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Abstract

Background: Bicycling is an important form of physical activity in populations. Research 

assessing the effect of infrastructure on bicycling with high-resolution smartphone data is 

emerging in several places, but it remains limited in low-bicycling U.S. settings, including the 

Southeastern U.S. The Atlanta area has been expanding its bicycle infrastructure, including off-

street paved trails such as the Atlanta BeltLine and some protected bike lanes.

Methods: Using the generalized synthetic control method, we estimated effects of five groups of 

off-street paved trails and protected bike lanes on bicycle ridership in their corresponding areas. 

To measure bicycling, we used 2 years (2016–10-01 to 2018–09-30) of monthly Strava data in 

Atlanta’s urban core along with data from 15 on-the-ground counters to adjust for spatiotemporal 

variation in app use.

Results: Considering all infrastructure as one joint intervention, an estimated 1.10 (95% 

confidence interval [CI]: 0.99, 1.18) times more bicycle–distance was ridden than would have 

been expected in the same areas had the infrastructure not been built, when defining treatment 

areas by the narrower of two definitions (defined in text). The Atlanta BeltLine Westside Trail and 

Proctor Creek Greenway had especially strong effect estimates, e.g., ratios of 1.45 (95% CI: 1.12, 
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1.86) and 1.55 (1.10, 2.14) under each treatment-area definition, respectively. We estimated that 

other infrastructure had weaker positive or no effects on bicycle–distance ridden.

Conclusions: This study advances research on the topic because of its setting in the U.S. 

Southeast, simultaneous assessment of several infrastructure groups, and data-driven approach to 

estimating effects.

Keywords

synthetic control; causal inference; Atlanta BeltLine; bicycle infrastructure; big data; built 
environment

INTRODUCTION

Physical inactivity is a global public-health problem.1 Promoting bicycling is a well-

recognized public-health strategy to combat this pandemic.2 In the U.S., a Healthy People 

2030 objective is to “increase the proportion of adults who walk or use a bicycle to get 

to and from places.”3 Bicycling is appealing from a public-health perspective2 because it 

is inexpensive and can serve as transportation, possibly replacing sedentary and greenhouse-

gas-emitting travel with physical activity. Bicycling levels in the U.S. are low compared with 

other wealthy nations;4 the proportion of commuters who bicycle to work is less than 1%.5 

Given the low levels of bicycling in the U.S., increasing bicycling represents a public-health 

opportunity.

In most settings, collective health benefits of bicycling are assumed to outweigh risks 

(e.g., injury or pollution exposure).6,7 Still, bicycling levels are low in the U.S. partly 

due to the understandable concern that it is unsafe.5,8–10 Creating more welcoming built 

environments for non-motorized travel is a key part of U.S. public-health strategy to 

promote bicycling.11,12 The National Physical Activity Plan, for example, includes a section 

on transportation and community design. Authors endorsing the plan have asserted that 

increasing population levels of physical activity “…will require altering the physical and 

social environments in which Americans work, play, learn, and travel.”11

While data suggest bicycle-specific infrastructure, such as off-street paved trails and 

protected bicycle lanes, can induce bicycling,13 existing built-environment literature has 

limitations.14,15 Some research on the topic has used cross-sectional surveys,13 making it 

difficult to rule out reverse causality. Longitudinal studies exist, but until recently, have 

included few time points with limited spatial coverage.16–19 Bicycling data with rich 

spatiotemporal detail as measured with a smartphone app have become more commonly 

used in descriptive research.20,21 Etiologic research assessing the effect of infrastructure on 

bicycling with this type of data has emerged in some countries,16–18 but research using 

objective measures in low-bicycling U.S. settings is limited.19,22–24

One such low-bicycling region is the Southeastern U.S. Eight of the ten U.S. states with 

the lowest bicycling-to-work estimates are in the Southeast.5 Some Southeast municipalities 

have sought to change these figures.5 Atlanta, Georgia, known for its car-oriented built 

environment,25,26 has been expanding its bicycling infrastructure.
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Part of this new infrastructure is the Atlanta BeltLine,26–29 a project converting a 22-mile 

former railroad corridor into off-street paved trails for walking, bicycling, and transit. 

Including spur trails, a total of 33 miles of BeltLine trail are planned, 14 of which were 

completed by the end of 2017.28 Encircling Atlanta’s urban core, the BeltLine connects 

neighborhoods that have been historically racially segregated.26,30 Against a national context 

of inequitable access to health-promoting built environments,31 the project has the potential 

to address health equity32 and improve access to healthy built environments for historically 

oppressed communities in Atlanta, although housing affordability is a concern.27 Other 

recently constructed paved trails and lanes include the Proctor Creek Greenway on Atlanta’s 

northwest side; the PATH Parkway and Luckie Street protected bike lane, which together 

link Georgia Institute of Technology with downtown; and the South Peachtree Creek Trail 

in North Decatur. The amount and diversity of this infrastructure presents an opportunity for 

evaluation.

In this study, we estimate effects of the installation of off-street paved trails and protected 

bike lanes in Atlanta, Georgia on bicycle ridership in the nearby area. To do so, we use 

spatially detailed longitudinal bicycling data generated from a smartphone app combined 

with data from stationary counters to adjust for place-and-time-varying trends in app use.

METHODS

Study setting

Atlanta, Georgia, is a city of about 500,000 people and about 6 million in the metro area 

with a mild winter climate. Per the American Community Survey, an estimated 0.8% of 

Atlantans commute by bicycle, whereas about two thirds of commuters drive to work alone. 

Our study took place over a 24-month period, 2016–10-01 to 2018–09-30, in roughly a 

6-mile radius around the intersection of Ponce de Leon Ave NE and Monroe Dr NE (Figure 

1).

Treatment: the bicycle infrastructure

The infrastructure—We evaluated off-street paved trails and protected bike lanes that 

opened in 2017 and 2018. Off-street paved trails are physically separated from roadways 

and are designed for use by bicyclists, pedestrians, or other light individual transportation.33 

They typically do not follow the road network. Protected bike lanes, also called cycle-tracks, 

use a curb-like barrier, parked cars, or delineator posts to physically separate bicyclists from 

motorized traffic. Protected bike lanes are directly adjacent to the roadway and differ from 

conventional bike lanes by having a physical barrier; conventional lanes only use paint.

Specifically, we studied five groups of bicycling infrastructure, which opened at varying 

times (Table 1; Figure 1): 1) the Atlanta BeltLine Westside Trail and Proctor Creek 

Greenway; 2) the PATH Parkway Trail, a protected bike lane along Luckie Street NW, 

and the Ivan Allen PATH; 3) extensions of the Atlanta Beltline Eastside Trail; 4) sections of 

the South Peachtree Creek Trail; and 5) a protected bike lane on North McDonough Street. 

Table 1 has more description.
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Defining the treated and untreated areas over time—To define areas and time 

periods as treated with the infrastructure, we first divided the study area into hexagons34 

(n=298) of 0.5 square miles (Figure 1) for each study month (n=24). The hexagon–month 

(n=7,152) was our unit of analysis. We sub-divided the study area into hexagons of 

equal size because the generalized synthetic control method (described below) requires a 

consistent unit for both treated and untreated areas over time.

We then considered two treatment definitions, varying the number of hexagon–months 

classified as treated. Under the first (“wide-net”) definition, we drew half-mile radial buffers 

around each section of infrastructure if it had been open for at least half of that month. We 

classified hexagon–months as treated if at least 5% of the hexagon’s area overlapped the 

infrastructure’s radial buffer in that month. Otherwise, the hexagon–month was classified as 

untreated. This definition created treatment areas of about 3.1 square miles per mile of trail 

or lane (measuring at the end of the study; Table 2). These areas are about the size of a 

one-mile radial buffer—a 1-mile buffer around a 2-mile straight line is 3.6 square miles per 

mile—which has previously been used to define bicycling environments.35 Figure 1 (panel 

A) maps this treatment definition, and Figure 2 (panel A) illustrates the time-varying nature 

of the treatment; as more infrastructure opened, more hexagon–months were classified as 

treated.

We expected this definition would have high sensitivity in that of all bicycle ridership in the 

study (all 7,152 hexagon–months) that was truly caused by the infrastructure (i.e., bicycle–

distance ridden that would not have occurred or would have been shorter if not for the 

infrastructure), a large share of it would likely have passed through its wide-net treatment 

area. On the other hand, this definition may have low specificity in that it may poorly 

rule out ridership in the study area unaffected by the infrastructure. (We use sensitivity 
and specificity loosely; in eAppendix 1, we define our use of these terms in this context 

in a potential-outcome framework.) A related concern with the wide-net treatment area is 

spillover effects or interference36 between treatment areas, given their proximity to one 

another (Figure 1). We thus considered a second, narrower treatment definition which we 

expected would have lower sensitivity but higher specificity. Under this definition, we 

classified hexagon–months as treated only if the trail or lane itself (rather than a buffer) 

intersected the hexagon during the infrastructure’s open months (Figures 1 and 2, Panel B).

Description of the treatment areas before treatment: socio-demographic and 
built-environment characteristics—For descriptive purposes, in Table 2, we present 

the distribution of residential socio-demographic characteristics, reported bicycling to work, 

street density, and pre-existing bicycle infrastructure for the wide-net treatment-areas. We 

estimated hexagon-level descriptive measures by weighting census-tract-level estimates from 

2015–2019 American Community Survey (ACS) 5-Year Data (eAppendix 2). The racial and 

socioeconomic composition of the treatment areas vary considerably. In the area around the 

Westside Trail and Proctor Creek Greenway, an estimated 85% of residents were Black, 

compared with 13% of residents in the South Peachtree Creek Trail area, reflecting Atlanta’s 

racial segregation.37 The pre-existing built environments also differed. The Eastside Trail 

Extension area, for example, had comparatively high density of streets (21.8 miles of 

roadway per square mile) and pre-existing off-street paved trails (2.01 miles per square 
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mile). eTable2.1 presents analogous information for the narrower treatment-area definition. 

eAppendix 2 contains maps visualizing some of these measures.

Outcome: bicycle distance

Bicycling data sources: Strava and stationary counters (ZELT)—Our outcome of 

interest is area-level bicycle ridership, operationalized as the cumulative bicycle–distance 

ridden in a hexagon–month. Bicycle–distance (e.g., as measured in bicycle-miles) is a 

common measure of bicycle ridership.38 To compute this area-level measure, we began 

with bicycling data from two data sources at the level of the segment–month. A segment 

(N=84,805 within the study area) is a unique stretch of roadway or trail. The main data 

source was Strava, a GPS-based mobile application some people use to record their bike 

rides. Data included 307,205 rides contributed by approximately 10,000 unique people over 

the study period and area. To protect user privacy, data were summarized by segment rather 

than by individual. Strava reports the number of times, ni,j, a segment i was ridden upon in 

either direction in month j by a bicyclist using Strava on that ride.

Strava data constitute a subset of all bicycle ridership: not everyone who bicycles uses the 

app, those who do may not on every ride, and users and their use may change over time.39–41 

Although Strava often correlates highly with on-the-ground bicycle counts in urban 

areas,20,21 previous research in Atlanta suggested that Strava users are disproportionately 

enthusiastic bicyclists and that utilitarian rides (e.g., commutes) would be under-represented 

compared with leisure rides.39 We thus anticipated that using Strava data alone may bring 

about selection bias.

To estimate all rides occurring on each segment–month, (i.e., not just those reported in 

Strava), we also used data from 15 stationary bicycle-counting monitors (manufacturer: Eco-

Counter® Urban ZELT) installed beneath the pavement. Six counters were on the BeltLine 

Trail,42 and the others were located elsewhere throughout the study area28 (eAppendix 3). 

Given their reported high accuracy,43 we assume the counters capture 100% of rides passing 

through that segment–month.

The number of rides reported by ZELT, Ni,j, was available for 197 segment–months (about 

15.4 months per counter). On these segment–months, we calculated the proportion of Ni,j 

reported in Strava on segment i in month j (the sampling fraction, fi,j) by dividing the 

number in Strava by the corresponding number from ZELT, fi, j =
ni, j
Ni, j

. The mean sampling 

fraction was 12%, with considerable variation between counters and within counters over 

time (eTable 3.1).

Estimating all bicycling on segment–months from Strava and ZELT—To 

estimate fi,j when and where it was unknown (n, segment–months=2,035,164), we fit an 

event-trial logistic regression model in the 197 segment–months with ZELT data. Predictor 

variables include the number of Strava-reported rides on a segment–month, the proportion 

thereof classified as a commute, the presence of an off-street paved trail, and the time-

period. Variable definitions and other modeling detail appear in eAppendix 3. Finally, to 

estimate the total number of times a segment was ridden in a month, Ni, j, we used inverse-
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probability-of-selection weighting (IPSW), multiplying ni,j by the inverse of its estimated 

sampling fraction, f i, j:Ni, j = ni, j * 1
fi, j

.

Cumulative bicycle–distance in the hexagon–month and the treatment-area–
month—We then computed cumulative bicycle–distance ridden in each hexagon–month 

for both the Strava-reported and IPSW outcomes. To calculate cumulative monthly 

Strava-reported bicycle–distance in a hexagon–month, dm,j, we multiplied ni,j by the 

length, Li, of segment i and summed over segments i = 1,…, I in hexagon m and 

month j:dm, j = ∑i = 1
I ni, m, j * Li. Similarly, cumulative monthly IPSW bicycle–distance in 

a hexagon–month, Dm, j, was estimated by Dm, j = ∑i = 1
I Ni, m, j * Li. We finally summed 

these values by treatment-area–month. If treatment area k is comprised of m = 1,…,M 
hexagons in month j, then Strava-reported bicycle–distance in treatment area k and month 

j, dk,j, is dk, j = ∑m = 1
M dm, j. Analogously, Dk, j = ∑m = 1

M Dm, j. From these values, we can 

report the estimated sampling fraction in each treatment-area–month, fk, j =
dk, j
Dk, j

. Table 

2 presents IPSW-estimated bicycle–distance, Strava-reported bicycle–distance, and the 

estimated sampling fraction in each treatment area during the pre-treatment period.

Study design and analysis

Definition of effect estimands—We aimed to compare area-level bicycle–distance after 

the infrastructure opened in the treatment area where it opened with counterfactual ridership 

in that area and period had the infrastructure not opened. That is, we aimed to estimate the 

effect of treatment on the treated. Suppose area k received the treatment infrastructure after 

j0,k months, jk = 1,…, j0,k,…,24. Adopting potential-outcomes notation,44 Dk, j
a = 1 denotes 

IPSW bicycle–distance ridden in treatment area k and month j had the infrastructure been 

built after the infrastructure was built, i.e., when jk > j0,k. Dk, j
a = 0 denotes corresponding 

counterfactual bicycle–distance had it not been built. By counterfactual consistency,45 Dk, j
a = 1

is observable (i.e., Dk, j
a = 1 = Dk, j |A = a); we estimated Dk, j

a = 0.

We estimated monthly effects for each treatment area as a ratio, Ratiok, j =
Dk, j

a = 1

Dk, j
a = 0 , and as 

a difference (Diff), Diffk, j = Dk, j
a = 1 − Dk, j

a = 0, along with corresponding cumulative effects, 

Ratiok =
∑jk = j0, k + 1

j = 24 Dk, j
a = 1

∑jk = j0, k + 1
j = 24 Dk, j

a = 0 , and Diffk = ∑jk = j0, k + 1
jk = 24 Dk, j

a = 1 − Dk, j
a = 0 . We also estimated 

monthly and cumulative joint effects of all treatment infrastructure when viewed as one 

intervention, e.g., Ratiojoint =
∑j = j0 + 1

j = 24 Dja = 1

∑j = j0 + 1
j = 24 Dj

a = 0 , and Diffjoint =  ∑j = j0 + 1
j = 24 Dj

a = 1 − Dj
a = 0 . 
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Finally, for comparison, we estimated all ratio effect measures using the Strava-reported 

outcome (e.g., Ratio,   Stravak, j =
dk, j

a = 1

dk, j
a = 0 ).

Effect estimation with the generalized synthetic control method—To estimate 

effects, we used the generalized synthetic control method,46 one of several methods for 

estimating effects in observational time-series cross-sectional data.47,48 Compared with the 

original synthetic control method,49 the generalized version has the important advantages 

of accommodating multiple treated units with variable treatment timing, properties of 

the present study (Figure 2). The method estimates counterfactual outcomes in each unit 

(hexagons, here) in each time point (month) of the post-treatment period using an interactive 

fixed-effects model.

Estimation has three main steps, which we implemented using the gsynth R package 

(version 1.2.1.50) for each treatment area (n=6, including all treatments considered jointly) 

under each treatment-area definition (n=2) and outcome (IPSW and Strava-reported). First, 

using all months of data in the never-treated hexagons, we estimated three vectors of 

parameters: a vector of hexagon-fixed, time-varying latent factors (i.e., background trends; 

denoted by F , following Xu46); a vector of time-fixed, hexagon-varying parameters to be 

interacted with those factors (“interactive fixed effects”), called factor loadings (λm, for 

hexagon m); and a vector of parameters corresponding to observed covariates (β ; discussed 

in the next paragraph). The number of latent factors (maximum set at 6) was determined 

using a leave-one-out cross-validation procedure, as described (p. 6346). Second, applying 

β  and F  from step one, we estimated factor loadings, λm, for each treated hexagon during 

the pre-treatment period by minimizing mean squared error of the predicted outcome before 

treatment. Third, counterfactual outcomes for each treated hexagon in the post-treatment 

period were estimated using these parameters, applying λm estimated from the treated 

hexagons during the pre-treatment period to those hexagons in the post-treatment period.

Potential confounding: unmeasured and measured—A strength of this method is 

its estimation of unmeasured confounding through the interaction(s) between the estimated 

latent factor(s) and each unit’s estimated factor loading(s). As mentioned, the method also 

accommodates measured covariates. In each model, we included measured covariates if 

they met our definition of a potential confounder, which we define as anything that may 

affect the outcome, is associated with but is not an effect of the treatment, and which varies 

over time (adapted from p. 4051). We included four other bicycle-infrastructure projects that 

opened during the study as observed covariates and classified hexagon–months as treated 

with these projects following the definitions described for the main treatments (eAppendix 

4). In each generalized synthetic control model (eTable 4.2), we also included the other 

treatment infrastructure groups. For example, when estimating the effect of the Westside 

Trail-Proctor Creek Greenway group, we controlled for the other four treatment areas (listed 

in Table 1). Directed acyclic graphs (DAGs) depicting these decisions appear in eFigures 

4.3.
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In sensitivity analyses, we include a time-varying measure of home values from Zillow, 

the Zillow Home Value Index,52 as an observed covariate (eAppendix 5). Per our DAGs, 

home values are a descendant of an intermediate on a path from treatment infrastructure 

to outcome,27 so we omit Zillow Home Value Index from primary analyses. Other 

socio-demographic variables presented in Table 2, like area-level racial distribution, were 

not included because they were considered time-invariant (ACS discourages comparing 

consecutive 5-year surveys53) and would cancel from the interactive fixed-effects model 

(discussed here54).

Uncertainty estimation and ethics statements—We used bootstrapping to estimate 

uncertainty arising from the sampling-fraction models and the generalized synthetic control 

models (eAppendix 6). The study was approved by Emory University Institutional Review 

Board (IRB00105514) and includes aggregated and de-identified data from Strava Metro.

RESULTS

Trends by treatment area of estimated bicycle–distance, Strava-reported bicycle distance, 
and the estimated sampling fraction

eFigure 7.1 shows estimated monthly bicycle–distance ridden per square mile by treatment 

infrastructure and treatment-area definition. eFigure 7.2 shows the corresponding Strava-

reported bicycle–distance for the treatment areas. The Eastside Trail Extension area 

consistently had the highest estimated bicycle–distance. The estimated sampling fraction 

(Strava-reported bicycle–distance divided by IPSW bicycle–distance) rose throughout the 

study area (eFigure 7.3), increasing, for example, in the never-treated area from an estimated 

7.4% (95% CI: 7.2%; 7.6%) during the first three study months to 13.3% (95% CI: 12.9%; 

13.7%) during the last three study months (wide-net definition; eTable 7.1). Of the treatment 

areas, the estimated increase was steepest ratio-wise in the Westside Trail-Proctor Creek 

Greenway area, rising from 6.2% (95% CI: 5.9%; 6.7%) to 12.3% (12.0%; 12.6%) under the 

wide-net treatment-area definition, and this trend was steeper (2.19 [95% CI: 2.04, 2.31] fold 

vs 1.97 [95% CI: 1.89, 2.08] fold) under the narrower treatment definition.

Estimated effects of infrastructure on bicycle–distance

Table 3 presents cumulative effect estimates. Figures 3 and 4 present monthly effect 

estimates for each outcome, estimated (IPSW) bicycle–distance and Strava-reported bicycle–

distance, under each treatment-area definition. Considering all treatment infrastructure as 

a joint intervention, an estimated 1.04 (95% CI: 0.94, 1.11) times more bicycle–distance 

was ridden in the wide-net treatment areas during the post-treatment period than would 

have occurred had the infrastructure not been built. The estimated joint effect was larger 

under the narrower treatment-area definition (ratio: 1.10 (95% CI: 0.99, 1.18). Of the 

individual treatment groups, the Westside Trail-Proctor Creek Greenway group had the 

largest ratio-wise effect estimates, with about a 1.5-fold estimated effect on IPSW bicycle–

distance (ratios of 1.45 [95% CI: 1.12, 1.86] and 1.55 [1.10, 2.14] under each treatment-area 

definition, respectively). The South Peachtree Creek Trail area also had a meaningfully 

positive effect estimate, especially beginning spring of 2018 after its second studied section 

opened (Figure 3) and under the narrower treatment-area definition (ratio: 1.21 [95% CI: 
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0.92; 1.47]. A slight positive effect estimate with wide uncertainty is also apparent for the 

Eastside Trail Extension area. An effect was not apparent for the Luckie Street Protected 

Bike Lane-Tech Parkway PATH-Ivan Allen PATH group or the North McDonough Street 

Protected Bike Lane when adjusting for Strava use.

For many but not all treatment areas, the estimated effects were larger on the Strava-reported 

bicycle–distance outcome, suggesting adjustment for the estimated sampling fraction 

controlled some selection bias away from the null. For example, the estimated ratio-wise 

effect of the Luckie Street Protected Bike Lane-Tech Parkway PATH-Ivan Allen PATH 

group (narrower treatment-area definition) on IPSW bicycle–distance was 1.00 (95% CI: 

0.89, 1.12]) yet was 1.18 (95% CI: 1.15, 1.20) on Strava-reported bicycle–distance. Results 

were not sensitive to the inclusion of the time-varying home-value measure (eTable 7.2).

DISCUSSION

Atlanta has recently invested in new infrastructure to support bicycling,26,28 consistent with 

public-health goals to change built environments to support rather than inhibit physical 

activity.11,12,15 In this study, we estimated that five groups of off-street paved trails and 

protected bike lanes, considered jointly, had a small positive effect on bicycling in their 

surrounding area. Two large-scale off-street paved trails, the Atlanta Beltline Westside Trail 

and the Proctor Creek Greenway, had particularly high effect estimates.

These results are important given their setting in the U.S. Southeast, a region dominated 

by car-oriented transportation planning that is unwelcoming for non-motorized travel.25,55 

Research elsewhere in the Southeast is limited with mixed results. In Durham, North 

Carolina, an off-street trail did not have a positive effect on bicycling among nearby 

residents,56 while in Knoxville, Tennessee, a positive effect was estimated.57 Meanwhile, 

in New Orleans, Louisiana22,23,58 and Washington, D.C.,24 bike lanes positively affected 

bicycling. New Orleans and D.C. are unique for the region because they have dense and 

connected built environments.25 In the present study, the strongest effects were estimated 

in areas with comparatively low-density street networks (Table 2), consistent with the 

hypothesis that infrastructure can positively impact bicycling in Southeastern settings with 

both low and high connectivity.

Several reasons may explain the different effect estimates between treatment areas. First, the 

Westside Trail and Proctor Creek Greenway together represent 4.9 miles of new trail, more 

than the other treatment infrastructure combined (Table 1). Many,17,18 but not all,13 studies 

of large-scale infrastructure changes have found positive effects on bicycling. The smaller-

scale interventions, such as the North McDonough Street Protected Bike Lane, may have 

had localized effects that were not detected by even the narrower of the two treatment-area 

definitions in this study. Second, areas surrounding the Westside Trail and Proctor Creek 

Greenway and the South Peachtree Creek Trail, which had the highest effect estimates, 

had the lowest baseline bicycle–distance and the least amount of pre-existing off-street 

paved trails. The treatment infrastructure may have addressed previously unmet demand for 

bicycle-friendly environments in these areas, whereas the treatment infrastructure may have 
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been less impactful on the margin in areas with more baseline infrastructure, like around the 

Eastside Trail Extension.

The largest effects were estimated in low-income areas whose residents were predominantly 

Black. This result may have important implications for health equity.32 On the one hand, 

Black individuals bear a disproportionate burden of physical inactivity59 and related chronic 

conditions, due in part to historically inequitable access to outdoor environments conducive 

to physical activity.31,32 The positive effect estimated herein may thus represent an advance 

towards equity in physical activity.32 On the other hand, the anonymized nature of the 

bicycling data presents a challenge for discerning who contributed to the effect estimates. 

Nearby residents may have bicycled more, or residents from elsewhere may have ridden 

across town,60 as some anecdotal reporting suggests.61 If the effected bicycle–distance 

was ridden mostly by already-active bicyclists,62 absolute health benefits may be less 

pronounced,63 and the result may represent less meaningful advancement towards health 

equity.27

We are skeptical that the effect estimated for the Westside Trail-Proctor Creek Greenway 

group is entirely attributable to non-residents riding from elsewhere. First, most bicycle 

rides tend to be 2–4 miles long.64,65 A ride from, say, wealthier and predominantly white 

Inman Park to the Westside Trail would be about 5–7 miles, depending on the route. Second, 

research on other sections of the Atlanta BeltLine found that its trail users were racially 

diverse and tended to live nearby.66 Of course, the trail itself could change who lives nearby 

by changing housing affordability,27,61 possibly exacerbating rather than ameliorating 

disparities in physical inactivity.67 Home values rose in the Westside Trail-Proctor Creek 

Greenway area, as they did elsewhere in the study (eAppendix 5). Results were nevertheless 

robust to these changes, suggesting residential changes did not meaningfully affect results 

over the two-year period. Though not without its critics,27 the BeltLine has proactively 

addressed housing affordability near its trails.68 Finally, the estimated proportion of bicycle–

distance captured in Strava disproportionately rose in the Westside Trail-Proctor Creek 

Greenway area (eTable 7.1), yet the effect estimates were robust to adjustment for this trend.

In addition to adjusting for time- and place-varying Strava use to address the possibility 

of selection bias, our study benefits from its rigorous method for estimating counterfactual 

bicycle–distance using the generalized synthetic control method. To address the possibility 

of unmeasured confounding, we estimated background trends in the outcome and each 

hexagon’s interaction with that background trend. The method assumes that each hexagon 

is affected by the same background trend(s) and that each hexagon’s factor loading(s) 

(defined above) remain constant over time. Although the assumptions may sound restrictive, 

they cover a variety of possible confounding patterns, as up to six latent factors and 

six corresponding vectors of factor loadings could have been estimated. Moreover, the 

pre-treatment fit of the generalized synthetic-control model can be empirically assessed by 

comparing predicted counterfactual with actual outcomes before treatment. A ratio of about 

one implies post-treatment ratios would have been one had treatment not occurred, discussed 

in eAppendix 7.1.46
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The study’s major limitation is poor precision in the sampling-fraction model, which 

was constrained by limited counter data. That the model predicted different trends in the 

sampling fraction between treatment areas strengthens our belief that it addressed selection 

bias in ratio measures, even if absolute estimates of bicycle–distance were imprecise. 

Spillover effects36 between areas are another possible threat to validity. Generally, results 

were stronger under the narrower treatment-area definition, suggesting interference may 

have biased results towards the null in the wide-net treatment areas. We thus view the 

narrower treatment areas as having more valid results.

In summary, we estimated moderately strong effects on bicycling for some but not all off-

street paved trails using high-resolution aggregated bicycling data and a rigorous method for 

estimating causal effects. Future studies might extend this research by seeking to translate 

aggregate effect estimates into individual-level values to better inform impacts on health 

equity.
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Figure 1. 
The treatment infrastructure and corresponding wide-net (A) and narrower (B) definition 

of the treatment areas. The total number of hexagons treated varies over time under 

each definition (Figure 2); these maps represent the last study month (September 2018). 

Abbreviations: WST-PCG, Atlanta BeltLine Westside Trail & Proctor Creek Greenway; 

LS-TECH-IAP, Luckie Street NW Protected Bike Lane & Georgia Tech PATH Parkway 

& Ivan Allen PATH; EST-EXT, Atlanta BeltLine Eastside Trail Extension; MCD, North 

McDonough St Protected Bike Lane; NT, never treated. Abbreviations for each section of 

treatment infrastructure are defined in Table 1.
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Figure 2. 
The treatment status of each hexagon-month (N=298 hexagons*24 months=7,172 hexagon-

months) under each treatment-area definition, wide-net (A) or narrower (B). Abbreviations: 

WST-PCG, Atlanta BeltLine Westside Trail & Proctor Creek Greenway; LS-TECH-IAP, 

Luckie Street NW Protected Bike Lane & Georgia Tech PATH Parkway & Ivan Allen PATH; 

EST-EXT, Atlanta BeltLine Eastside Trail Extension; MCD, North McDonough St Protected 

Bike Lane.
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Figure 3. 
Monthly ratio effect estimates using estimated (inverse-probability-of-selection-weighted) 

bicycle-distance as the outcome by treatment infrastructure and by treatment-area 

definition (wide-net or narrower). The shaded ribbons represent 95% confidence intervals. 

Abbreviations: WST-PCG, Atlanta BeltLine Westside Trail & Proctor Creek Greenway; LS-

TECH-IAP, Luckie Street NW Protected Bike Lane, Georgia Tech PATH Parkway, and Ivan 

Allen PATH; EST-EXT, Atlanta BeltLine Eastside Trail Extension; MCD, N McDonough 

St Protected Bike Lane; ALL, all infrastructure as one single progressively expanding 

intervention.
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Figure 4. 
Monthly ratio effect estimates using Strava-reported bicycle-distance as the outcome by 

treatment infrastructure and by treatment-area definition (wide-net or narrower). The shaded 

ribbons represent 95% confidence intervals. Abbreviations: WST-PCG, Atlanta BeltLine 

Westside Trail & Proctor Creek Greenway; LS-TECH-IAP, Luckie Street NW Protected 

Bike Lane, Georgia Tech PATH Parkway, and Ivan Allen PATH; EST-EXT, Atlanta 

BeltLine Eastside Trail Extension; MCD, N McDonough St Protected Bike Lane; ALL, 

all infrastructure as one single progressively expanding intervention.

Garber et al. Page 19

Epidemiology. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Garber et al. Page 20

Table 1.

The groups of bicycle infrastructure evaluated, sorted from west to east.

Treatment 
infrastructure group 
name (abbreviation)

Treatment 
infrastructure section 
name (abbreviation) Type Neighborhood

Length 
(mi)

Date 
opened

For further 
information

Atlanta BeltLine 

Westside Trail
a 

& Proctor Creek 
Greenway (WST-PCG)

Atlanta BeltLine 
Westside Trail (WST)

Off-street 
paved trail

Adair Park to 
Washington Park 2.41 2017–

09-29

Atlanta Beltline 2017 
Annual Report, p. 
2569; City of Atlanta 
2017 Annual Bicycle 
Report, p. 728

Proctor Creek Greenway 
(PCG)

Off-street 
paved trail

Bankhead / 
Grove Park 2.45 2018–

05-07

Atlanta Beltline 2018 
Annual Report, p. 
3168; City of Atlanta 
2018 Annual Bicycle 
Report, p. 1629

Luckie St & PATH 
Parkway & Ivan 

Allen PATH
b
 (LS-

TECH-IAP)

Luckie St NW (LS)
b Protected 

bike lane
Downtown 
Atlanta 0.82 2017–

06-01 Kahn, 201770

Georgia Tech PATH 

Parkway (TECH)
b

Off-street 
paved trail

Marietta St 
Artery / Georgia 
Tech

0.65 2017–
11-28

City of Atlanta 
2017 Annual Bicycle 
Report, p. 828; PATH 
Foundation71

Ivan Allen PATH (IAP) Off-street 
paved trail

Downtown / Vine 
City 0.66 2018–

02-01

City of Atlanta 
2018 Annual Bicycle 
Report, p. 1529

Atlanta BeltLine 
Eastside Extension 
(EST-EXT)

Atlanta BeltLine 
Eastside Trail: Krog St. 
NE to BeltLine corridor 
via Wylie St SE (EST-
EXT1)

Off-street 
paved trail Reynoldstown 0.36 2017–

09-01

Atlanta Beltline 2017 
Annual Report, p. 
2969; Atlanta Beltline 
2018 Annual Report, 
p. 2868

Atlanta BeltLine 
Eastside Trail: Irwin St 
NE to Edgewood Ave 
NE (EST-EXT 2)

Off-street 
paved trail Inman Park 0.23 2017–

10-23

Atlanta BeltLine 
Eastside Trail: Wylie St 
SE to Kirkwood Ave 
SE via BeltLine corridor 
(EST-EXT3)

Off-street 
paved trail Reynoldstown 0.16 2017–

10-23

South Peachtree Creek 
Trail (PCT)

South Peachtree Creek 
Trail: Mason Mill Park 
to N. Druid Hills Rd. 
(PCT1)

Off-street 
paved trail North Decatur 0.87 2017–

06-24

Williams, 201772; 
201873

South Peachtree Creek 
Trail: Starvine Way 
to Clairmont Road 
underpass (PCT2)

Off-street 
paved trail North Decatur 0.22 2018–

04-20

North McDonough St 
(MCD)

North McDonough St 
(MCD)

Protected 
bike lane Downton Decatur 0.25 2017–

09-01 Banks, 201774

a
The length does not include the unpaved part in the corridor between Lawton St SW. and Ralph David Abernathy Blvd SW.

b
Between Merrits Ave NW and North Ave NW, this protected bike lane is entirely off the street and could be called an off-street paved trail along 

that stretch. Conversely, because the PATH Parkway runs adjacent and parallel to a street (Tech Parkway NW), it could be called a protected bike 
lane rather than off-street paved trail.
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Table 2.

Characteristics of the treated and never-treated areas
a
 based on the “wide-net” definition during the pre-

treatment period (2016–10-01 – 2017-05–31).

Attribute WST-PCG
LS-TECH-

IAP EST-EXT PCT MCD
Never treated 

(NT)

Size of treatment area (square 
miles) at study end (2018–09-30) 13.0 4.5 4.0 4.5 2.0 121.0

Combined length of treatment 
trail(s) or lane(s) (miles) 4.86 2.12 0.75 1.09 0.25 N/A

Treatment area (square miles) per 
mile at study end (2018–09-30) 2.7 2.1 5.4 4.1 7.9 N/A

Socio-demographic 

characteristics
b
 (Estimate (95% 

CI))

Population density (residents per 
square mile)

3,709 (3,552; 
3,865)

8,763 (8,414; 
9,132)

7,816 (7,560; 
8,049)

3,590 (3,447; 
3,735)

5,584 (5,341; 
5,823)

3,876 (3,832; 
3,920)

Median age of residents 35 (34; 36) 28 (27; 28) 32 (31; 32) 36 (34; 38) 36 (33; 39) 36 (36; 36)

Percent of residents Black 85% (78%; 
86%)

36% (33%; 
39%)

31% (28%; 
35%)

12% (10%; 
15%)

21% (17%; 
25%)

37% (35%; 
37%)

Percent of residents white 11% (10%; 
13%)

45% (41%; 
48%)

60% (57%; 
64%)

69% (65%; 
74%)

69% (64%; 
75%)

53% (52%; 
54%)

Percent of residents another race 4% (4%; 
11%)

20% (15%; 
25%)

8% (5%; 
14%)

18% (13%; 
23%)

10% (5%; 
17%)

10% (10%; 
13%)

Median household income (USD)
35,931 

(33,089; 
38,931)

56,152 
(50,848; 
61,013)

75,226 
(69,505; 
80,950)

75,958 
(69,360; 
82,552)

104,042 
(91,434; 
116,547)

80,172 
(77,784; 
82,226)

Median home value (USD)
145,162 

(132,506; 
158,925)

186,993 
(169,875; 
203,343)

370,264 
(352,971; 
389,546)

367,158 
(341,490; 
392,282)

523,799 
(494,030; 
553,814)

363,539 
(356,025; 
371,826)

Percent of residents who bicycle 
to work

0.6% (0.6%; 
1.6%)

1.9% (1.4%; 
2.8%)

3.2% (2.3%; 
4.3%)

1.5% (0.9%; 
2.3%)

3.0% (1.7%; 
4.7%)

0.7% (0.7%; 
1.5%)

Built-environment 
characteristics

Bicycle infrastructure (miles per 

square mile) (Mean (SD))c

Off-street paved trails 0.51 (0) 0.71 (0) 2.01 (0) 0.42 (0) 0.83 (0) 0.36 (0.003)

Protected bike lanes 0.02 (0) 0.31 (0) 0.04 (0) 0.00 (0) 0.00 (0) 0.01 (0)

Buffered bike lanes 0.02 (0) 0.10 (0) 0.11 (0) 0.00 (0) 0.00 (0) 0.01 (0)

Conventional bike lanes 0.59 (0) 2.49 (0) 1.09 (0) 0.00 (0) 0.50 (0) 0.37 (0)

Street density (miles of roadway 

per square mile)
d 15 20 22 13 19 13

Bicycle-distance measures

Estimated (IPSW) bicycle-
distance ridden (person-miles) 
per square mile per month (Mean 
(95% CI))

2,549 (2,436; 
2,654)

23,185 
(22,514; 
23,730)

50,717 
(48,727; 
53,038)

8,030 (7,792; 
8,286)

20,860 
(20,115; 
21,746)

7,268 (7,152; 
7,392)

Strava-reported bicycle-distance 
(person-miles) per square mile 
per month (Mean (95% CI))

166 1,312 3,037 488 1,880 576
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Attribute WST-PCG
LS-TECH-

IAP EST-EXT PCT MCD
Never treated 

(NT)

Estimated sampling fraction 
per month (Strava-reported 
person-miles/IPSW person-miles) 
(Estimate (95% CI))

6.5% (6.3%; 
6.8%)

5.7% (5.5%; 
5.8%)

6.0% (5.7%; 
6.2%)

6.1% (5.9%; 
6.3%)

9.0% (8.6%; 
9.3%)

7.9% (7.8%; 
8.1%)

a
Although this table characterizes the areas during the pre-treatment period (2016–10-01 – 2017-05–31), the areas themselves correspond to the 

land area as classified at the end of the study, as depicted in Figure 1, panel A.

b
A weighted average of census-tract-level data from the 2015–2019 5-year American Community Survey (ACS; eAppendix 2). These measures are 

considered time-invariant over the study period.

c
Mean and SD describe monthly variation during the pre-treatment period (2016–10-01 – 2017-05–31).

d
Excluding interstate highways, unclassified roads, and service roads, per the OpenStreetMap definition.75 Street connectivity is considered 

time-invariant, so a standard deviation is not presented.

Abbreviations: Abbreviations: WST-PCG, Atlanta BeltLine Westside Trail & Proctor Creek Greenway; LS-TECH-IAP, Luckie Street NW 
Protected Bike Lane & Georgia Tech PATH Parkway & Ivan Allen PATH; EST-EXT, Atlanta BeltLine Eastside Trail Extension; MCD, North 
McDonough St Protected Bike Lane, NT, never treated; CI, confidence interval; IPSW, inverse-probability-of-selection weighted; SD, standard 
deviation.
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Table 3.

The estimated effect measures in the post-treatment period for each infrastructure group.

Outcome 

measure
a

WST-PCG
LS-TECH-

IAP EST-EXT PCT MCD All, jointly

Wide-net 
treatment-area

Square-mile-
months treated 117.5 71 52 62.5 26 325

Ratio (95% CI) IPSW 1.45 (1.12; 
1.86)

0.98 (0.90; 
1.06)

1.08 (0.89; 
1.26)

1.08 (0.89; 
1.25)

0.97 (0.85; 
1.09)

1.04 (0.94; 
1.11)

Cumulative 
difference (bicycle-
miles) (95% CI)

IPSW
180,035 
(58,115; 
275,829)

−29,901 
(−183,818; 

92,848)

166,905 
(−339,210; 

512,992)

37,648 
(−72,369; 
109,750)

−14,972 
(−87,008; 

45,427)

220,919 
(−422,338; 

667,057)

Difference per 
square mile-month 
(bicycle-miles) 
(95% CI)

IPSW 1,532 (495; 
2,347)

−421 (−2,589; 
1,308)

3,210 (−6,523; 
9,865)

602 (−1,158; 
1,756)

−576 
(−3,346; 

1,747)
680 (−1,300; 

2,052)

Ratio (95% CI) Strava-
reported

1.41 (1.34; 
1.48)

1.19 (1.11; 
1.21)

1.07 (1.04; 
1.10)

1.15 (1.03; 
1.31)

1.13 (1.10; 
1.16)

1.13 (1.11; 
1.16)

Narrower 
treatment area

Square-mile-
months treated 51 21.5 19.5 22.5 13 127.5

Ratio (95% CI) IPSW 1.55 (1.10; 
2.14)

1.00 (0.89; 
1.12)

1.08 (0.93; 
1.31)

1.21 (0.92; 
1.47)

0.96 (0.84; 
1.11)

1.10 (0.99; 
1.18)

Cumulative 
difference (bicycle-
miles) (95% CI)

IPSW
125,726 
(35,539; 
189,344)

1,153 
(−62,459; 

57,645)

72,076 
(−105,259; 

258,174)

36,559 
(−23,273; 

70,596)

−12,627 
(−63,791; 

36,682)

245,086 
(−50,187; 
451,588)

Difference per 
square mile-month 
(bicycle-miles) 
(95% CI)

IPSW 2,465 (697; 
3,713)

54 (−2,905; 
2,681)

3,696 (−5,398; 
13,240)

1,625 
(−1,034; 

3,138)

−971 
(−4,907; 

2,822)
1,922 (−394; 

3,542)

Ratio (95% CI) Strava-
reported

1.73 (1.63; 
1.84)

1.18 (1.15; 
1.20)

1.10 (1.06; 
1.14)

1.20 (1.00; 
1.49)

1.14 (1.11; 
1.17)

1.18 (1.15; 
1.22)

a
Either estimated bicycle-distance via inverse-probability-of-selection weighting (IPSW) or Strava-reported bicycle-distance. Other abbreviations: 

WST-PCG, Atlanta BeltLine Westside Trail & Proctor Creek Greenway; LS-TECH-IAP, Luckie Street NW Protected Bike Lane & Georgia Tech 
PATH Parkway & Ivan Allen PATH; EST-EXT, Atlanta BeltLine Eastside Trail Extension; MCD, North McDonough St Protected Bike Lane.
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