bacterial hosts from one clade/subclade. About 1.5% 

of the total clusters of orthologous genes identified in the genomes (n = 27,974) were found on 

plasmids and included genes involved in carbon degradation (glycoside hydrolases) and 

inorganic/organic nitrogen processing (narB). Most plasmids also encoded at least one mobility 

gene, suggesting that traits associated with these plasmids are potentially mobilizable within the 

bacterial communities where the strains were isolated. Lastly, the breadth of trait diversity 

associated with plasmids suggests the potential for MGE to facilitate Curtobacterium’s 

adaptation to environmental change. 

INTRODUCTION 
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Mobile genetic elements (MGE) including plasmids, prophages, and integrative 

conjugative elements, potentially allow a cell to rapidly adapt to sudden environmental changes 

(Frost et al., 2005; Heuer and Smalla, 2012; Siguier et al., 2014). MGE are broadly involved in 

three mechanisms of horizontal gene transfer (HGT) - transformation, conjugation, or 

transduction (Frost et al., 2005) – and thereby mediate movements of accessory traits within 

genomes or between bacterial cells. Through their contributions to HGT, MGE are key players in 

bacterial diversification (Croucher et al., 2014; Acman et al., 2020). Indeed, the extent to which 

MGE influence the traits of their bacterial hosts is exemplified by the global dissemination of 

genes that confer resistance against antibiotics (Carattoli, 2009; Carattoli, 2013; J. et al., 2021). 

Plasmids are particularly successful in sharing genetic information via bacterial 

conjugation in microbial communities (Norman et al., 2009) and can allow bacteria to share 

genes with other bacteria over large taxonomic distances (Klümper et al., 2015). However, 

plasmids can also be vertically transmitted to daughter cells during host cell replication (Giraldo, 

2003), which complicates quantifying the frequency of plasmid-mediated HGT within microbial 

communities. Plasmid diversity and composition in a community may thus be influenced by a 

combination of host phylogeny and selection by the local biotic and abiotic environment (Heuer 

et al. 2008 and 2012). 

Understanding the extent to which plasmids contribute to genomic diversity within 

natural microbial communities is important to investigating how MGE may facilitate adaptation 

to environmental changes (Touchon et al., 2020; Conrad et al., 2022), Chapter 2). Thus, a first 

step in understanding the role of plasmids in environmental communities is to quantify the 

genetic diversity of plasmids and the traits they encode (Perez et al., 2020), and how they relate 

to the host bacterial taxa (Stalder et al., 2019). However, the evolutionary pressures that 
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determine the location (chromosomal or plasmid) of bacterial traits are not fully understood, but 

evidence suggests that the distribution of genes between plasmid and chromosomes is not 

random. In particular, antibiotic resistance genes appear commonly on plasmids (Eberhard, 1989; 

Fatoba et al., 2022; Meng et al., 2022), and other plasmid genes allow bacteria to survive 

extreme environments (Ryo et al., 2006; Romaniuk et al., 2018; Hanka et al., 2022). By contrast, 

genes essential to cell survival are thought to be located on the chromosome (Lehtinen et al., 

2021). Still, many genes – presumably accessory genes – are found in both chromosomes and 

plasmids.  

Here, we explore the contribution of plasmids to the genomic diversity of 

Curtobacterium, a cosmopolitan genus of bacteria associated with plants and soil (Chase et al., 

2016). This genus shifts in abundance and composition in response to environmental changes 

(Matulich et al., 2015; Chase et al., 2017; Martiny et al., 2017; Chase et al., 2018). Furthermore, 

Curtobacterium are capable of responding rapidly to environmental shifts via de novo mutations 

(Chase et al., 2021). However, whether Curtobacterium also evolves rapidly via trait acquisition 

mediated by MGE such as plasmids remains unknown. Because Curtobacterium are relatively 

easy to culture (Chase et al., 2016), investigating the distribution of plasmids within this host 

genus is tractable through long-read sequencing. Previous studies of Curtobacterium species 

associated with plant disease have found that their plasmids carry virulence traits (Chen et al., 

2020), but otherwise, the abundance and diversity of plasmids in this genus remains unknown.  

Using long read sequencing of cultured isolates, we identified and sequenced new 

plasmids within this genus and compared them to publicly available plasmid sequences. To 

investigate the drivers influencing plasmid diversity, we first asked whether Curtobacterium 

plasmids and their traits are phylogenetically conserved within a host ecotype and/or vary by 
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environment? We hypothesized that extensive vertical transmission within this genus would 

result in the phylogenetic conservation of plasmids within a host ecotype - that is, previously-

defined genetic clusters that correspond to ecologically-relevant phenotypes (Chase et al., 2018). 

Thus, we expected that some regions of Curtobacterium plasmids would be conserved, as 

detected in plasmids associated with Enterobacterales (Redondo-Salvo et al., 2020). 

Alternatively, high rates of horizontal transfer of the plasmids might break up any phylogenetic 

signal. In this case, local selection could result in an association between plasmid traits and the 

environment from which a particular strain was isolated without phylogenetic conservation. 

Second, we asked: What traits do Curtobacterium plasmids encode, and do they differ 

from those found on the chromosome? Because Curtobacterium is associated with natural soil 

environments, we did not expect them to carry genes associated with xenobiotics or metal 

resistance, except perhaps when isolated from agricultural environments. More generally, we 

hypothesized that functional genes that are more prevalent on plasmids than the chromosome 

might indicate the potential for these traits to be beneficial across species of Curtobacterium and 

facilitate rapid adaptation to the perturbations in the soil environment. 

METHODS 

Strains and reference sequences. We analyzed three collections of Curtobacterium 

strains. First, 60 Curtobacterium from senescent plant litter samples taken along an elevation 

gradient in Southern California and previously sequenced on an Illumina platform (Chase et al., 

2018; Glassman et al., 2018; Glassman and Martiny, 2018).  

Second, we sequenced four novel Curtobacterium strains obtained from Napa Valley, 

CA. and the Loma Ridge Global Change Experiment field site (Finks et al., 2021), The strains, 

54.4B, S.11, S.43, and Napa-18, were obtained from, 50–100 mg of ground plant litter samples, 
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each spread over media prepared with grass litter leachate and agar. The media was prepared 

using 100 mg of ground grass litter collected from the Loma Ridge field site in July 2017 and 

suspended in 1.0L of deionized water under constant stirring for approximately 12 hours. The 

leachate was then filtered through cheese cloth to remove the bulk of plant litter particulate and 

adjusted to pH 7.0 ± 0.1 and 1.5 g of bacteriological agar (BD Difco, Maryland, USA) added per 

1.0 L of leachate. The media was autoclaved at 121°C for 15 minutes, and the filter-sterilized 

antifungal agent, Cycloheximide (Acros Organics, New Jersey, USA) added to molten media at a 

final concentration of 0.1 mg/ml. Plant litter samples plated on litter media were monitored daily 

for growth, and colonies were screened for phenotypic characteristics attributed to 

Curtobacterium strains (Evtushenko and Takeuchi, 2006). Selected colonies were streaked onto 

LB agar plates until pure. Strains were then inoculated into 5.0 mL of LB and incubated at room 

temperature and 225 rpm until turbid growth appeared. All strains were stored in a 25 % glycerol 

solution at -80 °C. 

Finally, complete Curtobacterium plasmid and chromosome sequences matching the 

search criteria ‘Curtobacterium’ and ‘Chromosome’, or ‘Plasmid’, were retrieved from the NCBI 

GenBank and RefSeq databases on March 31, 2022 and analyzed for the presence of plasmids9. 

In total, the Curtobacterium strains included in analysis were isolated from seven distinct 

environments, include 25 % from agricultural crops, while the majority of strains (58 %) 

originate from environments along a climate gradient isolated from plant litter, the top layer of 

soil10. 

 
9 supplemental_materials_1.xlsx 
10 supplemental_materials_1.xlsx 
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 DNA preparation and sequencing of strains. DNA extraction of novel Curtobacterium 

strains with the addition of 200 µg/ml of lysozyme from chicken egg white (Sigma-Aldrich, 

Missouri, USA) were performed using the Wizard Genomic DNA purification kit from Promega 

(Wisconsin, USA). Short read sequencing of these DNA extractions were run on and Illumina 

NovaSeq 6000 instrument with an S4 flow cell aiming for 800M reads, and 300 cycles paired 

end (Illumina Inc., California, USA). Libraries were prepared using the Nextera Flex kit (now 

the Illumina Prep library kit) using the low volume protocol. The samples were pooled based on 

qubit reads to equal quantities (assuming similar fragment length).  

 To add to the complete plasmid and chromosome sequences retrieved from NCBI 

databases, twenty-two Curtobacterium strains representing five distinct ecotypes across a climate 

gradient in southern California (Chase et al., 2018) were selected for sequencing on an Oxford 

Nanopore Technologies (ONT) platform. DNA extractions of these strains was performed using 

Qiagen Blood and Cell Culture DNA Mini Kit (Qiagen, Hilden, Germany). This extraction 

method generates high molecular weight gDNA (> 60 kb), free of small DNA contamination, 

that is suited to ONT sequencing. The extracted DNA was quality assessed via Nanodrop 

(Thermo Fisher; Massachusetts, USA) and quantified by Qubit (BioTek; Vermont, USA). ONT 

sequencing libraries were multiplexed and run on three different MiniION devices with R9.4.1 

flow cells (300 Mbp; The SeqCenter Team formerly The Microbial Genome Sequencing Center, 

Pennsylvania, USA) and high accuracy basecaller Guppy v5.0.16. 

Sequence assemblies. De novo ‘hybrid’ assemblies of ONT and Illumina sequenced 

Curtobacterium strains were performed with quality checked short and long reads using the 

default settings of Unicycler version 0.4.8 (Ryan R Wick et al., 2017). We chose a ‘hybrid’ 

assembly (combining long and short read sequencing data) approach for the Curtobacterium that 
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were ONT sequenced, as many long reads can exceed the length of repeats in bacterial genome, 

which are also a characteristic of many types of MGE, and short reads can improve accuracy, 

thus this method results in genomic assemblies with highly accurate structure and sequences 

(Ryan R. Wick et al., 2017). For all other sequenced Curtobacterium, de novo short-read only 

assemblies were obtained using Unicycler with default settings. Both ONT and Illumina 

sequencing data was checked for quality using FastQC version 0.11.911 and visualized using 

MultiQC version 1.9 (Ewels et al., 2016). Adapter sequences and low-quality reads (PRED < 8) 

and sequences less than < 2 kbp were removed from ONT data per previously described methods 

for long read preparation (Ryan R. Wick et al., 2017). Briefly, adaptors were trimmed and 

chimeric sequences removed from ONT sequencing data using Porechop version 0.2.412. Some 

chimeras were detected in our read sets, which can occur with multiplex Nanopore sequencing 

(Xu et al., 2018) and were removed during read trimming with Porechop13. For Illumina 

generated data, adapter sequences and low quality (PHRED < 30) reads were removed using 

FastP version 0.20.0 (Chen et al., 2018). The read quality for ONT and Illumina prepared reads, 

was then reassessed using FastQC and MultiQC. Unicycler generated assembly graphs were 

visualized in Bandage version 0.8.1 (Wick et al., 2015). To assess the completeness of genome 

assemblies, the web interface of Quast14 (Gurevich et al., 2013), was used determine assembly 

contiguity and completeness (e.g., N50, BUSCO, and %GC).  

Plasmid and trait characterization. All assemblies were first run through the RAST 

server – a rapid annotation tool using subsystems technology (Aziz et al., 2008) to identify 

 
11 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
12 https://github.com/rrwick/Porechop#trim-adapters-from-read-ends 
13 https://github.com/rrwick/Porechop 
14 http://quast.sourceforge.net/ 
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general features on chromosomal and plasmid (e.g., Type IV Secretion Systems, genes encoding 

plasmid replicases and partitioning during host replication) assemblies. The RASTtk annotation 

scheme included: Prodigal (Hyatt et al., 2010) to make gene calls, the option to automatically fix 

errors (e.g., gene candidates overlapping with RNAs), and replication disabled. Complete 

putative plasmid and chromosome sequences from hybrid assemblies were searched for MOB 

family relaxases, which are essential for conjugative DNA processing (Garcillán-Barcia et al., 

2009) using MobScan15 (Garcillán-Barcia et al., 2020). All putative plasmid and chromosome 

assembly sequences were screened for phage genes using PHASTER (Arndt et al., 2016), 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated 

genes (Cas) systems using CRISPRCasFinder (Couvin et al., 2018), Integrating and Conjugating 

Elements/Conjugative Elements (also called conjugative transposons) using blastp search of 

protein sequences downloaded on August, 31, 2021 from ICEberg version 2.0 database (Liu et 

al., 2019), using threshold E-value lower than 10-10, a minimum alignment coverage of 50 % and 

with at least 70 % identity were selected, and the name of the best hit extracted.  

 Complete putative plasmid and chromosome assemblies were imported into Anvio 

version 7.0 (Eren et al., 2021) for comparative genomics analysis. Plasmid and chromosome 

sequences were analyzed separately within Anvio, and gene calls were made with Prodigal and 

searched via COG20, Clusters of Orthologous Groups of genes/proteins (Galperin et al., 2021) 

and Pfam version 33.1 (Mistry et al., 2021) databases with DIAMOND v0.9.14 (Buchfink et al., 

2015) in sensitive mode. Clustering analysis of plasmid and chromosome amino acid sequence 

similarity search results were performed in Anvio using MCL algorithm (van Dongen and 

Abreu-Goodger, 2012), excluding partial gene calls, default settings for minbit heuristic and 

 
15 https://castillo.dicom.unican.es/mobscan_about/ 
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MCL inflation parameter, and a minimum gene cluster occurrence of 1. To organize gene 

clusters for chromosome/plasmids, Euclidean distance and ward linkage parameters were 

selected. Functional enrichment analysis to determine which plasmid COG (functions were 

enriched by environment (for this with > 5 putative plasmids represented) and ecotype (clades 

where > 5 plasmids are represented) was performed in Anvio (Shaiber et al., 2020). Briefly, 

Anvio associates every gene cluster with a function, functions are assigned at the gene level. 

Ideally all the genes in a single gene cluster would be annotated with same function but if there 

are multiple functions associated with a gene cluster, the most frequent function, or the one with 

the largest number of genes in the cluster is selected. Only functions with q-values (adjusted p-

values for multiple comparisons - Rao test) below 0.05 significance level were reported and thus 

considered as enriched functions. All COG functions, Pfam hits, and corresponding gene calls 

were exported as tables from Anvio and merged before importing into R (R Core Team (2020), 

2020) for further analysis. 

Additionally, we analyzed plasmids for genes involved in carbohydrate and nitrogen 

utilization. To do this, the standalone version of dbCAN2, release 07-31-2019 (Zhang et al., 

2018), and the NCycDB – with curated nitrogen (N) gene family sequences (encompassing seven 

N-cycling pathways) release 2019 (Tu et al., 2019) was used. For carbohydrate utilization trait 

analyses, genes encoding for Carbohydrate Active Enzymes (CAZymes) hits in the dbCAN2 

database were included if two or more of the three search tools (HMMER, DIAMOND, Hotpep) 

matched in their identification of the same CAZyme family. For instances where a single gene 

call returned multiple matches to CAZyme families, only the annotations from the first domain 

hit were included in downstream analyses. For N-gene family hits, BLASTp searches of plasmid 

gene calls having E-values 10-5 and >50 % query coverages were included in the analyses.  
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Phylogenomic and statistical analysis. To identify conserved regions and 

plasmid/chromosome similarity, the Average Nucleotide Identity (ANI) was calculated for 

complete plasmid and chromosome assemblies in Anvio via PyANI (Pritchard et al., 2016) and 

using BLASTN+ to align 1020 nt fragments of each assembly (Goris et al., 2007; Michael and 

Ramon, 2009), and visualized using the anvio-display-pan feature of Anvio interactive interface. 

To infer evolutionary associations between chromosomal assemblies, single-copy core genes 

(SCGs) were identified within Anvio and nucleotide positions that were gap characters in more 

than 50% of the sequences were removed from concatenated SCGs using trimAl16. For 

phylogenomic analysis, IQ-TREE (Nguyen et al., 2015; Minh et al., 2020) with the ‘WAG’ 

(Whelan and Goldman, 2001) general matrix model was used to infer a maximum likelihood 

tree. Newick tree files were exported and visualized using iTOL version 5 (Letunic and Bork, 

2021) to output cladograms or phylogenomic trees. To infer influence of evolutionary history 

(ecotype/clade designation from phylogenomic analysis) for putative plasmids, ANI full 

percentage identity (ANI normalized over the assembly length) was used, since no single-copy 

conserved genes were identified for all plasmid sequences. Similarity scores were then exported 

from Anvio and analyzed further in R and PRIMERe.  

To test whether Curtobacterium plasmids and chromosomes ANI similarities varied by 

ecotype and/or environment from which they were isolated, permutational multivariate analysis 

of variance PERMANOVA (permutations n = 999 with unrestricted permutations of raw data 

using type III sums of squares) were performed in PRIMER-e version 6 (Clarke and Gorley, 

2006b; Anderson et al., 2008b) with ecotype and environment designated as fixed factors. For 

these tests, rare ecotypes (i.e., Curtobacterium chromosomes outside clade I or V) and 

 
16 https://github.com/inab/trimal 
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environments (e.g., Curtobacterium isolated from algae or unknown origins) were lumped 

together and categorized as ‘other’. The estimated percentage of variance explained was 

determined by dividing terms with significant p-values by the sum of the estimates of 

components of variation given as output from PRIMER-e and multiplying by 100. To test 

whether plasmids and their host chromosome ANI were correlated, a RELATE test (Anderson et 

al., 2008b) using Spearman correlation was performed in PRIMER-e.  

To determine if COG function composition varied by replicon type (plasmid or 

chromosome), operation functional units (OFU = COG counts by replicon type) were 

standardized by the assembly length, such that the proportional abundances of COG for a given 

assembly summed to one. Trait abundances by replicon type were then normalized using Z-

scores in R v3.6.3 (R Core Team (2020), 2020). This procedure served to weight each trait 

similarly, rather than proportional to its abundance. To compare COG composition across 

replicons, we then calculated the Euclidean distance of the standardized and normalized OFU 

tables using the vegdist function of the ‘vegan’ package in R (Oksanen et al., 2019), and 

PERMANOVA and RELATE tests performed as previously mentioned for ANI analysis, but 

with OFU distance matrices. Ordinations of all similarity (ANI) and dissimilarity (COG) 

matrices were performed using non-metric multidimensional scaling approach with the 

metaMDS function of the ‘vegan’ and visualized using ‘ggplot2’ packages in R (Wickham, 

2009). All other figures were constructed using ‘ggplot2’17 in R. To determine whether the 

proportions of Curtobacterium plasmid COGs were different among replicon types and 

environments, Log-Likelihood-Ratio (G-test) test of independence using the GTest function 

 
17 https://ggplot2.tidyverse.org 
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(with no correction) of the ‘DescTools’18 v0.99.44 package in R were performed. G-tests were 

performed on contingency tables of non-standardize trait counts with rare traits (traits counts < 6 

across all environments) removed. To compare size distributions of replicons, Kruskal-Wallis 

tests on the nucleotide length (bp) of chromosome and plasmid sequences grouped by 

environment was performed using the ‘stats’ package of R. All other plots were generated using 

‘ggplot2’ packages in R. 

RESULTS 

Using long-read sequencing to produce newly assembled genomes, we uncovered a total 

of 26 plasmids from 66.7 % of the 39 Curtobacterium strains investigated. Phylogenomic 

analysis of 916 single-copy conserved genes on the chromosomes revealed that nearly all the 

host strains belonged to five distinct ecotypes (based on clade designations); only two strains, 

AA3 and BH2-1-1, did not group within previously described clades (Figure 3.1A). The mean 

plasmid size and GC content of Curtobacterium plasmids was approximately 136 kb and 64.4 %, 

respectively. In contrast, the mean chromosome size and GC content was approximately 3.6 Mb 

and 71.3 %. The distribution of plasmid sizes did not vary significantly across Curtobacterium 

ecotypes (Kruskal-Wallis: H (5) = 8.963, P = 0.111, Figure 3.1B, 

supplemental_materials_1.xlsx). In contrast, the distribution of plasmid sizes varied significantly 

across Curtobacterium environments (Kruskal-Wallis: H (7) = 15.529, P = 0.029, Figure 3.1B, 

supplemental_materials_1.xlsx). Notably, several Curtobacterium strains carried multiple 

plasmids. For instance, Desert-03 had two plasmids, one of which (pD03b) is a small (1,579 bp), 

high-copy ( > 8,000 X short read coverage) plasmid. 

 
18 https://andrisignorell.github.io/DescTools/ 
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 Curtobacterium plasmids showed little evidence for phylogenetic conservation by host 

ecotype, as the amount of overlap in genetic similarity was minimal among the plasmids. We 

examined putative plasmid sequences for conserved genomic regions (> 1020 bp) by host 

ecotype and found that only 5 Curtobacterium plasmids shared more than 65 % ANI, and all of 

these fell within host ecotype I (Figure 3.2). Not surprisingly, then, plasmid ANI was not 

correlated with host chromosome ANI (RELATE: r = 0.119, P = 0.11). Notably, the five 

plasmids from ecotype I with > 65 % ANI similarity all were isolated from hosts collected from 

agricultural environments. 

Next, we investigated the traits that Curtobacterium plasmids encode, and whether they 

differed from those found on the chromosome. The 26 Curtobacterium plasmids encoded more 

than 4,000 genes that clustered into 2,396 gene clusters. Some of these clusters contained genes 

for plasmid features necessary for conjugative, cell-to-cell DNA transfer (e.g., trwC), and for 

plasmid partitioning to daughter cells during host replication and division (e.g., parA/B/G). The 

gene lsr2, a putative histone-like protein (important for protecting DNA and regulating gene 

expression), was shared across 17 of the 26 plasmids. We also identified multiple genes encoding 

putative CAZymes, ~ 20 % (n = 179) of which function were identified as glycoside hydrolases. 

In contrast, genes encoding functions important for nitrogen cycling, such as narB, were less 

common, being found only on plasmids pD35 and pS16 from desert and salton-sea strains 

(Figure 3.3). Most of the singleton gene clusters (genes shared by only one plasmid) were 

associated with mega-plasmids (> 500 kb), and in particular, with pD40 that was assembled from 

a desert Curtobacterium (ecotype V) strain.  

In contrast to the low ANI similarity, many plasmids shared similar functional (COG) 

categories. This trait variation could be explained in part by both phylogenetic similarity 
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(ecotype) and the environment from which the host was isolated. The composition of COG 

functions on the plasmids was influenced by both the ecotype and environment (P < 0.01; Table 

3.1; Figure 3.4A), explaining 19 % and 37 % of the variation, respectively. Notably, a similar 

amount of variation was also explained by ecotype and environment for COG composition on the 

chromosomal replicon (17 % and 38 %, respectively; Figure 3.4B). In particular, carbohydrate 

transport and metabolism (G) were relatively more abundant in plasmids isolated from a 

grassland, algae, and an alpine forest (Figure 3.5). Although, overall COG functions for 

carbohydrate transport and metabolism, were more abundant on chromosome of Curtobacterium 

compared to plasmids (Figure 3.6). In contrast, COG functions for post-translational 

modification, protein turnover, and chaperones (O) were highly abundant in plasmids from a 

desert scrubland relative to those from other environments. Interestingly, COG functions for 

coenzyme transport and metabolism (H), cell motility (N), and replication, recombination and 

repair (L), and translation, ribosomal structure and biogenesis (J) were prevalent across 

Curtobacterium plasmids from agriculture, desert, and salton-sea environments. 

Finally, Curtobacterium plasmids encoded a different distribution of traits than their host 

chromosome. Overall, the plasmids genes broadly grouped into 22 broader COG categories, 

despite making up only 3 % of the total coding genetic content (n = 137,723 gene calls) across 

the genomes included in this dataset (Figure 3.6). Some COG functions were more prevalent to 

plasmids (G (21) = 1203.2, P < 0.001; Figure 3.6). For instance, the COG categories for 

replication, recombination, and repair (L) and cell motility (N) were relatively more abundant on 

plasmids (9.6 % and 7.9 %) than on chromosomes (4.2 % and 1.7 %). In contrast, COG 

categories for amino acid transport and metabolism (E) and lipid transport and metabolism (I) 
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were relatively more abundant on chromosomes than plasmids (8.6 % and 4.6 % versus 1.9 % 

and 2.7 %, respectively).  

DISCUSSION 

Plasmids contribute ecologically relevant diversity to the abundant and ubiquitous surface 

soil bacterium, Curtobacterium. The majority of strains investigated in this study carried from 

one to three plasmids, making up 1.4% of all the traits encoded on the genome. However, this 

percentage varied widely depending on the strain; the largest plasmid (pD40) contributed nearly 

15% of the genome content of a strain.  

Overall, there was limited phylogenetic similarity between the plasmids, even for quite 

closely-related strains isolated from the same location. Thus, contrary to our hypothesis, there 

was limited the phylogenetic conservation of plasmids within a host ecotype. This result suggests 

that horizontal transmission of plasmids within ecotypes is common in this genus and breaks up 

the signal of vertical transmission, at least at the genetic resolution sampled here. However, at 

the functional level, ecotype explained approximately twice as much of the total variation in 

COG composition on plasmids as the isolation environment, similar to the amount explained on 

the chromosome. This result indicates that historical (phylogenetic) context has a similar impact 

on broad trait content for both plasmid and chromosomal replicons. On the face of it, these 

results seem to conflict. However, Curtobacterium plasmids pools may be somewhat restricted to 

an ecotype, but within an ecotype, the clade’s specific plasmids may undergo a high amount of 

horizontal transmission. Similarly, an analysis of over 10,000 plasmids within the order of 

Enterobacterales revealed that although most plasmids have host ranges beyond the species 

barrier, they also form discrete clusters or plasmid taxonomic units (Redondo-Salvo et al., 2020). 
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Curtobacterium plasmids also encoded a diversity of traits that are not a random subset of 

chromosomal traits. As expected, we did not detect many antibiotic or metal resistance genes on 

the plasmids. Instead, Curtobacterium plasmids were enriched (relative to the chromosome) in 

genes involved in functions for replication, recombination, and repair and cell motility. Together 

with the variation in plasmids found within an ecotype, this result suggests that these traits may 

come under relatively rapid selection and provide a benefit for maintaining a horizontally 

transferred plasmid. 

Models investigating the evolutionary mechanisms that allow bacterial genes to be 

carried by plasmids suggest that plasmids should encode traits that are widely beneficial to many 

bacterial species, as for antibiotic resistance (Svara and Rankin, 2011; Lehtinen et al., 2021). 

While the fitness advantages conferred by antibiotic resistance genes are clear, the advantage of 

encoding genes on plasmids involved in broad categories of replication, recombination, repair, 

and cell motility require further investigation.  Notably, COG functions for carbohydrate 

transport and metabolism (encompassing CAZymes), were found higher prevalence in the 

chromosome of Curtobacterium strains relative to their plasmids, however many glycoside 

hydrolases (important for degrading cellulose) were also identified on Curtobacterium plasmids. 

If particular CAZymes are beneficial within a particular ecotype, it may be that a plasmid-

association could come under positive frequency-dependent selection, as has been modelled with 

antibiotic genes present on plasmids vs. chromosomes (Lehtinen et al., 2021).   

Another type of trait that is often found on plasmids are those that confer pathogenicity or 

virulence (Johnson and Nolan, 2009). Interestingly, Curtobacterium plasmids from agricultural 

environments shared a high similarity in COG functional composition with those isolated from 

the desert and the Salton Sea environments. Initially, we expected the plasmids and 
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chromosomes from agricultural Curtobacterium (many of which are isolated from infected 

plants) would form a distinct ecotype. However, many of the agricultural strains group into the 

clade I along with strains from environments less impacted by humans. Recently, Chen et al., 

2020 investigated three strains (MCBA15-007, MMLR14-002 and MMLR14-014) identified as 

C. flaccumfaciens that clustered with the plant pathogen strain P990 – a highly virulent 

bacteriocin-producing strain (Chen et al., 2020). Importantly, the P990 strain also had a plasmid 

that was a 147-kbp circular plasmid (pCff1) with 66.1% GC content as well as two circular 

plasmid-like DNA (sizes of 25 kb and 22 kb) found within the genome of the C. flaccumfaciens 

pv. flaccumfacien strain. Notably, some of the virulence/pathogenicity determinants that Chen et 

al., 2020 found on Curtobacterium strains associated with disease in plants were homologs of 

pathogenicity-determinant loci capable of producing 1,4-beta-xylanase (xysA), pectate lyase 

(pelA1 and pelA2). Often these enzymes are thought important for carbohydrate utilization (i.e, 

CAZymes) associated with decomposition of senescent plant litter in soil communities (Chase et 

al., 2017; C. et al., 2022). We found that Curtobacterium plasmids from alpine, algae, and 

grassland environments had a relatively high prevalence of glycoside hydrolases, it could be that 

the type of CAZyme is indicative of the role of Curtobacterium as plant degrader versus 

pathogen. Additional comparative studies of Curtobacterium could identify plasmid content 

associated with habitat-specific adaptation such as the differences associated with commensal 

and pathogenic strains of Escherichia and host- versus free- living Vibrio species (Rasko et al., 

2008; Chibani et al., 2020).   

CONCLUSIONS 

In sum, plasmids contribute to the variation in genomic diversity of Curtobacterium. 

Most plasmid research focuses on human-associated bacteria (such as those in the family 
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Enterobacteriaceae) and their resistance, virulence, or pathogenicity traits. However, we still 

lack a basic understanding about why other types of traits – such as those identified here – would 

be favored on plasmids in bacteria from free-living environments such as soil. Additional 

research in this and other well-studied free-living bacteria would help to broaden our 

understanding of the role of MGEs in bacterial evolution. 
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TABLES AND FIGURES 
 
Table 3.1 PERMANOVA* testing the effects of environment and ecotype (clade designation) on 
Curtobacterium COG Functions by replicon type. 
Trait/factors DF SS MS Pseudo-F P-value ECV (%) 
 COG - Plasmids       
   Environment 6 158.91 26.485 1.7905 0.017 19.0 
   Ecotype 3 113.23 37.743 2.5515 0.006 37.2 
   Residuals 12 177.51 14.792   - 
 COG - Chromosomes       
   Environment 9 202.65 22.517 2.7942 0.001 17.2 
   Ecotype 6 279.37 46.562 5.7781 0.001 38.2 
   Environment x Ecotype** 7 123.47 17.638 2.1888 0.013 20.0 
   Residuals 21 169.23 8.0584   - 

*Significant P-values are boldface, indicates statistical significance with P < 0.05; P-values 
based on 999 permutations (lowest P-value possible 0.001); DF – degrees of freedom; SS – sum 
of squares; Pseudo-F – F value by permutation; ECV – estimated components of variation; 
Formula: Distance matrices ~ Environment + Ecotype. 
**For this dataset there were enough levels of each factor to test for an Environment by Ecotype 
interaction. 
 
 
 
 
 
 



 100 

 
Figure 3.1 Cladogram (A) of complete chromosomes of Curtobacterium constructed from a 
phylogenomic analysis of 916 single-copy core genes. Bootstrap values are indicated by grey 
circles on branches. Bolded values next to strain identifiers are nucleotide lengths for 
circularized putative plasmid assemblies in bp. Ecotypes by clade designations are shaded in 
colors. Plasmid size (kb) distribution (B) across strains displayed in histogram. 
 
 



 101 

 
Figure 3.2 Curtobacterium plasmidome analysis. A visualization of 26 circularized/complete 
plasmids (rings) representing four host ecotypes and sizes ranging from approximately 1.5 – 607 
kbp (nucleotide length in bp to right of plasmid ID). Common plasmid features for 
replication/separation during host cell division, carbohydrate utilization, and DNA protection are 
denoted by gene names around the outer ring. Pfam (pink) and COG20 functions (purple) that 
were identified for each gene call (not displayed) of a plasmid are displayed by colored bars. 
Gene clusters and singleton gene clusters (genes found only in one plasmid) are represented by 
black bars within gray rings. Gene clusters are organized by presence/absence and Euclidean 
distance using Ward linkage (see methods). The Average Nucleotide Identity (ANI) is 
normalized by the full sequence length for each plasmid to account large variations in plasmid 
sizes. The rings are ordered by normalized ANI measures as shown by the dendrogram above the 
ANI heatmap. 
 
 



 102 

 
Figure 3.3 Schematic representation of two putative Curtobacterium plasmids assembled from a 
Grassland (left) and Desert (right) strains. The putative CAZymes identified in pG07 are 
glycoside hydrolases GH2,4,35,36,95 shown with blue arrows. The putative assimilatory nitrate 
reductases, encoded by narB are shown with pink arrows in the pD35. 

pG07
82,765 bp
71.0 % GC

87 gene calls

pD35
56,505 bp
71.6 % GC

59 gene calls
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Figure 3.4 Non-metric multidimensional scaling (NMDS) ordinations of Curtobacterium 
complete sequence assemblies depicting (C) plasmid (D) chromosomal COG composition.  
Note –putative plasmids pCff2, pCff3, and pD03b are not shown since no COG functions were 
identified for their gene calls. 
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Figure 3.5 Curtobacterium Plasmid COG functions by environment. The normalized frequencies 
of COG functions by environment at broader COG category designations. To standardize for 
uneven plasmid sequences across environments, COG function counts were first converted into 
proportional abundances within an environment after removal of COG functions < 6 identified 
across all environments. COG abundance across environments were then normalized using Z-
scores. COG categories with above mean (grey tiles) values are represented by tiles shaded in 
orange, while those with lower than mean values are shaded in blue. Log-Likelihood-Ratio test 
of independence for plasmid COG varying across environments was significant (G(140) = 
442.34, P < 0.001). Note - plasmids pCff2, pCff3, and pD03b are not included in this analysis as 
no COG functions for these plasmids were identified. 
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Figure 3.6 Overall COG category counts (Log10 scaled) for comparison across Curtobacterium 
replicon types. The total number of COG functions identified on Curtobacterium chromosomes 
and plasmids are shown in parentheses. Note – no COG functions for category Z were identified 
on Curtobacterium plasmids in this dataset, and plasmids pCff2, pCff3, and pD03b are not 
included in this analysis as no COG functions for these plasmids were identified. 
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